1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <cctype> // for alnum 13 // Other libraries and framework includes 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTDiagnostic.h" 16 #include "clang/AST/ExternalASTSource.h" 17 #include "clang/AST/PrettyPrinter.h" 18 #include "clang/Basic/DiagnosticIDs.h" 19 #include "clang/Basic/FileManager.h" 20 #include "clang/Basic/SourceLocation.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Basic/Version.h" 23 #include "clang/CodeGen/CodeGenAction.h" 24 #include "clang/CodeGen/ModuleBuilder.h" 25 #include "clang/Edit/Commit.h" 26 #include "clang/Edit/EditedSource.h" 27 #include "clang/Edit/EditsReceiver.h" 28 #include "clang/Frontend/CompilerInstance.h" 29 #include "clang/Frontend/CompilerInvocation.h" 30 #include "clang/Frontend/FrontendActions.h" 31 #include "clang/Frontend/FrontendDiagnostic.h" 32 #include "clang/Frontend/FrontendPluginRegistry.h" 33 #include "clang/Frontend/TextDiagnosticBuffer.h" 34 #include "clang/Frontend/TextDiagnosticPrinter.h" 35 #include "clang/Lex/Preprocessor.h" 36 #include "clang/Parse/ParseAST.h" 37 #include "clang/Rewrite/Core/Rewriter.h" 38 #include "clang/Rewrite/Frontend/FrontendActions.h" 39 #include "clang/Sema/CodeCompleteConsumer.h" 40 #include "clang/Sema/Sema.h" 41 #include "clang/Sema/SemaConsumer.h" 42 43 #include "llvm/ADT/StringRef.h" 44 #include "llvm/ExecutionEngine/ExecutionEngine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/FileSystem.h" 47 #include "llvm/Support/TargetSelect.h" 48 49 #pragma clang diagnostic push 50 #pragma clang diagnostic ignored "-Wglobal-constructors" 51 #include "llvm/ExecutionEngine/MCJIT.h" 52 #pragma clang diagnostic pop 53 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/Support/DynamicLibrary.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/Host.h" 59 #include "llvm/Support/MemoryBuffer.h" 60 #include "llvm/Support/Signals.h" 61 62 // Project includes 63 #include "ClangDiagnostic.h" 64 #include "ClangExpressionParser.h" 65 66 #include "ClangASTSource.h" 67 #include "ClangExpressionDeclMap.h" 68 #include "ClangExpressionHelper.h" 69 #include "ClangModulesDeclVendor.h" 70 #include "ClangPersistentVariables.h" 71 #include "IRForTarget.h" 72 73 #include "lldb/Core/Debugger.h" 74 #include "lldb/Core/Disassembler.h" 75 #include "lldb/Core/Module.h" 76 #include "lldb/Core/StreamFile.h" 77 #include "lldb/Expression/IRDynamicChecks.h" 78 #include "lldb/Expression/IRExecutionUnit.h" 79 #include "lldb/Expression/IRInterpreter.h" 80 #include "lldb/Host/File.h" 81 #include "lldb/Host/HostInfo.h" 82 #include "lldb/Symbol/ClangASTContext.h" 83 #include "lldb/Symbol/SymbolVendor.h" 84 #include "lldb/Target/ExecutionContext.h" 85 #include "lldb/Target/Language.h" 86 #include "lldb/Target/ObjCLanguageRuntime.h" 87 #include "lldb/Target/Process.h" 88 #include "lldb/Target/Target.h" 89 #include "lldb/Target/ThreadPlanCallFunction.h" 90 #include "lldb/Utility/DataBufferHeap.h" 91 #include "lldb/Utility/LLDBAssert.h" 92 #include "lldb/Utility/Log.h" 93 #include "lldb/Utility/Stream.h" 94 #include "lldb/Utility/StreamString.h" 95 #include "lldb/Utility/StringList.h" 96 97 using namespace clang; 98 using namespace llvm; 99 using namespace lldb_private; 100 101 //===----------------------------------------------------------------------===// 102 // Utility Methods for Clang 103 //===----------------------------------------------------------------------===// 104 105 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 106 ClangModulesDeclVendor &m_decl_vendor; 107 ClangPersistentVariables &m_persistent_vars; 108 StreamString m_error_stream; 109 bool m_has_errors = false; 110 111 public: 112 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 113 ClangPersistentVariables &persistent_vars) 114 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 115 116 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 117 const clang::Module * /*null*/) override { 118 std::vector<ConstString> string_path; 119 120 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) { 121 string_path.push_back(ConstString(component.first->getName())); 122 } 123 124 StreamString error_stream; 125 126 ClangModulesDeclVendor::ModuleVector exported_modules; 127 128 if (!m_decl_vendor.AddModule(string_path, &exported_modules, 129 m_error_stream)) { 130 m_has_errors = true; 131 } 132 133 for (ClangModulesDeclVendor::ModuleID module : exported_modules) { 134 m_persistent_vars.AddHandLoadedClangModule(module); 135 } 136 } 137 138 bool hasErrors() { return m_has_errors; } 139 140 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 141 }; 142 143 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 144 public: 145 ClangDiagnosticManagerAdapter() 146 : m_passthrough(new clang::TextDiagnosticBuffer) {} 147 148 ClangDiagnosticManagerAdapter( 149 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 150 : m_passthrough(passthrough) {} 151 152 void ResetManager(DiagnosticManager *manager = nullptr) { 153 m_manager = manager; 154 } 155 156 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 157 const clang::Diagnostic &Info) { 158 if (m_manager) { 159 llvm::SmallVector<char, 32> diag_str; 160 Info.FormatDiagnostic(diag_str); 161 diag_str.push_back('\0'); 162 const char *data = diag_str.data(); 163 164 lldb_private::DiagnosticSeverity severity; 165 bool make_new_diagnostic = true; 166 167 switch (DiagLevel) { 168 case DiagnosticsEngine::Level::Fatal: 169 case DiagnosticsEngine::Level::Error: 170 severity = eDiagnosticSeverityError; 171 break; 172 case DiagnosticsEngine::Level::Warning: 173 severity = eDiagnosticSeverityWarning; 174 break; 175 case DiagnosticsEngine::Level::Remark: 176 case DiagnosticsEngine::Level::Ignored: 177 severity = eDiagnosticSeverityRemark; 178 break; 179 case DiagnosticsEngine::Level::Note: 180 m_manager->AppendMessageToDiagnostic(data); 181 make_new_diagnostic = false; 182 } 183 if (make_new_diagnostic) { 184 ClangDiagnostic *new_diagnostic = 185 new ClangDiagnostic(data, severity, Info.getID()); 186 m_manager->AddDiagnostic(new_diagnostic); 187 188 // Don't store away warning fixits, since the compiler doesn't have 189 // enough context in an expression for the warning to be useful. 