1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" 71 #include "lldb/Core/Debugger.h" 72 #include "lldb/Core/Disassembler.h" 73 #include "lldb/Core/Module.h" 74 #include "lldb/Core/StreamFile.h" 75 #include "lldb/Expression/IRExecutionUnit.h" 76 #include "lldb/Expression/IRInterpreter.h" 77 #include "lldb/Host/File.h" 78 #include "lldb/Host/HostInfo.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/Reproducer.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h" 95 96 #include <cctype> 97 #include <memory> 98 99 using namespace clang; 100 using namespace llvm; 101 using namespace lldb_private; 102 103 //===----------------------------------------------------------------------===// 104 // Utility Methods for Clang 105 //===----------------------------------------------------------------------===// 106 107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 108 ClangModulesDeclVendor &m_decl_vendor; 109 ClangPersistentVariables &m_persistent_vars; 110 clang::SourceManager &m_source_mgr; 111 StreamString m_error_stream; 112 bool m_has_errors = false; 113 114 public: 115 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 116 ClangPersistentVariables &persistent_vars, 117 clang::SourceManager &source_mgr) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 119 m_source_mgr(source_mgr) {} 120 121 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 122 const clang::Module * /*null*/) override { 123 // Ignore modules that are imported in the wrapper code as these are not 124 // loaded by the user. 125 llvm::StringRef filename = 126 m_source_mgr.getPresumedLoc(import_location).getFilename(); 127 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 128 return; 129 130 SourceModule module; 131 132 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 133 module.path.push_back(ConstString(component.first->getName())); 134 135 StreamString error_stream; 136 137 ClangModulesDeclVendor::ModuleVector exported_modules; 138 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 139 m_has_errors = true; 140 141 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 142 m_persistent_vars.AddHandLoadedClangModule(module); 143 } 144 145 bool hasErrors() { return m_has_errors; } 146 147 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 148 }; 149 150 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 151 public: 152 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 153 DiagnosticOptions *m_options = new DiagnosticOptions(opts); 154 m_options->ShowPresumedLoc = true; 155 m_options->ShowLevel = false; 156 m_os.reset(new llvm::raw_string_ostream(m_output)); 157 m_passthrough.reset( 158 new clang::TextDiagnosticPrinter(*m_os, m_options, false)); 159 } 160 161 void ResetManager(DiagnosticManager *manager = nullptr) { 162 m_manager = manager; 163 } 164 165 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 166 const clang::Diagnostic &Info) override { 167 if (!m_manager) { 168 // We have no DiagnosticManager before/after parsing but we still could 169 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 170 // when we move the expression result ot the ScratchASTContext). Let's at 171 // least log these diagnostics until we find a way to properly render 172 // them and display them to the user. 173 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 174 if (log) { 175 llvm::SmallVector<char, 32> diag_str; 176 Info.FormatDiagnostic(diag_str); 177 diag_str.push_back('\0'); 178 const char *plain_diag = diag_str.data(); 179 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 180 } 181 return; 182 } 183 184 // Render diagnostic message to m_output. 185 m_output.clear(); 186 m_passthrough->HandleDiagnostic(DiagLevel, Info); 187 m_os->flush(); 188 189 lldb_private::DiagnosticSeverity severity; 190 bool make_new_diagnostic = true; 191 192 switch (DiagLevel) { 193 case DiagnosticsEngine::Level::Fatal: 194 case DiagnosticsEngine::Level::Error: 195 severity = eDiagnosticSeverityError; 196 break; 197 case DiagnosticsEngine::Level::Warning: 198 severity = eDiagnosticSeverityWarning; 199 break; 200 case DiagnosticsEngine::Level::Remark: 201 case DiagnosticsEngine::Level::Ignored: 202 severity = eDiagnosticSeverityRemark; 203 break; 204 case DiagnosticsEngine::Level::Note: 205 m_manager->AppendMessageToDiagnostic(m_output); 206 make_new_diagnostic = false; 207 } 208 if (make_new_diagnostic) { 209 // ClangDiagnostic messages are expected to have no whitespace/newlines 210 // around them. 211 std::string stripped_output = 212 std::string(llvm::StringRef(m_output).trim()); 213 214 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 215 stripped_output, severity, Info.getID()); 216 217 // Don't store away warning fixits, since the compiler doesn't have 218 // enough context in an expression for the warning to be useful. 219 // FIXME: Should we try to filter out FixIts that apply to our generated 220 // code, and not the user's expression? 221 if (severity == eDiagnosticSeverityError) { 222 size_t num_fixit_hints = Info.getNumFixItHints(); 223 for (size_t i = 0; i < num_fixit_hints; i++) { 224 const clang::FixItHint &fixit = Info.getFixItHint(i); 225 if (!fixit.isNull()) 226 new_diagnostic->AddFixitHint(fixit); 227 } 228 } 229 230 m_manager->AddDiagnostic(std::move(new_diagnostic)); 231 } 232 } 233 234 clang::TextDiagnosticPrinter *GetPassthrough() { return m_passthrough.get(); } 235 236 private: 237 DiagnosticManager *m_manager = nullptr; 238 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 239 /// Output stream of m_passthrough. 