1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/DiagnosticIDs.h" 14 #include "clang/Basic/SourceLocation.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "clang/Basic/Version.h" 17 #include "clang/CodeGen/CodeGenAction.h" 18 #include "clang/CodeGen/ModuleBuilder.h" 19 #include "clang/Edit/Commit.h" 20 #include "clang/Edit/EditedSource.h" 21 #include "clang/Edit/EditsReceiver.h" 22 #include "clang/Frontend/CompilerInstance.h" 23 #include "clang/Frontend/CompilerInvocation.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/FrontendPluginRegistry.h" 27 #include "clang/Frontend/TextDiagnosticBuffer.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Parse/ParseAST.h" 31 #include "clang/Rewrite/Core/Rewriter.h" 32 #include "clang/Rewrite/Frontend/FrontendActions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaConsumer.h" 36 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ExecutionEngine/ExecutionEngine.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/TargetSelect.h" 43 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/DynamicLibrary.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Host.h" 49 #include "llvm/Support/MemoryBuffer.h" 50 #include "llvm/Support/Signals.h" 51 52 #include "ClangDiagnostic.h" 53 #include "ClangExpressionParser.h" 54 #include "ClangUserExpression.h" 55 56 #include "ASTUtils.h" 57 #include "ClangASTSource.h" 58 #include "ClangDiagnostic.h" 59 #include "ClangExpressionDeclMap.h" 60 #include "ClangExpressionHelper.h" 61 #include "ClangExpressionParser.h" 62 #include "ClangHost.h" 63 #include "ClangModulesDeclVendor.h" 64 #include "ClangPersistentVariables.h" 65 #include "IRDynamicChecks.h" 66 #include "IRForTarget.h" 67 #include "ModuleDependencyCollector.h" 68 69 #include "lldb/Core/Debugger.h" 70 #include "lldb/Core/Disassembler.h" 71 #include "lldb/Core/Module.h" 72 #include "lldb/Core/StreamFile.h" 73 #include "lldb/Expression/IRExecutionUnit.h" 74 #include "lldb/Expression/IRInterpreter.h" 75 #include "lldb/Host/File.h" 76 #include "lldb/Host/HostInfo.h" 77 #include "lldb/Symbol/ClangASTContext.h" 78 #include "lldb/Symbol/SymbolVendor.h" 79 #include "lldb/Target/ExecutionContext.h" 80 #include "lldb/Target/Language.h" 81 #include "lldb/Target/Process.h" 82 #include "lldb/Target/Target.h" 83 #include "lldb/Target/ThreadPlanCallFunction.h" 84 #include "lldb/Utility/DataBufferHeap.h" 85 #include "lldb/Utility/LLDBAssert.h" 86 #include "lldb/Utility/Log.h" 87 #include "lldb/Utility/Reproducer.h" 88 #include "lldb/Utility/Stream.h" 89 #include "lldb/Utility/StreamString.h" 90 #include "lldb/Utility/StringList.h" 91 92 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 93 94 #include <cctype> 95 #include <memory> 96 97 using namespace clang; 98 using namespace llvm; 99 using namespace lldb_private; 100 101 //===----------------------------------------------------------------------===// 102 // Utility Methods for Clang 103 //===----------------------------------------------------------------------===// 104 105 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 106 ClangModulesDeclVendor &m_decl_vendor; 107 ClangPersistentVariables &m_persistent_vars; 108 StreamString m_error_stream; 109 bool m_has_errors = false; 110 111 public: 112 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 113 ClangPersistentVariables &persistent_vars) 114 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 115 116 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 117 const clang::Module * /*null*/) override { 118 SourceModule module; 119 120 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 121 module.path.push_back(ConstString(component.first->getName())); 122 123 StreamString error_stream; 124 125 ClangModulesDeclVendor::ModuleVector exported_modules; 126 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 127 m_has_errors = true; 128 129 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 130 m_persistent_vars.AddHandLoadedClangModule(module); 131 } 132 133 bool hasErrors() { return m_has_errors; } 134 135 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 136 }; 137 138 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 139 public: 140 ClangDiagnosticManagerAdapter() 141 : m_passthrough(new clang::TextDiagnosticBuffer) {} 142 143 ClangDiagnosticManagerAdapter( 144 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 145 : m_passthrough(passthrough) {} 146 147 void ResetManager(DiagnosticManager *manager = nullptr) { 148 m_manager = manager; 149 } 150 151 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 152 const clang::Diagnostic &Info) override { 153 if (m_manager) { 154 llvm::SmallVector<char, 32> diag_str; 155 Info.FormatDiagnostic(diag_str); 156 diag_str.push_back('\0'); 157 const char *data = diag_str.data(); 158 159 lldb_private::DiagnosticSeverity severity; 160 bool make_new_diagnostic = true; 161 162 switch (DiagLevel) { 163 case DiagnosticsEngine::Level::Fatal: 164 case DiagnosticsEngine::Level::Error: 165 severity = eDiagnosticSeverityError; 166 break; 167 case DiagnosticsEngine::Level::Warning: 168 severity = eDiagnosticSeverityWarning; 169 break; 170 case DiagnosticsEngine::Level::Remark: 171 case DiagnosticsEngine::Level::Ignored: 172 severity = eDiagnosticSeverityRemark; 173 break; 174 case DiagnosticsEngine::Level::Note: 175 m_manager->AppendMessageToDiagnostic(data); 176 make_new_diagnostic = false; 177 } 178 if (make_new_diagnostic) { 179 ClangDiagnostic *new_diagnostic = 180 new ClangDiagnostic(data, severity, Info.getID()); 181 m_manager->AddDiagnostic(new_diagnostic); 182 183 // Don't store away warning fixits, since the compiler doesn't have 184 // enough context in an expression for the warning to be useful. 185 // FIXME: Should we try to filter out FixIts that apply to our generated 186 // code, and not the user's expression? 