1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/DiagnosticIDs.h"
14 #include "clang/Basic/SourceLocation.h"
15 #include "clang/Basic/TargetInfo.h"
16 #include "clang/Basic/Version.h"
17 #include "clang/CodeGen/CodeGenAction.h"
18 #include "clang/CodeGen/ModuleBuilder.h"
19 #include "clang/Edit/Commit.h"
20 #include "clang/Edit/EditedSource.h"
21 #include "clang/Edit/EditsReceiver.h"
22 #include "clang/Frontend/CompilerInstance.h"
23 #include "clang/Frontend/CompilerInvocation.h"
24 #include "clang/Frontend/FrontendActions.h"
25 #include "clang/Frontend/FrontendDiagnostic.h"
26 #include "clang/Frontend/FrontendPluginRegistry.h"
27 #include "clang/Frontend/TextDiagnosticBuffer.h"
28 #include "clang/Frontend/TextDiagnosticPrinter.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Parse/ParseAST.h"
31 #include "clang/Rewrite/Core/Rewriter.h"
32 #include "clang/Rewrite/Frontend/FrontendActions.h"
33 #include "clang/Sema/CodeCompleteConsumer.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaConsumer.h"
36 
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ExecutionEngine/ExecutionEngine.h"
39 #include "llvm/Support/CrashRecoveryContext.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/FileSystem.h"
42 #include "llvm/Support/TargetSelect.h"
43 
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/DynamicLibrary.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Host.h"
49 #include "llvm/Support/MemoryBuffer.h"
50 #include "llvm/Support/Signals.h"
51 
52 #include "ClangDiagnostic.h"
53 #include "ClangExpressionParser.h"
54 #include "ClangUserExpression.h"
55 
56 #include "ASTUtils.h"
57 #include "ClangASTSource.h"
58 #include "ClangDiagnostic.h"
59 #include "ClangExpressionDeclMap.h"
60 #include "ClangExpressionHelper.h"
61 #include "ClangExpressionParser.h"
62 #include "ClangHost.h"
63 #include "ClangModulesDeclVendor.h"
64 #include "ClangPersistentVariables.h"
65 #include "IRDynamicChecks.h"
66 #include "IRForTarget.h"
67 #include "ModuleDependencyCollector.h"
68 
69 #include "lldb/Core/Debugger.h"
70 #include "lldb/Core/Disassembler.h"
71 #include "lldb/Core/Module.h"
72 #include "lldb/Core/StreamFile.h"
73 #include "lldb/Expression/IRExecutionUnit.h"
74 #include "lldb/Expression/IRInterpreter.h"
75 #include "lldb/Host/File.h"
76 #include "lldb/Host/HostInfo.h"
77 #include "lldb/Symbol/ClangASTContext.h"
78 #include "lldb/Symbol/SymbolVendor.h"
79 #include "lldb/Target/ExecutionContext.h"
80 #include "lldb/Target/Language.h"
81 #include "lldb/Target/Process.h"
82 #include "lldb/Target/Target.h"
83 #include "lldb/Target/ThreadPlanCallFunction.h"
84 #include "lldb/Utility/DataBufferHeap.h"
85 #include "lldb/Utility/LLDBAssert.h"
86 #include "lldb/Utility/Log.h"
87 #include "lldb/Utility/Reproducer.h"
88 #include "lldb/Utility/Stream.h"
89 #include "lldb/Utility/StreamString.h"
90 #include "lldb/Utility/StringList.h"
91 
92 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
93 
94 #include <cctype>
95 #include <memory>
96 
97 using namespace clang;
98 using namespace llvm;
99 using namespace lldb_private;
100 
101 //===----------------------------------------------------------------------===//
102 // Utility Methods for Clang
103 //===----------------------------------------------------------------------===//
104 
105 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
106   ClangModulesDeclVendor &m_decl_vendor;
107   ClangPersistentVariables &m_persistent_vars;
108   StreamString m_error_stream;
109   bool m_has_errors = false;
110 
111 public:
112   LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
113                             ClangPersistentVariables &persistent_vars)
114       : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {}
115 
116   void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
117                     const clang::Module * /*null*/) override {
118     SourceModule module;
119 
120     for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
121       module.path.push_back(ConstString(component.first->getName()));
122 
123     StreamString error_stream;
124 
125     ClangModulesDeclVendor::ModuleVector exported_modules;
126     if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
127       m_has_errors = true;
128 
129     for (ClangModulesDeclVendor::ModuleID module : exported_modules)
130       m_persistent_vars.AddHandLoadedClangModule(module);
131   }
132 
133   bool hasErrors() { return m_has_errors; }
134 
135   llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
136 };
137 
138 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
139 public:
140   ClangDiagnosticManagerAdapter()
141       : m_passthrough(new clang::TextDiagnosticBuffer) {}
142 
143   ClangDiagnosticManagerAdapter(
144       const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
145       : m_passthrough(passthrough) {}
146 
147   void ResetManager(DiagnosticManager *manager = nullptr) {
148     m_manager = manager;
149   }
150 
151   void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
152                         const clang::Diagnostic &Info) override {
153     if (m_manager) {
154       llvm::SmallVector<char, 32> diag_str;
155       Info.FormatDiagnostic(diag_str);
156       diag_str.push_back('\0');
157       const char *data = diag_str.data();
158 
159       lldb_private::DiagnosticSeverity severity;
160       bool make_new_diagnostic = true;
161 
162       switch (DiagLevel) {
163       case DiagnosticsEngine::Level::Fatal:
164       case DiagnosticsEngine::Level::Error:
165         severity = eDiagnosticSeverityError;
166         break;
167       case DiagnosticsEngine::Level::Warning:
168         severity = eDiagnosticSeverityWarning;
169         break;
170       case DiagnosticsEngine::Level::Remark:
171       case DiagnosticsEngine::Level::Ignored:
172         severity = eDiagnosticSeverityRemark;
173         break;
174       case DiagnosticsEngine::Level::Note:
175         m_manager->AppendMessageToDiagnostic(data);
176         make_new_diagnostic = false;
177       }
178       if (make_new_diagnostic) {
179         ClangDiagnostic *new_diagnostic =
180             new ClangDiagnostic(data, severity, Info.getID());
181         m_manager->AddDiagnostic(new_diagnostic);
182 
183         // Don't store away warning fixits, since the compiler doesn't have
184         // enough context in an expression for the warning to be useful.
