1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "lldb/Core/Debugger.h" 71 #include "lldb/Core/Disassembler.h" 72 #include "lldb/Core/Module.h" 73 #include "lldb/Core/StreamFile.h" 74 #include "lldb/Expression/IRExecutionUnit.h" 75 #include "lldb/Expression/IRInterpreter.h" 76 #include "lldb/Host/File.h" 77 #include "lldb/Host/HostInfo.h" 78 #include "lldb/Symbol/TypeSystemClang.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/Reproducer.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 94 95 #include <cctype> 96 #include <memory> 97 98 using namespace clang; 99 using namespace llvm; 100 using namespace lldb_private; 101 102 //===----------------------------------------------------------------------===// 103 // Utility Methods for Clang 104 //===----------------------------------------------------------------------===// 105 106 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 107 ClangModulesDeclVendor &m_decl_vendor; 108 ClangPersistentVariables &m_persistent_vars; 109 clang::SourceManager &m_source_mgr; 110 StreamString m_error_stream; 111 bool m_has_errors = false; 112 113 public: 114 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 115 ClangPersistentVariables &persistent_vars, 116 clang::SourceManager &source_mgr) 117 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 118 m_source_mgr(source_mgr) {} 119 120 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 121 const clang::Module * /*null*/) override { 122 // Ignore modules that are imported in the wrapper code as these are not 123 // loaded by the user. 124 llvm::StringRef filename = 125 m_source_mgr.getPresumedLoc(import_location).getFilename(); 126 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 127 return; 128 129 SourceModule module; 130 131 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 132 module.path.push_back(ConstString(component.first->getName())); 133 134 StreamString error_stream; 135 136 ClangModulesDeclVendor::ModuleVector exported_modules; 137 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 138 m_has_errors = true; 139 140 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 141 m_persistent_vars.AddHandLoadedClangModule(module); 142 } 143 144 bool hasErrors() { return m_has_errors; } 145 146 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 147 }; 148 149 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 150 public: 151 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 152 DiagnosticOptions *m_options = new DiagnosticOptions(opts); 153 m_options->ShowPresumedLoc = true; 154 m_options->ShowLevel = false; 155 m_os.reset(new llvm::raw_string_ostream(m_output)); 156 m_passthrough.reset( 157 new clang::TextDiagnosticPrinter(*m_os, m_options, false)); 158 } 159 160 void ResetManager(DiagnosticManager *manager = nullptr) { 161 m_manager = manager; 162 } 163 164 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 165 const clang::Diagnostic &Info) override { 166 if (!m_manager) { 167 // We have no DiagnosticManager before/after parsing but we still could 168 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 169 // when we move the expression result ot the ScratchASTContext). Let's at 170 // least log these diagnostics until we find a way to properly render 171 // them and display them to the user. 172 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 173 if (log) { 174 llvm::SmallVector<char, 32> diag_str; 175 Info.FormatDiagnostic(diag_str); 176 diag_str.push_back('\0'); 177 const char *plain_diag = diag_str.data(); 178 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 179 } 180 return; 181 } 182 183 // Render diagnostic message to m_output. 184 m_output.clear(); 185 m_passthrough->HandleDiagnostic(DiagLevel, Info); 186 m_os->flush(); 187 188 lldb_private::DiagnosticSeverity severity; 189 bool make_new_diagnostic = true; 190 191 switch (DiagLevel) { 192 case DiagnosticsEngine::Level::Fatal: 193 case DiagnosticsEngine::Level::Error: 194 severity = eDiagnosticSeverityError; 195 break; 196 case DiagnosticsEngine::Level::Warning: 197 severity = eDiagnosticSeverityWarning; 198 break; 199 case DiagnosticsEngine::Level::Remark: 200 case DiagnosticsEngine::Level::Ignored: 201 severity = eDiagnosticSeverityRemark; 202 break; 203 case DiagnosticsEngine::Level::Note: 204 m_manager->AppendMessageToDiagnostic(m_output); 205 make_new_diagnostic = false; 206 } 207 if (make_new_diagnostic) { 208 // ClangDiagnostic messages are expected to have no whitespace/newlines 209 // around them. 210 std::string stripped_output = llvm::StringRef(m_output).trim(); 211 212 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 213 stripped_output, severity, Info.getID()); 214 215 // Don't store away warning fixits, since the compiler doesn't have 216 // enough context in an expression for the warning to be useful. 217 // FIXME: Should we try to filter out FixIts that apply to our generated 218 // code, and not the user's expression? 219 if (severity == eDiagnosticSeverityError) { 220 size_t num_fixit_hints = Info.getNumFixItHints(); 221 for (size_t i = 0; i < num_fixit_hints; i++) { 222 const clang::FixItHint &fixit = Info.getFixItHint(i); 223 if (!fixit.isNull()) 224 new_diagnostic->AddFixitHint(fixit); 225 } 226 } 227 228 m_manager->AddDiagnostic(std::move(new_diagnostic)); 229 } 230 } 231 232 clang::TextDiagnosticPrinter *GetPassthrough() { return m_passthrough.get(); } 233 234 private: 235 DiagnosticManager *m_manager = nullptr; 236 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 237 /// Output stream of m_passthrough. 