190 // FIXME: Should we try to filter out FixIts that apply to our generated 191 // code, and not the user's expression? 192 if (severity == eDiagnosticSeverityError) { 193 size_t num_fixit_hints = Info.getNumFixItHints(); 194 for (size_t i = 0; i < num_fixit_hints; i++) { 195 const clang::FixItHint &fixit = Info.getFixItHint(i); 196 if (!fixit.isNull()) 197 new_diagnostic->AddFixitHint(fixit); 198 } 199 } 200 } 201 } 202 203 m_passthrough->HandleDiagnostic(DiagLevel, Info); 204 } 205 206 void FlushDiagnostics(DiagnosticsEngine &Diags) { 207 m_passthrough->FlushDiagnostics(Diags); 208 } 209 210 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 211 return new ClangDiagnosticManagerAdapter(m_passthrough); 212 } 213 214 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 215 216 private: 217 DiagnosticManager *m_manager = nullptr; 218 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 219 }; 220 221 //===----------------------------------------------------------------------===// 222 // Implementation of ClangExpressionParser 223 //===----------------------------------------------------------------------===// 224 225 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope, 226 Expression &expr, 227 bool generate_debug_info) 228 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 229 m_pp_callbacks(nullptr) { 230 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 231 232 // We can't compile expressions without a target. So if the exe_scope is 233 // null or doesn't have a target, then we just need to get out of here. I'll 234 // lldb_assert and not make any of the compiler objects since 235 // I can't return errors directly from the constructor. Further calls will 236 // check if the compiler was made and 237 // bag out if it wasn't. 238 239 if (!exe_scope) { 240 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 241 __FUNCTION__, __FILE__, __LINE__); 242 return; 243 } 244 245 lldb::TargetSP target_sp; 246 target_sp = exe_scope->CalculateTarget(); 247 if (!target_sp) { 248 lldb_assert(target_sp.get(), 249 "Can't make an expression parser with a null target.", 250 __FUNCTION__, __FILE__, __LINE__); 251 return; 252 } 253 254 // 1. Create a new compiler instance. 255 m_compiler.reset(new CompilerInstance()); 256 lldb::LanguageType frame_lang = 257 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 258 bool overridden_target_opts = false; 259 lldb_private::LanguageRuntime *lang_rt = nullptr; 260 261 std::string abi; 262 ArchSpec target_arch; 263 target_arch = target_sp->GetArchitecture(); 264 265 const auto target_machine = target_arch.GetMachine(); 266 267 // If the expression is being evaluated in the context of an existing stack 268 // frame, we introspect to see if the language runtime is available. 269 270 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 271 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 272 273 // Make sure the user hasn't provided a preferred execution language with 274 // `expression --language X -- ...` 275 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 276 frame_lang = frame_sp->GetLanguage(); 277 278 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 279 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 280 if (log) 281 log->Printf("Frame has language of type %s", 282 Language::GetNameForLanguageType(frame_lang)); 283 } 284 285 // 2. Configure the compiler with a set of default options that are 286 // appropriate for most situations. 287 if (target_arch.IsValid()) { 288 std::string triple = target_arch.GetTriple().str(); 289 m_compiler->getTargetOpts().Triple = triple; 290 if (log) 291 log->Printf("Using %s as the target triple", 292 m_compiler->getTargetOpts().Triple.c_str()); 293 } else { 294 // If we get here we don't have a valid target and just have to guess. 295 // Sometimes this will be ok to just use the host target triple (when we 296 // evaluate say "2+3", but other expressions like breakpoint conditions and 297 // other things that _are_ target specific really shouldn't just be using 298 // the host triple. In such a case the language runtime should expose an 299 // overridden options set (3), below. 300 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 301 if (log) 302 log->Printf("Using default target triple of %s", 303 m_compiler->getTargetOpts().Triple.c_str()); 304 } 305 // Now add some special fixes for known architectures: Any arm32 iOS 306 // environment, but not on arm64 307 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 308 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 309 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 310 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 311 } 312 // Supported subsets of x86 313 if (target_machine == llvm::Triple::x86 || 314 target_machine == llvm::Triple::x86_64) { 315 m_compiler->getTargetOpts().Features.push_back("+sse"); 316 m_compiler->getTargetOpts().Features.push_back("+sse2"); 317 } 318 319 // Set the target CPU to generate code for. This will be empty for any CPU 320 // that doesn't really need to make a special 321 // CPU string. 322 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 323 324 // Set the target ABI 325 abi = GetClangTargetABI(target_arch); 326 if (!abi.empty()) 327 m_compiler->getTargetOpts().ABI = abi; 328 329 // 3. Now allow the runtime to provide custom configuration options for the 330 // target. In this case, a specialized language runtime is available and we 331 // can query it for extra options. For 99% of use cases, this will not be 332 // needed and should be provided when basic platform detection is not enough. 