240 std::shared_ptr<llvm::raw_string_ostream> m_os; 241 /// Output string filled by m_os. 242 std::string m_output; 243 }; 244 245 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 246 std::vector<std::string> include_directories, 247 lldb::TargetSP target_sp) { 248 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 249 250 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 251 252 for (const std::string &dir : include_directories) { 253 search_opts.AddPath(dir, frontend::System, false, true); 254 LLDB_LOG(log, "Added user include dir: {0}", dir); 255 } 256 257 llvm::SmallString<128> module_cache; 258 const auto &props = ModuleList::GetGlobalModuleListProperties(); 259 props.GetClangModulesCachePath().GetPath(module_cache); 260 search_opts.ModuleCachePath = std::string(module_cache.str()); 261 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 262 263 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 264 265 search_opts.ImplicitModuleMaps = true; 266 } 267 268 //===----------------------------------------------------------------------===// 269 // Implementation of ClangExpressionParser 270 //===----------------------------------------------------------------------===// 271 272 ClangExpressionParser::ClangExpressionParser( 273 ExecutionContextScope *exe_scope, Expression &expr, 274 bool generate_debug_info, std::vector<std::string> include_directories, 275 std::string filename) 276 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 277 m_pp_callbacks(nullptr), 278 m_include_directories(std::move(include_directories)), 279 m_filename(std::move(filename)) { 280 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 281 282 // We can't compile expressions without a target. So if the exe_scope is 283 // null or doesn't have a target, then we just need to get out of here. I'll 284 // lldb_assert and not make any of the compiler objects since 285 // I can't return errors directly from the constructor. Further calls will 286 // check if the compiler was made and 287 // bag out if it wasn't. 288 289 if (!exe_scope) { 290 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 291 __FUNCTION__, __FILE__, __LINE__); 292 return; 293 } 294 295 lldb::TargetSP target_sp; 296 target_sp = exe_scope->CalculateTarget(); 297 if (!target_sp) { 298 lldb_assert(target_sp.get(), 299 "Can't make an expression parser with a null target.", 300 __FUNCTION__, __FILE__, __LINE__); 301 return; 302 } 303 304 // 1. Create a new compiler instance. 305 m_compiler.reset(new CompilerInstance()); 306 307 // When capturing a reproducer, hook up the file collector with clang to 308 // collector modules and headers. 309 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 310 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 311 m_compiler->setModuleDepCollector( 312 std::make_shared<ModuleDependencyCollectorAdaptor>( 313 fp.GetFileCollector())); 314 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 315 opts.IncludeSystemHeaders = true; 316 opts.IncludeModuleFiles = true; 317 } 318 319 // Make sure clang uses the same VFS as LLDB. 320 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 321 322 lldb::LanguageType frame_lang = 323 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 324 bool overridden_target_opts = false; 325 lldb_private::LanguageRuntime *lang_rt = nullptr; 326 327 std::string abi; 328 ArchSpec target_arch; 329 target_arch = target_sp->GetArchitecture(); 330 331 const auto target_machine = target_arch.GetMachine(); 332 333 // If the expression is being evaluated in the context of an existing stack 334 // frame, we introspect to see if the language runtime is available. 335 336 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 337 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 338 339 // Make sure the user hasn't provided a preferred execution language with 340 // `expression --language X -- ...` 341 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 342 frame_lang = frame_sp->GetLanguage(); 343 344 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 345 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 346 LLDB_LOGF(log, "Frame has language of type %s", 347 Language::GetNameForLanguageType(frame_lang)); 348 } 349 350 // 2. Configure the compiler with a set of default options that are 351 // appropriate for most situations. 352 if (target_arch.IsValid()) { 353 std::string triple = target_arch.GetTriple().str(); 354 m_compiler->getTargetOpts().Triple = triple; 355 LLDB_LOGF(log, "Using %s as the target triple", 356 m_compiler->getTargetOpts().Triple.c_str()); 357 } else { 358 // If we get here we don't have a valid target and just have to guess. 359 // Sometimes this will be ok to just use the host target triple (when we 360 // evaluate say "2+3", but other expressions like breakpoint conditions and 361 // other things that _are_ target specific really shouldn't just be using 362 // the host triple. In such a case the language runtime should expose an 363 // overridden options set (3), below. 364 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 365 LLDB_LOGF(log, "Using default target triple of %s", 366 m_compiler->getTargetOpts().Triple.c_str()); 367 } 368 // Now add some special fixes for known architectures: Any arm32 iOS 369 // environment, but not on arm64 370 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 371 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 372 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 373 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 374 } 375 // Supported subsets of x86 376 if (target_machine == llvm::Triple::x86 || 377 target_machine == llvm::Triple::x86_64) { 378 m_compiler->getTargetOpts().Features.push_back("+sse"); 379 m_compiler->getTargetOpts().Features.push_back("+sse2"); 380 } 381 382 // Set the target CPU to generate code for. This will be empty for any CPU 383 // that doesn't really need to make a special 384 // CPU string. 385 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 386 387 // Set the target ABI 388 abi = GetClangTargetABI(target_arch); 389 if (!abi.empty()) 390 m_compiler->getTargetOpts().ABI = abi; 391 392 // 3. Now allow the runtime to provide custom configuration options for the 393 // target. In this case, a specialized language runtime is available and we 394 // can query it for extra options. For 99% of use cases, this will not be 395 // needed and should be provided when basic platform detection is not enough. 