187 if (severity == eDiagnosticSeverityError) { 188 size_t num_fixit_hints = Info.getNumFixItHints(); 189 for (size_t i = 0; i < num_fixit_hints; i++) { 190 const clang::FixItHint &fixit = Info.getFixItHint(i); 191 if (!fixit.isNull()) 192 new_diagnostic->AddFixitHint(fixit); 193 } 194 } 195 } 196 } 197 198 m_passthrough->HandleDiagnostic(DiagLevel, Info); 199 } 200 201 void FlushDiagnostics(DiagnosticsEngine &Diags) { 202 m_passthrough->FlushDiagnostics(Diags); 203 } 204 205 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 206 return new ClangDiagnosticManagerAdapter(m_passthrough); 207 } 208 209 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 210 211 private: 212 DiagnosticManager *m_manager = nullptr; 213 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 214 }; 215 216 static void 217 SetupModuleHeaderPaths(CompilerInstance *compiler, 218 std::vector<ConstString> include_directories, 219 lldb::TargetSP target_sp) { 220 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 221 222 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 223 224 for (ConstString dir : include_directories) { 225 search_opts.AddPath(dir.AsCString(), frontend::System, false, true); 226 LLDB_LOG(log, "Added user include dir: {0}", dir); 227 } 228 229 llvm::SmallString<128> module_cache; 230 auto props = ModuleList::GetGlobalModuleListProperties(); 231 props.GetClangModulesCachePath().GetPath(module_cache); 232 search_opts.ModuleCachePath = module_cache.str(); 233 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 234 235 FileSpec clang_resource_dir = GetClangResourceDir(); 236 std::string resource_dir = clang_resource_dir.GetPath(); 237 if (FileSystem::Instance().IsDirectory(resource_dir)) { 238 search_opts.ResourceDir = resource_dir; 239 std::string resource_include = resource_dir + "/include"; 240 search_opts.AddPath(resource_include, frontend::System, false, true); 241 242 LLDB_LOG(log, "Added resource include dir: {0}", resource_include); 243 } 244 245 search_opts.ImplicitModuleMaps = true; 246 247 std::vector<std::string> system_include_directories = 248 target_sp->GetPlatform()->GetSystemIncludeDirectories( 249 lldb::eLanguageTypeC_plus_plus); 250 251 for (const std::string &include_dir : system_include_directories) { 252 search_opts.AddPath(include_dir, frontend::System, false, true); 253 254 LLDB_LOG(log, "Added system include dir: {0}", include_dir); 255 } 256 } 257 258 //===----------------------------------------------------------------------===// 259 // Implementation of ClangExpressionParser 260 //===----------------------------------------------------------------------===// 261 262 ClangExpressionParser::ClangExpressionParser( 263 ExecutionContextScope *exe_scope, Expression &expr, 264 bool generate_debug_info, std::vector<ConstString> include_directories) 265 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 266 m_pp_callbacks(nullptr), 267 m_include_directories(std::move(include_directories)) { 268 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 269 270 // We can't compile expressions without a target. So if the exe_scope is 271 // null or doesn't have a target, then we just need to get out of here. I'll 272 // lldb_assert and not make any of the compiler objects since 273 // I can't return errors directly from the constructor. Further calls will 274 // check if the compiler was made and 275 // bag out if it wasn't. 276 277 if (!exe_scope) { 278 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 279 __FUNCTION__, __FILE__, __LINE__); 280 return; 281 } 282 283 lldb::TargetSP target_sp; 284 target_sp = exe_scope->CalculateTarget(); 285 if (!target_sp) { 286 lldb_assert(target_sp.get(), 287 "Can't make an expression parser with a null target.", 288 __FUNCTION__, __FILE__, __LINE__); 289 return; 290 } 291 292 // 1. Create a new compiler instance. 293 m_compiler.reset(new CompilerInstance()); 294 295 // When capturing a reproducer, hook up the file collector with clang to 296 // collector modules and headers. 297 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 298 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 299 m_compiler->setModuleDepCollector( 300 std::make_shared<ModuleDependencyCollectorAdaptor>( 301 fp.GetFileCollector())); 302 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 303 opts.IncludeSystemHeaders = true; 304 opts.IncludeModuleFiles = true; 305 } 306 307 // Make sure clang uses the same VFS as LLDB. 308 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 309 310 lldb::LanguageType frame_lang = 311 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 312 bool overridden_target_opts = false; 313 lldb_private::LanguageRuntime *lang_rt = nullptr; 314 315 std::string abi; 316 ArchSpec target_arch; 317 target_arch = target_sp->GetArchitecture(); 318 319 const auto target_machine = target_arch.GetMachine(); 320 321 // If the expression is being evaluated in the context of an existing stack 322 // frame, we introspect to see if the language runtime is available. 323 324 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 325 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 326 327 // Make sure the user hasn't provided a preferred execution language with 328 // `expression --language X -- ...` 329 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 330 frame_lang = frame_sp->GetLanguage(); 331 332 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 333 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 334 LLDB_LOGF(log, "Frame has language of type %s", 335 Language::GetNameForLanguageType(frame_lang)); 336 } 337 338 // 2. Configure the compiler with a set of default options that are 339 // appropriate for most situations. 340 if (target_arch.IsValid()) { 341 std::string triple = target_arch.GetTriple().str(); 342 m_compiler->getTargetOpts().Triple = triple; 343 LLDB_LOGF(log, "Using %s as the target triple", 344 m_compiler->getTargetOpts().Triple.c_str()); 345 } else { 346 // If we get here we don't have a valid target and just have to guess. 347 // Sometimes this will be ok to just use the host target triple (when we 348 // evaluate say "2+3", but other expressions like breakpoint conditions and 349 // other things that _are_ target specific really shouldn't just be using 350 // the host triple. In such a case the language runtime should expose an 351 // overridden options set (3), below. 