238 std::shared_ptr<llvm::raw_string_ostream> m_os; 239 /// Output string filled by m_os. 240 std::string m_output; 241 }; 242 243 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 244 std::vector<std::string> include_directories, 245 lldb::TargetSP target_sp) { 246 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 247 248 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 249 250 for (const std::string &dir : include_directories) { 251 search_opts.AddPath(dir, frontend::System, false, true); 252 LLDB_LOG(log, "Added user include dir: {0}", dir); 253 } 254 255 llvm::SmallString<128> module_cache; 256 const auto &props = ModuleList::GetGlobalModuleListProperties(); 257 props.GetClangModulesCachePath().GetPath(module_cache); 258 search_opts.ModuleCachePath = module_cache.str(); 259 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 260 261 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 262 263 search_opts.ImplicitModuleMaps = true; 264 } 265 266 //===----------------------------------------------------------------------===// 267 // Implementation of ClangExpressionParser 268 //===----------------------------------------------------------------------===// 269 270 ClangExpressionParser::ClangExpressionParser( 271 ExecutionContextScope *exe_scope, Expression &expr, 272 bool generate_debug_info, std::vector<std::string> include_directories, 273 std::string filename) 274 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 275 m_pp_callbacks(nullptr), 276 m_include_directories(std::move(include_directories)), 277 m_filename(std::move(filename)) { 278 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 279 280 // We can't compile expressions without a target. So if the exe_scope is 281 // null or doesn't have a target, then we just need to get out of here. I'll 282 // lldb_assert and not make any of the compiler objects since 283 // I can't return errors directly from the constructor. Further calls will 284 // check if the compiler was made and 285 // bag out if it wasn't. 286 287 if (!exe_scope) { 288 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 289 __FUNCTION__, __FILE__, __LINE__); 290 return; 291 } 292 293 lldb::TargetSP target_sp; 294 target_sp = exe_scope->CalculateTarget(); 295 if (!target_sp) { 296 lldb_assert(target_sp.get(), 297 "Can't make an expression parser with a null target.", 298 __FUNCTION__, __FILE__, __LINE__); 299 return; 300 } 301 302 // 1. Create a new compiler instance. 303 m_compiler.reset(new CompilerInstance()); 304 305 // When capturing a reproducer, hook up the file collector with clang to 306 // collector modules and headers. 307 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 308 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 309 m_compiler->setModuleDepCollector( 310 std::make_shared<ModuleDependencyCollectorAdaptor>( 311 fp.GetFileCollector())); 312 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 313 opts.IncludeSystemHeaders = true; 314 opts.IncludeModuleFiles = true; 315 } 316 317 // Make sure clang uses the same VFS as LLDB. 318 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 319 320 lldb::LanguageType frame_lang = 321 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 322 bool overridden_target_opts = false; 323 lldb_private::LanguageRuntime *lang_rt = nullptr; 324 325 std::string abi; 326 ArchSpec target_arch; 327 target_arch = target_sp->GetArchitecture(); 328 329 const auto target_machine = target_arch.GetMachine(); 330 331 // If the expression is being evaluated in the context of an existing stack 332 // frame, we introspect to see if the language runtime is available. 333 334 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 335 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 336 337 // Make sure the user hasn't provided a preferred execution language with 338 // `expression --language X -- ...` 339 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 340 frame_lang = frame_sp->GetLanguage(); 341 342 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 343 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 344 LLDB_LOGF(log, "Frame has language of type %s", 345 Language::GetNameForLanguageType(frame_lang)); 346 } 347 348 // 2. Configure the compiler with a set of default options that are 349 // appropriate for most situations. 350 if (target_arch.IsValid()) { 351 std::string triple = target_arch.GetTriple().str(); 352 m_compiler->getTargetOpts().Triple = triple; 353 LLDB_LOGF(log, "Using %s as the target triple", 354 m_compiler->getTargetOpts().Triple.c_str()); 355 } else { 356 // If we get here we don't have a valid target and just have to guess. 357 // Sometimes this will be ok to just use the host target triple (when we 358 // evaluate say "2+3", but other expressions like breakpoint conditions and 359 // other things that _are_ target specific really shouldn't just be using 360 // the host triple. In such a case the language runtime should expose an 361 // overridden options set (3), below. 362 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 363 LLDB_LOGF(log, "Using default target triple of %s", 364 m_compiler->getTargetOpts().Triple.c_str()); 365 } 366 // Now add some special fixes for known architectures: Any arm32 iOS 367 // environment, but not on arm64 368 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 369 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 370 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 371 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 372 } 373 // Supported subsets of x86 374 if (target_machine == llvm::Triple::x86 || 375 target_machine == llvm::Triple::x86_64) { 376 m_compiler->getTargetOpts().Features.push_back("+sse"); 377 m_compiler->getTargetOpts().Features.push_back("+sse2"); 378 } 379 380 // Set the target CPU to generate code for. This will be empty for any CPU 381 // that doesn't really need to make a special 382 // CPU string. 383 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 384 385 // Set the target ABI 386 abi = GetClangTargetABI(target_arch); 387 if (!abi.empty()) 388 m_compiler->getTargetOpts().ABI = abi; 389 390 // 3. Now allow the runtime to provide custom configuration options for the 391 // target. In this case, a specialized language runtime is available and we 392 // can query it for extra options. For 99% of use cases, this will not be 393 // needed and should be provided when basic platform detection is not enough. 