185         // FIXME: Should we try to filter out FixIts that apply to our generated
186         // code, and not the user's expression?
187         if (severity == eDiagnosticSeverityError) {
188           size_t num_fixit_hints = Info.getNumFixItHints();
189           for (size_t i = 0; i < num_fixit_hints; i++) {
190             const clang::FixItHint &fixit = Info.getFixItHint(i);
191             if (!fixit.isNull())
192               new_diagnostic->AddFixitHint(fixit);
193           }
194         }
195       }
196     }
197 
198     m_passthrough->HandleDiagnostic(DiagLevel, Info);
199   }
200 
201   void FlushDiagnostics(DiagnosticsEngine &Diags) {
202     m_passthrough->FlushDiagnostics(Diags);
203   }
204 
205   DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
206     return new ClangDiagnosticManagerAdapter(m_passthrough);
207   }
208 
209   clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); }
210 
211 private:
212   DiagnosticManager *m_manager = nullptr;
213   std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
214 };
215 
216 static void
217 SetupModuleHeaderPaths(CompilerInstance *compiler,
218                        std::vector<ConstString> include_directories,
219                        lldb::TargetSP target_sp) {
220   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
221 
222   HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
223 
224   for (ConstString dir : include_directories) {
225     search_opts.AddPath(dir.AsCString(), frontend::System, false, true);
226     LLDB_LOG(log, "Added user include dir: {0}", dir);
227   }
228 
229   llvm::SmallString<128> module_cache;
230   auto props = ModuleList::GetGlobalModuleListProperties();
231   props.GetClangModulesCachePath().GetPath(module_cache);
232   search_opts.ModuleCachePath = module_cache.str();
233   LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
234 
235   FileSpec clang_resource_dir = GetClangResourceDir();
236   std::string resource_dir = clang_resource_dir.GetPath();
237   if (FileSystem::Instance().IsDirectory(resource_dir)) {
238     search_opts.ResourceDir = resource_dir;
239     std::string resource_include = resource_dir + "/include";
240     search_opts.AddPath(resource_include, frontend::System, false, true);
241 
242     LLDB_LOG(log, "Added resource include dir: {0}", resource_include);
243   }
244 
245   search_opts.ImplicitModuleMaps = true;
246 
247   std::vector<std::string> system_include_directories =
248       target_sp->GetPlatform()->GetSystemIncludeDirectories(
249           lldb::eLanguageTypeC_plus_plus);
250 
251   for (const std::string &include_dir : system_include_directories) {
252     search_opts.AddPath(include_dir, frontend::System, false, true);
253 
254     LLDB_LOG(log, "Added system include dir: {0}", include_dir);
255   }
256 }
257 
258 //===----------------------------------------------------------------------===//
259 // Implementation of ClangExpressionParser
260 //===----------------------------------------------------------------------===//
261 
262 ClangExpressionParser::ClangExpressionParser(
263     ExecutionContextScope *exe_scope, Expression &expr,
264     bool generate_debug_info, std::vector<ConstString> include_directories)
265     : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
266       m_pp_callbacks(nullptr),
267       m_include_directories(std::move(include_directories)) {
268   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
269 
270   // We can't compile expressions without a target.  So if the exe_scope is
271   // null or doesn't have a target, then we just need to get out of here.  I'll
272   // lldb_assert and not make any of the compiler objects since
273   // I can't return errors directly from the constructor.  Further calls will
274   // check if the compiler was made and
275   // bag out if it wasn't.
276 
277   if (!exe_scope) {
278     lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
279                 __FUNCTION__, __FILE__, __LINE__);
280     return;
281   }
282 
283   lldb::TargetSP target_sp;
284   target_sp = exe_scope->CalculateTarget();
285   if (!target_sp) {
286     lldb_assert(target_sp.get(),
287                 "Can't make an expression parser with a null target.",
288                 __FUNCTION__, __FILE__, __LINE__);
289     return;
290   }
291 
292   // 1. Create a new compiler instance.
293   m_compiler.reset(new CompilerInstance());
294 
295   // When capturing a reproducer, hook up the file collector with clang to
296   // collector modules and headers.
297   if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
298     repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
299     m_compiler->setModuleDepCollector(
300         std::make_shared<ModuleDependencyCollectorAdaptor>(
301             fp.GetFileCollector()));
302     DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts();
303     opts.IncludeSystemHeaders = true;
304     opts.IncludeModuleFiles = true;
305   }
306 
307   // Make sure clang uses the same VFS as LLDB.
308   m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
309 
310   lldb::LanguageType frame_lang =
311       expr.Language(); // defaults to lldb::eLanguageTypeUnknown
312   bool overridden_target_opts = false;
313   lldb_private::LanguageRuntime *lang_rt = nullptr;
314 
315   std::string abi;
316   ArchSpec target_arch;
317   target_arch = target_sp->GetArchitecture();
318 
319   const auto target_machine = target_arch.GetMachine();
320 
321   // If the expression is being evaluated in the context of an existing stack
322   // frame, we introspect to see if the language runtime is available.
323 
324   lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
325   lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
326 
327   // Make sure the user hasn't provided a preferred execution language with
328   // `expression --language X -- ...`
329   if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
330     frame_lang = frame_sp->GetLanguage();
331 
332   if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
333     lang_rt = process_sp->GetLanguageRuntime(frame_lang);
334     LLDB_LOGF(log, "Frame has language of type %s",
335               Language::GetNameForLanguageType(frame_lang));
336   }
337 
338   // 2. Configure the compiler with a set of default options that are
339   // appropriate for most situations.
340   if (target_arch.IsValid()) {
341     std::string triple = target_arch.GetTriple().str();
342     m_compiler->getTargetOpts().Triple = triple;
343     LLDB_LOGF(log, "Using %s as the target triple",
344               m_compiler->getTargetOpts().Triple.c_str());
345   } else {
346     // If we get here we don't have a valid target and just have to guess.