352 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 353 LLDB_LOGF(log, "Using default target triple of %s", 354 m_compiler->getTargetOpts().Triple.c_str()); 355 } 356 // Now add some special fixes for known architectures: Any arm32 iOS 357 // environment, but not on arm64 358 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 359 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 360 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 361 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 362 } 363 // Supported subsets of x86 364 if (target_machine == llvm::Triple::x86 || 365 target_machine == llvm::Triple::x86_64) { 366 m_compiler->getTargetOpts().Features.push_back("+sse"); 367 m_compiler->getTargetOpts().Features.push_back("+sse2"); 368 } 369 370 // Set the target CPU to generate code for. This will be empty for any CPU 371 // that doesn't really need to make a special 372 // CPU string. 373 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 374 375 // Set the target ABI 376 abi = GetClangTargetABI(target_arch); 377 if (!abi.empty()) 378 m_compiler->getTargetOpts().ABI = abi; 379 380 // 3. Now allow the runtime to provide custom configuration options for the 381 // target. In this case, a specialized language runtime is available and we 382 // can query it for extra options. For 99% of use cases, this will not be 383 // needed and should be provided when basic platform detection is not enough. 384 if (lang_rt) 385 overridden_target_opts = 386 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 387 388 if (overridden_target_opts) 389 if (log && log->GetVerbose()) { 390 LLDB_LOGV( 391 log, "Using overridden target options for the expression evaluation"); 392 393 auto opts = m_compiler->getTargetOpts(); 394 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 395 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 396 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 397 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 398 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 399 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 400 StringList::LogDump(log, opts.Features, "Features"); 401 } 402 403 // 4. Create and install the target on the compiler. 404 m_compiler->createDiagnostics(); 405 auto target_info = TargetInfo::CreateTargetInfo( 406 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 407 if (log) { 408 LLDB_LOGF(log, "Using SIMD alignment: %d", 409 target_info->getSimdDefaultAlign()); 410 LLDB_LOGF(log, "Target datalayout string: '%s'", 411 target_info->getDataLayout().getStringRepresentation().c_str()); 412 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 413 LLDB_LOGF(log, "Target vector alignment: %d", 414 target_info->getMaxVectorAlign()); 415 } 416 m_compiler->setTarget(target_info); 417 418 assert(m_compiler->hasTarget()); 419 420 // 5. Set language options. 421 lldb::LanguageType language = expr.Language(); 422 LangOptions &lang_opts = m_compiler->getLangOpts(); 423 424 switch (language) { 425 case lldb::eLanguageTypeC: 426 case lldb::eLanguageTypeC89: 427 case lldb::eLanguageTypeC99: 428 case lldb::eLanguageTypeC11: 429 // FIXME: the following language option is a temporary workaround, 430 // to "ask for C, get C++." 431 // For now, the expression parser must use C++ anytime the language is a C 432 // family language, because the expression parser uses features of C++ to 433 // capture values. 434 lang_opts.CPlusPlus = true; 435 break; 436 case lldb::eLanguageTypeObjC: 437 lang_opts.ObjC = true; 438 // FIXME: the following language option is a temporary workaround, 439 // to "ask for ObjC, get ObjC++" (see comment above). 440 lang_opts.CPlusPlus = true; 441 442 // Clang now sets as default C++14 as the default standard (with 443 // GNU extensions), so we do the same here to avoid mismatches that 444 // cause compiler error when evaluating expressions (e.g. nullptr not found 445 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 446 // two lines below) so we decide to be consistent with that, but this could 447 // be re-evaluated in the future. 448 lang_opts.CPlusPlus11 = true; 449 break; 450 case lldb::eLanguageTypeC_plus_plus: 451 case lldb::eLanguageTypeC_plus_plus_11: 452 case lldb::eLanguageTypeC_plus_plus_14: 453 lang_opts.CPlusPlus11 = true; 454 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 455 LLVM_FALLTHROUGH; 456 case lldb::eLanguageTypeC_plus_plus_03: 457 lang_opts.CPlusPlus = true; 458 if (process_sp) 459 lang_opts.ObjC = 460 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 461 break; 462 case lldb::eLanguageTypeObjC_plus_plus: 463 case lldb::eLanguageTypeUnknown: 464 default: 465 lang_opts.ObjC = true; 466 lang_opts.CPlusPlus = true; 467 lang_opts.CPlusPlus11 = true; 468 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 469 break; 470 } 471 472 lang_opts.Bool = true; 473 lang_opts.WChar = true; 474 lang_opts.Blocks = true; 475 lang_opts.DebuggerSupport = 476 true; // Features specifically for debugger clients 477 if (expr.DesiredResultType() == Expression::eResultTypeId) 478 lang_opts.DebuggerCastResultToId = true; 479 480 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 481 .CharIsSignedByDefault(); 482 483 // Spell checking is a nice feature, but it ends up completing a lot of types 484 // that we didn't strictly speaking need to complete. As a result, we spend a 485 // long time parsing and importing debug information. 486 lang_opts.SpellChecking = false; 487 488 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 489 if (clang_expr && clang_expr->DidImportCxxModules()) { 490 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 491 492 lang_opts.Modules = true; 493 // We want to implicitly build modules. 494 lang_opts.ImplicitModules = true; 495 // To automatically import all submodules when we import 'std'. 496 lang_opts.ModulesLocalVisibility = false; 497 498 // We use the @import statements, so we need this: 499 // FIXME: We could use the modules-ts, but that currently doesn't work. 500 lang_opts.ObjC = true; 501 502 // Options we need to parse libc++ code successfully. 503 // FIXME: We should ask the driver for the appropriate default flags. 