394 if (lang_rt) 395 overridden_target_opts = 396 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 397 398 if (overridden_target_opts) 399 if (log && log->GetVerbose()) { 400 LLDB_LOGV( 401 log, "Using overridden target options for the expression evaluation"); 402 403 auto opts = m_compiler->getTargetOpts(); 404 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 405 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 406 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 407 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 408 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 409 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 410 StringList::LogDump(log, opts.Features, "Features"); 411 } 412 413 // 4. Create and install the target on the compiler. 414 m_compiler->createDiagnostics(); 415 auto target_info = TargetInfo::CreateTargetInfo( 416 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 417 if (log) { 418 LLDB_LOGF(log, "Using SIMD alignment: %d", 419 target_info->getSimdDefaultAlign()); 420 LLDB_LOGF(log, "Target datalayout string: '%s'", 421 target_info->getDataLayout().getStringRepresentation().c_str()); 422 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 423 LLDB_LOGF(log, "Target vector alignment: %d", 424 target_info->getMaxVectorAlign()); 425 } 426 m_compiler->setTarget(target_info); 427 428 assert(m_compiler->hasTarget()); 429 430 // 5. Set language options. 431 lldb::LanguageType language = expr.Language(); 432 LangOptions &lang_opts = m_compiler->getLangOpts(); 433 434 switch (language) { 435 case lldb::eLanguageTypeC: 436 case lldb::eLanguageTypeC89: 437 case lldb::eLanguageTypeC99: 438 case lldb::eLanguageTypeC11: 439 // FIXME: the following language option is a temporary workaround, 440 // to "ask for C, get C++." 441 // For now, the expression parser must use C++ anytime the language is a C 442 // family language, because the expression parser uses features of C++ to 443 // capture values. 444 lang_opts.CPlusPlus = true; 445 break; 446 case lldb::eLanguageTypeObjC: 447 lang_opts.ObjC = true; 448 // FIXME: the following language option is a temporary workaround, 449 // to "ask for ObjC, get ObjC++" (see comment above). 450 lang_opts.CPlusPlus = true; 451 452 // Clang now sets as default C++14 as the default standard (with 453 // GNU extensions), so we do the same here to avoid mismatches that 454 // cause compiler error when evaluating expressions (e.g. nullptr not found 455 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 456 // two lines below) so we decide to be consistent with that, but this could 457 // be re-evaluated in the future. 458 lang_opts.CPlusPlus11 = true; 459 break; 460 case lldb::eLanguageTypeC_plus_plus: 461 case lldb::eLanguageTypeC_plus_plus_11: 462 case lldb::eLanguageTypeC_plus_plus_14: 463 lang_opts.CPlusPlus11 = true; 464 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 465 LLVM_FALLTHROUGH; 466 case lldb::eLanguageTypeC_plus_plus_03: 467 lang_opts.CPlusPlus = true; 468 if (process_sp) 469 lang_opts.ObjC = 470 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 471 break; 472 case lldb::eLanguageTypeObjC_plus_plus: 473 case lldb::eLanguageTypeUnknown: 474 default: 475 lang_opts.ObjC = true; 476 lang_opts.CPlusPlus = true; 477 lang_opts.CPlusPlus11 = true; 478 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 479 break; 480 } 481 482 lang_opts.Bool = true; 483 lang_opts.WChar = true; 484 lang_opts.Blocks = true; 485 lang_opts.DebuggerSupport = 486 true; // Features specifically for debugger clients 487 if (expr.DesiredResultType() == Expression::eResultTypeId) 488 lang_opts.DebuggerCastResultToId = true; 489 490 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 491 .CharIsSignedByDefault(); 492 493 // Spell checking is a nice feature, but it ends up completing a lot of types 494 // that we didn't strictly speaking need to complete. As a result, we spend a 495 // long time parsing and importing debug information. 496 lang_opts.SpellChecking = false; 497 498 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 499 if (clang_expr && clang_expr->DidImportCxxModules()) { 500 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 501 502 lang_opts.Modules = true; 503 // We want to implicitly build modules. 504 lang_opts.ImplicitModules = true; 505 // To automatically import all submodules when we import 'std'. 506 lang_opts.ModulesLocalVisibility = false; 507 508 // We use the @import statements, so we need this: 509 // FIXME: We could use the modules-ts, but that currently doesn't work. 510 lang_opts.ObjC = true; 511 512 // Options we need to parse libc++ code successfully. 513 // FIXME: We should ask the driver for the appropriate default flags. 514 lang_opts.GNUMode = true; 515 lang_opts.GNUKeywords = true; 516 lang_opts.DoubleSquareBracketAttributes = true; 517 lang_opts.CPlusPlus11 = true; 518 519 // The Darwin libc expects this macro to be set. 520 lang_opts.GNUCVersion = 40201; 521 522 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 523 target_sp); 524 } 525 526 if (process_sp && lang_opts.ObjC) { 527 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 528 if (runtime->GetRuntimeVersion() == 529 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 530 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 531 else 532 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 533 VersionTuple(10, 7)); 534 535 if (runtime->HasNewLiteralsAndIndexing()) 536 lang_opts.DebuggerObjCLiteral = true; 537 } 538 } 539 540 lang_opts.ThreadsafeStatics = false; 541 lang_opts.AccessControl = false; // Debuggers get universal access 542 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 543 // We enable all builtin functions beside the builtins from libc/libm (e.g. 544 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 545 // additionally enabling them as expandable builtins is breaking Clang. 