1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" 71 #include "lldb/Core/Debugger.h" 72 #include "lldb/Core/Disassembler.h" 73 #include "lldb/Core/Module.h" 74 #include "lldb/Core/StreamFile.h" 75 #include "lldb/Expression/IRExecutionUnit.h" 76 #include "lldb/Expression/IRInterpreter.h" 77 #include "lldb/Host/File.h" 78 #include "lldb/Host/HostInfo.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/ReproducerProvider.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h" 95 96 #include <cctype> 97 #include <memory> 98 99 using namespace clang; 100 using namespace llvm; 101 using namespace lldb_private; 102 103 //===----------------------------------------------------------------------===// 104 // Utility Methods for Clang 105 //===----------------------------------------------------------------------===// 106 107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 108 ClangModulesDeclVendor &m_decl_vendor; 109 ClangPersistentVariables &m_persistent_vars; 110 clang::SourceManager &m_source_mgr; 111 StreamString m_error_stream; 112 bool m_has_errors = false; 113 114 public: 115 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 116 ClangPersistentVariables &persistent_vars, 117 clang::SourceManager &source_mgr) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 119 m_source_mgr(source_mgr) {} 120 121 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 122 const clang::Module * /*null*/) override { 123 // Ignore modules that are imported in the wrapper code as these are not 124 // loaded by the user. 125 llvm::StringRef filename = 126 m_source_mgr.getPresumedLoc(import_location).getFilename(); 127 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 128 return; 129 130 SourceModule module; 131 132 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 133 module.path.push_back(ConstString(component.first->getName())); 134 135 StreamString error_stream; 136 137 ClangModulesDeclVendor::ModuleVector exported_modules; 138 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 139 m_has_errors = true; 140 141 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 142 m_persistent_vars.AddHandLoadedClangModule(module); 143 } 144 145 bool hasErrors() { return m_has_errors; } 146 147 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 148 }; 149 150 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) { 151 for (auto &fix_it : Info.getFixItHints()) { 152 if (fix_it.isNull()) 153 continue; 154 diag->AddFixitHint(fix_it); 155 } 156 } 157 158 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 159 public: 160 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 161 DiagnosticOptions *options = new DiagnosticOptions(opts); 162 options->ShowPresumedLoc = true; 163 options->ShowLevel = false; 164 m_os = std::make_shared<llvm::raw_string_ostream>(m_output); 165 m_passthrough = 166 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options); 167 } 168 169 void ResetManager(DiagnosticManager *manager = nullptr) { 170 m_manager = manager; 171 } 172 173 /// Returns the last ClangDiagnostic message that the DiagnosticManager 174 /// received or a nullptr if the DiagnosticMangager hasn't seen any 175 /// Clang diagnostics yet. 176 ClangDiagnostic *MaybeGetLastClangDiag() const { 177 if (m_manager->Diagnostics().empty()) 178 return nullptr; 179 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get(); 180 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag); 181 return clang_diag; 182 } 183 184 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 185 const clang::Diagnostic &Info) override { 186 if (!m_manager) { 187 // We have no DiagnosticManager before/after parsing but we still could 188 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 189 // when we move the expression result ot the ScratchASTContext). Let's at 190 // least log these diagnostics until we find a way to properly render 191 // them and display them to the user. 192 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 193 if (log) { 194 llvm::SmallVector<char, 32> diag_str; 195 Info.FormatDiagnostic(diag_str); 196 diag_str.push_back('\0'); 197 const char *plain_diag = diag_str.data(); 198 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 199 } 200 return; 201 } 202 203 // Update error/warning counters. 204 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info); 205 206 // Render diagnostic message to m_output. 207 m_output.clear(); 208 m_passthrough->HandleDiagnostic(DiagLevel, Info); 209 m_os->flush(); 210 211 lldb_private::DiagnosticSeverity severity; 212 bool make_new_diagnostic = true; 213 214 switch (DiagLevel) { 215 case DiagnosticsEngine::Level::Fatal: 216 case DiagnosticsEngine::Level::Error: 217 severity = eDiagnosticSeverityError; 218 break; 219 case DiagnosticsEngine::Level::Warning: 220 severity = eDiagnosticSeverityWarning; 221 break; 222 case DiagnosticsEngine::Level::Remark: 223 case DiagnosticsEngine::Level::Ignored: 224 severity = eDiagnosticSeverityRemark; 225 break; 226 case DiagnosticsEngine::Level::Note: 227 m_manager->AppendMessageToDiagnostic(m_output); 228 make_new_diagnostic = false; 229 230 // 'note:' diagnostics for errors and warnings can also contain Fix-Its. 231 // We add these Fix-Its to the last error diagnostic to make sure 232 // that we later have all Fix-Its related to an 'error' diagnostic when 233 // we apply them to the user expression. 