1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" 71 #include "lldb/Core/Debugger.h" 72 #include "lldb/Core/Disassembler.h" 73 #include "lldb/Core/Module.h" 74 #include "lldb/Core/StreamFile.h" 75 #include "lldb/Expression/IRExecutionUnit.h" 76 #include "lldb/Expression/IRInterpreter.h" 77 #include "lldb/Host/File.h" 78 #include "lldb/Host/HostInfo.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/Reproducer.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h" 95 96 #include <cctype> 97 #include <memory> 98 99 using namespace clang; 100 using namespace llvm; 101 using namespace lldb_private; 102 103 //===----------------------------------------------------------------------===// 104 // Utility Methods for Clang 105 //===----------------------------------------------------------------------===// 106 107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 108 ClangModulesDeclVendor &m_decl_vendor; 109 ClangPersistentVariables &m_persistent_vars; 110 clang::SourceManager &m_source_mgr; 111 StreamString m_error_stream; 112 bool m_has_errors = false; 113 114 public: 115 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 116 ClangPersistentVariables &persistent_vars, 117 clang::SourceManager &source_mgr) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 119 m_source_mgr(source_mgr) {} 120 121 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 122 const clang::Module * /*null*/) override { 123 // Ignore modules that are imported in the wrapper code as these are not 124 // loaded by the user. 125 llvm::StringRef filename = 126 m_source_mgr.getPresumedLoc(import_location).getFilename(); 127 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 128 return; 129 130 SourceModule module; 131 132 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 133 module.path.push_back(ConstString(component.first->getName())); 134 135 StreamString error_stream; 136 137 ClangModulesDeclVendor::ModuleVector exported_modules; 138 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 139 m_has_errors = true; 140 141 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 142 m_persistent_vars.AddHandLoadedClangModule(module); 143 } 144 145 bool hasErrors() { return m_has_errors; } 146 147 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 148 }; 149 150 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) { 151 for (auto &fix_it : Info.getFixItHints()) { 152 if (fix_it.isNull()) 153 continue; 154 diag->AddFixitHint(fix_it); 155 } 156 } 157 158 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 159 public: 160 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 161 DiagnosticOptions *m_options = new DiagnosticOptions(opts); 162 m_options->ShowPresumedLoc = true; 163 m_options->ShowLevel = false; 164 m_os.reset(new llvm::raw_string_ostream(m_output)); 165 m_passthrough.reset( 166 new clang::TextDiagnosticPrinter(*m_os, m_options, false)); 167 } 168 169 void ResetManager(DiagnosticManager *manager = nullptr) { 170 m_manager = manager; 171 } 172 173 /// Returns the last ClangDiagnostic message that the DiagnosticManager 174 /// received or a nullptr if the DiagnosticMangager hasn't seen any 175 /// Clang diagnostics yet. 176 ClangDiagnostic *MaybeGetLastClangDiag() const { 177 if (m_manager->Diagnostics().empty()) 178 return nullptr; 179 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get(); 180 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag); 181 return clang_diag; 182 } 183 184 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 185 const clang::Diagnostic &Info) override { 186 if (!m_manager) { 187 // We have no DiagnosticManager before/after parsing but we still could 188 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 189 // when we move the expression result ot the ScratchASTContext). Let's at 190 // least log these diagnostics until we find a way to properly render 191 // them and display them to the user. 192 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 193 if (log) { 194 llvm::SmallVector<char, 32> diag_str; 195 Info.FormatDiagnostic(diag_str); 196 diag_str.push_back('\0'); 197 const char *plain_diag = diag_str.data(); 198 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 199 } 200 return; 201 } 202 203 // Render diagnostic message to m_output. 204 m_output.clear(); 205 m_passthrough->HandleDiagnostic(DiagLevel, Info); 206 m_os->flush(); 207 208 lldb_private::DiagnosticSeverity severity; 209 bool make_new_diagnostic = true; 210 211 switch (DiagLevel) { 212 case DiagnosticsEngine::Level::Fatal: 213 case DiagnosticsEngine::Level::Error: 214 severity = eDiagnosticSeverityError; 215 break; 216 case DiagnosticsEngine::Level::Warning: 217 severity = eDiagnosticSeverityWarning; 218 break; 219 case DiagnosticsEngine::Level::Remark: 220 case DiagnosticsEngine::Level::Ignored: 221 severity = eDiagnosticSeverityRemark; 222 break; 223 case DiagnosticsEngine::Level::Note: 224 m_manager->AppendMessageToDiagnostic(m_output); 225 make_new_diagnostic = false; 226 227 // 'note:' diagnostics for errors and warnings can also contain Fix-Its. 228 // We add these Fix-Its to the last error diagnostic to make sure 229 // that we later have all Fix-Its related to an 'error' diagnostic when 230 // we apply them to the user expression. 231 auto *clang_diag = MaybeGetLastClangDiag(); 232 // If we don't have a previous diagnostic there is nothing to do. 233 // If the previous diagnostic already has its own Fix-Its, assume that 234 // the 'note:' Fix-It is just an alternative way to solve the issue and 235 // ignore these Fix-Its. 236 if (!clang_diag || clang_diag->HasFixIts()) 237 break; 238 // Ignore all Fix-Its that are not associated with an error. 239 if (clang_diag->GetSeverity() != eDiagnosticSeverityError) 240 break; 241 AddAllFixIts(clang_diag, Info); 242 break; 243 } 244 if (make_new_diagnostic) { 245 // ClangDiagnostic messages are expected to have no whitespace/newlines 246 // around them. 247 std::string stripped_output = 248 std::string(llvm::StringRef(m_output).trim()); 249 250 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 251 stripped_output, severity, Info.getID()); 252 253 // Don't store away warning fixits, since the compiler doesn't have 254 // enough context in an expression for the warning to be useful. 