347     // Sometimes this will be ok to just use the host target triple (when we
348     // evaluate say "2+3", but other expressions like breakpoint conditions and
349     // other things that _are_ target specific really shouldn't just be using
350     // the host triple. In such a case the language runtime should expose an
351     // overridden options set (3), below.
352     m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
353     LLDB_LOGF(log, "Using default target triple of %s",
354               m_compiler->getTargetOpts().Triple.c_str());
355   }
356   // Now add some special fixes for known architectures: Any arm32 iOS
357   // environment, but not on arm64
358   if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
359       m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
360       m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
361     m_compiler->getTargetOpts().ABI = "apcs-gnu";
362   }
363   // Supported subsets of x86
364   if (target_machine == llvm::Triple::x86 ||
365       target_machine == llvm::Triple::x86_64) {
366     m_compiler->getTargetOpts().Features.push_back("+sse");
367     m_compiler->getTargetOpts().Features.push_back("+sse2");
368   }
369 
370   // Set the target CPU to generate code for. This will be empty for any CPU
371   // that doesn't really need to make a special
372   // CPU string.
373   m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
374 
375   // Set the target ABI
376   abi = GetClangTargetABI(target_arch);
377   if (!abi.empty())
378     m_compiler->getTargetOpts().ABI = abi;
379 
380   // 3. Now allow the runtime to provide custom configuration options for the
381   // target. In this case, a specialized language runtime is available and we
382   // can query it for extra options. For 99% of use cases, this will not be
383   // needed and should be provided when basic platform detection is not enough.
384   if (lang_rt)
385     overridden_target_opts =
386         lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
387 
388   if (overridden_target_opts)
389     if (log && log->GetVerbose()) {
390       LLDB_LOGV(
391           log, "Using overridden target options for the expression evaluation");
392 
393       auto opts = m_compiler->getTargetOpts();
394       LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
395       LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
396       LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
397       LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
398       LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
399       StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
400       StringList::LogDump(log, opts.Features, "Features");
401     }
402 
403   // 4. Create and install the target on the compiler.
404   m_compiler->createDiagnostics();
405   auto target_info = TargetInfo::CreateTargetInfo(
406       m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
407   if (log) {
408     LLDB_LOGF(log, "Using SIMD alignment: %d",
409               target_info->getSimdDefaultAlign());
410     LLDB_LOGF(log, "Target datalayout string: '%s'",
411               target_info->getDataLayout().getStringRepresentation().c_str());
412     LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
413     LLDB_LOGF(log, "Target vector alignment: %d",
414               target_info->getMaxVectorAlign());
415   }
416   m_compiler->setTarget(target_info);
417 
418   assert(m_compiler->hasTarget());
419 
420   // 5. Set language options.
421   lldb::LanguageType language = expr.Language();
422   LangOptions &lang_opts = m_compiler->getLangOpts();
423 
424   switch (language) {
425   case lldb::eLanguageTypeC:
426   case lldb::eLanguageTypeC89:
427   case lldb::eLanguageTypeC99:
428   case lldb::eLanguageTypeC11:
429     // FIXME: the following language option is a temporary workaround,
430     // to "ask for C, get C++."
431     // For now, the expression parser must use C++ anytime the language is a C
432     // family language, because the expression parser uses features of C++ to
433     // capture values.
434     lang_opts.CPlusPlus = true;
435     break;
436   case lldb::eLanguageTypeObjC:
437     lang_opts.ObjC = true;
438     // FIXME: the following language option is a temporary workaround,
439     // to "ask for ObjC, get ObjC++" (see comment above).
440     lang_opts.CPlusPlus = true;
441 
442     // Clang now sets as default C++14 as the default standard (with
443     // GNU extensions), so we do the same here to avoid mismatches that
444     // cause compiler error when evaluating expressions (e.g. nullptr not found
445     // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
446     // two lines below) so we decide to be consistent with that, but this could
447     // be re-evaluated in the future.
448     lang_opts.CPlusPlus11 = true;
449     break;
450   case lldb::eLanguageTypeC_plus_plus:
451   case lldb::eLanguageTypeC_plus_plus_11:
452   case lldb::eLanguageTypeC_plus_plus_14:
453     lang_opts.CPlusPlus11 = true;
454     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
455     LLVM_FALLTHROUGH;
456   case lldb::eLanguageTypeC_plus_plus_03:
457     lang_opts.CPlusPlus = true;
458     if (process_sp)
459       lang_opts.ObjC =
460           process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
461     break;
462   case lldb::eLanguageTypeObjC_plus_plus:
463   case lldb::eLanguageTypeUnknown:
464   default:
465     lang_opts.ObjC = true;
466     lang_opts.CPlusPlus = true;
467     lang_opts.CPlusPlus11 = true;
468     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
469     break;
470   }
471 
472   lang_opts.Bool = true;
473   lang_opts.WChar = true;
474   lang_opts.Blocks = true;
475   lang_opts.DebuggerSupport =
476       true; // Features specifically for debugger clients
477   if (expr.DesiredResultType() == Expression::eResultTypeId)
478     lang_opts.DebuggerCastResultToId = true;
479 
480   lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
481                                .CharIsSignedByDefault();
482 
483   // Spell checking is a nice feature, but it ends up completing a lot of types
484   // that we didn't strictly speaking need to complete. As a result, we spend a
485   // long time parsing and importing debug information.
486   lang_opts.SpellChecking = false;
487 
488   auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
489   if (clang_expr && clang_expr->DidImportCxxModules()) {
490     LLDB_LOG(log, "Adding lang options for importing C++ modules");
491 
492     lang_opts.Modules = true;
493     // We want to implicitly build modules.
494     lang_opts.ImplicitModules = true;
495     // To automatically import all submodules when we import 'std'.
496     lang_opts.ModulesLocalVisibility = false;
497 
498     // We use the @import statements, so we need this:
499     // FIXME: We could use the modules-ts, but that currently doesn't work.