234 auto *clang_diag = MaybeGetLastClangDiag(); 235 // If we don't have a previous diagnostic there is nothing to do. 236 // If the previous diagnostic already has its own Fix-Its, assume that 237 // the 'note:' Fix-It is just an alternative way to solve the issue and 238 // ignore these Fix-Its. 239 if (!clang_diag || clang_diag->HasFixIts()) 240 break; 241 // Ignore all Fix-Its that are not associated with an error. 242 if (clang_diag->GetSeverity() != eDiagnosticSeverityError) 243 break; 244 AddAllFixIts(clang_diag, Info); 245 break; 246 } 247 if (make_new_diagnostic) { 248 // ClangDiagnostic messages are expected to have no whitespace/newlines 249 // around them. 250 std::string stripped_output = 251 std::string(llvm::StringRef(m_output).trim()); 252 253 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 254 stripped_output, severity, Info.getID()); 255 256 // Don't store away warning fixits, since the compiler doesn't have 257 // enough context in an expression for the warning to be useful. 258 // FIXME: Should we try to filter out FixIts that apply to our generated 259 // code, and not the user's expression? 260 if (severity == eDiagnosticSeverityError) 261 AddAllFixIts(new_diagnostic.get(), Info); 262 263 m_manager->AddDiagnostic(std::move(new_diagnostic)); 264 } 265 } 266 267 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override { 268 m_passthrough->BeginSourceFile(LO, PP); 269 } 270 271 void EndSourceFile() override { m_passthrough->EndSourceFile(); } 272 273 private: 274 DiagnosticManager *m_manager = nullptr; 275 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 276 /// Output stream of m_passthrough. 277 std::shared_ptr<llvm::raw_string_ostream> m_os; 278 /// Output string filled by m_os. 279 std::string m_output; 280 }; 281 282 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 283 std::vector<std::string> include_directories, 284 lldb::TargetSP target_sp) { 285 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 286 287 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 288 289 for (const std::string &dir : include_directories) { 290 search_opts.AddPath(dir, frontend::System, false, true); 291 LLDB_LOG(log, "Added user include dir: {0}", dir); 292 } 293 294 llvm::SmallString<128> module_cache; 295 const auto &props = ModuleList::GetGlobalModuleListProperties(); 296 props.GetClangModulesCachePath().GetPath(module_cache); 297 search_opts.ModuleCachePath = std::string(module_cache.str()); 298 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 299 300 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 301 302 search_opts.ImplicitModuleMaps = true; 303 } 304 305 /// Iff the given identifier is a C++ keyword, remove it from the 306 /// identifier table (i.e., make the token a normal identifier). 307 static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) { 308 // FIXME: 'using' is used by LLDB for local variables, so we can't remove 309 // this keyword without breaking this functionality. 310 if (token == "using") 311 return; 312 // GCC's '__null' is used by LLDB to define NULL/Nil/nil. 313 if (token == "__null") 314 return; 315 316 LangOptions cpp_lang_opts; 317 cpp_lang_opts.CPlusPlus = true; 318 cpp_lang_opts.CPlusPlus11 = true; 319 cpp_lang_opts.CPlusPlus20 = true; 320 321 clang::IdentifierInfo &ii = idents.get(token); 322 // The identifier has to be a C++-exclusive keyword. if not, then there is 323 // nothing to do. 324 if (!ii.isCPlusPlusKeyword(cpp_lang_opts)) 325 return; 326 // If the token is already an identifier, then there is nothing to do. 327 if (ii.getTokenID() == clang::tok::identifier) 328 return; 329 // Otherwise the token is a C++ keyword, so turn it back into a normal 330 // identifier. 331 ii.revertTokenIDToIdentifier(); 332 } 333 334 /// Remove all C++ keywords from the given identifier table. 335 static void RemoveAllCppKeywords(IdentifierTable &idents) { 336 #define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME)); 337 #include "clang/Basic/TokenKinds.def" 338 } 339 340 //===----------------------------------------------------------------------===// 341 // Implementation of ClangExpressionParser 342 //===----------------------------------------------------------------------===// 343 344 ClangExpressionParser::ClangExpressionParser( 345 ExecutionContextScope *exe_scope, Expression &expr, 346 bool generate_debug_info, std::vector<std::string> include_directories, 347 std::string filename) 348 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 349 m_pp_callbacks(nullptr), 350 m_include_directories(std::move(include_directories)), 351 m_filename(std::move(filename)) { 352 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 353 354 // We can't compile expressions without a target. So if the exe_scope is 355 // null or doesn't have a target, then we just need to get out of here. I'll 356 // lldbassert and not make any of the compiler objects since 357 // I can't return errors directly from the constructor. Further calls will 358 // check if the compiler was made and 359 // bag out if it wasn't. 360 361 if (!exe_scope) { 362 lldbassert(exe_scope && 363 "Can't make an expression parser with a null scope."); 364 return; 365 } 366 367 lldb::TargetSP target_sp; 368 target_sp = exe_scope->CalculateTarget(); 369 if (!target_sp) { 370 lldbassert(target_sp.get() && 371 "Can't make an expression parser with a null target."); 372 return; 373 } 374 375 // 1. Create a new compiler instance. 