396 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this 397 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime 398 // having knowledge of clang::TargetOpts. 399 if (auto *renderscript_rt = 400 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt)) 401 overridden_target_opts = 402 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 403 404 if (overridden_target_opts) 405 if (log && log->GetVerbose()) { 406 LLDB_LOGV( 407 log, "Using overridden target options for the expression evaluation"); 408 409 auto opts = m_compiler->getTargetOpts(); 410 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 411 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 412 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 413 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 414 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 415 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 416 StringList::LogDump(log, opts.Features, "Features"); 417 } 418 419 // 4. Create and install the target on the compiler. 420 m_compiler->createDiagnostics(); 421 auto target_info = TargetInfo::CreateTargetInfo( 422 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 423 if (log) { 424 LLDB_LOGF(log, "Using SIMD alignment: %d", 425 target_info->getSimdDefaultAlign()); 426 LLDB_LOGF(log, "Target datalayout string: '%s'", 427 target_info->getDataLayout().getStringRepresentation().c_str()); 428 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 429 LLDB_LOGF(log, "Target vector alignment: %d", 430 target_info->getMaxVectorAlign()); 431 } 432 m_compiler->setTarget(target_info); 433 434 assert(m_compiler->hasTarget()); 435 436 // 5. Set language options. 437 lldb::LanguageType language = expr.Language(); 438 LangOptions &lang_opts = m_compiler->getLangOpts(); 439 440 switch (language) { 441 case lldb::eLanguageTypeC: 442 case lldb::eLanguageTypeC89: 443 case lldb::eLanguageTypeC99: 444 case lldb::eLanguageTypeC11: 445 // FIXME: the following language option is a temporary workaround, 446 // to "ask for C, get C++." 447 // For now, the expression parser must use C++ anytime the language is a C 448 // family language, because the expression parser uses features of C++ to 449 // capture values. 450 lang_opts.CPlusPlus = true; 451 break; 452 case lldb::eLanguageTypeObjC: 453 lang_opts.ObjC = true; 454 // FIXME: the following language option is a temporary workaround, 455 // to "ask for ObjC, get ObjC++" (see comment above). 456 lang_opts.CPlusPlus = true; 457 458 // Clang now sets as default C++14 as the default standard (with 459 // GNU extensions), so we do the same here to avoid mismatches that 460 // cause compiler error when evaluating expressions (e.g. nullptr not found 461 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 462 // two lines below) so we decide to be consistent with that, but this could 463 // be re-evaluated in the future. 464 lang_opts.CPlusPlus11 = true; 465 break; 466 case lldb::eLanguageTypeC_plus_plus: 467 case lldb::eLanguageTypeC_plus_plus_11: 468 case lldb::eLanguageTypeC_plus_plus_14: 469 lang_opts.CPlusPlus11 = true; 470 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 471 LLVM_FALLTHROUGH; 472 case lldb::eLanguageTypeC_plus_plus_03: 473 lang_opts.CPlusPlus = true; 474 if (process_sp) 475 lang_opts.ObjC = 476 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 477 break; 478 case lldb::eLanguageTypeObjC_plus_plus: 479 case lldb::eLanguageTypeUnknown: 480 default: 481 lang_opts.ObjC = true; 482 lang_opts.CPlusPlus = true; 483 lang_opts.CPlusPlus11 = true; 484 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 485 break; 486 } 487 488 lang_opts.Bool = true; 489 lang_opts.WChar = true; 490 lang_opts.Blocks = true; 491 lang_opts.DebuggerSupport = 492 true; // Features specifically for debugger clients 493 if (expr.DesiredResultType() == Expression::eResultTypeId) 494 lang_opts.DebuggerCastResultToId = true; 495 496 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 497 .CharIsSignedByDefault(); 498 499 // Spell checking is a nice feature, but it ends up completing a lot of types 500 // that we didn't strictly speaking need to complete. As a result, we spend a 501 // long time parsing and importing debug information. 502 lang_opts.SpellChecking = false; 503 504 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 505 if (clang_expr && clang_expr->DidImportCxxModules()) { 506 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 507 508 lang_opts.Modules = true; 509 // We want to implicitly build modules. 510 lang_opts.ImplicitModules = true; 511 // To automatically import all submodules when we import 'std'. 512 lang_opts.ModulesLocalVisibility = false; 513 514 // We use the @import statements, so we need this: 515 // FIXME: We could use the modules-ts, but that currently doesn't work. 516 lang_opts.ObjC = true; 517 518 // Options we need to parse libc++ code successfully. 519 // FIXME: We should ask the driver for the appropriate default flags. 520 lang_opts.GNUMode = true; 521 lang_opts.GNUKeywords = true; 522 lang_opts.DoubleSquareBracketAttributes = true; 523 lang_opts.CPlusPlus11 = true; 524 525 // The Darwin libc expects this macro to be set. 526 lang_opts.GNUCVersion = 40201; 527 528 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 529 target_sp); 530 } 531 532 if (process_sp && lang_opts.ObjC) { 533 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 534 if (runtime->GetRuntimeVersion() == 535 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 536 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 537 else 538 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 539 VersionTuple(10, 7)); 540 541 if (runtime->HasNewLiteralsAndIndexing()) 542 lang_opts.DebuggerObjCLiteral = true; 543 } 544 } 545 546 lang_opts.ThreadsafeStatics = false; 547 lang_opts.AccessControl = false; // Debuggers get universal access 548 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 549 // We enable all builtin functions beside the builtins from libc/libm (e.g. 550 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 551 // additionally enabling them as expandable builtins is breaking Clang. 