500     lang_opts.ObjC = true;
501 
502     // Options we need to parse libc++ code successfully.
503     // FIXME: We should ask the driver for the appropriate default flags.
504     lang_opts.GNUMode = true;
505     lang_opts.GNUKeywords = true;
506     lang_opts.DoubleSquareBracketAttributes = true;
507     lang_opts.CPlusPlus11 = true;
508 
509     SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
510                            target_sp);
511   }
512 
513   if (process_sp && lang_opts.ObjC) {
514     if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
515       if (runtime->GetRuntimeVersion() ==
516           ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
517         lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
518       else
519         lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
520                                   VersionTuple(10, 7));
521 
522       if (runtime->HasNewLiteralsAndIndexing())
523         lang_opts.DebuggerObjCLiteral = true;
524     }
525   }
526 
527   lang_opts.ThreadsafeStatics = false;
528   lang_opts.AccessControl = false; // Debuggers get universal access
529   lang_opts.DollarIdents = true;   // $ indicates a persistent variable name
530   // We enable all builtin functions beside the builtins from libc/libm (e.g.
531   // 'fopen'). Those libc functions are already correctly handled by LLDB, and
532   // additionally enabling them as expandable builtins is breaking Clang.
533   lang_opts.NoBuiltin = true;
534 
535   // Set CodeGen options
536   m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
537   m_compiler->getCodeGenOpts().InstrumentFunctions = false;
538   m_compiler->getCodeGenOpts().setFramePointer(
539                                     CodeGenOptions::FramePointerKind::All);
540   if (generate_debug_info)
541     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
542   else
543     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
544 
545   // Disable some warnings.
546   m_compiler->getDiagnostics().setSeverityForGroup(
547       clang::diag::Flavor::WarningOrError, "unused-value",
548       clang::diag::Severity::Ignored, SourceLocation());
549   m_compiler->getDiagnostics().setSeverityForGroup(
550       clang::diag::Flavor::WarningOrError, "odr",
551       clang::diag::Severity::Ignored, SourceLocation());
552 
553   // Inform the target of the language options
554   //
555   // FIXME: We shouldn't need to do this, the target should be immutable once
556   // created. This complexity should be lifted elsewhere.
557   m_compiler->getTarget().adjust(m_compiler->getLangOpts());
558 
559   // 6. Set up the diagnostic buffer for reporting errors
560 
561   m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
562 
563   // 7. Set up the source management objects inside the compiler
564   m_compiler->createFileManager();
565   if (!m_compiler->hasSourceManager())
566     m_compiler->createSourceManager(m_compiler->getFileManager());
567   m_compiler->createPreprocessor(TU_Complete);
568 
569   if (ClangModulesDeclVendor *decl_vendor =
570           target_sp->GetClangModulesDeclVendor()) {
571     ClangPersistentVariables *clang_persistent_vars =
572         llvm::cast<ClangPersistentVariables>(
573             target_sp->GetPersistentExpressionStateForLanguage(
574                 lldb::eLanguageTypeC));
575     std::unique_ptr<PPCallbacks> pp_callbacks(
576         new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
577     m_pp_callbacks =
578         static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
579     m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
580   }
581 
582   // 8. Most of this we get from the CompilerInstance, but we also want to give
583   // the context an ExternalASTSource.
584 
585   auto &PP = m_compiler->getPreprocessor();
586   auto &builtin_context = PP.getBuiltinInfo();
587   builtin_context.initializeBuiltins(PP.getIdentifierTable(),
588                                      m_compiler->getLangOpts());
589 
590   m_compiler->createASTContext();
591   clang::ASTContext &ast_context = m_compiler->getASTContext();
592 
593   m_ast_context.reset(
594       new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
595   m_ast_context->setASTContext(&ast_context);
596 
597   std::string module_name("$__lldb_module");
598 
599   m_llvm_context.reset(new LLVMContext());
600   m_code_generator.reset(CreateLLVMCodeGen(
601       m_compiler->getDiagnostics(), module_name,
602       m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
603       m_compiler->getCodeGenOpts(), *m_llvm_context));
604 }
605 
606 ClangExpressionParser::~ClangExpressionParser() {}
607 
608 namespace {
609 
610 /// \class CodeComplete
611 ///
612 /// A code completion consumer for the clang Sema that is responsible for
613 /// creating the completion suggestions when a user requests completion
614 /// of an incomplete `expr` invocation.
615 class CodeComplete : public CodeCompleteConsumer {
616   CodeCompletionTUInfo m_info;
617 
618   std::string m_expr;
619   unsigned m_position = 0;
620   CompletionRequest &m_request;
621   /// The printing policy we use when printing declarations for our completion
622   /// descriptions.
623   clang::PrintingPolicy m_desc_policy;
624 
625   /// Returns true if the given character can be used in an identifier.
626   /// This also returns true for numbers because for completion we usually
627   /// just iterate backwards over iterators.
628   ///
629   /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
630   static bool IsIdChar(char c) {
631     return c == '_' || std::isalnum(c) || c == '$';
632   }
633 
634   /// Returns true if the given character is used to separate arguments
635   /// in the command line of lldb.
636   static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
637 
638   /// Drops all tokens in front of the expression that are unrelated for
639   /// the completion of the cmd line. 'unrelated' means here that the token
640   /// is not interested for the lldb completion API result.
641   StringRef dropUnrelatedFrontTokens(StringRef cmd) {
642     if (cmd.empty())
643       return cmd;
644 
645     // If we are at the start of a word, then all tokens are unrelated to
646     // the current completion logic.
647     if (IsTokenSeparator(cmd.back()))
648       return StringRef();
649 
650     // Remove all previous tokens from the string as they are unrelated
651     // to completing the current token.
652     StringRef to_remove = cmd;
653     while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
654       to_remove = to_remove.drop_back();
655     }
656     cmd = cmd.drop_front(to_remove.size());
657 
658     return cmd;
659   }
660 
661   /// Removes the last identifier token from the given cmd line.