333 if (lang_rt) 334 overridden_target_opts = 335 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 336 337 if (overridden_target_opts) 338 if (log && log->GetVerbose()) { 339 LLDB_LOGV( 340 log, "Using overridden target options for the expression evaluation"); 341 342 auto opts = m_compiler->getTargetOpts(); 343 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 344 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 345 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 346 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 347 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 348 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 349 StringList::LogDump(log, opts.Features, "Features"); 350 } 351 352 // 4. Create and install the target on the compiler. 353 m_compiler->createDiagnostics(); 354 auto target_info = TargetInfo::CreateTargetInfo( 355 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 356 if (log) { 357 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); 358 log->Printf("Target datalayout string: '%s'", 359 target_info->getDataLayout().getStringRepresentation().c_str()); 360 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); 361 log->Printf("Target vector alignment: %d", 362 target_info->getMaxVectorAlign()); 363 } 364 m_compiler->setTarget(target_info); 365 366 assert(m_compiler->hasTarget()); 367 368 // 5. Set language options. 369 lldb::LanguageType language = expr.Language(); 370 371 switch (language) { 372 case lldb::eLanguageTypeC: 373 case lldb::eLanguageTypeC89: 374 case lldb::eLanguageTypeC99: 375 case lldb::eLanguageTypeC11: 376 // FIXME: the following language option is a temporary workaround, 377 // to "ask for C, get C++." 378 // For now, the expression parser must use C++ anytime the language is a C 379 // family language, because the expression parser uses features of C++ to 380 // capture values. 381 m_compiler->getLangOpts().CPlusPlus = true; 382 break; 383 case lldb::eLanguageTypeObjC: 384 m_compiler->getLangOpts().ObjC1 = true; 385 m_compiler->getLangOpts().ObjC2 = true; 386 // FIXME: the following language option is a temporary workaround, 387 // to "ask for ObjC, get ObjC++" (see comment above). 388 m_compiler->getLangOpts().CPlusPlus = true; 389 390 // Clang now sets as default C++14 as the default standard (with 391 // GNU extensions), so we do the same here to avoid mismatches that 392 // cause compiler error when evaluating expressions (e.g. nullptr not found 393 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 394 // two lines below) so we decide to be consistent with that, but this could 395 // be re-evaluated in the future. 396 m_compiler->getLangOpts().CPlusPlus11 = true; 397 break; 398 case lldb::eLanguageTypeC_plus_plus: 399 case lldb::eLanguageTypeC_plus_plus_11: 400 case lldb::eLanguageTypeC_plus_plus_14: 401 m_compiler->getLangOpts().CPlusPlus11 = true; 402 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 403 LLVM_FALLTHROUGH; 404 case lldb::eLanguageTypeC_plus_plus_03: 405 m_compiler->getLangOpts().CPlusPlus = true; 406 // FIXME: the following language option is a temporary workaround, 407 // to "ask for C++, get ObjC++". Apple hopes to remove this requirement on 408 // non-Apple platforms, but for now it is needed. 409 m_compiler->getLangOpts().ObjC1 = true; 410 break; 411 case lldb::eLanguageTypeObjC_plus_plus: 412 case lldb::eLanguageTypeUnknown: 413 default: 414 m_compiler->getLangOpts().ObjC1 = true; 415 m_compiler->getLangOpts().ObjC2 = true; 416 m_compiler->getLangOpts().CPlusPlus = true; 417 m_compiler->getLangOpts().CPlusPlus11 = true; 418 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 419 break; 420 } 421 422 m_compiler->getLangOpts().Bool = true; 423 m_compiler->getLangOpts().WChar = true; 424 m_compiler->getLangOpts().Blocks = true; 425 m_compiler->getLangOpts().DebuggerSupport = 426 true; // Features specifically for debugger clients 427 if (expr.DesiredResultType() == Expression::eResultTypeId) 428 m_compiler->getLangOpts().DebuggerCastResultToId = true; 429 430 m_compiler->getLangOpts().CharIsSigned = 431 ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 432 .CharIsSignedByDefault(); 433 434 // Spell checking is a nice feature, but it ends up completing a lot of types 435 // that we didn't strictly speaking need to complete. As a result, we spend a 436 // long time parsing and importing debug information. 437 m_compiler->getLangOpts().SpellChecking = false; 438 439 if (process_sp && m_compiler->getLangOpts().ObjC1) { 440 if (process_sp->GetObjCLanguageRuntime()) { 441 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == 442 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 443 m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX, 444 VersionTuple(10, 7)); 445 else 446 m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 447 VersionTuple(10, 7)); 448 449 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) 450 m_compiler->getLangOpts().DebuggerObjCLiteral = true; 451 } 452 } 453 454 m_compiler->getLangOpts().ThreadsafeStatics = false; 455 m_compiler->getLangOpts().AccessControl = 456 false; // Debuggers get universal access 457 m_compiler->getLangOpts().DollarIdents = 458 true; // $ indicates a persistent variable name 459 // We enable all builtin functions beside the builtins from libc/libm (e.g. 460 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 461 // additionally enabling them as expandable builtins is breaking Clang. 