504 lang_opts.GNUMode = true; 505 lang_opts.GNUKeywords = true; 506 lang_opts.DoubleSquareBracketAttributes = true; 507 lang_opts.CPlusPlus11 = true; 508 509 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 510 target_sp); 511 } 512 513 if (process_sp && lang_opts.ObjC) { 514 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 515 if (runtime->GetRuntimeVersion() == 516 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 517 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 518 else 519 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 520 VersionTuple(10, 7)); 521 522 if (runtime->HasNewLiteralsAndIndexing()) 523 lang_opts.DebuggerObjCLiteral = true; 524 } 525 } 526 527 lang_opts.ThreadsafeStatics = false; 528 lang_opts.AccessControl = false; // Debuggers get universal access 529 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 530 // We enable all builtin functions beside the builtins from libc/libm (e.g. 531 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 532 // additionally enabling them as expandable builtins is breaking Clang. 533 lang_opts.NoBuiltin = true; 534 535 // Set CodeGen options 536 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 537 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 538 m_compiler->getCodeGenOpts().setFramePointer( 539 CodeGenOptions::FramePointerKind::All); 540 if (generate_debug_info) 541 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 542 else 543 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 544 545 // Disable some warnings. 546 m_compiler->getDiagnostics().setSeverityForGroup( 547 clang::diag::Flavor::WarningOrError, "unused-value", 548 clang::diag::Severity::Ignored, SourceLocation()); 549 m_compiler->getDiagnostics().setSeverityForGroup( 550 clang::diag::Flavor::WarningOrError, "odr", 551 clang::diag::Severity::Ignored, SourceLocation()); 552 553 // Inform the target of the language options 554 // 555 // FIXME: We shouldn't need to do this, the target should be immutable once 556 // created. This complexity should be lifted elsewhere. 557 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 558 559 // 6. Set up the diagnostic buffer for reporting errors 560 561 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 562 563 // 7. Set up the source management objects inside the compiler 564 m_compiler->createFileManager(); 565 if (!m_compiler->hasSourceManager()) 566 m_compiler->createSourceManager(m_compiler->getFileManager()); 567 m_compiler->createPreprocessor(TU_Complete); 568 569 if (ClangModulesDeclVendor *decl_vendor = 570 target_sp->GetClangModulesDeclVendor()) { 571 ClangPersistentVariables *clang_persistent_vars = 572 llvm::cast<ClangPersistentVariables>( 573 target_sp->GetPersistentExpressionStateForLanguage( 574 lldb::eLanguageTypeC)); 575 std::unique_ptr<PPCallbacks> pp_callbacks( 576 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 577 m_pp_callbacks = 578 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 579 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 580 } 581 582 // 8. Most of this we get from the CompilerInstance, but we also want to give 583 // the context an ExternalASTSource. 584 585 auto &PP = m_compiler->getPreprocessor(); 586 auto &builtin_context = PP.getBuiltinInfo(); 587 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 588 m_compiler->getLangOpts()); 589 590 m_compiler->createASTContext(); 591 clang::ASTContext &ast_context = m_compiler->getASTContext(); 592 593 m_ast_context.reset( 594 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 595 m_ast_context->setASTContext(&ast_context); 596 597 std::string module_name("$__lldb_module"); 598 599 m_llvm_context.reset(new LLVMContext()); 600 m_code_generator.reset(CreateLLVMCodeGen( 601 m_compiler->getDiagnostics(), module_name, 602 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 603 m_compiler->getCodeGenOpts(), *m_llvm_context)); 604 } 605 606 ClangExpressionParser::~ClangExpressionParser() {} 607 608 namespace { 609 610 /// \class CodeComplete 611 /// 612 /// A code completion consumer for the clang Sema that is responsible for 613 /// creating the completion suggestions when a user requests completion 614 /// of an incomplete `expr` invocation. 615 class CodeComplete : public CodeCompleteConsumer { 616 CodeCompletionTUInfo m_info; 617 618 std::string m_expr; 619 unsigned m_position = 0; 620 CompletionRequest &m_request; 621 /// The printing policy we use when printing declarations for our completion 622 /// descriptions. 623 clang::PrintingPolicy m_desc_policy; 624 625 /// Returns true if the given character can be used in an identifier. 626 /// This also returns true for numbers because for completion we usually 627 /// just iterate backwards over iterators. 628 /// 629 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 630 static bool IsIdChar(char c) { 631 return c == '_' || std::isalnum(c) || c == '$'; 632 } 633 634 /// Returns true if the given character is used to separate arguments 635 /// in the command line of lldb. 636 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 637 638 /// Drops all tokens in front of the expression that are unrelated for 639 /// the completion of the cmd line. 'unrelated' means here that the token 640 /// is not interested for the lldb completion API result. 641 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 642 if (cmd.empty()) 643 return cmd; 644 645 // If we are at the start of a word, then all tokens are unrelated to 646 // the current completion logic. 647 if (IsTokenSeparator(cmd.back())) 648 return StringRef(); 649 650 // Remove all previous tokens from the string as they are unrelated 651 // to completing the current token. 652 StringRef to_remove = cmd; 653 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 654 to_remove = to_remove.drop_back(); 655 } 656 cmd = cmd.drop_front(to_remove.size()); 657 658 return cmd; 659 } 660 661 /// Removes the last identifier token from the given cmd line. 662 StringRef removeLastToken(StringRef cmd) { 663 while (!cmd.empty() && IsIdChar(cmd.back())) { 664 cmd = cmd.drop_back(); 665 } 666 return cmd; 667 } 668 669 /// Attemps to merge the given completion from the given position into the 670 /// existing command. Returns the completion string that can be returned to 671 /// the lldb completion API. 672 std::string mergeCompletion(StringRef existing, unsigned pos, 673 StringRef completion) { 674 StringRef existing_command = existing.substr(0, pos); 675 // We rewrite the last token with the completion, so let's drop that 676 // token from the command. 