546 lang_opts.NoBuiltin = true; 547 548 // Set CodeGen options 549 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 550 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 551 m_compiler->getCodeGenOpts().setFramePointer( 552 CodeGenOptions::FramePointerKind::All); 553 if (generate_debug_info) 554 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 555 else 556 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 557 558 // Disable some warnings. 559 m_compiler->getDiagnostics().setSeverityForGroup( 560 clang::diag::Flavor::WarningOrError, "unused-value", 561 clang::diag::Severity::Ignored, SourceLocation()); 562 m_compiler->getDiagnostics().setSeverityForGroup( 563 clang::diag::Flavor::WarningOrError, "odr", 564 clang::diag::Severity::Ignored, SourceLocation()); 565 566 // Inform the target of the language options 567 // 568 // FIXME: We shouldn't need to do this, the target should be immutable once 569 // created. This complexity should be lifted elsewhere. 570 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 571 572 // 6. Set up the diagnostic buffer for reporting errors 573 574 auto diag_mgr = new ClangDiagnosticManagerAdapter( 575 m_compiler->getDiagnostics().getDiagnosticOptions()); 576 m_compiler->getDiagnostics().setClient(diag_mgr); 577 578 // 7. Set up the source management objects inside the compiler 579 m_compiler->createFileManager(); 580 if (!m_compiler->hasSourceManager()) 581 m_compiler->createSourceManager(m_compiler->getFileManager()); 582 m_compiler->createPreprocessor(TU_Complete); 583 584 if (ClangModulesDeclVendor *decl_vendor = 585 target_sp->GetClangModulesDeclVendor()) { 586 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 587 target_sp->GetPersistentExpressionStateForLanguage( 588 lldb::eLanguageTypeC))) { 589 std::unique_ptr<PPCallbacks> pp_callbacks( 590 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 591 m_compiler->getSourceManager())); 592 m_pp_callbacks = 593 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 594 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 595 } 596 } 597 598 // 8. Most of this we get from the CompilerInstance, but we also want to give 599 // the context an ExternalASTSource. 600 601 auto &PP = m_compiler->getPreprocessor(); 602 auto &builtin_context = PP.getBuiltinInfo(); 603 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 604 m_compiler->getLangOpts()); 605 606 m_compiler->createASTContext(); 607 clang::ASTContext &ast_context = m_compiler->getASTContext(); 608 609 m_ast_context.reset(new TypeSystemClang( 610 "Expression ASTContext for '" + m_filename + "'", ast_context)); 611 612 std::string module_name("$__lldb_module"); 613 614 m_llvm_context.reset(new LLVMContext()); 615 m_code_generator.reset(CreateLLVMCodeGen( 616 m_compiler->getDiagnostics(), module_name, 617 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 618 m_compiler->getCodeGenOpts(), *m_llvm_context)); 619 } 620 621 ClangExpressionParser::~ClangExpressionParser() {} 622 623 namespace { 624 625 /// \class CodeComplete 626 /// 627 /// A code completion consumer for the clang Sema that is responsible for 628 /// creating the completion suggestions when a user requests completion 629 /// of an incomplete `expr` invocation. 630 class CodeComplete : public CodeCompleteConsumer { 631 CodeCompletionTUInfo m_info; 632 633 std::string m_expr; 634 unsigned m_position = 0; 635 CompletionRequest &m_request; 636 /// The printing policy we use when printing declarations for our completion 637 /// descriptions. 638 clang::PrintingPolicy m_desc_policy; 639 640 /// Returns true if the given character can be used in an identifier. 641 /// This also returns true for numbers because for completion we usually 642 /// just iterate backwards over iterators. 643 /// 644 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 645 static bool IsIdChar(char c) { 646 return c == '_' || std::isalnum(c) || c == '$'; 647 } 648 649 /// Returns true if the given character is used to separate arguments 650 /// in the command line of lldb. 651 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 652 653 /// Drops all tokens in front of the expression that are unrelated for 654 /// the completion of the cmd line. 'unrelated' means here that the token 655 /// is not interested for the lldb completion API result. 656 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 657 if (cmd.empty()) 658 return cmd; 659 660 // If we are at the start of a word, then all tokens are unrelated to 661 // the current completion logic. 662 if (IsTokenSeparator(cmd.back())) 663 return StringRef(); 664 665 // Remove all previous tokens from the string as they are unrelated 666 // to completing the current token. 667 StringRef to_remove = cmd; 668 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 669 to_remove = to_remove.drop_back(); 670 } 671 cmd = cmd.drop_front(to_remove.size()); 672 673 return cmd; 674 } 675 676 /// Removes the last identifier token from the given cmd line. 677 StringRef removeLastToken(StringRef cmd) { 678 while (!cmd.empty() && IsIdChar(cmd.back())) { 679 cmd = cmd.drop_back(); 680 } 681 return cmd; 682 } 683 684 /// Attemps to merge the given completion from the given position into the 685 /// existing command. Returns the completion string that can be returned to 686 /// the lldb completion API. 687 std::string mergeCompletion(StringRef existing, unsigned pos, 688 StringRef completion) { 689 StringRef existing_command = existing.substr(0, pos); 690 // We rewrite the last token with the completion, so let's drop that 691 // token from the command. 692 existing_command = removeLastToken(existing_command); 693 // We also should remove all previous tokens from the command as they 694 // would otherwise be added to the completion that already has the 695 // completion. 