552 lang_opts.NoBuiltin = true; 553 554 // Set CodeGen options 555 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 556 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 557 m_compiler->getCodeGenOpts().setFramePointer( 558 CodeGenOptions::FramePointerKind::All); 559 if (generate_debug_info) 560 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 561 else 562 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 563 564 // Disable some warnings. 565 m_compiler->getDiagnostics().setSeverityForGroup( 566 clang::diag::Flavor::WarningOrError, "unused-value", 567 clang::diag::Severity::Ignored, SourceLocation()); 568 m_compiler->getDiagnostics().setSeverityForGroup( 569 clang::diag::Flavor::WarningOrError, "odr", 570 clang::diag::Severity::Ignored, SourceLocation()); 571 572 // Inform the target of the language options 573 // 574 // FIXME: We shouldn't need to do this, the target should be immutable once 575 // created. This complexity should be lifted elsewhere. 576 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 577 578 // 6. Set up the diagnostic buffer for reporting errors 579 580 auto diag_mgr = new ClangDiagnosticManagerAdapter( 581 m_compiler->getDiagnostics().getDiagnosticOptions()); 582 m_compiler->getDiagnostics().setClient(diag_mgr); 583 584 // 7. Set up the source management objects inside the compiler 585 m_compiler->createFileManager(); 586 if (!m_compiler->hasSourceManager()) 587 m_compiler->createSourceManager(m_compiler->getFileManager()); 588 m_compiler->createPreprocessor(TU_Complete); 589 590 if (ClangModulesDeclVendor *decl_vendor = 591 target_sp->GetClangModulesDeclVendor()) { 592 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 593 target_sp->GetPersistentExpressionStateForLanguage( 594 lldb::eLanguageTypeC))) { 595 std::unique_ptr<PPCallbacks> pp_callbacks( 596 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 597 m_compiler->getSourceManager())); 598 m_pp_callbacks = 599 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 600 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 601 } 602 } 603 604 // 8. Most of this we get from the CompilerInstance, but we also want to give 605 // the context an ExternalASTSource. 606 607 auto &PP = m_compiler->getPreprocessor(); 608 auto &builtin_context = PP.getBuiltinInfo(); 609 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 610 m_compiler->getLangOpts()); 611 612 m_compiler->createASTContext(); 613 clang::ASTContext &ast_context = m_compiler->getASTContext(); 614 615 m_ast_context.reset(new TypeSystemClang( 616 "Expression ASTContext for '" + m_filename + "'", ast_context)); 617 618 std::string module_name("$__lldb_module"); 619 620 m_llvm_context.reset(new LLVMContext()); 621 m_code_generator.reset(CreateLLVMCodeGen( 622 m_compiler->getDiagnostics(), module_name, 623 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 624 m_compiler->getCodeGenOpts(), *m_llvm_context)); 625 } 626 627 ClangExpressionParser::~ClangExpressionParser() {} 628 629 namespace { 630 631 /// \class CodeComplete 632 /// 633 /// A code completion consumer for the clang Sema that is responsible for 634 /// creating the completion suggestions when a user requests completion 635 /// of an incomplete `expr` invocation. 636 class CodeComplete : public CodeCompleteConsumer { 637 CodeCompletionTUInfo m_info; 638 639 std::string m_expr; 640 unsigned m_position = 0; 641 CompletionRequest &m_request; 642 /// The printing policy we use when printing declarations for our completion 643 /// descriptions. 644 clang::PrintingPolicy m_desc_policy; 645 646 /// Returns true if the given character can be used in an identifier. 647 /// This also returns true for numbers because for completion we usually 648 /// just iterate backwards over iterators. 649 /// 650 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 651 static bool IsIdChar(char c) { 652 return c == '_' || std::isalnum(c) || c == '$'; 653 } 654 655 /// Returns true if the given character is used to separate arguments 656 /// in the command line of lldb. 657 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 658 659 /// Drops all tokens in front of the expression that are unrelated for 660 /// the completion of the cmd line. 'unrelated' means here that the token 661 /// is not interested for the lldb completion API result. 662 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 663 if (cmd.empty()) 664 return cmd; 665 666 // If we are at the start of a word, then all tokens are unrelated to 667 // the current completion logic. 668 if (IsTokenSeparator(cmd.back())) 669 return StringRef(); 670 671 // Remove all previous tokens from the string as they are unrelated 672 // to completing the current token. 673 StringRef to_remove = cmd; 674 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 675 to_remove = to_remove.drop_back(); 676 } 677 cmd = cmd.drop_front(to_remove.size()); 678 679 return cmd; 680 } 681 682 /// Removes the last identifier token from the given cmd line. 683 StringRef removeLastToken(StringRef cmd) { 684 while (!cmd.empty() && IsIdChar(cmd.back())) { 685 cmd = cmd.drop_back(); 686 } 687 return cmd; 688 } 689 690 /// Attemps to merge the given completion from the given position into the 691 /// existing command. Returns the completion string that can be returned to 692 /// the lldb completion API. 693 std::string mergeCompletion(StringRef existing, unsigned pos, 694 StringRef completion) { 695 StringRef existing_command = existing.substr(0, pos); 696 // We rewrite the last token with the completion, so let's drop that 697 // token from the command. 698 existing_command = removeLastToken(existing_command); 699 // We also should remove all previous tokens from the command as they 700 // would otherwise be added to the completion that already has the 701 // completion. 