677 existing_command = removeLastToken(existing_command); 678 // We also should remove all previous tokens from the command as they 679 // would otherwise be added to the completion that already has the 680 // completion. 681 existing_command = dropUnrelatedFrontTokens(existing_command); 682 return existing_command.str() + completion.str(); 683 } 684 685 public: 686 /// Constructs a CodeComplete consumer that can be attached to a Sema. 687 /// \param[out] matches 688 /// The list of matches that the lldb completion API expects as a result. 689 /// This may already contain matches, so it's only allowed to append 690 /// to this variable. 691 /// \param[out] expr 692 /// The whole expression string that we are currently parsing. This 693 /// string needs to be equal to the input the user typed, and NOT the 694 /// final code that Clang is parsing. 695 /// \param[out] position 696 /// The character position of the user cursor in the `expr` parameter. 697 /// 698 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 699 std::string expr, unsigned position) 700 : CodeCompleteConsumer(CodeCompleteOptions()), 701 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 702 m_position(position), m_request(request), m_desc_policy(ops) { 703 704 // Ensure that the printing policy is producing a description that is as 705 // short as possible. 706 m_desc_policy.SuppressScope = true; 707 m_desc_policy.SuppressTagKeyword = true; 708 m_desc_policy.FullyQualifiedName = false; 709 m_desc_policy.TerseOutput = true; 710 m_desc_policy.IncludeNewlines = false; 711 m_desc_policy.UseVoidForZeroParams = false; 712 m_desc_policy.Bool = true; 713 } 714 715 /// Deregisters and destroys this code-completion consumer. 716 ~CodeComplete() override {} 717 718 /// \name Code-completion filtering 719 /// Check if the result should be filtered out. 720 bool isResultFilteredOut(StringRef Filter, 721 CodeCompletionResult Result) override { 722 // This code is mostly copied from CodeCompleteConsumer. 723 switch (Result.Kind) { 724 case CodeCompletionResult::RK_Declaration: 725 return !( 726 Result.Declaration->getIdentifier() && 727 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 728 case CodeCompletionResult::RK_Keyword: 729 return !StringRef(Result.Keyword).startswith(Filter); 730 case CodeCompletionResult::RK_Macro: 731 return !Result.Macro->getName().startswith(Filter); 732 case CodeCompletionResult::RK_Pattern: 733 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 734 } 735 // If we trigger this assert or the above switch yields a warning, then 736 // CodeCompletionResult has been enhanced with more kinds of completion 737 // results. Expand the switch above in this case. 738 assert(false && "Unknown completion result type?"); 739 // If we reach this, then we should just ignore whatever kind of unknown 740 // result we got back. We probably can't turn it into any kind of useful 741 // completion suggestion with the existing code. 742 return true; 743 } 744 745 /// \name Code-completion callbacks 746 /// Process the finalized code-completion results. 747 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 748 CodeCompletionResult *Results, 749 unsigned NumResults) override { 750 751 // The Sema put the incomplete token we try to complete in here during 752 // lexing, so we need to retrieve it here to know what we are completing. 753 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 754 755 // Iterate over all the results. Filter out results we don't want and 756 // process the rest. 757 for (unsigned I = 0; I != NumResults; ++I) { 758 // Filter the results with the information from the Sema. 759 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 760 continue; 761 762 CodeCompletionResult &R = Results[I]; 763 std::string ToInsert; 764 std::string Description; 765 // Handle the different completion kinds that come from the Sema. 766 switch (R.Kind) { 767 case CodeCompletionResult::RK_Declaration: { 768 const NamedDecl *D = R.Declaration; 769 ToInsert = R.Declaration->getNameAsString(); 770 // If we have a function decl that has no arguments we want to 771 // complete the empty parantheses for the user. If the function has 772 // arguments, we at least complete the opening bracket. 773 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 774 if (F->getNumParams() == 0) 775 ToInsert += "()"; 776 else 777 ToInsert += "("; 778 raw_string_ostream OS(Description); 779 F->print(OS, m_desc_policy, false); 780 OS.flush(); 781 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 782 Description = V->getType().getAsString(m_desc_policy); 783 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 784 Description = F->getType().getAsString(m_desc_policy); 785 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 786 // If we try to complete a namespace, then we can directly append 787 // the '::'. 788 if (!N->isAnonymousNamespace()) 789 ToInsert += "::"; 790 } 791 break; 792 } 793 case CodeCompletionResult::RK_Keyword: 794 ToInsert = R.Keyword; 795 break; 796 case CodeCompletionResult::RK_Macro: 797 ToInsert = R.Macro->getName().str(); 798 break; 799 case CodeCompletionResult::RK_Pattern: 800 ToInsert = R.Pattern->getTypedText(); 801 break; 802 } 803 // At this point all information is in the ToInsert string. 804 805 // We also filter some internal lldb identifiers here. The user 806 // shouldn't see these. 807 if (StringRef(ToInsert).startswith("$__lldb_")) 808 continue; 809 if (!ToInsert.empty()) { 810 // Merge the suggested Token into the existing command line to comply 811 // with the kind of result the lldb API expects. 812 std::string CompletionSuggestion = 813 mergeCompletion(m_expr, m_position, ToInsert); 814 m_request.AddCompletion(CompletionSuggestion, Description); 815 } 816 } 817 } 818 819 /// \param S the semantic-analyzer object for which code-completion is being 820 /// done. 821 /// 822 /// \param CurrentArg the index of the current argument. 823 /// 824 /// \param Candidates an array of overload candidates. 