696 existing_command = dropUnrelatedFrontTokens(existing_command); 697 return existing_command.str() + completion.str(); 698 } 699 700 public: 701 /// Constructs a CodeComplete consumer that can be attached to a Sema. 702 /// 703 /// \param[out] expr 704 /// The whole expression string that we are currently parsing. This 705 /// string needs to be equal to the input the user typed, and NOT the 706 /// final code that Clang is parsing. 707 /// \param[out] position 708 /// The character position of the user cursor in the `expr` parameter. 709 /// 710 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 711 std::string expr, unsigned position) 712 : CodeCompleteConsumer(CodeCompleteOptions()), 713 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 714 m_position(position), m_request(request), m_desc_policy(ops) { 715 716 // Ensure that the printing policy is producing a description that is as 717 // short as possible. 718 m_desc_policy.SuppressScope = true; 719 m_desc_policy.SuppressTagKeyword = true; 720 m_desc_policy.FullyQualifiedName = false; 721 m_desc_policy.TerseOutput = true; 722 m_desc_policy.IncludeNewlines = false; 723 m_desc_policy.UseVoidForZeroParams = false; 724 m_desc_policy.Bool = true; 725 } 726 727 /// Deregisters and destroys this code-completion consumer. 728 ~CodeComplete() override {} 729 730 /// \name Code-completion filtering 731 /// Check if the result should be filtered out. 732 bool isResultFilteredOut(StringRef Filter, 733 CodeCompletionResult Result) override { 734 // This code is mostly copied from CodeCompleteConsumer. 735 switch (Result.Kind) { 736 case CodeCompletionResult::RK_Declaration: 737 return !( 738 Result.Declaration->getIdentifier() && 739 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 740 case CodeCompletionResult::RK_Keyword: 741 return !StringRef(Result.Keyword).startswith(Filter); 742 case CodeCompletionResult::RK_Macro: 743 return !Result.Macro->getName().startswith(Filter); 744 case CodeCompletionResult::RK_Pattern: 745 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 746 } 747 // If we trigger this assert or the above switch yields a warning, then 748 // CodeCompletionResult has been enhanced with more kinds of completion 749 // results. Expand the switch above in this case. 750 assert(false && "Unknown completion result type?"); 751 // If we reach this, then we should just ignore whatever kind of unknown 752 // result we got back. We probably can't turn it into any kind of useful 753 // completion suggestion with the existing code. 754 return true; 755 } 756 757 /// \name Code-completion callbacks 758 /// Process the finalized code-completion results. 759 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 760 CodeCompletionResult *Results, 761 unsigned NumResults) override { 762 763 // The Sema put the incomplete token we try to complete in here during 764 // lexing, so we need to retrieve it here to know what we are completing. 765 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 766 767 // Iterate over all the results. Filter out results we don't want and 768 // process the rest. 769 for (unsigned I = 0; I != NumResults; ++I) { 770 // Filter the results with the information from the Sema. 771 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 772 continue; 773 774 CodeCompletionResult &R = Results[I]; 775 std::string ToInsert; 776 std::string Description; 777 // Handle the different completion kinds that come from the Sema. 778 switch (R.Kind) { 779 case CodeCompletionResult::RK_Declaration: { 780 const NamedDecl *D = R.Declaration; 781 ToInsert = R.Declaration->getNameAsString(); 782 // If we have a function decl that has no arguments we want to 783 // complete the empty parantheses for the user. If the function has 784 // arguments, we at least complete the opening bracket. 785 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 786 if (F->getNumParams() == 0) 787 ToInsert += "()"; 788 else 789 ToInsert += "("; 790 raw_string_ostream OS(Description); 791 F->print(OS, m_desc_policy, false); 792 OS.flush(); 793 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 794 Description = V->getType().getAsString(m_desc_policy); 795 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 796 Description = F->getType().getAsString(m_desc_policy); 797 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 798 // If we try to complete a namespace, then we can directly append 799 // the '::'. 800 if (!N->isAnonymousNamespace()) 801 ToInsert += "::"; 802 } 803 break; 804 } 805 case CodeCompletionResult::RK_Keyword: 806 ToInsert = R.Keyword; 807 break; 808 case CodeCompletionResult::RK_Macro: 809 ToInsert = R.Macro->getName().str(); 810 break; 811 case CodeCompletionResult::RK_Pattern: 812 ToInsert = R.Pattern->getTypedText(); 813 break; 814 } 815 // At this point all information is in the ToInsert string. 816 817 // We also filter some internal lldb identifiers here. The user 818 // shouldn't see these. 819 if (StringRef(ToInsert).startswith("$__lldb_")) 820 continue; 821 if (!ToInsert.empty()) { 822 // Merge the suggested Token into the existing command line to comply 823 // with the kind of result the lldb API expects. 824 std::string CompletionSuggestion = 825 mergeCompletion(m_expr, m_position, ToInsert); 826 m_request.AddCompletion(CompletionSuggestion, Description); 827 } 828 } 829 } 830 831 /// \param S the semantic-analyzer object for which code-completion is being 832 /// done. 833 /// 834 /// \param CurrentArg the index of the current argument. 835 /// 836 /// \param Candidates an array of overload candidates. 837 /// 838 /// \param NumCandidates the number of overload candidates 839 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 840 OverloadCandidate *Candidates, 841 unsigned NumCandidates, 842 SourceLocation OpenParLoc) override { 843 // At the moment we don't filter out any overloaded candidates. 