255 // FIXME: Should we try to filter out FixIts that apply to our generated 256 // code, and not the user's expression? 257 if (severity == eDiagnosticSeverityError) 258 AddAllFixIts(new_diagnostic.get(), Info); 259 260 m_manager->AddDiagnostic(std::move(new_diagnostic)); 261 } 262 } 263 264 clang::TextDiagnosticPrinter *GetPassthrough() { return m_passthrough.get(); } 265 266 private: 267 DiagnosticManager *m_manager = nullptr; 268 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 269 /// Output stream of m_passthrough. 270 std::shared_ptr<llvm::raw_string_ostream> m_os; 271 /// Output string filled by m_os. 272 std::string m_output; 273 }; 274 275 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 276 std::vector<std::string> include_directories, 277 lldb::TargetSP target_sp) { 278 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 279 280 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 281 282 for (const std::string &dir : include_directories) { 283 search_opts.AddPath(dir, frontend::System, false, true); 284 LLDB_LOG(log, "Added user include dir: {0}", dir); 285 } 286 287 llvm::SmallString<128> module_cache; 288 const auto &props = ModuleList::GetGlobalModuleListProperties(); 289 props.GetClangModulesCachePath().GetPath(module_cache); 290 search_opts.ModuleCachePath = std::string(module_cache.str()); 291 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 292 293 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 294 295 search_opts.ImplicitModuleMaps = true; 296 } 297 298 //===----------------------------------------------------------------------===// 299 // Implementation of ClangExpressionParser 300 //===----------------------------------------------------------------------===// 301 302 ClangExpressionParser::ClangExpressionParser( 303 ExecutionContextScope *exe_scope, Expression &expr, 304 bool generate_debug_info, std::vector<std::string> include_directories, 305 std::string filename) 306 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 307 m_pp_callbacks(nullptr), 308 m_include_directories(std::move(include_directories)), 309 m_filename(std::move(filename)) { 310 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 311 312 // We can't compile expressions without a target. So if the exe_scope is 313 // null or doesn't have a target, then we just need to get out of here. I'll 314 // lldbassert and not make any of the compiler objects since 315 // I can't return errors directly from the constructor. Further calls will 316 // check if the compiler was made and 317 // bag out if it wasn't. 318 319 if (!exe_scope) { 320 lldbassert(exe_scope && 321 "Can't make an expression parser with a null scope."); 322 return; 323 } 324 325 lldb::TargetSP target_sp; 326 target_sp = exe_scope->CalculateTarget(); 327 if (!target_sp) { 328 lldbassert(target_sp.get() && 329 "Can't make an expression parser with a null target."); 330 return; 331 } 332 333 // 1. Create a new compiler instance. 334 m_compiler.reset(new CompilerInstance()); 335 336 // When capturing a reproducer, hook up the file collector with clang to 337 // collector modules and headers. 338 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 339 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 340 m_compiler->setModuleDepCollector( 341 std::make_shared<ModuleDependencyCollectorAdaptor>( 342 fp.GetFileCollector())); 343 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 344 opts.IncludeSystemHeaders = true; 345 opts.IncludeModuleFiles = true; 346 } 347 348 // Make sure clang uses the same VFS as LLDB. 349 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 350 351 lldb::LanguageType frame_lang = 352 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 353 bool overridden_target_opts = false; 354 lldb_private::LanguageRuntime *lang_rt = nullptr; 355 356 std::string abi; 357 ArchSpec target_arch; 358 target_arch = target_sp->GetArchitecture(); 359 360 const auto target_machine = target_arch.GetMachine(); 361 362 // If the expression is being evaluated in the context of an existing stack 363 // frame, we introspect to see if the language runtime is available. 364 365 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 366 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 367 368 // Make sure the user hasn't provided a preferred execution language with 369 // `expression --language X -- ...` 370 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 371 frame_lang = frame_sp->GetLanguage(); 372 373 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 374 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 375 LLDB_LOGF(log, "Frame has language of type %s", 376 Language::GetNameForLanguageType(frame_lang)); 377 } 378 379 // 2. Configure the compiler with a set of default options that are 380 // appropriate for most situations. 381 if (target_arch.IsValid()) { 382 std::string triple = target_arch.GetTriple().str(); 383 m_compiler->getTargetOpts().Triple = triple; 384 LLDB_LOGF(log, "Using %s as the target triple", 385 m_compiler->getTargetOpts().Triple.c_str()); 386 } else { 387 // If we get here we don't have a valid target and just have to guess. 388 // Sometimes this will be ok to just use the host target triple (when we 389 // evaluate say "2+3", but other expressions like breakpoint conditions and 390 // other things that _are_ target specific really shouldn't just be using 391 // the host triple. In such a case the language runtime should expose an 392 // overridden options set (3), below. 393 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 394 LLDB_LOGF(log, "Using default target triple of %s", 395 m_compiler->getTargetOpts().Triple.c_str()); 396 } 397 // Now add some special fixes for known architectures: Any arm32 iOS 398 // environment, but not on arm64 399 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 400 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 401 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 402 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 403 } 404 // Supported subsets of x86 405 if (target_machine == llvm::Triple::x86 || 406 target_machine == llvm::Triple::x86_64) { 407 m_compiler->getTargetOpts().Features.push_back("+sse"); 408 m_compiler->getTargetOpts().Features.push_back("+sse2"); 409 } 410 411 // Set the target CPU to generate code for. This will be empty for any CPU 412 // that doesn't really need to make a special 413 // CPU string. 