376 m_compiler = std::make_unique<CompilerInstance>(); 377 378 // When capturing a reproducer, hook up the file collector with clang to 379 // collector modules and headers. 380 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 381 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 382 m_compiler->setModuleDepCollector( 383 std::make_shared<ModuleDependencyCollectorAdaptor>( 384 fp.GetFileCollector())); 385 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 386 opts.IncludeSystemHeaders = true; 387 opts.IncludeModuleFiles = true; 388 } 389 390 // Make sure clang uses the same VFS as LLDB. 391 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 392 393 lldb::LanguageType frame_lang = 394 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 395 bool overridden_target_opts = false; 396 lldb_private::LanguageRuntime *lang_rt = nullptr; 397 398 std::string abi; 399 ArchSpec target_arch; 400 target_arch = target_sp->GetArchitecture(); 401 402 const auto target_machine = target_arch.GetMachine(); 403 404 // If the expression is being evaluated in the context of an existing stack 405 // frame, we introspect to see if the language runtime is available. 406 407 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 408 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 409 410 // Make sure the user hasn't provided a preferred execution language with 411 // `expression --language X -- ...` 412 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 413 frame_lang = frame_sp->GetLanguage(); 414 415 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 416 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 417 LLDB_LOGF(log, "Frame has language of type %s", 418 Language::GetNameForLanguageType(frame_lang)); 419 } 420 421 // 2. Configure the compiler with a set of default options that are 422 // appropriate for most situations. 423 if (target_arch.IsValid()) { 424 std::string triple = target_arch.GetTriple().str(); 425 m_compiler->getTargetOpts().Triple = triple; 426 LLDB_LOGF(log, "Using %s as the target triple", 427 m_compiler->getTargetOpts().Triple.c_str()); 428 } else { 429 // If we get here we don't have a valid target and just have to guess. 430 // Sometimes this will be ok to just use the host target triple (when we 431 // evaluate say "2+3", but other expressions like breakpoint conditions and 432 // other things that _are_ target specific really shouldn't just be using 433 // the host triple. In such a case the language runtime should expose an 434 // overridden options set (3), below. 435 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 436 LLDB_LOGF(log, "Using default target triple of %s", 437 m_compiler->getTargetOpts().Triple.c_str()); 438 } 439 // Now add some special fixes for known architectures: Any arm32 iOS 440 // environment, but not on arm64 441 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 442 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 443 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 444 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 445 } 446 // Supported subsets of x86 447 if (target_machine == llvm::Triple::x86 || 448 target_machine == llvm::Triple::x86_64) { 449 m_compiler->getTargetOpts().Features.push_back("+sse"); 450 m_compiler->getTargetOpts().Features.push_back("+sse2"); 451 } 452 453 // Set the target CPU to generate code for. This will be empty for any CPU 454 // that doesn't really need to make a special 455 // CPU string. 456 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 457 458 // Set the target ABI 459 abi = GetClangTargetABI(target_arch); 460 if (!abi.empty()) 461 m_compiler->getTargetOpts().ABI = abi; 462 463 // 3. Now allow the runtime to provide custom configuration options for the 464 // target. In this case, a specialized language runtime is available and we 465 // can query it for extra options. For 99% of use cases, this will not be 466 // needed and should be provided when basic platform detection is not enough. 467 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this 468 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime 469 // having knowledge of clang::TargetOpts. 470 if (auto *renderscript_rt = 471 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt)) 472 overridden_target_opts = 473 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 474 475 if (overridden_target_opts) 476 if (log && log->GetVerbose()) { 477 LLDB_LOGV( 478 log, "Using overridden target options for the expression evaluation"); 479 480 auto opts = m_compiler->getTargetOpts(); 481 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 482 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 483 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 484 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 485 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 486 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 487 StringList::LogDump(log, opts.Features, "Features"); 488 } 489 490 // 4. Create and install the target on the compiler. 