662   StringRef removeLastToken(StringRef cmd) {
663     while (!cmd.empty() && IsIdChar(cmd.back())) {
664       cmd = cmd.drop_back();
665     }
666     return cmd;
667   }
668 
669   /// Attemps to merge the given completion from the given position into the
670   /// existing command. Returns the completion string that can be returned to
671   /// the lldb completion API.
672   std::string mergeCompletion(StringRef existing, unsigned pos,
673                               StringRef completion) {
674     StringRef existing_command = existing.substr(0, pos);
675     // We rewrite the last token with the completion, so let's drop that
676     // token from the command.
677     existing_command = removeLastToken(existing_command);
678     // We also should remove all previous tokens from the command as they
679     // would otherwise be added to the completion that already has the
680     // completion.
681     existing_command = dropUnrelatedFrontTokens(existing_command);
682     return existing_command.str() + completion.str();
683   }
684 
685 public:
686   /// Constructs a CodeComplete consumer that can be attached to a Sema.
687   /// \param[out] matches
688   ///    The list of matches that the lldb completion API expects as a result.
689   ///    This may already contain matches, so it's only allowed to append
690   ///    to this variable.
691   /// \param[out] expr
692   ///    The whole expression string that we are currently parsing. This
693   ///    string needs to be equal to the input the user typed, and NOT the
694   ///    final code that Clang is parsing.
695   /// \param[out] position
696   ///    The character position of the user cursor in the `expr` parameter.
697   ///
698   CodeComplete(CompletionRequest &request, clang::LangOptions ops,
699                std::string expr, unsigned position)
700       : CodeCompleteConsumer(CodeCompleteOptions()),
701         m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
702         m_position(position), m_request(request), m_desc_policy(ops) {
703 
704     // Ensure that the printing policy is producing a description that is as
705     // short as possible.
706     m_desc_policy.SuppressScope = true;
707     m_desc_policy.SuppressTagKeyword = true;
708     m_desc_policy.FullyQualifiedName = false;
709     m_desc_policy.TerseOutput = true;
710     m_desc_policy.IncludeNewlines = false;
711     m_desc_policy.UseVoidForZeroParams = false;
712     m_desc_policy.Bool = true;
713   }
714 
715   /// Deregisters and destroys this code-completion consumer.
716   ~CodeComplete() override {}
717 
718   /// \name Code-completion filtering
719   /// Check if the result should be filtered out.
720   bool isResultFilteredOut(StringRef Filter,
721                            CodeCompletionResult Result) override {
722     // This code is mostly copied from CodeCompleteConsumer.
723     switch (Result.Kind) {
724     case CodeCompletionResult::RK_Declaration:
725       return !(
726           Result.Declaration->getIdentifier() &&
727           Result.Declaration->getIdentifier()->getName().startswith(Filter));
728     case CodeCompletionResult::RK_Keyword:
729       return !StringRef(Result.Keyword).startswith(Filter);
730     case CodeCompletionResult::RK_Macro:
731       return !Result.Macro->getName().startswith(Filter);
732     case CodeCompletionResult::RK_Pattern:
733       return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
734     }
735     // If we trigger this assert or the above switch yields a warning, then
736     // CodeCompletionResult has been enhanced with more kinds of completion
737     // results. Expand the switch above in this case.
738     assert(false && "Unknown completion result type?");
739     // If we reach this, then we should just ignore whatever kind of unknown
740     // result we got back. We probably can't turn it into any kind of useful
741     // completion suggestion with the existing code.
742     return true;
743   }
744 
745   /// \name Code-completion callbacks
746   /// Process the finalized code-completion results.
747   void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
748                                   CodeCompletionResult *Results,
749                                   unsigned NumResults) override {
750 
751     // The Sema put the incomplete token we try to complete in here during
752     // lexing, so we need to retrieve it here to know what we are completing.
753     StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
754 
755     // Iterate over all the results. Filter out results we don't want and
756     // process the rest.
757     for (unsigned I = 0; I != NumResults; ++I) {
758       // Filter the results with the information from the Sema.
759       if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
760         continue;
761 
762       CodeCompletionResult &R = Results[I];
763       std::string ToInsert;
764       std::string Description;
765       // Handle the different completion kinds that come from the Sema.
766       switch (R.Kind) {
767       case CodeCompletionResult::RK_Declaration: {
768         const NamedDecl *D = R.Declaration;
769         ToInsert = R.Declaration->getNameAsString();
770         // If we have a function decl that has no arguments we want to
771         // complete the empty parantheses for the user. If the function has
772         // arguments, we at least complete the opening bracket.
773         if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
774           if (F->getNumParams() == 0)
775             ToInsert += "()";
776           else
777             ToInsert += "(";
778           raw_string_ostream OS(Description);
779           F->print(OS, m_desc_policy, false);
780           OS.flush();
781         } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
782           Description = V->getType().getAsString(m_desc_policy);
783         } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
784           Description = F->getType().getAsString(m_desc_policy);
785         } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
786           // If we try to complete a namespace, then we can directly append
787           // the '::'.
788           if (!N->isAnonymousNamespace())
789             ToInsert += "::";
790         }
791         break;
792       }
793       case CodeCompletionResult::RK_Keyword:
794         ToInsert = R.Keyword;
795         break;
796       case CodeCompletionResult::RK_Macro:
797         ToInsert = R.Macro->getName().str();
798         break;
799       case CodeCompletionResult::RK_Pattern:
800         ToInsert = R.Pattern->getTypedText();
801         break;
802       }
803       // At this point all information is in the ToInsert string.
804 
805       // We also filter some internal lldb identifiers here. The user
806       // shouldn't see these.
807       if (StringRef(ToInsert).startswith("$__lldb_"))
808         continue;
809       if (!ToInsert.empty()) {
810         // Merge the suggested Token into the existing command line to comply
811         // with the kind of result the lldb API expects.
812         std::string CompletionSuggestion =
813             mergeCompletion(m_expr, m_position, ToInsert);
814         m_request.AddCompletion(CompletionSuggestion, Description);
815       }
816     }
817   }
818 
819   /// \param S the semantic-analyzer object for which code-completion is being
820   /// done.
821   ///
822   /// \param CurrentArg the index of the current argument.