414 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 415 416 // Set the target ABI 417 abi = GetClangTargetABI(target_arch); 418 if (!abi.empty()) 419 m_compiler->getTargetOpts().ABI = abi; 420 421 // 3. Now allow the runtime to provide custom configuration options for the 422 // target. In this case, a specialized language runtime is available and we 423 // can query it for extra options. For 99% of use cases, this will not be 424 // needed and should be provided when basic platform detection is not enough. 425 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this 426 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime 427 // having knowledge of clang::TargetOpts. 428 if (auto *renderscript_rt = 429 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt)) 430 overridden_target_opts = 431 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 432 433 if (overridden_target_opts) 434 if (log && log->GetVerbose()) { 435 LLDB_LOGV( 436 log, "Using overridden target options for the expression evaluation"); 437 438 auto opts = m_compiler->getTargetOpts(); 439 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 440 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 441 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 442 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 443 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 444 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 445 StringList::LogDump(log, opts.Features, "Features"); 446 } 447 448 // 4. Create and install the target on the compiler. 449 m_compiler->createDiagnostics(); 450 auto target_info = TargetInfo::CreateTargetInfo( 451 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 452 if (log) { 453 LLDB_LOGF(log, "Using SIMD alignment: %d", 454 target_info->getSimdDefaultAlign()); 455 LLDB_LOGF(log, "Target datalayout string: '%s'", 456 target_info->getDataLayout().getStringRepresentation().c_str()); 457 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 458 LLDB_LOGF(log, "Target vector alignment: %d", 459 target_info->getMaxVectorAlign()); 460 } 461 m_compiler->setTarget(target_info); 462 463 assert(m_compiler->hasTarget()); 464 465 // 5. Set language options. 466 lldb::LanguageType language = expr.Language(); 467 LangOptions &lang_opts = m_compiler->getLangOpts(); 468 469 switch (language) { 470 case lldb::eLanguageTypeC: 471 case lldb::eLanguageTypeC89: 472 case lldb::eLanguageTypeC99: 473 case lldb::eLanguageTypeC11: 474 // FIXME: the following language option is a temporary workaround, 475 // to "ask for C, get C++." 476 // For now, the expression parser must use C++ anytime the language is a C 477 // family language, because the expression parser uses features of C++ to 478 // capture values. 479 lang_opts.CPlusPlus = true; 480 break; 481 case lldb::eLanguageTypeObjC: 482 lang_opts.ObjC = true; 483 // FIXME: the following language option is a temporary workaround, 484 // to "ask for ObjC, get ObjC++" (see comment above). 485 lang_opts.CPlusPlus = true; 486 487 // Clang now sets as default C++14 as the default standard (with 488 // GNU extensions), so we do the same here to avoid mismatches that 489 // cause compiler error when evaluating expressions (e.g. nullptr not found 490 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 491 // two lines below) so we decide to be consistent with that, but this could 492 // be re-evaluated in the future. 493 lang_opts.CPlusPlus11 = true; 494 break; 495 case lldb::eLanguageTypeC_plus_plus: 496 case lldb::eLanguageTypeC_plus_plus_11: 497 case lldb::eLanguageTypeC_plus_plus_14: 498 lang_opts.CPlusPlus11 = true; 499 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 500 LLVM_FALLTHROUGH; 501 case lldb::eLanguageTypeC_plus_plus_03: 502 lang_opts.CPlusPlus = true; 503 if (process_sp) 504 lang_opts.ObjC = 505 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 506 break; 507 case lldb::eLanguageTypeObjC_plus_plus: 508 case lldb::eLanguageTypeUnknown: 509 default: 510 lang_opts.ObjC = true; 511 lang_opts.CPlusPlus = true; 512 lang_opts.CPlusPlus11 = true; 513 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 514 break; 515 } 516 517 lang_opts.Bool = true; 518 lang_opts.WChar = true; 519 lang_opts.Blocks = true; 520 lang_opts.DebuggerSupport = 521 true; // Features specifically for debugger clients 522 if (expr.DesiredResultType() == Expression::eResultTypeId) 523 lang_opts.DebuggerCastResultToId = true; 524 525 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 526 .CharIsSignedByDefault(); 527 528 // Spell checking is a nice feature, but it ends up completing a lot of types 529 // that we didn't strictly speaking need to complete. As a result, we spend a 530 // long time parsing and importing debug information. 531 lang_opts.SpellChecking = false; 532 533 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 534 if (clang_expr && clang_expr->DidImportCxxModules()) { 535 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 536 537 lang_opts.Modules = true; 538 // We want to implicitly build modules. 539 lang_opts.ImplicitModules = true; 540 // To automatically import all submodules when we import 'std'. 541 lang_opts.ModulesLocalVisibility = false; 542 543 // We use the @import statements, so we need this: 544 // FIXME: We could use the modules-ts, but that currently doesn't work. 545 lang_opts.ObjC = true; 546 547 // Options we need to parse libc++ code successfully. 548 // FIXME: We should ask the driver for the appropriate default flags. 