702 existing_command = dropUnrelatedFrontTokens(existing_command); 703 return existing_command.str() + completion.str(); 704 } 705 706 public: 707 /// Constructs a CodeComplete consumer that can be attached to a Sema. 708 /// 709 /// \param[out] expr 710 /// The whole expression string that we are currently parsing. This 711 /// string needs to be equal to the input the user typed, and NOT the 712 /// final code that Clang is parsing. 713 /// \param[out] position 714 /// The character position of the user cursor in the `expr` parameter. 715 /// 716 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 717 std::string expr, unsigned position) 718 : CodeCompleteConsumer(CodeCompleteOptions()), 719 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 720 m_position(position), m_request(request), m_desc_policy(ops) { 721 722 // Ensure that the printing policy is producing a description that is as 723 // short as possible. 724 m_desc_policy.SuppressScope = true; 725 m_desc_policy.SuppressTagKeyword = true; 726 m_desc_policy.FullyQualifiedName = false; 727 m_desc_policy.TerseOutput = true; 728 m_desc_policy.IncludeNewlines = false; 729 m_desc_policy.UseVoidForZeroParams = false; 730 m_desc_policy.Bool = true; 731 } 732 733 /// Deregisters and destroys this code-completion consumer. 734 ~CodeComplete() override {} 735 736 /// \name Code-completion filtering 737 /// Check if the result should be filtered out. 738 bool isResultFilteredOut(StringRef Filter, 739 CodeCompletionResult Result) override { 740 // This code is mostly copied from CodeCompleteConsumer. 741 switch (Result.Kind) { 742 case CodeCompletionResult::RK_Declaration: 743 return !( 744 Result.Declaration->getIdentifier() && 745 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 746 case CodeCompletionResult::RK_Keyword: 747 return !StringRef(Result.Keyword).startswith(Filter); 748 case CodeCompletionResult::RK_Macro: 749 return !Result.Macro->getName().startswith(Filter); 750 case CodeCompletionResult::RK_Pattern: 751 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 752 } 753 // If we trigger this assert or the above switch yields a warning, then 754 // CodeCompletionResult has been enhanced with more kinds of completion 755 // results. Expand the switch above in this case. 756 assert(false && "Unknown completion result type?"); 757 // If we reach this, then we should just ignore whatever kind of unknown 758 // result we got back. We probably can't turn it into any kind of useful 759 // completion suggestion with the existing code. 760 return true; 761 } 762 763 /// \name Code-completion callbacks 764 /// Process the finalized code-completion results. 765 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 766 CodeCompletionResult *Results, 767 unsigned NumResults) override { 768 769 // The Sema put the incomplete token we try to complete in here during 770 // lexing, so we need to retrieve it here to know what we are completing. 771 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 772 773 // Iterate over all the results. Filter out results we don't want and 774 // process the rest. 775 for (unsigned I = 0; I != NumResults; ++I) { 776 // Filter the results with the information from the Sema. 777 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 778 continue; 779 780 CodeCompletionResult &R = Results[I]; 781 std::string ToInsert; 782 std::string Description; 783 // Handle the different completion kinds that come from the Sema. 784 switch (R.Kind) { 785 case CodeCompletionResult::RK_Declaration: { 786 const NamedDecl *D = R.Declaration; 787 ToInsert = R.Declaration->getNameAsString(); 788 // If we have a function decl that has no arguments we want to 789 // complete the empty parantheses for the user. If the function has 790 // arguments, we at least complete the opening bracket. 791 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 792 if (F->getNumParams() == 0) 793 ToInsert += "()"; 794 else 795 ToInsert += "("; 796 raw_string_ostream OS(Description); 797 F->print(OS, m_desc_policy, false); 798 OS.flush(); 799 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 800 Description = V->getType().getAsString(m_desc_policy); 801 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 802 Description = F->getType().getAsString(m_desc_policy); 803 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 804 // If we try to complete a namespace, then we can directly append 805 // the '::'. 806 if (!N->isAnonymousNamespace()) 807 ToInsert += "::"; 808 } 809 break; 810 } 811 case CodeCompletionResult::RK_Keyword: 812 ToInsert = R.Keyword; 813 break; 814 case CodeCompletionResult::RK_Macro: 815 ToInsert = R.Macro->getName().str(); 816 break; 817 case CodeCompletionResult::RK_Pattern: 818 ToInsert = R.Pattern->getTypedText(); 819 break; 820 } 821 // At this point all information is in the ToInsert string. 822 823 // We also filter some internal lldb identifiers here. The user 824 // shouldn't see these. 825 if (StringRef(ToInsert).startswith("$__lldb_")) 826 continue; 827 if (!ToInsert.empty()) { 828 // Merge the suggested Token into the existing command line to comply 829 // with the kind of result the lldb API expects. 830 std::string CompletionSuggestion = 831 mergeCompletion(m_expr, m_position, ToInsert); 832 m_request.AddCompletion(CompletionSuggestion, Description); 833 } 834 } 835 } 836 837 /// \param S the semantic-analyzer object for which code-completion is being 838 /// done. 839 /// 840 /// \param CurrentArg the index of the current argument. 841 /// 842 /// \param Candidates an array of overload candidates. 843 /// 844 /// \param NumCandidates the number of overload candidates 845 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 846 OverloadCandidate *Candidates, 847 unsigned NumCandidates, 848 SourceLocation OpenParLoc) override { 849 // At the moment we don't filter out any overloaded candidates. 