844 } 845 846 CodeCompletionAllocator &getAllocator() override { 847 return m_info.getAllocator(); 848 } 849 850 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 851 }; 852 } // namespace 853 854 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 855 unsigned pos, unsigned typed_pos) { 856 DiagnosticManager mgr; 857 // We need the raw user expression here because that's what the CodeComplete 858 // class uses to provide completion suggestions. 859 // However, the `Text` method only gives us the transformed expression here. 860 // To actually get the raw user input here, we have to cast our expression to 861 // the LLVMUserExpression which exposes the right API. This should never fail 862 // as we always have a ClangUserExpression whenever we call this. 863 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 864 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 865 typed_pos); 866 // We don't need a code generator for parsing. 867 m_code_generator.reset(); 868 // Start parsing the expression with our custom code completion consumer. 869 ParseInternal(mgr, &CC, line, pos); 870 return true; 871 } 872 873 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 874 return ParseInternal(diagnostic_manager); 875 } 876 877 unsigned 878 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 879 CodeCompleteConsumer *completion_consumer, 880 unsigned completion_line, 881 unsigned completion_column) { 882 ClangDiagnosticManagerAdapter *adapter = 883 static_cast<ClangDiagnosticManagerAdapter *>( 884 m_compiler->getDiagnostics().getClient()); 885 auto diag_buf = adapter->GetPassthrough(); 886 887 adapter->ResetManager(&diagnostic_manager); 888 889 const char *expr_text = m_expr.Text(); 890 891 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 892 bool created_main_file = false; 893 894 // Clang wants to do completion on a real file known by Clang's file manager, 895 // so we have to create one to make this work. 896 // TODO: We probably could also simulate to Clang's file manager that there 897 // is a real file that contains our code. 898 bool should_create_file = completion_consumer != nullptr; 899 900 // We also want a real file on disk if we generate full debug info. 901 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 902 codegenoptions::FullDebugInfo; 903 904 if (should_create_file) { 905 int temp_fd = -1; 906 llvm::SmallString<128> result_path; 907 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 908 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 909 std::string temp_source_path = tmpdir_file_spec.GetPath(); 910 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 911 } else { 912 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 913 } 914 915 if (temp_fd != -1) { 916 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true); 917 const size_t expr_text_len = strlen(expr_text); 918 size_t bytes_written = expr_text_len; 919 if (file.Write(expr_text, bytes_written).Success()) { 920 if (bytes_written == expr_text_len) { 921 file.Close(); 922 if (auto fileEntry = 923 m_compiler->getFileManager().getFile(result_path)) { 924 source_mgr.setMainFileID(source_mgr.createFileID( 925 *fileEntry, 926 SourceLocation(), SrcMgr::C_User)); 927 created_main_file = true; 928 } 929 } 930 } 931 } 932 } 933 934 if (!created_main_file) { 935 std::unique_ptr<MemoryBuffer> memory_buffer = 936 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 937 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 938 } 939 940 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 941 &m_compiler->getPreprocessor()); 942 943 ClangExpressionHelper *type_system_helper = 944 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 945 946 // If we want to parse for code completion, we need to attach our code 947 // completion consumer to the Sema and specify a completion position. 948 // While parsing the Sema will call this consumer with the provided 949 // completion suggestions. 950 if (completion_consumer) { 951 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 952 auto &PP = m_compiler->getPreprocessor(); 953 // Lines and columns start at 1 in Clang, but code completion positions are 954 // indexed from 0, so we need to add 1 to the line and column here. 955 ++completion_line; 956 ++completion_column; 957 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 958 } 959 960 ASTConsumer *ast_transformer = 961 type_system_helper->ASTTransformer(m_code_generator.get()); 962 963 std::unique_ptr<clang::ASTConsumer> Consumer; 964 if (ast_transformer) { 965 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 966 } else if (m_code_generator) { 967 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 968 } else { 969 Consumer.reset(new ASTConsumer()); 970 } 971 972 clang::ASTContext &ast_context = m_compiler->getASTContext(); 973 974 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 975 *Consumer, TU_Complete, completion_consumer)); 976 m_compiler->setASTConsumer(std::move(Consumer)); 977 978 if (ast_context.getLangOpts().Modules) { 979 m_compiler->createASTReader(); 980 m_ast_context->setSema(&m_compiler->getSema()); 981 } 982 983 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 984 if (decl_map) { 985 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 986 987 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 988 989 if (ast_context.getExternalSource()) { 990 auto module_wrapper = 991 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 992 993 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 994 995 auto multiplexer = 996 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 997 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 998 ast_context.setExternalSource(Source); 999 } else { 1000 ast_context.setExternalSource(ast_source); 1001 } 1002 decl_map->InstallASTContext(*m_ast_context); 1003 } 1004 1005 // Check that the ASTReader is properly attached to ASTContext and Sema. 1006 if (ast_context.getLangOpts().Modules) { 1007 assert(m_compiler->getASTContext().getExternalSource() && 1008 "ASTContext doesn't know about the ASTReader?"); 1009 assert(m_compiler->getSema().getExternalSource() && 1010 "Sema doesn't know about the ASTReader?"); 1011 } 1012 1013 { 1014 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1015 &m_compiler->getSema()); 1016 ParseAST(m_compiler->getSema(), false, false); 1017 } 1018 1019 // Make sure we have no pointer to the Sema we are about to destroy. 