549 lang_opts.GNUMode = true; 550 lang_opts.GNUKeywords = true; 551 lang_opts.DoubleSquareBracketAttributes = true; 552 lang_opts.CPlusPlus11 = true; 553 554 // The Darwin libc expects this macro to be set. 555 lang_opts.GNUCVersion = 40201; 556 557 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 558 target_sp); 559 } 560 561 if (process_sp && lang_opts.ObjC) { 562 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 563 if (runtime->GetRuntimeVersion() == 564 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 565 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 566 else 567 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 568 VersionTuple(10, 7)); 569 570 if (runtime->HasNewLiteralsAndIndexing()) 571 lang_opts.DebuggerObjCLiteral = true; 572 } 573 } 574 575 lang_opts.ThreadsafeStatics = false; 576 lang_opts.AccessControl = false; // Debuggers get universal access 577 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 578 // We enable all builtin functions beside the builtins from libc/libm (e.g. 579 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 580 // additionally enabling them as expandable builtins is breaking Clang. 581 lang_opts.NoBuiltin = true; 582 583 // Set CodeGen options 584 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 585 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 586 m_compiler->getCodeGenOpts().setFramePointer( 587 CodeGenOptions::FramePointerKind::All); 588 if (generate_debug_info) 589 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 590 else 591 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 592 593 // Disable some warnings. 594 m_compiler->getDiagnostics().setSeverityForGroup( 595 clang::diag::Flavor::WarningOrError, "unused-value", 596 clang::diag::Severity::Ignored, SourceLocation()); 597 m_compiler->getDiagnostics().setSeverityForGroup( 598 clang::diag::Flavor::WarningOrError, "odr", 599 clang::diag::Severity::Ignored, SourceLocation()); 600 601 // Inform the target of the language options 602 // 603 // FIXME: We shouldn't need to do this, the target should be immutable once 604 // created. This complexity should be lifted elsewhere. 605 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 606 607 // 6. Set up the diagnostic buffer for reporting errors 608 609 auto diag_mgr = new ClangDiagnosticManagerAdapter( 610 m_compiler->getDiagnostics().getDiagnosticOptions()); 611 m_compiler->getDiagnostics().setClient(diag_mgr); 612 613 // 7. Set up the source management objects inside the compiler 614 m_compiler->createFileManager(); 615 if (!m_compiler->hasSourceManager()) 616 m_compiler->createSourceManager(m_compiler->getFileManager()); 617 m_compiler->createPreprocessor(TU_Complete); 618 619 if (ClangModulesDeclVendor *decl_vendor = 620 target_sp->GetClangModulesDeclVendor()) { 621 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 622 target_sp->GetPersistentExpressionStateForLanguage( 623 lldb::eLanguageTypeC))) { 624 std::unique_ptr<PPCallbacks> pp_callbacks( 625 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 626 m_compiler->getSourceManager())); 627 m_pp_callbacks = 628 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 629 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 630 } 631 } 632 633 // 8. Most of this we get from the CompilerInstance, but we also want to give 634 // the context an ExternalASTSource. 635 636 auto &PP = m_compiler->getPreprocessor(); 637 auto &builtin_context = PP.getBuiltinInfo(); 638 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 639 m_compiler->getLangOpts()); 640 641 m_compiler->createASTContext(); 642 clang::ASTContext &ast_context = m_compiler->getASTContext(); 643 644 m_ast_context.reset(new TypeSystemClang( 645 "Expression ASTContext for '" + m_filename + "'", ast_context)); 646 647 std::string module_name("$__lldb_module"); 648 649 m_llvm_context.reset(new LLVMContext()); 650 m_code_generator.reset(CreateLLVMCodeGen( 651 m_compiler->getDiagnostics(), module_name, 652 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 653 m_compiler->getCodeGenOpts(), *m_llvm_context)); 654 } 655 656 ClangExpressionParser::~ClangExpressionParser() {} 657 658 namespace { 659 660 /// \class CodeComplete 661 /// 662 /// A code completion consumer for the clang Sema that is responsible for 663 /// creating the completion suggestions when a user requests completion 664 /// of an incomplete `expr` invocation. 665 class CodeComplete : public CodeCompleteConsumer { 666 CodeCompletionTUInfo m_info; 667 668 std::string m_expr; 669 unsigned m_position = 0; 670 CompletionRequest &m_request; 671 /// The printing policy we use when printing declarations for our completion 672 /// descriptions. 673 clang::PrintingPolicy m_desc_policy; 674 675 /// Returns true if the given character can be used in an identifier. 676 /// This also returns true for numbers because for completion we usually 677 /// just iterate backwards over iterators. 678 /// 679 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 680 static bool IsIdChar(char c) { 681 return c == '_' || std::isalnum(c) || c == '$'; 682 } 683 684 /// Returns true if the given character is used to separate arguments 685 /// in the command line of lldb. 686 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 687 688 /// Drops all tokens in front of the expression that are unrelated for 689 /// the completion of the cmd line. 'unrelated' means here that the token 690 /// is not interested for the lldb completion API result. 691 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 692 if (cmd.empty()) 693 return cmd; 694 695 // If we are at the start of a word, then all tokens are unrelated to 696 // the current completion logic. 697 if (IsTokenSeparator(cmd.back())) 698 return StringRef(); 699 700 // Remove all previous tokens from the string as they are unrelated 701 // to completing the current token. 702 StringRef to_remove = cmd; 703 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 704 to_remove = to_remove.drop_back(); 705 } 706 cmd = cmd.drop_front(to_remove.size()); 707 708 return cmd; 709 } 710 711 /// Removes the last identifier token from the given cmd line. 712 StringRef removeLastToken(StringRef cmd) { 713 while (!cmd.empty() && IsIdChar(cmd.back())) { 714 cmd = cmd.drop_back(); 715 } 716 return cmd; 717 } 718 719 /// Attempts to merge the given completion from the given position into the 720 /// existing command. Returns the completion string that can be returned to 721 /// the lldb completion API. 722 std::string mergeCompletion(StringRef existing, unsigned pos, 723 StringRef completion) { 724 StringRef existing_command = existing.substr(0, pos); 725 // We rewrite the last token with the completion, so let's drop that 726 // token from the command. 