491 m_compiler->createDiagnostics(); 492 // Limit the number of error diagnostics we emit. 493 // A value of 0 means no limit for both LLDB and Clang. 494 m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit()); 495 496 auto target_info = TargetInfo::CreateTargetInfo( 497 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 498 if (log) { 499 LLDB_LOGF(log, "Using SIMD alignment: %d", 500 target_info->getSimdDefaultAlign()); 501 LLDB_LOGF(log, "Target datalayout string: '%s'", 502 target_info->getDataLayout().getStringRepresentation().c_str()); 503 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 504 LLDB_LOGF(log, "Target vector alignment: %d", 505 target_info->getMaxVectorAlign()); 506 } 507 m_compiler->setTarget(target_info); 508 509 assert(m_compiler->hasTarget()); 510 511 // 5. Set language options. 512 lldb::LanguageType language = expr.Language(); 513 LangOptions &lang_opts = m_compiler->getLangOpts(); 514 515 switch (language) { 516 case lldb::eLanguageTypeC: 517 case lldb::eLanguageTypeC89: 518 case lldb::eLanguageTypeC99: 519 case lldb::eLanguageTypeC11: 520 // FIXME: the following language option is a temporary workaround, 521 // to "ask for C, get C++." 522 // For now, the expression parser must use C++ anytime the language is a C 523 // family language, because the expression parser uses features of C++ to 524 // capture values. 525 lang_opts.CPlusPlus = true; 526 break; 527 case lldb::eLanguageTypeObjC: 528 lang_opts.ObjC = true; 529 // FIXME: the following language option is a temporary workaround, 530 // to "ask for ObjC, get ObjC++" (see comment above). 531 lang_opts.CPlusPlus = true; 532 533 // Clang now sets as default C++14 as the default standard (with 534 // GNU extensions), so we do the same here to avoid mismatches that 535 // cause compiler error when evaluating expressions (e.g. nullptr not found 536 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 537 // two lines below) so we decide to be consistent with that, but this could 538 // be re-evaluated in the future. 539 lang_opts.CPlusPlus11 = true; 540 break; 541 case lldb::eLanguageTypeC_plus_plus: 542 case lldb::eLanguageTypeC_plus_plus_11: 543 case lldb::eLanguageTypeC_plus_plus_14: 544 lang_opts.CPlusPlus11 = true; 545 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 546 LLVM_FALLTHROUGH; 547 case lldb::eLanguageTypeC_plus_plus_03: 548 lang_opts.CPlusPlus = true; 549 if (process_sp) 550 lang_opts.ObjC = 551 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 552 break; 553 case lldb::eLanguageTypeObjC_plus_plus: 554 case lldb::eLanguageTypeUnknown: 555 default: 556 lang_opts.ObjC = true; 557 lang_opts.CPlusPlus = true; 558 lang_opts.CPlusPlus11 = true; 559 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 560 break; 561 } 562 563 lang_opts.Bool = true; 564 lang_opts.WChar = true; 565 lang_opts.Blocks = true; 566 lang_opts.DebuggerSupport = 567 true; // Features specifically for debugger clients 568 if (expr.DesiredResultType() == Expression::eResultTypeId) 569 lang_opts.DebuggerCastResultToId = true; 570 571 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 572 .CharIsSignedByDefault(); 573 574 // Spell checking is a nice feature, but it ends up completing a lot of types 575 // that we didn't strictly speaking need to complete. As a result, we spend a 576 // long time parsing and importing debug information. 577 lang_opts.SpellChecking = false; 578 579 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 580 if (clang_expr && clang_expr->DidImportCxxModules()) { 581 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 582 583 lang_opts.Modules = true; 584 // We want to implicitly build modules. 585 lang_opts.ImplicitModules = true; 586 // To automatically import all submodules when we import 'std'. 587 lang_opts.ModulesLocalVisibility = false; 588 589 // We use the @import statements, so we need this: 590 // FIXME: We could use the modules-ts, but that currently doesn't work. 591 lang_opts.ObjC = true; 592 593 // Options we need to parse libc++ code successfully. 594 // FIXME: We should ask the driver for the appropriate default flags. 595 lang_opts.GNUMode = true; 596 lang_opts.GNUKeywords = true; 597 lang_opts.DoubleSquareBracketAttributes = true; 598 lang_opts.CPlusPlus11 = true; 599 600 // The Darwin libc expects this macro to be set. 601 lang_opts.GNUCVersion = 40201; 602 603 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 604 target_sp); 605 } 606 607 if (process_sp && lang_opts.ObjC) { 608 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 609 if (runtime->GetRuntimeVersion() == 610 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 611 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 612 else 613 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 614 VersionTuple(10, 7)); 615 616 if (runtime->HasNewLiteralsAndIndexing()) 617 lang_opts.DebuggerObjCLiteral = true; 618 } 619 } 620 621 lang_opts.ThreadsafeStatics = false; 622 lang_opts.AccessControl = false; // Debuggers get universal access 623 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 624 // We enable all builtin functions beside the builtins from libc/libm (e.g. 625 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 626 // additionally enabling them as expandable builtins is breaking Clang. 