823   ///
824   /// \param Candidates an array of overload candidates.
825   ///
826   /// \param NumCandidates the number of overload candidates
827   void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
828                                  OverloadCandidate *Candidates,
829                                  unsigned NumCandidates,
830                                  SourceLocation OpenParLoc) override {
831     // At the moment we don't filter out any overloaded candidates.
832   }
833 
834   CodeCompletionAllocator &getAllocator() override {
835     return m_info.getAllocator();
836   }
837 
838   CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
839 };
840 } // namespace
841 
842 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
843                                      unsigned pos, unsigned typed_pos) {
844   DiagnosticManager mgr;
845   // We need the raw user expression here because that's what the CodeComplete
846   // class uses to provide completion suggestions.
847   // However, the `Text` method only gives us the transformed expression here.
848   // To actually get the raw user input here, we have to cast our expression to
849   // the LLVMUserExpression which exposes the right API. This should never fail
850   // as we always have a ClangUserExpression whenever we call this.
851   ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
852   CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(),
853                   typed_pos);
854   // We don't need a code generator for parsing.
855   m_code_generator.reset();
856   // Start parsing the expression with our custom code completion consumer.
857   ParseInternal(mgr, &CC, line, pos);
858   return true;
859 }
860 
861 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
862   return ParseInternal(diagnostic_manager);
863 }
864 
865 unsigned
866 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
867                                      CodeCompleteConsumer *completion_consumer,
868                                      unsigned completion_line,
869                                      unsigned completion_column) {
870   ClangDiagnosticManagerAdapter *adapter =
871       static_cast<ClangDiagnosticManagerAdapter *>(
872           m_compiler->getDiagnostics().getClient());
873   clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
874   diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
875 
876   adapter->ResetManager(&diagnostic_manager);
877 
878   const char *expr_text = m_expr.Text();
879 
880   clang::SourceManager &source_mgr = m_compiler->getSourceManager();
881   bool created_main_file = false;
882 
883   // Clang wants to do completion on a real file known by Clang's file manager,
884   // so we have to create one to make this work.
885   // TODO: We probably could also simulate to Clang's file manager that there
886   // is a real file that contains our code.
887   bool should_create_file = completion_consumer != nullptr;
888 
889   // We also want a real file on disk if we generate full debug info.
890   should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
891                         codegenoptions::FullDebugInfo;
892 
893   if (should_create_file) {
894     int temp_fd = -1;
895     llvm::SmallString<128> result_path;
896     if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
897       tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
898       std::string temp_source_path = tmpdir_file_spec.GetPath();
899       llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
900     } else {
901       llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
902     }
903 
904     if (temp_fd != -1) {
905       lldb_private::File file(temp_fd, true);
906       const size_t expr_text_len = strlen(expr_text);
907       size_t bytes_written = expr_text_len;
908       if (file.Write(expr_text, bytes_written).Success()) {
909         if (bytes_written == expr_text_len) {
910           file.Close();
911           source_mgr.setMainFileID(source_mgr.createFileID(
912               m_compiler->getFileManager().getFile(result_path),
913               SourceLocation(), SrcMgr::C_User));
914           created_main_file = true;
915         }
916       }
917     }
918   }
919 
920   if (!created_main_file) {
921     std::unique_ptr<MemoryBuffer> memory_buffer =
922         MemoryBuffer::getMemBufferCopy(expr_text, "<lldb-expr>");
923     source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
924   }
925 
926   diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
927                             &m_compiler->getPreprocessor());
928 
929   ClangExpressionHelper *type_system_helper =
930       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
931 
932   // If we want to parse for code completion, we need to attach our code
933   // completion consumer to the Sema and specify a completion position.
934   // While parsing the Sema will call this consumer with the provided
935   // completion suggestions.
936   if (completion_consumer) {
937     auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
938     auto &PP = m_compiler->getPreprocessor();
939     // Lines and columns start at 1 in Clang, but code completion positions are
940     // indexed from 0, so we need to add 1 to the line and column here.
941     ++completion_line;
942     ++completion_column;
943     PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
944   }
945 
946   ASTConsumer *ast_transformer =
947       type_system_helper->ASTTransformer(m_code_generator.get());
948 
949   std::unique_ptr<clang::ASTConsumer> Consumer;
950   if (ast_transformer) {
951     Consumer.reset(new ASTConsumerForwarder(ast_transformer));
952   } else if (m_code_generator) {
953     Consumer.reset(new ASTConsumerForwarder(m_code_generator.get()));
954   } else {
955     Consumer.reset(new ASTConsumer());
956   }
957 
958   clang::ASTContext &ast_context = m_compiler->getASTContext();
959 
960   m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
961                                *Consumer, TU_Complete, completion_consumer));
962   m_compiler->setASTConsumer(std::move(Consumer));
963 
964   if (ast_context.getLangOpts().Modules) {
965     m_compiler->createModuleManager();
966     m_ast_context->setSema(&m_compiler->getSema());
967   }
968 
969   ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
970   if (decl_map) {
971     decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
972 
973     clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
974 
975     if (ast_context.getExternalSource()) {
976       auto module_wrapper =
977           new ExternalASTSourceWrapper(ast_context.getExternalSource());
978 
979       auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
980 
981       auto multiplexer =
982           new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
983       IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
984       ast_context.setExternalSource(Source);
985     } else {
986       ast_context.setExternalSource(ast_source);
987     }
988     decl_map->InstallASTContext(ast_context, m_compiler->getFileManager());
989   }
990 
991   // Check that the ASTReader is properly attached to ASTContext and Sema.
992   if (ast_context.getLangOpts().Modules) {
993     assert(m_compiler->getASTContext().getExternalSource() &&
994            "ASTContext doesn't know about the ASTReader?");
995     assert(m_compiler->getSema().getExternalSource() &&
996            "Sema doesn't know about the ASTReader?");
997   }
998 
999   {
1000     llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1001         &m_compiler->getSema());
1002     ParseAST(m_compiler->getSema(), false, false);
1003   }
1004 
1005   // Make sure we have no pointer to the Sema we are about to destroy.