727 existing_command = removeLastToken(existing_command); 728 // We also should remove all previous tokens from the command as they 729 // would otherwise be added to the completion that already has the 730 // completion. 731 existing_command = dropUnrelatedFrontTokens(existing_command); 732 return existing_command.str() + completion.str(); 733 } 734 735 public: 736 /// Constructs a CodeComplete consumer that can be attached to a Sema. 737 /// 738 /// \param[out] expr 739 /// The whole expression string that we are currently parsing. This 740 /// string needs to be equal to the input the user typed, and NOT the 741 /// final code that Clang is parsing. 742 /// \param[out] position 743 /// The character position of the user cursor in the `expr` parameter. 744 /// 745 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 746 std::string expr, unsigned position) 747 : CodeCompleteConsumer(CodeCompleteOptions()), 748 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 749 m_position(position), m_request(request), m_desc_policy(ops) { 750 751 // Ensure that the printing policy is producing a description that is as 752 // short as possible. 753 m_desc_policy.SuppressScope = true; 754 m_desc_policy.SuppressTagKeyword = true; 755 m_desc_policy.FullyQualifiedName = false; 756 m_desc_policy.TerseOutput = true; 757 m_desc_policy.IncludeNewlines = false; 758 m_desc_policy.UseVoidForZeroParams = false; 759 m_desc_policy.Bool = true; 760 } 761 762 /// Deregisters and destroys this code-completion consumer. 763 ~CodeComplete() override {} 764 765 /// \name Code-completion filtering 766 /// Check if the result should be filtered out. 767 bool isResultFilteredOut(StringRef Filter, 768 CodeCompletionResult Result) override { 769 // This code is mostly copied from CodeCompleteConsumer. 770 switch (Result.Kind) { 771 case CodeCompletionResult::RK_Declaration: 772 return !( 773 Result.Declaration->getIdentifier() && 774 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 775 case CodeCompletionResult::RK_Keyword: 776 return !StringRef(Result.Keyword).startswith(Filter); 777 case CodeCompletionResult::RK_Macro: 778 return !Result.Macro->getName().startswith(Filter); 779 case CodeCompletionResult::RK_Pattern: 780 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 781 } 782 // If we trigger this assert or the above switch yields a warning, then 783 // CodeCompletionResult has been enhanced with more kinds of completion 784 // results. Expand the switch above in this case. 785 assert(false && "Unknown completion result type?"); 786 // If we reach this, then we should just ignore whatever kind of unknown 787 // result we got back. We probably can't turn it into any kind of useful 788 // completion suggestion with the existing code. 789 return true; 790 } 791 792 /// \name Code-completion callbacks 793 /// Process the finalized code-completion results. 794 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 795 CodeCompletionResult *Results, 796 unsigned NumResults) override { 797 798 // The Sema put the incomplete token we try to complete in here during 799 // lexing, so we need to retrieve it here to know what we are completing. 800 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 801 802 // Iterate over all the results. Filter out results we don't want and 803 // process the rest. 804 for (unsigned I = 0; I != NumResults; ++I) { 805 // Filter the results with the information from the Sema. 806 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 807 continue; 808 809 CodeCompletionResult &R = Results[I]; 810 std::string ToInsert; 811 std::string Description; 812 // Handle the different completion kinds that come from the Sema. 813 switch (R.Kind) { 814 case CodeCompletionResult::RK_Declaration: { 815 const NamedDecl *D = R.Declaration; 816 ToInsert = R.Declaration->getNameAsString(); 817 // If we have a function decl that has no arguments we want to 818 // complete the empty parantheses for the user. If the function has 819 // arguments, we at least complete the opening bracket. 820 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 821 if (F->getNumParams() == 0) 822 ToInsert += "()"; 823 else 824 ToInsert += "("; 825 raw_string_ostream OS(Description); 826 F->print(OS, m_desc_policy, false); 827 OS.flush(); 828 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 829 Description = V->getType().getAsString(m_desc_policy); 830 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 831 Description = F->getType().getAsString(m_desc_policy); 832 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 833 // If we try to complete a namespace, then we can directly append 834 // the '::'. 835 if (!N->isAnonymousNamespace()) 836 ToInsert += "::"; 837 } 838 break; 839 } 840 case CodeCompletionResult::RK_Keyword: 841 ToInsert = R.Keyword; 842 break; 843 case CodeCompletionResult::RK_Macro: 844 ToInsert = R.Macro->getName().str(); 845 break; 846 case CodeCompletionResult::RK_Pattern: 847 ToInsert = R.Pattern->getTypedText(); 848 break; 849 } 850 // At this point all information is in the ToInsert string. 851 852 // We also filter some internal lldb identifiers here. The user 853 // shouldn't see these. 854 if (StringRef(ToInsert).startswith("$__lldb_")) 855 continue; 856 if (!ToInsert.empty()) { 857 // Merge the suggested Token into the existing command line to comply 858 // with the kind of result the lldb API expects. 859 std::string CompletionSuggestion = 860 mergeCompletion(m_expr, m_position, ToInsert); 861 m_request.AddCompletion(CompletionSuggestion, Description); 862 } 863 } 864 } 865 866 /// \param S the semantic-analyzer object for which code-completion is being 867 /// done. 868 /// 869 /// \param CurrentArg the index of the current argument. 870 /// 871 /// \param Candidates an array of overload candidates. 