850 } 851 852 CodeCompletionAllocator &getAllocator() override { 853 return m_info.getAllocator(); 854 } 855 856 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 857 }; 858 } // namespace 859 860 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 861 unsigned pos, unsigned typed_pos) { 862 DiagnosticManager mgr; 863 // We need the raw user expression here because that's what the CodeComplete 864 // class uses to provide completion suggestions. 865 // However, the `Text` method only gives us the transformed expression here. 866 // To actually get the raw user input here, we have to cast our expression to 867 // the LLVMUserExpression which exposes the right API. This should never fail 868 // as we always have a ClangUserExpression whenever we call this. 869 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 870 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 871 typed_pos); 872 // We don't need a code generator for parsing. 873 m_code_generator.reset(); 874 // Start parsing the expression with our custom code completion consumer. 875 ParseInternal(mgr, &CC, line, pos); 876 return true; 877 } 878 879 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 880 return ParseInternal(diagnostic_manager); 881 } 882 883 unsigned 884 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 885 CodeCompleteConsumer *completion_consumer, 886 unsigned completion_line, 887 unsigned completion_column) { 888 ClangDiagnosticManagerAdapter *adapter = 889 static_cast<ClangDiagnosticManagerAdapter *>( 890 m_compiler->getDiagnostics().getClient()); 891 auto diag_buf = adapter->GetPassthrough(); 892 893 adapter->ResetManager(&diagnostic_manager); 894 895 const char *expr_text = m_expr.Text(); 896 897 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 898 bool created_main_file = false; 899 900 // Clang wants to do completion on a real file known by Clang's file manager, 901 // so we have to create one to make this work. 902 // TODO: We probably could also simulate to Clang's file manager that there 903 // is a real file that contains our code. 904 bool should_create_file = completion_consumer != nullptr; 905 906 // We also want a real file on disk if we generate full debug info. 907 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 908 codegenoptions::FullDebugInfo; 909 910 if (should_create_file) { 911 int temp_fd = -1; 912 llvm::SmallString<128> result_path; 913 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 914 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 915 std::string temp_source_path = tmpdir_file_spec.GetPath(); 916 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 917 } else { 918 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 919 } 920 921 if (temp_fd != -1) { 922 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true); 923 const size_t expr_text_len = strlen(expr_text); 924 size_t bytes_written = expr_text_len; 925 if (file.Write(expr_text, bytes_written).Success()) { 926 if (bytes_written == expr_text_len) { 927 file.Close(); 928 if (auto fileEntry = 929 m_compiler->getFileManager().getFile(result_path)) { 930 source_mgr.setMainFileID(source_mgr.createFileID( 931 *fileEntry, 932 SourceLocation(), SrcMgr::C_User)); 933 created_main_file = true; 934 } 935 } 936 } 937 } 938 } 939 940 if (!created_main_file) { 941 std::unique_ptr<MemoryBuffer> memory_buffer = 942 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 943 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 944 } 945 946 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 947 &m_compiler->getPreprocessor()); 948 949 ClangExpressionHelper *type_system_helper = 950 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 951 952 // If we want to parse for code completion, we need to attach our code 953 // completion consumer to the Sema and specify a completion position. 954 // While parsing the Sema will call this consumer with the provided 955 // completion suggestions. 956 if (completion_consumer) { 957 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 958 auto &PP = m_compiler->getPreprocessor(); 959 // Lines and columns start at 1 in Clang, but code completion positions are 960 // indexed from 0, so we need to add 1 to the line and column here. 961 ++completion_line; 962 ++completion_column; 963 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 964 } 965 966 ASTConsumer *ast_transformer = 967 type_system_helper->ASTTransformer(m_code_generator.get()); 968 969 std::unique_ptr<clang::ASTConsumer> Consumer; 970 if (ast_transformer) { 971 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 972 } else if (m_code_generator) { 973 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 974 } else { 975 Consumer.reset(new ASTConsumer()); 976 } 977 978 clang::ASTContext &ast_context = m_compiler->getASTContext(); 979 980 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 981 *Consumer, TU_Complete, completion_consumer)); 982 m_compiler->setASTConsumer(std::move(Consumer)); 983 984 if (ast_context.getLangOpts().Modules) { 985 m_compiler->createASTReader(); 986 m_ast_context->setSema(&m_compiler->getSema()); 987 } 988 989 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 990 if (decl_map) { 991 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 992 993 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 994 995 if (ast_context.getExternalSource()) { 996 auto module_wrapper = 997 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 998 999 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 1000 1001 auto multiplexer = 1002 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 1003 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 1004 ast_context.setExternalSource(Source); 1005 } else { 1006 ast_context.setExternalSource(ast_source); 1007 } 1008 decl_map->InstallASTContext(*m_ast_context); 1009 } 1010 1011 // Check that the ASTReader is properly attached to ASTContext and Sema. 1012 if (ast_context.getLangOpts().Modules) { 1013 assert(m_compiler->getASTContext().getExternalSource() && 1014 "ASTContext doesn't know about the ASTReader?"); 1015 assert(m_compiler->getSema().getExternalSource() && 1016 "Sema doesn't know about the ASTReader?"); 1017 } 1018 1019 { 1020 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1021 &m_compiler->getSema()); 1022 ParseAST(m_compiler->getSema(), false, false); 1023 } 1024 1025 // Make sure we have no pointer to the Sema we are about to destroy. 