1020 if (ast_context.getLangOpts().Modules) 1021 m_ast_context->setSema(nullptr); 1022 // Destroy the Sema. This is necessary because we want to emulate the 1023 // original behavior of ParseAST (which also destroys the Sema after parsing). 1024 m_compiler->setSema(nullptr); 1025 1026 diag_buf->EndSourceFile(); 1027 1028 unsigned num_errors = diag_buf->getNumErrors(); 1029 1030 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1031 num_errors++; 1032 diagnostic_manager.PutString(eDiagnosticSeverityError, 1033 "while importing modules:"); 1034 diagnostic_manager.AppendMessageToDiagnostic( 1035 m_pp_callbacks->getErrorString()); 1036 } 1037 1038 if (!num_errors) { 1039 type_system_helper->CommitPersistentDecls(); 1040 } 1041 1042 adapter->ResetManager(); 1043 1044 return num_errors; 1045 } 1046 1047 std::string 1048 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1049 std::string abi; 1050 1051 if (target_arch.IsMIPS()) { 1052 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1053 case ArchSpec::eMIPSABI_N64: 1054 abi = "n64"; 1055 break; 1056 case ArchSpec::eMIPSABI_N32: 1057 abi = "n32"; 1058 break; 1059 case ArchSpec::eMIPSABI_O32: 1060 abi = "o32"; 1061 break; 1062 default: 1063 break; 1064 } 1065 } 1066 return abi; 1067 } 1068 1069 bool ClangExpressionParser::RewriteExpression( 1070 DiagnosticManager &diagnostic_manager) { 1071 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1072 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1073 nullptr); 1074 clang::edit::Commit commit(editor); 1075 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1076 1077 class RewritesReceiver : public edit::EditsReceiver { 1078 Rewriter &rewrite; 1079 1080 public: 1081 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1082 1083 void insert(SourceLocation loc, StringRef text) override { 1084 rewrite.InsertText(loc, text); 1085 } 1086 void replace(CharSourceRange range, StringRef text) override { 1087 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1088 } 1089 }; 1090 1091 RewritesReceiver rewrites_receiver(rewriter); 1092 1093 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1094 size_t num_diags = diagnostics.size(); 1095 if (num_diags == 0) 1096 return false; 1097 1098 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1099 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1100 if (diagnostic && diagnostic->HasFixIts()) { 1101 for (const FixItHint &fixit : diagnostic->FixIts()) { 1102 // This is cobbed from clang::Rewrite::FixItRewriter. 1103 if (fixit.CodeToInsert.empty()) { 1104 if (fixit.InsertFromRange.isValid()) { 1105 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1106 fixit.InsertFromRange, /*afterToken=*/false, 1107 fixit.BeforePreviousInsertions); 1108 } else 1109 commit.remove(fixit.RemoveRange); 1110 } else { 1111 if (fixit.RemoveRange.isTokenRange() || 1112 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1113 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1114 else 1115 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1116 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1117 } 1118 } 1119 } 1120 } 1121 1122 // FIXME - do we want to try to propagate specific errors here? 1123 if (!commit.isCommitable()) 1124 return false; 1125 else if (!editor.commit(commit)) 1126 return false; 1127 1128 // Now play all the edits, and stash the result in the diagnostic manager. 1129 editor.applyRewrites(rewrites_receiver); 1130 RewriteBuffer &main_file_buffer = 1131 rewriter.getEditBuffer(source_manager.getMainFileID()); 1132 1133 std::string fixed_expression; 1134 llvm::raw_string_ostream out_stream(fixed_expression); 1135 1136 main_file_buffer.write(out_stream); 1137 out_stream.flush(); 1138 diagnostic_manager.SetFixedExpression(fixed_expression); 1139 1140 return true; 1141 } 1142 1143 static bool FindFunctionInModule(ConstString &mangled_name, 1144 llvm::Module *module, const char *orig_name) { 1145 for (const auto &func : module->getFunctionList()) { 1146 const StringRef &name = func.getName(); 1147 if (name.find(orig_name) != StringRef::npos) { 1148 mangled_name.SetString(name); 1149 return true; 1150 } 1151 } 1152 1153 return false; 1154 } 1155 1156 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1157 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1158 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1159 bool &can_interpret, ExecutionPolicy execution_policy) { 1160 func_addr = LLDB_INVALID_ADDRESS; 1161 func_end = LLDB_INVALID_ADDRESS; 1162 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1163 1164 lldb_private::Status err; 1165 1166 std::unique_ptr<llvm::Module> llvm_module_up( 1167 m_code_generator->ReleaseModule()); 1168 1169 if (!llvm_module_up) { 1170 err.SetErrorToGenericError(); 1171 err.SetErrorString("IR doesn't contain a module"); 1172 return err; 1173 } 1174 1175 ConstString function_name; 1176 1177 if (execution_policy != eExecutionPolicyTopLevel) { 1178 // Find the actual name of the function (it's often mangled somehow) 1179 1180 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1181 m_expr.FunctionName())) { 1182 err.SetErrorToGenericError(); 1183 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1184 m_expr.FunctionName()); 1185 return err; 1186 } else { 1187 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1188 m_expr.FunctionName()); 1189 } 1190 } 1191 1192 SymbolContext sc; 1193 1194 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1195 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1196 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1197 sc.target_sp = target_sp; 1198 } 1199 1200 