627 lang_opts.NoBuiltin = true; 628 629 // Set CodeGen options 630 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 631 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 632 m_compiler->getCodeGenOpts().setFramePointer( 633 CodeGenOptions::FramePointerKind::All); 634 if (generate_debug_info) 635 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 636 else 637 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 638 639 // Disable some warnings. 640 m_compiler->getDiagnostics().setSeverityForGroup( 641 clang::diag::Flavor::WarningOrError, "unused-value", 642 clang::diag::Severity::Ignored, SourceLocation()); 643 m_compiler->getDiagnostics().setSeverityForGroup( 644 clang::diag::Flavor::WarningOrError, "odr", 645 clang::diag::Severity::Ignored, SourceLocation()); 646 647 // Inform the target of the language options 648 // 649 // FIXME: We shouldn't need to do this, the target should be immutable once 650 // created. This complexity should be lifted elsewhere. 651 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 652 653 // 6. Set up the diagnostic buffer for reporting errors 654 655 auto diag_mgr = new ClangDiagnosticManagerAdapter( 656 m_compiler->getDiagnostics().getDiagnosticOptions()); 657 m_compiler->getDiagnostics().setClient(diag_mgr); 658 659 // 7. Set up the source management objects inside the compiler 660 m_compiler->createFileManager(); 661 if (!m_compiler->hasSourceManager()) 662 m_compiler->createSourceManager(m_compiler->getFileManager()); 663 m_compiler->createPreprocessor(TU_Complete); 664 665 switch (language) { 666 case lldb::eLanguageTypeC: 667 case lldb::eLanguageTypeC89: 668 case lldb::eLanguageTypeC99: 669 case lldb::eLanguageTypeC11: 670 case lldb::eLanguageTypeObjC: 671 // This is not a C++ expression but we enabled C++ as explained above. 672 // Remove all C++ keywords from the PP so that the user can still use 673 // variables that have C++ keywords as names (e.g. 'int template;'). 674 RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable()); 675 break; 676 default: 677 break; 678 } 679 680 if (ClangModulesDeclVendor *decl_vendor = 681 target_sp->GetClangModulesDeclVendor()) { 682 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 683 target_sp->GetPersistentExpressionStateForLanguage( 684 lldb::eLanguageTypeC))) { 685 std::unique_ptr<PPCallbacks> pp_callbacks( 686 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 687 m_compiler->getSourceManager())); 688 m_pp_callbacks = 689 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 690 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 691 } 692 } 693 694 // 8. Most of this we get from the CompilerInstance, but we also want to give 695 // the context an ExternalASTSource. 696 697 auto &PP = m_compiler->getPreprocessor(); 698 auto &builtin_context = PP.getBuiltinInfo(); 699 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 700 m_compiler->getLangOpts()); 701 702 m_compiler->createASTContext(); 703 clang::ASTContext &ast_context = m_compiler->getASTContext(); 704 705 m_ast_context = std::make_unique<TypeSystemClang>( 706 "Expression ASTContext for '" + m_filename + "'", ast_context); 707 708 std::string module_name("$__lldb_module"); 709 710 m_llvm_context = std::make_unique<LLVMContext>(); 711 m_code_generator.reset(CreateLLVMCodeGen( 712 m_compiler->getDiagnostics(), module_name, 713 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 714 m_compiler->getCodeGenOpts(), *m_llvm_context)); 715 } 716 717 ClangExpressionParser::~ClangExpressionParser() {} 718 719 namespace { 720 721 /// \class CodeComplete 722 /// 723 /// A code completion consumer for the clang Sema that is responsible for 724 /// creating the completion suggestions when a user requests completion 725 /// of an incomplete `expr` invocation. 726 class CodeComplete : public CodeCompleteConsumer { 727 CodeCompletionTUInfo m_info; 728 729 std::string m_expr; 730 unsigned m_position = 0; 731 /// The printing policy we use when printing declarations for our completion 732 /// descriptions. 733 clang::PrintingPolicy m_desc_policy; 734 735 struct CompletionWithPriority { 736 CompletionResult::Completion completion; 737 /// See CodeCompletionResult::Priority; 738 unsigned Priority; 739 740 /// Establishes a deterministic order in a list of CompletionWithPriority. 741 /// The order returned here is the order in which the completions are 742 /// displayed to the user. 743 bool operator<(const CompletionWithPriority &o) const { 744 // High priority results should come first. 