872 /// 873 /// \param NumCandidates the number of overload candidates 874 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 875 OverloadCandidate *Candidates, 876 unsigned NumCandidates, 877 SourceLocation OpenParLoc) override { 878 // At the moment we don't filter out any overloaded candidates. 879 } 880 881 CodeCompletionAllocator &getAllocator() override { 882 return m_info.getAllocator(); 883 } 884 885 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 886 }; 887 } // namespace 888 889 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 890 unsigned pos, unsigned typed_pos) { 891 DiagnosticManager mgr; 892 // We need the raw user expression here because that's what the CodeComplete 893 // class uses to provide completion suggestions. 894 // However, the `Text` method only gives us the transformed expression here. 895 // To actually get the raw user input here, we have to cast our expression to 896 // the LLVMUserExpression which exposes the right API. This should never fail 897 // as we always have a ClangUserExpression whenever we call this. 898 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 899 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 900 typed_pos); 901 // We don't need a code generator for parsing. 902 m_code_generator.reset(); 903 // Start parsing the expression with our custom code completion consumer. 904 ParseInternal(mgr, &CC, line, pos); 905 return true; 906 } 907 908 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 909 return ParseInternal(diagnostic_manager); 910 } 911 912 unsigned 913 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 914 CodeCompleteConsumer *completion_consumer, 915 unsigned completion_line, 916 unsigned completion_column) { 917 ClangDiagnosticManagerAdapter *adapter = 918 static_cast<ClangDiagnosticManagerAdapter *>( 919 m_compiler->getDiagnostics().getClient()); 920 auto diag_buf = adapter->GetPassthrough(); 921 922 adapter->ResetManager(&diagnostic_manager); 923 924 const char *expr_text = m_expr.Text(); 925 926 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 927 bool created_main_file = false; 928 929 // Clang wants to do completion on a real file known by Clang's file manager, 930 // so we have to create one to make this work. 931 // TODO: We probably could also simulate to Clang's file manager that there 932 // is a real file that contains our code. 933 bool should_create_file = completion_consumer != nullptr; 934 935 // We also want a real file on disk if we generate full debug info. 936 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 937 codegenoptions::FullDebugInfo; 938 939 if (should_create_file) { 940 int temp_fd = -1; 941 llvm::SmallString<128> result_path; 942 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 943 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 944 std::string temp_source_path = tmpdir_file_spec.GetPath(); 945 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 946 } else { 947 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 948 } 949 950 if (temp_fd != -1) { 951 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true); 952 const size_t expr_text_len = strlen(expr_text); 953 size_t bytes_written = expr_text_len; 954 if (file.Write(expr_text, bytes_written).Success()) { 955 if (bytes_written == expr_text_len) { 956 file.Close(); 957 if (auto fileEntry = 958 m_compiler->getFileManager().getFile(result_path)) { 959 source_mgr.setMainFileID(source_mgr.createFileID( 960 *fileEntry, 961 SourceLocation(), SrcMgr::C_User)); 962 created_main_file = true; 963 } 964 } 965 } 966 } 967 } 968 969 if (!created_main_file) { 970 std::unique_ptr<MemoryBuffer> memory_buffer = 971 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 972 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 973 } 974 975 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 976 &m_compiler->getPreprocessor()); 977 978 ClangExpressionHelper *type_system_helper = 979 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 980 981 // If we want to parse for code completion, we need to attach our code 982 // completion consumer to the Sema and specify a completion position. 983 // While parsing the Sema will call this consumer with the provided 984 // completion suggestions. 985 if (completion_consumer) { 986 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 987 auto &PP = m_compiler->getPreprocessor(); 988 // Lines and columns start at 1 in Clang, but code completion positions are 989 // indexed from 0, so we need to add 1 to the line and column here. 990 ++completion_line; 991 ++completion_column; 992 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 993 } 994 995 ASTConsumer *ast_transformer = 996 type_system_helper->ASTTransformer(m_code_generator.get()); 997 998 std::unique_ptr<clang::ASTConsumer> Consumer; 999 if (ast_transformer) { 1000 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 1001 } else if (m_code_generator) { 1002 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 1003 } else { 1004 Consumer.reset(new ASTConsumer()); 1005 } 1006 1007 clang::ASTContext &ast_context = m_compiler->getASTContext(); 1008 1009 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 1010 *Consumer, TU_Complete, completion_consumer)); 1011 m_compiler->setASTConsumer(std::move(Consumer)); 1012 1013 if (ast_context.getLangOpts().Modules) { 1014 m_compiler->createASTReader(); 1015 m_ast_context->setSema(&m_compiler->getSema()); 1016 } 1017 1018 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 1019 if (decl_map) { 1020 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 1021 1022 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 1023 1024 if (ast_context.getExternalSource()) { 1025 auto module_wrapper = 1026 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 1027 1028 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 1029 1030 auto multiplexer = 1031 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 1032 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 1033 ast_context.setExternalSource(Source); 1034 } else { 1035 ast_context.setExternalSource(ast_source); 1036 } 1037 decl_map->InstallASTContext(*m_ast_context); 1038 } 1039 1040 // Check that the ASTReader is properly attached to ASTContext and Sema. 1041 if (ast_context.getLangOpts().Modules) { 1042 assert(m_compiler->getASTContext().getExternalSource() && 1043 "ASTContext doesn't know about the ASTReader?"); 1044 assert(m_compiler->getSema().getExternalSource() && 1045 "Sema doesn't know about the ASTReader?"); 1046 } 1047 1048 { 1049 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1050 &m_compiler->getSema()); 1051 ParseAST(m_compiler->getSema(), false, false); 1052 } 1053 1054 // Make sure we have no pointer to the Sema we are about to destroy. 