825 /// 826 /// \param NumCandidates the number of overload candidates 827 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 828 OverloadCandidate *Candidates, 829 unsigned NumCandidates, 830 SourceLocation OpenParLoc) override { 831 // At the moment we don't filter out any overloaded candidates. 832 } 833 834 CodeCompletionAllocator &getAllocator() override { 835 return m_info.getAllocator(); 836 } 837 838 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 839 }; 840 } // namespace 841 842 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 843 unsigned pos, unsigned typed_pos) { 844 DiagnosticManager mgr; 845 // We need the raw user expression here because that's what the CodeComplete 846 // class uses to provide completion suggestions. 847 // However, the `Text` method only gives us the transformed expression here. 848 // To actually get the raw user input here, we have to cast our expression to 849 // the LLVMUserExpression which exposes the right API. This should never fail 850 // as we always have a ClangUserExpression whenever we call this. 851 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 852 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 853 typed_pos); 854 // We don't need a code generator for parsing. 855 m_code_generator.reset(); 856 // Start parsing the expression with our custom code completion consumer. 857 ParseInternal(mgr, &CC, line, pos); 858 return true; 859 } 860 861 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 862 return ParseInternal(diagnostic_manager); 863 } 864 865 unsigned 866 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 867 CodeCompleteConsumer *completion_consumer, 868 unsigned completion_line, 869 unsigned completion_column) { 870 ClangDiagnosticManagerAdapter *adapter = 871 static_cast<ClangDiagnosticManagerAdapter *>( 872 m_compiler->getDiagnostics().getClient()); 873 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 874 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 875 876 adapter->ResetManager(&diagnostic_manager); 877 878 const char *expr_text = m_expr.Text(); 879 880 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 881 bool created_main_file = false; 882 883 // Clang wants to do completion on a real file known by Clang's file manager, 884 // so we have to create one to make this work. 885 // TODO: We probably could also simulate to Clang's file manager that there 886 // is a real file that contains our code. 887 bool should_create_file = completion_consumer != nullptr; 888 889 // We also want a real file on disk if we generate full debug info. 890 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 891 codegenoptions::FullDebugInfo; 892 893 if (should_create_file) { 894 int temp_fd = -1; 895 llvm::SmallString<128> result_path; 896 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 897 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 898 std::string temp_source_path = tmpdir_file_spec.GetPath(); 899 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 900 } else { 901 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 902 } 903 904 if (temp_fd != -1) { 905 lldb_private::File file(temp_fd, true); 906 const size_t expr_text_len = strlen(expr_text); 907 size_t bytes_written = expr_text_len; 908 if (file.Write(expr_text, bytes_written).Success()) { 909 if (bytes_written == expr_text_len) { 910 file.Close(); 911 source_mgr.setMainFileID(source_mgr.createFileID( 912 m_compiler->getFileManager().getFile(result_path), 913 SourceLocation(), SrcMgr::C_User)); 914 created_main_file = true; 915 } 916 } 917 } 918 } 919 920 if (!created_main_file) { 921 std::unique_ptr<MemoryBuffer> memory_buffer = 922 MemoryBuffer::getMemBufferCopy(expr_text, "<lldb-expr>"); 923 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 924 } 925 926 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 927 &m_compiler->getPreprocessor()); 928 929 ClangExpressionHelper *type_system_helper = 930 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 931 932 // If we want to parse for code completion, we need to attach our code 933 // completion consumer to the Sema and specify a completion position. 934 // While parsing the Sema will call this consumer with the provided 935 // completion suggestions. 936 if (completion_consumer) { 937 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 938 auto &PP = m_compiler->getPreprocessor(); 939 // Lines and columns start at 1 in Clang, but code completion positions are 940 // indexed from 0, so we need to add 1 to the line and column here. 941 ++completion_line; 942 ++completion_column; 943 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 944 } 945 946 ASTConsumer *ast_transformer = 947 type_system_helper->ASTTransformer(m_code_generator.get()); 948 949 std::unique_ptr<clang::ASTConsumer> Consumer; 950 if (ast_transformer) { 951 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 952 } else if (m_code_generator) { 953 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 954 } else { 955 Consumer.reset(new ASTConsumer()); 956 } 957 958 clang::ASTContext &ast_context = m_compiler->getASTContext(); 959 960 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 961 *Consumer, TU_Complete, completion_consumer)); 962 m_compiler->setASTConsumer(std::move(Consumer)); 963 964 if (ast_context.getLangOpts().Modules) { 965 m_compiler->createModuleManager(); 966 m_ast_context->setSema(&m_compiler->getSema()); 967 } 968 969 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 970 if (decl_map) { 971 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 972 973 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 974 975 if (ast_context.getExternalSource()) { 976 auto module_wrapper = 977 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 978 979 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 980 981 auto multiplexer = 982 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 983 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 984 ast_context.setExternalSource(Source); 985 } else { 986 ast_context.setExternalSource(ast_source); 987 } 988 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 989 } 990 991 // Check that the ASTReader is properly attached to ASTContext and Sema. 992 if (ast_context.getLangOpts().Modules) { 993 assert(m_compiler->getASTContext().getExternalSource() && 994 "ASTContext doesn't know about the ASTReader?"); 995 assert(m_compiler->getSema().getExternalSource() && 996 "Sema doesn't know about the ASTReader?"); 997 } 998 999 { 1000 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1001 &m_compiler->getSema()); 1002 ParseAST(m_compiler->getSema(), false, false); 1003 } 1004 1005 // Make sure we have no pointer to the Sema we are about to destroy. 