745 if (Priority != o.Priority) 746 return Priority > o.Priority; 747 748 // Identical priority, so just make sure it's a deterministic order. 749 return completion.GetUniqueKey() < o.completion.GetUniqueKey(); 750 } 751 }; 752 753 /// The stored completions. 754 /// Warning: These are in a non-deterministic order until they are sorted 755 /// and returned back to the caller. 756 std::vector<CompletionWithPriority> m_completions; 757 758 /// Returns true if the given character can be used in an identifier. 759 /// This also returns true for numbers because for completion we usually 760 /// just iterate backwards over iterators. 761 /// 762 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 763 static bool IsIdChar(char c) { 764 return c == '_' || std::isalnum(c) || c == '$'; 765 } 766 767 /// Returns true if the given character is used to separate arguments 768 /// in the command line of lldb. 769 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 770 771 /// Drops all tokens in front of the expression that are unrelated for 772 /// the completion of the cmd line. 'unrelated' means here that the token 773 /// is not interested for the lldb completion API result. 774 StringRef dropUnrelatedFrontTokens(StringRef cmd) const { 775 if (cmd.empty()) 776 return cmd; 777 778 // If we are at the start of a word, then all tokens are unrelated to 779 // the current completion logic. 780 if (IsTokenSeparator(cmd.back())) 781 return StringRef(); 782 783 // Remove all previous tokens from the string as they are unrelated 784 // to completing the current token. 785 StringRef to_remove = cmd; 786 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 787 to_remove = to_remove.drop_back(); 788 } 789 cmd = cmd.drop_front(to_remove.size()); 790 791 return cmd; 792 } 793 794 /// Removes the last identifier token from the given cmd line. 795 StringRef removeLastToken(StringRef cmd) const { 796 while (!cmd.empty() && IsIdChar(cmd.back())) { 797 cmd = cmd.drop_back(); 798 } 799 return cmd; 800 } 801 802 /// Attempts to merge the given completion from the given position into the 803 /// existing command. Returns the completion string that can be returned to 804 /// the lldb completion API. 805 std::string mergeCompletion(StringRef existing, unsigned pos, 806 StringRef completion) const { 807 StringRef existing_command = existing.substr(0, pos); 808 // We rewrite the last token with the completion, so let's drop that 809 // token from the command. 810 existing_command = removeLastToken(existing_command); 811 // We also should remove all previous tokens from the command as they 812 // would otherwise be added to the completion that already has the 813 // completion. 814 existing_command = dropUnrelatedFrontTokens(existing_command); 815 return existing_command.str() + completion.str(); 816 } 817 818 public: 819 /// Constructs a CodeComplete consumer that can be attached to a Sema. 820 /// 821 /// \param[out] expr 822 /// The whole expression string that we are currently parsing. This 823 /// string needs to be equal to the input the user typed, and NOT the 824 /// final code that Clang is parsing. 825 /// \param[out] position 826 /// The character position of the user cursor in the `expr` parameter. 827 /// 828 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position) 829 : CodeCompleteConsumer(CodeCompleteOptions()), 830 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 831 m_position(position), m_desc_policy(ops) { 832 833 // Ensure that the printing policy is producing a description that is as 834 // short as possible. 835 m_desc_policy.SuppressScope = true; 836 m_desc_policy.SuppressTagKeyword = true; 837 m_desc_policy.FullyQualifiedName = false; 838 m_desc_policy.TerseOutput = true; 839 m_desc_policy.IncludeNewlines = false; 840 m_desc_policy.UseVoidForZeroParams = false; 841 m_desc_policy.Bool = true; 842 } 843 844 /// \name Code-completion filtering 845 /// Check if the result should be filtered out. 846 bool isResultFilteredOut(StringRef Filter, 847 CodeCompletionResult Result) override { 848 // This code is mostly copied from CodeCompleteConsumer. 849 switch (Result.Kind) { 850 case CodeCompletionResult::RK_Declaration: 851 return !( 852 Result.Declaration->getIdentifier() && 853 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 854 case CodeCompletionResult::RK_Keyword: 855 return !StringRef(Result.Keyword).startswith(Filter); 856 case CodeCompletionResult::RK_Macro: 857 return !Result.Macro->getName().startswith(Filter); 858 case CodeCompletionResult::RK_Pattern: 859 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 860 } 861 // If we trigger this assert or the above switch yields a warning, then 862 // CodeCompletionResult has been enhanced with more kinds of completion 863 // results. Expand the switch above in this case. 864 assert(false && "Unknown completion result type?"); 865 // If we reach this, then we should just ignore whatever kind of unknown 866 // result we got back. We probably can't turn it into any kind of useful 867 // completion suggestion with the existing code. 868 return true; 869 } 870 871 private: 872 /// Generate the completion strings for the given CodeCompletionResult. 