462 m_compiler->getLangOpts().NoBuiltin = true; 463 464 // Set CodeGen options 465 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 466 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 467 m_compiler->getCodeGenOpts().DisableFPElim = true; 468 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; 469 if (generate_debug_info) 470 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 471 else 472 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 473 474 // Disable some warnings. 475 m_compiler->getDiagnostics().setSeverityForGroup( 476 clang::diag::Flavor::WarningOrError, "unused-value", 477 clang::diag::Severity::Ignored, SourceLocation()); 478 m_compiler->getDiagnostics().setSeverityForGroup( 479 clang::diag::Flavor::WarningOrError, "odr", 480 clang::diag::Severity::Ignored, SourceLocation()); 481 482 // Inform the target of the language options 483 // 484 // FIXME: We shouldn't need to do this, the target should be immutable once 485 // created. This complexity should be lifted elsewhere. 486 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 487 488 // 6. Set up the diagnostic buffer for reporting errors 489 490 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 491 492 // 7. Set up the source management objects inside the compiler 493 494 clang::FileSystemOptions file_system_options; 495 m_file_manager.reset(new clang::FileManager(file_system_options)); 496 497 if (!m_compiler->hasSourceManager()) 498 m_compiler->createSourceManager(*m_file_manager.get()); 499 500 m_compiler->createFileManager(); 501 m_compiler->createPreprocessor(TU_Complete); 502 503 if (ClangModulesDeclVendor *decl_vendor = 504 target_sp->GetClangModulesDeclVendor()) { 505 ClangPersistentVariables *clang_persistent_vars = 506 llvm::cast<ClangPersistentVariables>( 507 target_sp->GetPersistentExpressionStateForLanguage( 508 lldb::eLanguageTypeC)); 509 std::unique_ptr<PPCallbacks> pp_callbacks( 510 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 511 m_pp_callbacks = 512 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 513 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 514 } 515 516 // 8. Most of this we get from the CompilerInstance, but we also want to give 517 // the context an ExternalASTSource. 518 519 auto &PP = m_compiler->getPreprocessor(); 520 auto &builtin_context = PP.getBuiltinInfo(); 521 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 522 m_compiler->getLangOpts()); 523 524 m_compiler->createASTContext(); 525 clang::ASTContext &ast_context = m_compiler->getASTContext(); 526 527 ClangExpressionHelper *type_system_helper = 528 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 529 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 530 531 if (decl_map) { 532 llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source( 533 decl_map->CreateProxy()); 534 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 535 ast_context.setExternalSource(ast_source); 536 } 537 538 m_ast_context.reset( 539 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 540 m_ast_context->setASTContext(&ast_context); 541 542 std::string module_name("$__lldb_module"); 543 544 m_llvm_context.reset(new LLVMContext()); 545 m_code_generator.reset(CreateLLVMCodeGen( 546 m_compiler->getDiagnostics(), module_name, 547 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 548 m_compiler->getCodeGenOpts(), *m_llvm_context)); 549 } 550 551 ClangExpressionParser::~ClangExpressionParser() {} 552 553 namespace { 554 555 //---------------------------------------------------------------------- 556 /// @class CodeComplete 557 /// 558 /// A code completion consumer for the clang Sema that is responsible for 559 /// creating the completion suggestions when a user requests completion 560 /// of an incomplete `expr` invocation. 561 //---------------------------------------------------------------------- 562 class CodeComplete : public CodeCompleteConsumer { 563 CodeCompletionTUInfo m_info; 564 565 std::string m_expr; 566 unsigned m_position = 0; 567 CompletionRequest &m_request; 568 /// The printing policy we use when printing declarations for our completion 569 /// descriptions. 570 clang::PrintingPolicy m_desc_policy; 571 572 /// Returns true if the given character can be used in an identifier. 573 /// This also returns true for numbers because for completion we usually 574 /// just iterate backwards over iterators. 575 /// 576 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 577 static bool IsIdChar(char c) { 578 return c == '_' || std::isalnum(c) || c == '$'; 579 } 580 581 /// Returns true if the given character is used to separate arguments 582 /// in the command line of lldb. 583 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 584 585 /// Drops all tokens in front of the expression that are unrelated for 586 /// the completion of the cmd line. 'unrelated' means here that the token 587 /// is not interested for the lldb completion API result. 588 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 589 if (cmd.empty()) 590 return cmd; 591 592 // If we are at the start of a word, then all tokens are unrelated to 593 // the current completion logic. 594 if (IsTokenSeparator(cmd.back())) 595 return StringRef(); 596 597 // Remove all previous tokens from the string as they are unrelated 598 // to completing the current token. 599 StringRef to_remove = cmd; 600 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 601 to_remove = to_remove.drop_back(); 602 } 603 cmd = cmd.drop_front(to_remove.size()); 604 605 return cmd; 606 } 607 608 /// Removes the last identifier token from the given cmd line. 609 StringRef removeLastToken(StringRef cmd) { 610 while (!cmd.empty() && IsIdChar(cmd.back())) { 611 cmd = cmd.drop_back(); 612 } 613 return cmd; 614 } 615 616 /// Attemps to merge the given completion from the given position into the 617 /// existing command. Returns the completion string that can be returned to 618 /// the lldb completion API. 619 std::string mergeCompletion(StringRef existing, unsigned pos, 620 StringRef completion) { 621 StringRef existing_command = existing.substr(0, pos); 622 // We rewrite the last token with the completion, so let's drop that 623 // token from the command. 