1006   if (ast_context.getLangOpts().Modules)
1007     m_ast_context->setSema(nullptr);
1008   // Destroy the Sema. This is necessary because we want to emulate the
1009   // original behavior of ParseAST (which also destroys the Sema after parsing).
1010   m_compiler->setSema(nullptr);
1011 
1012   diag_buf->EndSourceFile();
1013 
1014   unsigned num_errors = diag_buf->getNumErrors();
1015 
1016   if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1017     num_errors++;
1018     diagnostic_manager.PutString(eDiagnosticSeverityError,
1019                                  "while importing modules:");
1020     diagnostic_manager.AppendMessageToDiagnostic(
1021         m_pp_callbacks->getErrorString());
1022   }
1023 
1024   if (!num_errors) {
1025     if (type_system_helper->DeclMap() &&
1026         !type_system_helper->DeclMap()->ResolveUnknownTypes()) {
1027       diagnostic_manager.Printf(eDiagnosticSeverityError,
1028                                 "Couldn't infer the type of a variable");
1029       num_errors++;
1030     }
1031   }
1032 
1033   if (!num_errors) {
1034     type_system_helper->CommitPersistentDecls();
1035   }
1036 
1037   adapter->ResetManager();
1038 
1039   return num_errors;
1040 }
1041 
1042 std::string
1043 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1044   std::string abi;
1045 
1046   if (target_arch.IsMIPS()) {
1047     switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1048     case ArchSpec::eMIPSABI_N64:
1049       abi = "n64";
1050       break;
1051     case ArchSpec::eMIPSABI_N32:
1052       abi = "n32";
1053       break;
1054     case ArchSpec::eMIPSABI_O32:
1055       abi = "o32";
1056       break;
1057     default:
1058       break;
1059     }
1060   }
1061   return abi;
1062 }
1063 
1064 bool ClangExpressionParser::RewriteExpression(
1065     DiagnosticManager &diagnostic_manager) {
1066   clang::SourceManager &source_manager = m_compiler->getSourceManager();
1067   clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1068                                    nullptr);
1069   clang::edit::Commit commit(editor);
1070   clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1071 
1072   class RewritesReceiver : public edit::EditsReceiver {
1073     Rewriter &rewrite;
1074 
1075   public:
1076     RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1077 
1078     void insert(SourceLocation loc, StringRef text) override {
1079       rewrite.InsertText(loc, text);
1080     }
1081     void replace(CharSourceRange range, StringRef text) override {
1082       rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1083     }
1084   };
1085 
1086   RewritesReceiver rewrites_receiver(rewriter);
1087 
1088   const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1089   size_t num_diags = diagnostics.size();
1090   if (num_diags == 0)
1091     return false;
1092 
1093   for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) {
1094     const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
1095     if (diagnostic && diagnostic->HasFixIts()) {
1096       for (const FixItHint &fixit : diagnostic->FixIts()) {
1097         // This is cobbed from clang::Rewrite::FixItRewriter.
1098         if (fixit.CodeToInsert.empty()) {
1099           if (fixit.InsertFromRange.isValid()) {
1100             commit.insertFromRange(fixit.RemoveRange.getBegin(),
1101                                    fixit.InsertFromRange, /*afterToken=*/false,
1102                                    fixit.BeforePreviousInsertions);
1103           } else
1104             commit.remove(fixit.RemoveRange);
1105         } else {
1106           if (fixit.RemoveRange.isTokenRange() ||
1107               fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
1108             commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1109           else
1110             commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1111                           /*afterToken=*/false, fixit.BeforePreviousInsertions);
1112         }
1113       }
1114     }
1115   }
1116 
1117   // FIXME - do we want to try to propagate specific errors here?
1118   if (!commit.isCommitable())
1119     return false;
1120   else if (!editor.commit(commit))
1121     return false;
1122 
1123   // Now play all the edits, and stash the result in the diagnostic manager.
1124   editor.applyRewrites(rewrites_receiver);
1125   RewriteBuffer &main_file_buffer =
1126       rewriter.getEditBuffer(source_manager.getMainFileID());
1127 
1128   std::string fixed_expression;
1129   llvm::raw_string_ostream out_stream(fixed_expression);
1130 
1131   main_file_buffer.write(out_stream);
1132   out_stream.flush();
1133   diagnostic_manager.SetFixedExpression(fixed_expression);
1134 
1135   return true;
1136 }
1137 
1138 static bool FindFunctionInModule(ConstString &mangled_name,
1139                                  llvm::Module *module, const char *orig_name) {
1140   for (const auto &func : module->getFunctionList()) {
1141     const StringRef &name = func.getName();
1142     if (name.find(orig_name) != StringRef::npos) {
1143       mangled_name.SetString(name);
1144       return true;
1145     }
1146   }
1147 
1148   return false;
1149 }
1150 
1151 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1152     lldb::addr_t &func_addr, lldb::addr_t &func_end,
1153     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1154     bool &can_interpret, ExecutionPolicy execution_policy) {
1155   func_addr = LLDB_INVALID_ADDRESS;
1156   func_end = LLDB_INVALID_ADDRESS;
1157   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1158 
1159   lldb_private::Status err;
1160 
1161   std::unique_ptr<llvm::Module> llvm_module_up(
1162       m_code_generator->ReleaseModule());
1163 
1164   if (!llvm_module_up) {
1165     err.SetErrorToGenericError();
1166     err.SetErrorString("IR doesn't contain a module");
1167     return err;
1168   }
1169 
1170   ConstString function_name;
1171 
1172   if (execution_policy != eExecutionPolicyTopLevel) {
1173     // Find the actual name of the function (it's often mangled somehow)
1174 
1175     if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1176                               m_expr.FunctionName())) {
1177       err.SetErrorToGenericError();
1178       err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1179                                    m_expr.FunctionName());
1180       return err;
1181     } else {
1182       LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1183                 m_expr.FunctionName());
1184     }
1185   }
1186 
1187   SymbolContext sc;
1188 
1189   if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1190     sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1191   } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1192     sc.target_sp = target_sp;
1193   }
1194 
1195   LLVMUserExpression::IRPasses custom_passes;
1196   {
1197     auto lang = m_expr.Language();
1198     LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1199               Language::GetNameForLanguageType(lang));