LLVMUserExpression::IRPasses custom_passes; 1201 { 1202 auto lang = m_expr.Language(); 1203 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1204 Language::GetNameForLanguageType(lang)); 1205 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1206 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1207 auto runtime = process_sp->GetLanguageRuntime(lang); 1208 if (runtime) 1209 runtime->GetIRPasses(custom_passes); 1210 } 1211 } 1212 1213 if (custom_passes.EarlyPasses) { 1214 LLDB_LOGF(log, 1215 "%s - Running Early IR Passes from LanguageRuntime on " 1216 "expression module '%s'", 1217 __FUNCTION__, m_expr.FunctionName()); 1218 1219 custom_passes.EarlyPasses->run(*llvm_module_up); 1220 } 1221 1222 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1223 m_llvm_context, // handed off here 1224 llvm_module_up, // handed off here 1225 function_name, exe_ctx.GetTargetSP(), sc, 1226 m_compiler->getTargetOpts().Features); 1227 1228 ClangExpressionHelper *type_system_helper = 1229 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1230 ClangExpressionDeclMap *decl_map = 1231 type_system_helper->DeclMap(); // result can be NULL 1232 1233 if (decl_map) { 1234 Target *target = exe_ctx.GetTargetPtr(); 1235 auto &error_stream = target->GetDebugger().GetErrorStream(); 1236 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1237 *execution_unit_sp, error_stream, 1238 function_name.AsCString()); 1239 1240 bool ir_can_run = 1241 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1242 1243 if (!ir_can_run) { 1244 err.SetErrorString( 1245 "The expression could not be prepared to run in the target"); 1246 return err; 1247 } 1248 1249 Process *process = exe_ctx.GetProcessPtr(); 1250 1251 if (execution_policy != eExecutionPolicyAlways && 1252 execution_policy != eExecutionPolicyTopLevel) { 1253 lldb_private::Status interpret_error; 1254 1255 bool interpret_function_calls = 1256 !process ? false : process->CanInterpretFunctionCalls(); 1257 can_interpret = IRInterpreter::CanInterpret( 1258 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1259 interpret_error, interpret_function_calls); 1260 1261 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1262 err.SetErrorStringWithFormat( 1263 "Can't evaluate the expression without a running target due to: %s", 1264 interpret_error.AsCString()); 1265 return err; 1266 } 1267 } 1268 1269 if (!process && execution_policy == eExecutionPolicyAlways) { 1270 err.SetErrorString("Expression needed to run in the target, but the " 1271 "target can't be run"); 1272 return err; 1273 } 1274 1275 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1276 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1277 "target, but the target can't be run"); 1278 return err; 1279 } 1280 1281 if (execution_policy == eExecutionPolicyAlways || 1282 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1283 if (m_expr.NeedsValidation() && process) { 1284 if (!process->GetDynamicCheckers()) { 1285 ClangDynamicCheckerFunctions *dynamic_checkers = 1286 new ClangDynamicCheckerFunctions(); 1287 1288 DiagnosticManager install_diagnostics; 1289 1290 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1291 if (install_diagnostics.Diagnostics().size()) 1292 err.SetErrorString(install_diagnostics.GetString().c_str()); 1293 else 1294 err.SetErrorString("couldn't install checkers, unknown error"); 1295 1296 return err; 1297 } 1298 1299 process->SetDynamicCheckers(dynamic_checkers); 1300 1301 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1302 "Finished installing dynamic checkers =="); 1303 } 1304 1305 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1306 process->GetDynamicCheckers())) { 1307 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1308 function_name.AsCString()); 1309 1310 llvm::Module *module = execution_unit_sp->GetModule(); 1311 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1312 err.SetErrorToGenericError(); 1313 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1314 return err; 1315 } 1316 1317 if (custom_passes.LatePasses) { 1318 LLDB_LOGF(log, 1319 "%s - Running Late IR Passes from LanguageRuntime on " 1320 "expression module '%s'", 1321 __FUNCTION__, m_expr.FunctionName()); 1322 1323 custom_passes.LatePasses->run(*module); 1324 } 1325 } 1326 } 1327 } 1328 1329 if (execution_policy == eExecutionPolicyAlways || 1330 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1331 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1332 } 1333 } else { 1334 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1335 } 1336 1337 return err; 1338 } 1339 1340 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1341 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1342 lldb_private::Status err; 1343 1344 lldbassert(execution_unit_sp.get()); 1345 lldbassert(exe_ctx.HasThreadScope()); 1346 1347 if (!execution_unit_sp.get()) { 1348 err.SetErrorString( 1349 "can't run static initializers for a NULL execution unit"); 1350 return err; 1351 } 1352 1353 if (!exe_ctx.HasThreadScope()) { 1354 err.SetErrorString("can't run static initializers without a thread"); 1355 return err; 1356 } 1357 1358 std::vector<lldb::addr_t> static_initializers; 1359 1360 execution_unit_sp->GetStaticInitializers(static_initializers); 1361 1362 for (lldb::addr_t static_initializer : static_initializers) { 1363 EvaluateExpressionOptions options; 1364 1365 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1366 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1367 llvm::ArrayRef<lldb::addr_t>(), options)); 1368 1369 DiagnosticManager execution_errors; 1370 lldb::ExpressionResults results = 1371 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1372 exe_ctx, call_static_initializer, options, execution_errors); 1373 1374 if (results != lldb::eExpressionCompleted) { 1375 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1376 execution_errors.GetString().c_str()); 1377 return err; 1378 } 1379 } 1380 1381 return err; 1382 } 1383