624 existing_command = removeLastToken(existing_command); 625 // We also should remove all previous tokens from the command as they 626 // would otherwise be added to the completion that already has the 627 // completion. 628 existing_command = dropUnrelatedFrontTokens(existing_command); 629 return existing_command.str() + completion.str(); 630 } 631 632 public: 633 /// Constructs a CodeComplete consumer that can be attached to a Sema. 634 /// @param[out] matches 635 /// The list of matches that the lldb completion API expects as a result. 636 /// This may already contain matches, so it's only allowed to append 637 /// to this variable. 638 /// @param[out] expr 639 /// The whole expression string that we are currently parsing. This 640 /// string needs to be equal to the input the user typed, and NOT the 641 /// final code that Clang is parsing. 642 /// @param[out] position 643 /// The character position of the user cursor in the `expr` parameter. 644 /// 645 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 646 std::string expr, unsigned position) 647 : CodeCompleteConsumer(CodeCompleteOptions(), false), 648 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 649 m_position(position), m_request(request), m_desc_policy(ops) { 650 651 // Ensure that the printing policy is producing a description that is as 652 // short as possible. 653 m_desc_policy.SuppressScope = true; 654 m_desc_policy.SuppressTagKeyword = true; 655 m_desc_policy.FullyQualifiedName = false; 656 m_desc_policy.TerseOutput = true; 657 m_desc_policy.IncludeNewlines = false; 658 m_desc_policy.UseVoidForZeroParams = false; 659 m_desc_policy.Bool = true; 660 } 661 662 /// Deregisters and destroys this code-completion consumer. 663 virtual ~CodeComplete() {} 664 665 /// \name Code-completion filtering 666 /// Check if the result should be filtered out. 667 bool isResultFilteredOut(StringRef Filter, 668 CodeCompletionResult Result) override { 669 // This code is mostly copied from CodeCompleteConsumer. 670 switch (Result.Kind) { 671 case CodeCompletionResult::RK_Declaration: 672 return !( 673 Result.Declaration->getIdentifier() && 674 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 675 case CodeCompletionResult::RK_Keyword: 676 return !StringRef(Result.Keyword).startswith(Filter); 677 case CodeCompletionResult::RK_Macro: 678 return !Result.Macro->getName().startswith(Filter); 679 case CodeCompletionResult::RK_Pattern: 680 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 681 } 682 // If we trigger this assert or the above switch yields a warning, then 683 // CodeCompletionResult has been enhanced with more kinds of completion 684 // results. Expand the switch above in this case. 685 assert(false && "Unknown completion result type?"); 686 // If we reach this, then we should just ignore whatever kind of unknown 687 // result we got back. We probably can't turn it into any kind of useful 688 // completion suggestion with the existing code. 689 return true; 690 } 691 692 /// \name Code-completion callbacks 693 /// Process the finalized code-completion results. 694 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 695 CodeCompletionResult *Results, 696 unsigned NumResults) override { 697 698 // The Sema put the incomplete token we try to complete in here during 699 // lexing, so we need to retrieve it here to know what we are completing. 700 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 701 702 // Iterate over all the results. Filter out results we don't want and 703 // process the rest. 704 for (unsigned I = 0; I != NumResults; ++I) { 705 // Filter the results with the information from the Sema. 706 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 707 continue; 708 709 CodeCompletionResult &R = Results[I]; 710 std::string ToInsert; 711 std::string Description; 712 // Handle the different completion kinds that come from the Sema. 713 switch (R.Kind) { 714 case CodeCompletionResult::RK_Declaration: { 715 const NamedDecl *D = R.Declaration; 716 ToInsert = R.Declaration->getNameAsString(); 717 // If we have a function decl that has no arguments we want to 718 // complete the empty parantheses for the user. If the function has 719 // arguments, we at least complete the opening bracket. 720 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 721 if (F->getNumParams() == 0) 722 ToInsert += "()"; 723 else 724 ToInsert += "("; 725 raw_string_ostream OS(Description); 726 F->print(OS, m_desc_policy, false); 727 OS.flush(); 728 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 729 Description = V->getType().getAsString(m_desc_policy); 730 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 731 Description = F->getType().getAsString(m_desc_policy); 732 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 733 // If we try to complete a namespace, then we can directly append 734 // the '::'. 735 if (!N->isAnonymousNamespace()) 736 ToInsert += "::"; 737 } 738 break; 739 } 740 case CodeCompletionResult::RK_Keyword: 741 ToInsert = R.Keyword; 742 break; 743 case CodeCompletionResult::RK_Macro: 744 ToInsert = R.Macro->getName().str(); 745 break; 746 case CodeCompletionResult::RK_Pattern: 747 ToInsert = R.Pattern->getTypedText(); 748 break; 749 } 750 // At this point all information is in the ToInsert string. 751 752 // We also filter some internal lldb identifiers here. The user 753 // shouldn't see these. 