1055 if (ast_context.getLangOpts().Modules) 1056 m_ast_context->setSema(nullptr); 1057 // Destroy the Sema. This is necessary because we want to emulate the 1058 // original behavior of ParseAST (which also destroys the Sema after parsing). 1059 m_compiler->setSema(nullptr); 1060 1061 diag_buf->EndSourceFile(); 1062 1063 unsigned num_errors = diag_buf->getNumErrors(); 1064 1065 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1066 num_errors++; 1067 diagnostic_manager.PutString(eDiagnosticSeverityError, 1068 "while importing modules:"); 1069 diagnostic_manager.AppendMessageToDiagnostic( 1070 m_pp_callbacks->getErrorString()); 1071 } 1072 1073 if (!num_errors) { 1074 type_system_helper->CommitPersistentDecls(); 1075 } 1076 1077 adapter->ResetManager(); 1078 1079 return num_errors; 1080 } 1081 1082 std::string 1083 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1084 std::string abi; 1085 1086 if (target_arch.IsMIPS()) { 1087 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1088 case ArchSpec::eMIPSABI_N64: 1089 abi = "n64"; 1090 break; 1091 case ArchSpec::eMIPSABI_N32: 1092 abi = "n32"; 1093 break; 1094 case ArchSpec::eMIPSABI_O32: 1095 abi = "o32"; 1096 break; 1097 default: 1098 break; 1099 } 1100 } 1101 return abi; 1102 } 1103 1104 /// Applies the given Fix-It hint to the given commit. 1105 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) { 1106 // This is cobbed from clang::Rewrite::FixItRewriter. 1107 if (fixit.CodeToInsert.empty()) { 1108 if (fixit.InsertFromRange.isValid()) { 1109 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1110 fixit.InsertFromRange, /*afterToken=*/false, 1111 fixit.BeforePreviousInsertions); 1112 return; 1113 } 1114 commit.remove(fixit.RemoveRange); 1115 return; 1116 } 1117 if (fixit.RemoveRange.isTokenRange() || 1118 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) { 1119 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1120 return; 1121 } 1122 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1123 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1124 } 1125 1126 bool ClangExpressionParser::RewriteExpression( 1127 DiagnosticManager &diagnostic_manager) { 1128 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1129 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1130 nullptr); 1131 clang::edit::Commit commit(editor); 1132 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1133 1134 class RewritesReceiver : public edit::EditsReceiver { 1135 Rewriter &rewrite; 1136 1137 public: 1138 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1139 1140 void insert(SourceLocation loc, StringRef text) override { 1141 rewrite.InsertText(loc, text); 1142 } 1143 void replace(CharSourceRange range, StringRef text) override { 1144 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1145 } 1146 }; 1147 1148 RewritesReceiver rewrites_receiver(rewriter); 1149 1150 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1151 size_t num_diags = diagnostics.size(); 1152 if (num_diags == 0) 1153 return false; 1154 1155 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1156 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1157 if (!diagnostic) 1158 continue; 1159 if (!diagnostic->HasFixIts()) 1160 continue; 1161 for (const FixItHint &fixit : diagnostic->FixIts()) 1162 ApplyFixIt(fixit, commit); 1163 } 1164 1165 // FIXME - do we want to try to propagate specific errors here? 1166 if (!commit.isCommitable()) 1167 return false; 1168 else if (!editor.commit(commit)) 1169 return false; 1170 1171 // Now play all the edits, and stash the result in the diagnostic manager. 1172 editor.applyRewrites(rewrites_receiver); 1173 RewriteBuffer &main_file_buffer = 1174 rewriter.getEditBuffer(source_manager.getMainFileID()); 1175 1176 std::string fixed_expression; 1177 llvm::raw_string_ostream out_stream(fixed_expression); 1178 1179 main_file_buffer.write(out_stream); 1180 out_stream.flush(); 1181 diagnostic_manager.SetFixedExpression(fixed_expression); 1182 1183 return true; 1184 } 1185 1186 static bool FindFunctionInModule(ConstString &mangled_name, 1187 llvm::Module *module, const char *orig_name) { 1188 for (const auto &func : module->getFunctionList()) { 1189 const StringRef &name = func.getName(); 1190 if (name.find(orig_name) != StringRef::npos) { 1191 mangled_name.SetString(name); 1192 return true; 1193 } 1194 } 1195 1196 return false; 1197 } 1198 1199 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1200 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1201 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1202 bool &can_interpret, ExecutionPolicy execution_policy) { 1203 func_addr = LLDB_INVALID_ADDRESS; 1204 func_end = LLDB_INVALID_ADDRESS; 1205 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1206 1207 lldb_private::Status err; 1208 1209 std::unique_ptr<llvm::Module> llvm_module_up( 1210 m_code_generator->ReleaseModule()); 1211 1212 if (!llvm_module_up) { 1213 err.SetErrorToGenericError(); 1214 err.SetErrorString("IR doesn't contain a module"); 1215 return err; 1216 } 1217 1218 ConstString function_name; 1219 1220 if (execution_policy != eExecutionPolicyTopLevel) { 1221 // Find the actual name of the function (it's often mangled somehow) 1222 1223 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1224 m_expr.FunctionName())) { 1225 err.SetErrorToGenericError(); 1226 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1227 m_expr.FunctionName()); 1228 return err; 1229 } else { 1230 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1231 m_expr.FunctionName()); 1232 } 1233 } 1234 1235 SymbolContext sc; 1236 1237 