1006 if (ast_context.getLangOpts().Modules) 1007 m_ast_context->setSema(nullptr); 1008 // Destroy the Sema. This is necessary because we want to emulate the 1009 // original behavior of ParseAST (which also destroys the Sema after parsing). 1010 m_compiler->setSema(nullptr); 1011 1012 diag_buf->EndSourceFile(); 1013 1014 unsigned num_errors = diag_buf->getNumErrors(); 1015 1016 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1017 num_errors++; 1018 diagnostic_manager.PutString(eDiagnosticSeverityError, 1019 "while importing modules:"); 1020 diagnostic_manager.AppendMessageToDiagnostic( 1021 m_pp_callbacks->getErrorString()); 1022 } 1023 1024 if (!num_errors) { 1025 if (type_system_helper->DeclMap() && 1026 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 1027 diagnostic_manager.Printf(eDiagnosticSeverityError, 1028 "Couldn't infer the type of a variable"); 1029 num_errors++; 1030 } 1031 } 1032 1033 if (!num_errors) { 1034 type_system_helper->CommitPersistentDecls(); 1035 } 1036 1037 adapter->ResetManager(); 1038 1039 return num_errors; 1040 } 1041 1042 std::string 1043 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1044 std::string abi; 1045 1046 if (target_arch.IsMIPS()) { 1047 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1048 case ArchSpec::eMIPSABI_N64: 1049 abi = "n64"; 1050 break; 1051 case ArchSpec::eMIPSABI_N32: 1052 abi = "n32"; 1053 break; 1054 case ArchSpec::eMIPSABI_O32: 1055 abi = "o32"; 1056 break; 1057 default: 1058 break; 1059 } 1060 } 1061 return abi; 1062 } 1063 1064 bool ClangExpressionParser::RewriteExpression( 1065 DiagnosticManager &diagnostic_manager) { 1066 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1067 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1068 nullptr); 1069 clang::edit::Commit commit(editor); 1070 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1071 1072 class RewritesReceiver : public edit::EditsReceiver { 1073 Rewriter &rewrite; 1074 1075 public: 1076 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1077 1078 void insert(SourceLocation loc, StringRef text) override { 1079 rewrite.InsertText(loc, text); 1080 } 1081 void replace(CharSourceRange range, StringRef text) override { 1082 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1083 } 1084 }; 1085 1086 RewritesReceiver rewrites_receiver(rewriter); 1087 1088 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1089 size_t num_diags = diagnostics.size(); 1090 if (num_diags == 0) 1091 return false; 1092 1093 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 1094 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 1095 if (diagnostic && diagnostic->HasFixIts()) { 1096 for (const FixItHint &fixit : diagnostic->FixIts()) { 1097 // This is cobbed from clang::Rewrite::FixItRewriter. 1098 if (fixit.CodeToInsert.empty()) { 1099 if (fixit.InsertFromRange.isValid()) { 1100 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1101 fixit.InsertFromRange, /*afterToken=*/false, 1102 fixit.BeforePreviousInsertions); 1103 } else 1104 commit.remove(fixit.RemoveRange); 1105 } else { 1106 if (fixit.RemoveRange.isTokenRange() || 1107 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1108 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1109 else 1110 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1111 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1112 } 1113 } 1114 } 1115 } 1116 1117 // FIXME - do we want to try to propagate specific errors here? 1118 if (!commit.isCommitable()) 1119 return false; 1120 else if (!editor.commit(commit)) 1121 return false; 1122 1123 // Now play all the edits, and stash the result in the diagnostic manager. 1124 editor.applyRewrites(rewrites_receiver); 1125 RewriteBuffer &main_file_buffer = 1126 rewriter.getEditBuffer(source_manager.getMainFileID()); 1127 1128 std::string fixed_expression; 1129 llvm::raw_string_ostream out_stream(fixed_expression); 1130 1131 main_file_buffer.write(out_stream); 1132 out_stream.flush(); 1133 diagnostic_manager.SetFixedExpression(fixed_expression); 1134 1135 return true; 1136 } 1137 1138 static bool FindFunctionInModule(ConstString &mangled_name, 1139 llvm::Module *module, const char *orig_name) { 1140 for (const auto &func : module->getFunctionList()) { 1141 const StringRef &name = func.getName(); 1142 if (name.find(orig_name) != StringRef::npos) { 1143 mangled_name.SetString(name); 1144 return true; 1145 } 1146 } 1147 1148 return false; 1149 } 1150 1151 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1152 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1153 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1154 bool &can_interpret, ExecutionPolicy execution_policy) { 1155 func_addr = LLDB_INVALID_ADDRESS; 1156 func_end = LLDB_INVALID_ADDRESS; 1157 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1158 1159 lldb_private::Status err; 1160 1161 std::unique_ptr<llvm::Module> llvm_module_up( 1162 m_code_generator->ReleaseModule()); 1163 1164 if (!llvm_module_up) { 1165 err.SetErrorToGenericError(); 1166 err.SetErrorString("IR doesn't contain a module"); 1167 return err; 1168 } 1169 1170 ConstString function_name; 1171 1172 if (execution_policy != eExecutionPolicyTopLevel) { 1173 // Find the actual name of the function (it's often mangled somehow) 1174 1175 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1176 m_expr.FunctionName())) { 1177 err.SetErrorToGenericError(); 1178 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1179 m_expr.FunctionName()); 1180 return err; 1181 } else { 1182 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1183 m_expr.FunctionName()); 1184 } 1185 } 1186 