754 if (StringRef(ToInsert).startswith("$__lldb_")) 755 continue; 756 if (!ToInsert.empty()) { 757 // Merge the suggested Token into the existing command line to comply 758 // with the kind of result the lldb API expects. 759 std::string CompletionSuggestion = 760 mergeCompletion(m_expr, m_position, ToInsert); 761 m_request.AddCompletion(CompletionSuggestion, Description); 762 } 763 } 764 } 765 766 /// \param S the semantic-analyzer object for which code-completion is being 767 /// done. 768 /// 769 /// \param CurrentArg the index of the current argument. 770 /// 771 /// \param Candidates an array of overload candidates. 772 /// 773 /// \param NumCandidates the number of overload candidates 774 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 775 OverloadCandidate *Candidates, 776 unsigned NumCandidates, 777 SourceLocation OpenParLoc) override { 778 // At the moment we don't filter out any overloaded candidates. 779 } 780 781 CodeCompletionAllocator &getAllocator() override { 782 return m_info.getAllocator(); 783 } 784 785 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 786 }; 787 } // namespace 788 789 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 790 unsigned pos, unsigned typed_pos) { 791 DiagnosticManager mgr; 792 // We need the raw user expression here because that's what the CodeComplete 793 // class uses to provide completion suggestions. 794 // However, the `Text` method only gives us the transformed expression here. 795 // To actually get the raw user input here, we have to cast our expression to 796 // the LLVMUserExpression which exposes the right API. This should never fail 797 // as we always have a ClangUserExpression whenever we call this. 798 LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr); 799 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(), 800 typed_pos); 801 // We don't need a code generator for parsing. 802 m_code_generator.reset(); 803 // Start parsing the expression with our custom code completion consumer. 804 ParseInternal(mgr, &CC, line, pos); 805 return true; 806 } 807 808 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 809 return ParseInternal(diagnostic_manager); 810 } 811 812 unsigned 813 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 814 CodeCompleteConsumer *completion_consumer, 815 unsigned completion_line, 816 unsigned completion_column) { 817 ClangDiagnosticManagerAdapter *adapter = 818 static_cast<ClangDiagnosticManagerAdapter *>( 819 m_compiler->getDiagnostics().getClient()); 820 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 821 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 822 823 adapter->ResetManager(&diagnostic_manager); 824 825 const char *expr_text = m_expr.Text(); 826 827 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 828 bool created_main_file = false; 829 830 // Clang wants to do completion on a real file known by Clang's file manager, 831 // so we have to create one to make this work. 832 // TODO: We probably could also simulate to Clang's file manager that there 833 // is a real file that contains our code. 834 bool should_create_file = completion_consumer != nullptr; 835 836 // We also want a real file on disk if we generate full debug info. 837 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 838 codegenoptions::FullDebugInfo; 839 840 if (should_create_file) { 841 int temp_fd = -1; 842 llvm::SmallString<PATH_MAX> result_path; 843 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 844 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 845 std::string temp_source_path = tmpdir_file_spec.GetPath(); 846 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 847 } else { 848 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 849 } 850 851 if (temp_fd != -1) { 852 lldb_private::File file(temp_fd, true); 853 const size_t expr_text_len = strlen(expr_text); 854 size_t bytes_written = expr_text_len; 855 if (file.Write(expr_text, bytes_written).Success()) { 856 if (bytes_written == expr_text_len) { 857 file.Close(); 858 source_mgr.setMainFileID( 859 source_mgr.createFileID(m_file_manager->getFile(result_path), 860 SourceLocation(), SrcMgr::C_User)); 861 created_main_file = true; 862 } 863 } 864 } 865 } 866 867 if (!created_main_file) { 868 std::unique_ptr<MemoryBuffer> memory_buffer = 869 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); 870 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 871 } 872 873 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 874 &m_compiler->getPreprocessor()); 875 876 ClangExpressionHelper *type_system_helper = 877 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 878 879 ASTConsumer *ast_transformer = 880 type_system_helper->ASTTransformer(m_code_generator.get()); 881 882 if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) 883 decl_map->InstallCodeGenerator(m_code_generator.get()); 884 885 // If we want to parse for code completion, we need to attach our code 886 // completion consumer to the Sema and specify a completion position. 887 // While parsing the Sema will call this consumer with the provided 888 // completion suggestions. 