1026 if (ast_context.getLangOpts().Modules) 1027 m_ast_context->setSema(nullptr); 1028 // Destroy the Sema. This is necessary because we want to emulate the 1029 // original behavior of ParseAST (which also destroys the Sema after parsing). 1030 m_compiler->setSema(nullptr); 1031 1032 diag_buf->EndSourceFile(); 1033 1034 unsigned num_errors = diag_buf->getNumErrors(); 1035 1036 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1037 num_errors++; 1038 diagnostic_manager.PutString(eDiagnosticSeverityError, 1039 "while importing modules:"); 1040 diagnostic_manager.AppendMessageToDiagnostic( 1041 m_pp_callbacks->getErrorString()); 1042 } 1043 1044 if (!num_errors) { 1045 type_system_helper->CommitPersistentDecls(); 1046 } 1047 1048 adapter->ResetManager(); 1049 1050 return num_errors; 1051 } 1052 1053 std::string 1054 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1055 std::string abi; 1056 1057 if (target_arch.IsMIPS()) { 1058 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1059 case ArchSpec::eMIPSABI_N64: 1060 abi = "n64"; 1061 break; 1062 case ArchSpec::eMIPSABI_N32: 1063 abi = "n32"; 1064 break; 1065 case ArchSpec::eMIPSABI_O32: 1066 abi = "o32"; 1067 break; 1068 default: 1069 break; 1070 } 1071 } 1072 return abi; 1073 } 1074 1075 bool ClangExpressionParser::RewriteExpression( 1076 DiagnosticManager &diagnostic_manager) { 1077 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1078 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1079 nullptr); 1080 clang::edit::Commit commit(editor); 1081 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1082 1083 class RewritesReceiver : public edit::EditsReceiver { 1084 Rewriter &rewrite; 1085 1086 public: 1087 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1088 1089 void insert(SourceLocation loc, StringRef text) override { 1090 rewrite.InsertText(loc, text); 1091 } 1092 void replace(CharSourceRange range, StringRef text) override { 1093 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1094 } 1095 }; 1096 1097 RewritesReceiver rewrites_receiver(rewriter); 1098 1099 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1100 size_t num_diags = diagnostics.size(); 1101 if (num_diags == 0) 1102 return false; 1103 1104 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1105 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1106 if (diagnostic && diagnostic->HasFixIts()) { 1107 for (const FixItHint &fixit : diagnostic->FixIts()) { 1108 // This is cobbed from clang::Rewrite::FixItRewriter. 1109 if (fixit.CodeToInsert.empty()) { 1110 if (fixit.InsertFromRange.isValid()) { 1111 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1112 fixit.InsertFromRange, /*afterToken=*/false, 1113 fixit.BeforePreviousInsertions); 1114 } else 1115 commit.remove(fixit.RemoveRange); 1116 } else { 1117 if (fixit.RemoveRange.isTokenRange() || 1118 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1119 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1120 else 1121 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1122 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1123 } 1124 } 1125 } 1126 } 1127 1128 // FIXME - do we want to try to propagate specific errors here? 1129 if (!commit.isCommitable()) 1130 return false; 1131 else if (!editor.commit(commit)) 1132 return false; 1133 1134 // Now play all the edits, and stash the result in the diagnostic manager. 1135 editor.applyRewrites(rewrites_receiver); 1136 RewriteBuffer &main_file_buffer = 1137 rewriter.getEditBuffer(source_manager.getMainFileID()); 1138 1139 std::string fixed_expression; 1140 llvm::raw_string_ostream out_stream(fixed_expression); 1141 1142 main_file_buffer.write(out_stream); 1143 out_stream.flush(); 1144 diagnostic_manager.SetFixedExpression(fixed_expression); 1145 1146 return true; 1147 } 1148 1149 static bool FindFunctionInModule(ConstString &mangled_name, 1150 llvm::Module *module, const char *orig_name) { 1151 for (const auto &func : module->getFunctionList()) { 1152 const StringRef &name = func.getName(); 1153 if (name.find(orig_name) != StringRef::npos) { 1154 mangled_name.SetString(name); 1155 return true; 1156 } 1157 } 1158 1159 return false; 1160 } 1161 1162 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1163 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1164 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1165 bool &can_interpret, ExecutionPolicy execution_policy) { 1166 func_addr = LLDB_INVALID_ADDRESS; 1167 func_end = LLDB_INVALID_ADDRESS; 1168 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1169 1170 lldb_private::Status err; 1171 1172 std::unique_ptr<llvm::Module> llvm_module_up( 1173 m_code_generator->ReleaseModule()); 1174 1175 if (!llvm_module_up) { 1176 err.SetErrorToGenericError(); 1177 err.SetErrorString("IR doesn't contain a module"); 1178 return err; 1179 } 1180 1181 ConstString function_name; 1182 1183 if (execution_policy != eExecutionPolicyTopLevel) { 1184 // Find the actual name of the function (it's often mangled somehow) 1185 1186 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1187 m_expr.FunctionName())) { 1188 err.SetErrorToGenericError(); 1189 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1190 m_expr.FunctionName()); 1191 return err; 1192 } else { 1193 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1194 m_expr.FunctionName()); 1195 } 1196 } 1197 1198 SymbolContext sc; 1199 1200 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1201 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1202 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1203 sc.target_sp = target_sp; 1204 } 1205 1206 LLVMUserExpression::IRPasses custom_passes; 1207 { 1208 auto lang = m_expr.Language(); 1209 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1210 Language::GetNameForLanguageType(lang)); 1211 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1212 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1213 auto runtime = process_sp->GetLanguageRuntime(lang); 1214 if (runtime) 1215 runtime->GetIRPasses(custom_passes); 1216 } 1217 } 1218 1219 if (custom_passes.EarlyPasses) { 1220 LLDB_LOGF(log, 1221 "%s - Running Early IR Passes from LanguageRuntime on " 1222 "expression module '%s'", 1223 __FUNCTION__, m_expr.FunctionName()); 1224 1225 custom_passes.EarlyPasses->run(*llvm_module_up); 1226 } 1227 1228 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1229 m_llvm_context, // handed off here 1230 llvm_module_up, // handed off here 1231 function_name, exe_ctx.GetTargetSP(), sc, 1232 m_compiler->getTargetOpts().Features); 1233 1234 ClangExpressionHelper *type_system_helper = 1235 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1236 ClangExpressionDeclMap *decl_map = 1237 type_system_helper->DeclMap(); // result can be NULL 1238 1239 if (decl_map) { 1240 Target *target = exe_ctx.GetTargetPtr(); 1241 auto &error_stream = target->GetDebugger().GetErrorStream(); 1242 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1243 *execution_unit_sp, error_stream, 1244 function_name.AsCString()); 1245 1246 bool ir_can_run = 1247 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1248 1249 if (!ir_can_run) { 1250 err.SetErrorString( 1251 "The expression could not be prepared to run in the target"); 1252 return err; 1253 } 1254 1255 Process *process = exe_ctx.GetProcessPtr(); 1256 1257 if (execution_policy != eExecutionPolicyAlways && 1258 execution_policy != eExecutionPolicyTopLevel) { 1259 lldb_private::Status interpret_error; 1260 1261 bool interpret_function_calls = 1262 !process ? false : process->CanInterpretFunctionCalls(); 1263 can_interpret = IRInterpreter::CanInterpret( 1264 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1265 interpret_error, interpret_function_calls); 1266 1267 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1268 err.SetErrorStringWithFormat( 1269 "Can't evaluate the expression without a running target due to: %s", 1270 interpret_error.AsCString()); 1271 return err; 1272 } 1273 } 1274 1275 if (!process && execution_policy == eExecutionPolicyAlways) { 1276 err.SetErrorString("Expression needed to run in the target, but the " 1277 "target can't be run"); 1278 return err; 1279 } 1280 1281 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1282 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1283 "target, but the target can't be run"); 1284 return err; 1285 } 1286 1287 if (execution_policy == eExecutionPolicyAlways || 1288 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1289 if (m_expr.NeedsValidation() && process) { 1290 if (!process->GetDynamicCheckers()) { 1291 ClangDynamicCheckerFunctions *dynamic_checkers = 1292 new ClangDynamicCheckerFunctions(); 1293 1294 DiagnosticManager install_diagnostics; 1295 1296 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1297 if (install_diagnostics.Diagnostics().size()) 1298 err.SetErrorString(install_diagnostics.GetString().c_str()); 1299 else 1300 err.SetErrorString("couldn't install checkers, unknown error"); 1301 1302 return err; 1303 } 1304 1305 process->SetDynamicCheckers(dynamic_checkers); 1306 1307 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1308 "Finished installing dynamic checkers =="); 1309 } 1310 1311 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1312 process->GetDynamicCheckers())) { 1313 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1314 function_name.AsCString()); 1315 1316 llvm::Module *module = execution_unit_sp->GetModule(); 1317 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1318 err.SetErrorToGenericError(); 1319 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1320 return err; 1321 } 1322 1323 if (custom_passes.LatePasses) { 1324 LLDB_LOGF(log, 1325 "%s - Running Late IR Passes from LanguageRuntime on " 1326 "expression module '%s'", 1327 __FUNCTION__, m_expr.FunctionName()); 1328 1329 custom_passes.LatePasses->run(*module); 1330 } 1331 } 1332 } 1333 } 1334 1335 if (execution_policy == eExecutionPolicyAlways || 1336 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1337 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1338 } 1339 } else { 1340 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1341 } 1342 1343 return err; 1344 } 1345 1346 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1347 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1348 lldb_private::Status err; 1349 1350 lldbassert(execution_unit_sp.get()); 1351 lldbassert(exe_ctx.HasThreadScope()); 1352 1353 if (!execution_unit_sp.get()) { 1354 err.SetErrorString( 1355 "can't run static initializers for a NULL execution unit"); 1356 return err; 1357 } 1358 1359 if (!exe_ctx.HasThreadScope()) { 1360 err.SetErrorString("can't run static initializers without a thread"); 1361 return err; 1362 } 1363 1364 std::vector<lldb::addr_t> static_initializers; 1365 1366 execution_unit_sp->GetStaticInitializers(static_initializers); 1367 1368 for (lldb::addr_t static_initializer : static_initializers) { 1369 EvaluateExpressionOptions options; 1370 1371 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1372 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1373 llvm::ArrayRef<lldb::addr_t>(), options)); 1374 1375 DiagnosticManager execution_errors; 1376 lldb::ExpressionResults results = 1377 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1378 exe_ctx, call_static_initializer, options, execution_errors); 1379 1380 if (results != lldb::eExpressionCompleted) { 1381 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1382 execution_errors.GetString().c_str()); 1383 return err; 1384 } 1385 } 1386 1387 return err; 1388 } 1389