1187 SymbolContext sc; 1188 1189 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1190 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1191 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1192 sc.target_sp = target_sp; 1193 } 1194 1195 LLVMUserExpression::IRPasses custom_passes; 1196 { 1197 auto lang = m_expr.Language(); 1198 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1199 Language::GetNameForLanguageType(lang)); 1200 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1201 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1202 auto runtime = process_sp->GetLanguageRuntime(lang); 1203 if (runtime) 1204 runtime->GetIRPasses(custom_passes); 1205 } 1206 } 1207 1208 if (custom_passes.EarlyPasses) { 1209 LLDB_LOGF(log, 1210 "%s - Running Early IR Passes from LanguageRuntime on " 1211 "expression module '%s'", 1212 __FUNCTION__, m_expr.FunctionName()); 1213 1214 custom_passes.EarlyPasses->run(*llvm_module_up); 1215 } 1216 1217 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1218 m_llvm_context, // handed off here 1219 llvm_module_up, // handed off here 1220 function_name, exe_ctx.GetTargetSP(), sc, 1221 m_compiler->getTargetOpts().Features); 1222 1223 ClangExpressionHelper *type_system_helper = 1224 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1225 ClangExpressionDeclMap *decl_map = 1226 type_system_helper->DeclMap(); // result can be NULL 1227 1228 if (decl_map) { 1229 Stream *error_stream = nullptr; 1230 Target *target = exe_ctx.GetTargetPtr(); 1231 error_stream = target->GetDebugger().GetErrorFile().get(); 1232 1233 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1234 *execution_unit_sp, *error_stream, 1235 function_name.AsCString()); 1236 1237 bool ir_can_run = 1238 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1239 1240 if (!ir_can_run) { 1241 err.SetErrorString( 1242 "The expression could not be prepared to run in the target"); 1243 return err; 1244 } 1245 1246 Process *process = exe_ctx.GetProcessPtr(); 1247 1248 if (execution_policy != eExecutionPolicyAlways && 1249 execution_policy != eExecutionPolicyTopLevel) { 1250 lldb_private::Status interpret_error; 1251 1252 bool interpret_function_calls = 1253 !process ? false : process->CanInterpretFunctionCalls(); 1254 can_interpret = IRInterpreter::CanInterpret( 1255 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1256 interpret_error, interpret_function_calls); 1257 1258 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1259 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1260 interpret_error.AsCString()); 1261 return err; 1262 } 1263 } 1264 1265 if (!process && execution_policy == eExecutionPolicyAlways) { 1266 err.SetErrorString("Expression needed to run in the target, but the " 1267 "target can't be run"); 1268 return err; 1269 } 1270 1271 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1272 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1273 "target, but the target can't be run"); 1274 return err; 1275 } 1276 1277 if (execution_policy == eExecutionPolicyAlways || 1278 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1279 if (m_expr.NeedsValidation() && process) { 1280 if (!process->GetDynamicCheckers()) { 1281 ClangDynamicCheckerFunctions *dynamic_checkers = 1282 new ClangDynamicCheckerFunctions(); 1283 1284 DiagnosticManager install_diagnostics; 1285 1286 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1287 if (install_diagnostics.Diagnostics().size()) 1288 err.SetErrorString(install_diagnostics.GetString().c_str()); 1289 else 1290 err.SetErrorString("couldn't install checkers, unknown error"); 1291 1292 return err; 1293 } 1294 1295 process->SetDynamicCheckers(dynamic_checkers); 1296 1297 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1298 "Finished installing dynamic checkers =="); 1299 } 1300 1301 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1302 process->GetDynamicCheckers())) { 1303 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1304 function_name.AsCString()); 1305 1306 llvm::Module *module = execution_unit_sp->GetModule(); 1307 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1308 err.SetErrorToGenericError(); 1309 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1310 return err; 1311 } 1312 1313 if (custom_passes.LatePasses) { 1314 LLDB_LOGF(log, 1315 "%s - Running Late IR Passes from LanguageRuntime on " 1316 "expression module '%s'", 1317 __FUNCTION__, m_expr.FunctionName()); 1318 1319 custom_passes.LatePasses->run(*module); 1320 } 1321 } 1322 } 1323 } 1324 1325 if (execution_policy == eExecutionPolicyAlways || 1326 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1327 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1328 } 1329 } else { 1330 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1331 } 1332 1333 return err; 1334 } 1335 1336 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1337 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1338 lldb_private::Status err; 1339 1340 lldbassert(execution_unit_sp.get()); 1341 lldbassert(exe_ctx.HasThreadScope()); 1342 1343 if (!execution_unit_sp.get()) { 1344 err.SetErrorString( 1345 "can't run static initializers for a NULL execution unit"); 1346 return err; 1347 } 1348 1349 if (!exe_ctx.HasThreadScope()) { 1350 err.SetErrorString("can't run static initializers without a thread"); 1351 return err; 1352 } 1353 1354 std::vector<lldb::addr_t> static_initializers; 1355 1356 execution_unit_sp->GetStaticInitializers(static_initializers); 1357 1358 for (lldb::addr_t static_initializer : static_initializers) { 1359 EvaluateExpressionOptions options; 1360 1361 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1362 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1363 llvm::ArrayRef<lldb::addr_t>(), options)); 1364 1365 DiagnosticManager execution_errors; 1366 lldb::ExpressionResults results = 1367 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1368 exe_ctx, call_static_initializer, options, execution_errors); 1369 1370 if (results != lldb::eExpressionCompleted) { 1371 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1372 execution_errors.GetString().c_str()); 1373 return err; 1374 } 1375 } 1376 1377 return err; 1378 } 1379