889 if (completion_consumer) { 890 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 891 auto &PP = m_compiler->getPreprocessor(); 892 // Lines and columns start at 1 in Clang, but code completion positions are 893 // indexed from 0, so we need to add 1 to the line and column here. 894 ++completion_line; 895 ++completion_column; 896 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 897 } 898 899 if (ast_transformer) { 900 ast_transformer->Initialize(m_compiler->getASTContext()); 901 ParseAST(m_compiler->getPreprocessor(), ast_transformer, 902 m_compiler->getASTContext(), false, TU_Complete, 903 completion_consumer); 904 } else { 905 m_code_generator->Initialize(m_compiler->getASTContext()); 906 ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), 907 m_compiler->getASTContext(), false, TU_Complete, 908 completion_consumer); 909 } 910 911 diag_buf->EndSourceFile(); 912 913 unsigned num_errors = diag_buf->getNumErrors(); 914 915 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 916 num_errors++; 917 diagnostic_manager.PutString(eDiagnosticSeverityError, 918 "while importing modules:"); 919 diagnostic_manager.AppendMessageToDiagnostic( 920 m_pp_callbacks->getErrorString()); 921 } 922 923 if (!num_errors) { 924 if (type_system_helper->DeclMap() && 925 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 926 diagnostic_manager.Printf(eDiagnosticSeverityError, 927 "Couldn't infer the type of a variable"); 928 num_errors++; 929 } 930 } 931 932 if (!num_errors) { 933 type_system_helper->CommitPersistentDecls(); 934 } 935 936 adapter->ResetManager(); 937 938 return num_errors; 939 } 940 941 std::string 942 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 943 std::string abi; 944 945 if (target_arch.IsMIPS()) { 946 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 947 case ArchSpec::eMIPSABI_N64: 948 abi = "n64"; 949 break; 950 case ArchSpec::eMIPSABI_N32: 951 abi = "n32"; 952 break; 953 case ArchSpec::eMIPSABI_O32: 954 abi = "o32"; 955 break; 956 default: 957 break; 958 } 959 } 960 return abi; 961 } 962 963 bool ClangExpressionParser::RewriteExpression( 964 DiagnosticManager &diagnostic_manager) { 965 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 966 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 967 nullptr); 968 clang::edit::Commit commit(editor); 969 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 970 971 class RewritesReceiver : public edit::EditsReceiver { 972 Rewriter &rewrite; 973 974 public: 975 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 976 977 void insert(SourceLocation loc, StringRef text) override { 978 rewrite.InsertText(loc, text); 979 } 980 void replace(CharSourceRange range, StringRef text) override { 981 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 982 } 983 }; 984 985 RewritesReceiver rewrites_receiver(rewriter); 986 987 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 988 size_t num_diags = diagnostics.size(); 989 if (num_diags == 0) 990 return false; 991 992 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 993 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 994 if (diagnostic && diagnostic->HasFixIts()) { 995 for (const FixItHint &fixit : diagnostic->FixIts()) { 996 // This is cobbed from clang::Rewrite::FixItRewriter. 997 if (fixit.CodeToInsert.empty()) { 998 if (fixit.InsertFromRange.isValid()) { 999 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1000 fixit.InsertFromRange, /*afterToken=*/false, 1001 fixit.BeforePreviousInsertions); 1002 } else 1003 commit.remove(fixit.RemoveRange); 1004 } else { 1005 if (fixit.RemoveRange.isTokenRange() || 1006 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1007 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1008 else 1009 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1010 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1011 } 1012 } 1013 } 1014 } 1015 1016 // FIXME - do we want to try to propagate specific errors here? 1017 if (!commit.isCommitable()) 1018 return false; 1019 else if (!editor.commit(commit)) 1020 return false; 1021 1022 // Now play all the edits, and stash the result in the diagnostic manager. 1023 editor.applyRewrites(rewrites_receiver); 1024 RewriteBuffer &main_file_buffer = 1025 rewriter.getEditBuffer(source_manager.getMainFileID()); 1026 1027 std::string fixed_expression; 1028 llvm::raw_string_ostream out_stream(fixed_expression); 1029 1030 main_file_buffer.write(out_stream); 1031 out_stream.flush(); 1032 diagnostic_manager.SetFixedExpression(fixed_expression); 1033 1034 return true; 1035 } 1036 1037 static bool FindFunctionInModule(ConstString &mangled_name, 1038 llvm::Module *module, const char *orig_name) { 1039 for (const auto &func : module->getFunctionList()) { 1040 const StringRef &name = func.getName(); 1041 if (name.find(orig_name) != StringRef::npos) { 1042 mangled_name.SetString(name); 1043 return true; 1044 } 1045 } 1046 1047 return false; 1048 } 1049 1050 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1051 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1052 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1053 bool &can_interpret, ExecutionPolicy execution_policy) { 1054 func_addr = LLDB_INVALID_ADDRESS; 1055 func_end = LLDB_INVALID_ADDRESS; 1056 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1057 1058 lldb_private::Status err; 1059 1060 std::unique_ptr<llvm::Module> llvm_module_ap( 1061 m_code_generator->ReleaseModule()); 1062 1063 if (!llvm_module_ap.get()) { 1064 err.SetErrorToGenericError(); 1065 err.SetErrorString("IR doesn't contain a module"); 1066 return err; 1067 } 1068 1069 ConstString function_name; 1070 1071 if (execution_policy != eExecutionPolicyTopLevel) { 1072 // Find the actual name of the function (it's often mangled somehow) 1073 1074 if (!FindFunctionInModule(function_name, llvm_module_ap.get(), 1075 m_expr.FunctionName())) { 1076 err.SetErrorToGenericError(); 1077 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1078 m_expr.FunctionName()); 1079 return err; 1080 } else { 1081 if (log) 1082 log->Printf("Found function %s for %s", function_name.AsCString(), 1083 m_expr.FunctionName()); 1084 } 1085 } 1086 1087 SymbolContext sc; 1088 1089 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1090 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1091 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1092 sc.target_sp = target_sp; 1093 } 1094 1095 LLVMUserExpression::IRPasses custom_passes; 1096 { 1097 auto lang = m_expr.Language(); 