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1238 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1239 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1240 sc.target_sp = target_sp; 1241 } 1242 1243 LLVMUserExpression::IRPasses custom_passes; 1244 { 1245 auto lang = m_expr.Language(); 1246 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1247 Language::GetNameForLanguageType(lang)); 1248 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1249 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1250 auto runtime = process_sp->GetLanguageRuntime(lang); 1251 if (runtime) 1252 runtime->GetIRPasses(custom_passes); 1253 } 1254 } 1255 1256 if (custom_passes.EarlyPasses) { 1257 LLDB_LOGF(log, 1258 "%s - Running Early IR Passes from LanguageRuntime on " 1259 "expression module '%s'", 1260 __FUNCTION__, m_expr.FunctionName()); 1261 1262 custom_passes.EarlyPasses->run(*llvm_module_up); 1263 } 1264 1265 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1266 m_llvm_context, // handed off here 1267 llvm_module_up, // handed off here 1268 function_name, exe_ctx.GetTargetSP(), sc, 1269 m_compiler->getTargetOpts().Features); 1270 1271 ClangExpressionHelper *type_system_helper = 1272 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1273 ClangExpressionDeclMap *decl_map = 1274 type_system_helper->DeclMap(); // result can be NULL 1275 1276 if (decl_map) { 1277 Target *target = exe_ctx.GetTargetPtr(); 1278 auto &error_stream = target->GetDebugger().GetErrorStream(); 1279 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1280 *execution_unit_sp, error_stream, 1281 function_name.AsCString()); 1282 1283 bool ir_can_run = 1284 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1285 1286 if (!ir_can_run) { 1287 err.SetErrorString( 1288 "The expression could not be prepared to run in the target"); 1289 return err; 1290 } 1291 1292 Process *process = exe_ctx.GetProcessPtr(); 1293 1294 if (execution_policy != eExecutionPolicyAlways && 1295 execution_policy != eExecutionPolicyTopLevel) { 1296 lldb_private::Status interpret_error; 1297 1298 bool interpret_function_calls = 1299 !process ? false : process->CanInterpretFunctionCalls(); 1300 can_interpret = IRInterpreter::CanInterpret( 1301 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1302 interpret_error, interpret_function_calls); 1303 1304 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1305 err.SetErrorStringWithFormat( 1306 "Can't evaluate the expression without a running target due to: %s", 1307 interpret_error.AsCString()); 1308 return err; 1309 } 1310 } 1311 1312 if (!process && execution_policy == eExecutionPolicyAlways) { 1313 err.SetErrorString("Expression needed to run in the target, but the " 1314 "target can't be run"); 1315 return err; 1316 } 1317 1318 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1319 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1320 "target, but the target can't be run"); 1321 return err; 1322 } 1323 1324 if (execution_policy == eExecutionPolicyAlways || 1325 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1326 if (m_expr.NeedsValidation() && process) { 1327 if (!process->GetDynamicCheckers()) { 1328 ClangDynamicCheckerFunctions *dynamic_checkers = 1329 new ClangDynamicCheckerFunctions(); 1330 1331 DiagnosticManager install_diagnostics; 1332 1333 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1334 if (install_diagnostics.Diagnostics().size()) 1335 err.SetErrorString(install_diagnostics.GetString().c_str()); 1336 else 1337 err.SetErrorString("couldn't install checkers, unknown error"); 1338 1339 return err; 1340 } 1341 1342 process->SetDynamicCheckers(dynamic_checkers); 1343 1344 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1345 "Finished installing dynamic checkers =="); 1346 } 1347 1348 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1349 process->GetDynamicCheckers())) { 1350 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1351 function_name.AsCString()); 1352 1353 llvm::Module *module = execution_unit_sp->GetModule(); 1354 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1355 err.SetErrorToGenericError(); 1356 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1357 return err; 1358 } 1359 1360 if (custom_passes.LatePasses) { 1361 LLDB_LOGF(log, 1362 "%s - Running Late IR Passes from LanguageRuntime on " 1363 "expression module '%s'", 1364 __FUNCTION__, m_expr.FunctionName()); 1365 1366 custom_passes.LatePasses->run(*module); 1367 } 1368 } 1369 } 1370 } 1371 1372 if (execution_policy == eExecutionPolicyAlways || 1373 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1374 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1375 } 1376 } else { 1377 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1378 } 1379 1380 return err; 1381 } 1382 1383 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1384 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1385 lldb_private::Status err; 1386 1387 lldbassert(execution_unit_sp.get()); 1388 lldbassert(exe_ctx.HasThreadScope()); 1389 1390 if (!execution_unit_sp.get()) { 1391 err.SetErrorString( 1392 "can't run static initializers for a NULL execution unit"); 1393 return err; 1394 } 1395 1396 if (!exe_ctx.HasThreadScope()) { 1397 err.SetErrorString("can't run static initializers without a thread"); 1398 return err; 1399 } 1400 1401 std::vector<lldb::addr_t> static_initializers; 1402 1403 execution_unit_sp->GetStaticInitializers(static_initializers); 1404 1405 for (lldb::addr_t static_initializer : static_initializers) { 1406 EvaluateExpressionOptions options; 1407 1408 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1409 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1410 llvm::ArrayRef<lldb::addr_t>(), options)); 1411 1412 DiagnosticManager execution_errors; 1413 lldb::ExpressionResults results = 1414 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1415 exe_ctx, call_static_initializer, options, execution_errors); 1416 1417 if (results != lldb::eExpressionCompleted) { 1418 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1419 execution_errors.GetString().c_str()); 1420 return err; 1421 } 1422 } 1423 1424 return err; 1425 } 1426