1200     lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1201     if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1202       auto runtime = process_sp->GetLanguageRuntime(lang);
1203       if (runtime)
1204         runtime->GetIRPasses(custom_passes);
1205     }
1206   }
1207 
1208   if (custom_passes.EarlyPasses) {
1209     LLDB_LOGF(log,
1210               "%s - Running Early IR Passes from LanguageRuntime on "
1211               "expression module '%s'",
1212               __FUNCTION__, m_expr.FunctionName());
1213 
1214     custom_passes.EarlyPasses->run(*llvm_module_up);
1215   }
1216 
1217   execution_unit_sp = std::make_shared<IRExecutionUnit>(
1218       m_llvm_context, // handed off here
1219       llvm_module_up, // handed off here
1220       function_name, exe_ctx.GetTargetSP(), sc,
1221       m_compiler->getTargetOpts().Features);
1222 
1223   ClangExpressionHelper *type_system_helper =
1224       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1225   ClangExpressionDeclMap *decl_map =
1226       type_system_helper->DeclMap(); // result can be NULL
1227 
1228   if (decl_map) {
1229     Stream *error_stream = nullptr;
1230     Target *target = exe_ctx.GetTargetPtr();
1231     error_stream = target->GetDebugger().GetErrorFile().get();
1232 
1233     IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1234                               *execution_unit_sp, *error_stream,
1235                               function_name.AsCString());
1236 
1237     bool ir_can_run =
1238         ir_for_target.runOnModule(*execution_unit_sp->GetModule());
1239 
1240     if (!ir_can_run) {
1241       err.SetErrorString(
1242           "The expression could not be prepared to run in the target");
1243       return err;
1244     }
1245 
1246     Process *process = exe_ctx.GetProcessPtr();
1247 
1248     if (execution_policy != eExecutionPolicyAlways &&
1249         execution_policy != eExecutionPolicyTopLevel) {
1250       lldb_private::Status interpret_error;
1251 
1252       bool interpret_function_calls =
1253           !process ? false : process->CanInterpretFunctionCalls();
1254       can_interpret = IRInterpreter::CanInterpret(
1255           *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1256           interpret_error, interpret_function_calls);
1257 
1258       if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1259         err.SetErrorStringWithFormat("Can't run the expression locally: %s",
1260                                      interpret_error.AsCString());
1261         return err;
1262       }
1263     }
1264 
1265     if (!process && execution_policy == eExecutionPolicyAlways) {
1266       err.SetErrorString("Expression needed to run in the target, but the "
1267                          "target can't be run");
1268       return err;
1269     }
1270 
1271     if (!process && execution_policy == eExecutionPolicyTopLevel) {
1272       err.SetErrorString("Top-level code needs to be inserted into a runnable "
1273                          "target, but the target can't be run");
1274       return err;
1275     }
1276 
1277     if (execution_policy == eExecutionPolicyAlways ||
1278         (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1279       if (m_expr.NeedsValidation() && process) {
1280         if (!process->GetDynamicCheckers()) {
1281           ClangDynamicCheckerFunctions *dynamic_checkers =
1282               new ClangDynamicCheckerFunctions();
1283 
1284           DiagnosticManager install_diagnostics;
1285 
1286           if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1287             if (install_diagnostics.Diagnostics().size())
1288               err.SetErrorString(install_diagnostics.GetString().c_str());
1289             else
1290               err.SetErrorString("couldn't install checkers, unknown error");
1291 
1292             return err;
1293           }
1294 
1295           process->SetDynamicCheckers(dynamic_checkers);
1296 
1297           LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1298                          "Finished installing dynamic checkers ==");
1299         }
1300 
1301         if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1302                 process->GetDynamicCheckers())) {
1303           IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1304                                             function_name.AsCString());
1305 
1306           llvm::Module *module = execution_unit_sp->GetModule();
1307           if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1308             err.SetErrorToGenericError();
1309             err.SetErrorString("Couldn't add dynamic checks to the expression");
1310             return err;
1311           }
1312 
1313           if (custom_passes.LatePasses) {
1314             LLDB_LOGF(log,
1315                       "%s - Running Late IR Passes from LanguageRuntime on "
1316                       "expression module '%s'",
1317                       __FUNCTION__, m_expr.FunctionName());
1318 
1319             custom_passes.LatePasses->run(*module);
1320           }
1321         }
1322       }
1323     }
1324 
1325     if (execution_policy == eExecutionPolicyAlways ||
1326         execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1327       execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1328     }
1329   } else {
1330     execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1331   }
1332 
1333   return err;
1334 }
1335 
1336 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1337     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1338   lldb_private::Status err;
1339 
1340   lldbassert(execution_unit_sp.get());
1341   lldbassert(exe_ctx.HasThreadScope());
1342 
1343   if (!execution_unit_sp.get()) {
1344     err.SetErrorString(
1345         "can't run static initializers for a NULL execution unit");
1346     return err;
1347   }
1348 
1349   if (!exe_ctx.HasThreadScope()) {
1350     err.SetErrorString("can't run static initializers without a thread");
1351     return err;
1352   }
1353 
1354   std::vector<lldb::addr_t> static_initializers;
1355 
1356   execution_unit_sp->GetStaticInitializers(static_initializers);
1357 
1358   for (lldb::addr_t static_initializer : static_initializers) {
1359     EvaluateExpressionOptions options;
1360 
1361     lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1362         exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1363         llvm::ArrayRef<lldb::addr_t>(), options));
1364 
1365     DiagnosticManager execution_errors;
1366     lldb::ExpressionResults results =
1367         exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1368             exe_ctx, call_static_initializer, options, execution_errors);
1369 
1370     if (results != lldb::eExpressionCompleted) {
1371       err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1372                                    execution_errors.GetString().c_str());
1373       return err;
1374     }
1375   }
1376 
1377   return err;
1378 }
1379