1098 if (log) 1099 log->Printf("%s - Current expression language is %s\n", __FUNCTION__, 1100 Language::GetNameForLanguageType(lang)); 1101 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1102 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1103 auto runtime = process_sp->GetLanguageRuntime(lang); 1104 if (runtime) 1105 runtime->GetIRPasses(custom_passes); 1106 } 1107 } 1108 1109 if (custom_passes.EarlyPasses) { 1110 if (log) 1111 log->Printf("%s - Running Early IR Passes from LanguageRuntime on " 1112 "expression module '%s'", 1113 __FUNCTION__, m_expr.FunctionName()); 1114 1115 custom_passes.EarlyPasses->run(*llvm_module_ap); 1116 } 1117 1118 execution_unit_sp.reset( 1119 new IRExecutionUnit(m_llvm_context, // handed off here 1120 llvm_module_ap, // handed off here 1121 function_name, exe_ctx.GetTargetSP(), sc, 1122 m_compiler->getTargetOpts().Features)); 1123 1124 ClangExpressionHelper *type_system_helper = 1125 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1126 ClangExpressionDeclMap *decl_map = 1127 type_system_helper->DeclMap(); // result can be NULL 1128 1129 if (decl_map) { 1130 Stream *error_stream = NULL; 1131 Target *target = exe_ctx.GetTargetPtr(); 1132 error_stream = target->GetDebugger().GetErrorFile().get(); 1133 1134 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1135 *execution_unit_sp, *error_stream, 1136 function_name.AsCString()); 1137 1138 bool ir_can_run = 1139 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1140 1141 if (!ir_can_run) { 1142 err.SetErrorString( 1143 "The expression could not be prepared to run in the target"); 1144 return err; 1145 } 1146 1147 Process *process = exe_ctx.GetProcessPtr(); 1148 1149 if (execution_policy != eExecutionPolicyAlways && 1150 execution_policy != eExecutionPolicyTopLevel) { 1151 lldb_private::Status interpret_error; 1152 1153 bool interpret_function_calls = 1154 !process ? false : process->CanInterpretFunctionCalls(); 1155 can_interpret = IRInterpreter::CanInterpret( 1156 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1157 interpret_error, interpret_function_calls); 1158 1159 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1160 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1161 interpret_error.AsCString()); 1162 return err; 1163 } 1164 } 1165 1166 if (!process && execution_policy == eExecutionPolicyAlways) { 1167 err.SetErrorString("Expression needed to run in the target, but the " 1168 "target can't be run"); 1169 return err; 1170 } 1171 1172 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1173 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1174 "target, but the target can't be run"); 1175 return err; 1176 } 1177 1178 if (execution_policy == eExecutionPolicyAlways || 1179 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1180 if (m_expr.NeedsValidation() && process) { 1181 if (!process->GetDynamicCheckers()) { 1182 DynamicCheckerFunctions *dynamic_checkers = 1183 new DynamicCheckerFunctions(); 1184 1185 DiagnosticManager install_diagnostics; 1186 1187 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1188 if (install_diagnostics.Diagnostics().size()) 1189 err.SetErrorString(install_diagnostics.GetString().c_str()); 1190 else 1191 err.SetErrorString("couldn't install checkers, unknown error"); 1192 1193 return err; 1194 } 1195 1196 process->SetDynamicCheckers(dynamic_checkers); 1197 1198 if (log) 1199 log->Printf("== [ClangUserExpression::Evaluate] Finished " 1200 "installing dynamic checkers =="); 1201 } 1202 1203 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), 1204 function_name.AsCString()); 1205 1206 llvm::Module *module = execution_unit_sp->GetModule(); 1207 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1208 err.SetErrorToGenericError(); 1209 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1210 return err; 1211 } 1212 1213 if (custom_passes.LatePasses) { 1214 if (log) 1215 log->Printf("%s - Running Late IR Passes from LanguageRuntime on " 1216 "expression module '%s'", 1217 __FUNCTION__, m_expr.FunctionName()); 1218 1219 custom_passes.LatePasses->run(*module); 1220 } 1221 } 1222 } 1223 1224 if (execution_policy == eExecutionPolicyAlways || 1225 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1226 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1227 } 1228 } else { 1229 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1230 } 1231 1232 return err; 1233 } 1234 1235 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1236 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1237 lldb_private::Status err; 1238 1239 lldbassert(execution_unit_sp.get()); 1240 lldbassert(exe_ctx.HasThreadScope()); 1241 1242 if (!execution_unit_sp.get()) { 1243 err.SetErrorString( 1244 "can't run static initializers for a NULL execution unit"); 1245 return err; 1246 } 1247 1248 if (!exe_ctx.HasThreadScope()) { 1249 err.SetErrorString("can't run static initializers without a thread"); 1250 return err; 1251 } 1252 1253 std::vector<lldb::addr_t> static_initializers; 1254 1255 execution_unit_sp->GetStaticInitializers(static_initializers); 1256 1257 for (lldb::addr_t static_initializer : static_initializers) { 1258 EvaluateExpressionOptions options; 1259 1260 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1261 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1262 llvm::ArrayRef<lldb::addr_t>(), options)); 1263 1264 DiagnosticManager execution_errors; 1265 lldb::ExpressionResults results = 1266 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1267 exe_ctx, call_static_initializer, options, execution_errors); 1268 1269 if (results != lldb::eExpressionCompleted) { 1270 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1271 execution_errors.GetString().c_str()); 1272 return err; 1273 } 1274 } 1275 1276 return err; 1277 } 1278