873 /// Note that this function has to process results that could come in 874 /// non-deterministic order, so this function should have no side effects. 875 /// To make this easier to enforce, this function and all its parameters 876 /// should always be const-qualified. 877 /// \return Returns llvm::None if no completion should be provided for the 878 /// given CodeCompletionResult. 879 llvm::Optional<CompletionWithPriority> 880 getCompletionForResult(const CodeCompletionResult &R) const { 881 std::string ToInsert; 882 std::string Description; 883 // Handle the different completion kinds that come from the Sema. 884 switch (R.Kind) { 885 case CodeCompletionResult::RK_Declaration: { 886 const NamedDecl *D = R.Declaration; 887 ToInsert = R.Declaration->getNameAsString(); 888 // If we have a function decl that has no arguments we want to 889 // complete the empty parantheses for the user. If the function has 890 // arguments, we at least complete the opening bracket. 891 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 892 if (F->getNumParams() == 0) 893 ToInsert += "()"; 894 else 895 ToInsert += "("; 896 raw_string_ostream OS(Description); 897 F->print(OS, m_desc_policy, false); 898 OS.flush(); 899 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 900 Description = V->getType().getAsString(m_desc_policy); 901 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 902 Description = F->getType().getAsString(m_desc_policy); 903 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 904 // If we try to complete a namespace, then we can directly append 905 // the '::'. 906 if (!N->isAnonymousNamespace()) 907 ToInsert += "::"; 908 } 909 break; 910 } 911 case CodeCompletionResult::RK_Keyword: 912 ToInsert = R.Keyword; 913 break; 914 case CodeCompletionResult::RK_Macro: 915 ToInsert = R.Macro->getName().str(); 916 break; 917 case CodeCompletionResult::RK_Pattern: 918 ToInsert = R.Pattern->getTypedText(); 919 break; 920 } 921 // We also filter some internal lldb identifiers here. The user 922 // shouldn't see these. 923 if (llvm::StringRef(ToInsert).startswith("$__lldb_")) 924 return llvm::None; 925 if (ToInsert.empty()) 926 return llvm::None; 927 // Merge the suggested Token into the existing command line to comply 928 // with the kind of result the lldb API expects. 929 std::string CompletionSuggestion = 930 mergeCompletion(m_expr, m_position, ToInsert); 931 932 CompletionResult::Completion completion(CompletionSuggestion, Description, 933 CompletionMode::Normal); 934 return {{completion, R.Priority}}; 935 } 936 937 public: 938 /// Adds the completions to the given CompletionRequest. 939 void GetCompletions(CompletionRequest &request) { 940 // Bring m_completions into a deterministic order and pass it on to the 941 // CompletionRequest. 942 llvm::sort(m_completions); 943 944 for (const CompletionWithPriority &C : m_completions) 945 request.AddCompletion(C.completion.GetCompletion(), 946 C.completion.GetDescription(), 947 C.completion.GetMode()); 948 } 949 950 /// \name Code-completion callbacks 951 /// Process the finalized code-completion results. 952 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 953 CodeCompletionResult *Results, 954 unsigned NumResults) override { 955 956 // The Sema put the incomplete token we try to complete in here during 957 // lexing, so we need to retrieve it here to know what we are completing. 958 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 959 960 // Iterate over all the results. Filter out results we don't want and 961 // process the rest. 962 for (unsigned I = 0; I != NumResults; ++I) { 963 // Filter the results with the information from the Sema. 964 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 965 continue; 966 967 CodeCompletionResult &R = Results[I]; 968 llvm::Optional<CompletionWithPriority> CompletionAndPriority = 969 getCompletionForResult(R); 970 if (!CompletionAndPriority) 971 continue; 972 m_completions.push_back(*CompletionAndPriority); 973 } 974 } 975 976 /// \param S the semantic-analyzer object for which code-completion is being 977 /// done. 978 /// 979 /// \param CurrentArg the index of the current argument. 980 /// 981 /// \param Candidates an array of overload candidates. 982 /// 983 /// \param NumCandidates the number of overload candidates 984 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 985 OverloadCandidate *Candidates, 986 unsigned NumCandidates, 987 SourceLocation OpenParLoc) override { 988 // At the moment we don't filter out any overloaded candidates. 989 } 990 991 CodeCompletionAllocator &getAllocator() override { 992 return m_info.getAllocator(); 993 } 994 995 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 996 }; 997 } // namespace 998 999 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 1000 unsigned pos, unsigned typed_pos) { 1001 DiagnosticManager mgr; 1002 // We need the raw user expression here because that's what the CodeComplete 1003 // class uses to provide completion suggestions. 1004 // However, the `Text` method only gives us the transformed expression here. 1005 // To actually get the raw user input here, we have to cast our expression to 1006 // the LLVMUserExpression which exposes the right API. This should never fail 1007 // as we always have a ClangUserExpression whenever we call this. 1008 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 1009 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(), 1010 typed_pos); 1011 // We don't need a code generator for parsing. 1012 m_code_generator.reset(); 1013 // Start parsing the expression with our custom code completion consumer. 1014 ParseInternal(mgr, &CC, line, pos); 1015 CC.GetCompletions(request); 1016 return true; 1017 } 1018 1019 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 1020 return ParseInternal(diagnostic_manager); 1021 } 1022 1023 unsigned 1024 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 1025 CodeCompleteConsumer *completion_consumer, 1026 unsigned completion_line, 1027 unsigned completion_column) { 1028 ClangDiagnosticManagerAdapter *adapter = 1029 static_cast<ClangDiagnosticManagerAdapter *>( 1030 m_compiler->getDiagnostics().getClient()); 1031 1032 adapter->ResetManager(&diagnostic_manager); 1033 1034 const char *expr_text = m_expr.Text(); 1035 1036 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 1037 bool created_main_file = false; 1038 1039 // Clang wants to do completion on a real file known by Clang's file manager, 1040 // so we have to create one to make this work. 1041 // TODO: We probably could also simulate to Clang's file manager that there 1042 // is a real file that contains our code. 1043 bool should_create_file = completion_consumer != nullptr; 1044 1045 // We also want a real file on disk if we generate full debug info. 1046 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 1047 codegenoptions::FullDebugInfo; 1048 1049 if (should_create_file) { 1050 int temp_fd = -1; 1051 llvm::SmallString<128> result_path; 1052 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 1053 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 1054 std::string temp_source_path = tmpdir_file_spec.GetPath(); 1055 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 1056 } else { 1057 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 1058 } 1059 1060 if (temp_fd != -1) { 1061 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true); 1062 const size_t expr_text_len = strlen(expr_text); 1063 size_t bytes_written = expr_text_len; 1064 if (file.Write(expr_text, bytes_written).Success()) { 1065 if (bytes_written == expr_text_len) { 1066 file.Close(); 1067 if (auto fileEntry = 1068 m_compiler->getFileManager().getFile(result_path)) { 1069 source_mgr.setMainFileID(source_mgr.createFileID( 1070 *fileEntry, 1071 SourceLocation(), SrcMgr::C_User)); 1072 created_main_file = true; 1073 } 1074 } 1075 } 1076 } 1077 } 1078 1079 if (!created_main_file) { 1080 std::unique_ptr<MemoryBuffer> memory_buffer = 1081 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 1082 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 1083 } 1084 1085 adapter->BeginSourceFile(m_compiler->getLangOpts(), 1086 &m_compiler->getPreprocessor()); 1087 1088 ClangExpressionHelper *type_system_helper = 1089 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1090 1091 // If we want to parse for code completion, we need to attach our code 1092 // completion consumer to the Sema and specify a completion position. 1093 // While parsing the Sema will call this consumer with the provided 1094 // completion suggestions. 1095 if (completion_consumer) { 1096 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 1097 auto &PP = m_compiler->getPreprocessor(); 1098 // Lines and columns start at 1 in Clang, but code completion positions are 1099 // indexed from 0, so we need to add 1 to the line and column here. 1100 ++completion_line; 1101 ++completion_column; 1102 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 1103 } 1104 1105 ASTConsumer *ast_transformer = 1106 type_system_helper->ASTTransformer(m_code_generator.get()); 1107 1108 std::unique_ptr<clang::ASTConsumer> Consumer; 1109 if (ast_transformer) { 1110 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer); 1111 } else if (m_code_generator) { 1112 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get()); 1113 } else { 1114 Consumer = std::make_unique<ASTConsumer>(); 1115 } 1116 1117 clang::ASTContext &ast_context = m_compiler->getASTContext(); 1118 1119 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 1120 *Consumer, TU_Complete, completion_consumer)); 1121 m_compiler->setASTConsumer(std::move(Consumer)); 1122 1123 if (ast_context.getLangOpts().Modules) { 1124 m_compiler->createASTReader(); 1125 m_ast_context->setSema(&m_compiler->getSema()); 1126 } 1127 1128 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 1129 if (decl_map) { 1130 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 1131 decl_map->InstallDiagnosticManager(diagnostic_manager); 1132 1133 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 1134 1135 if (ast_context.getExternalSource()) { 1136 auto module_wrapper = 1137 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 1138 1139 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 1140 1141 auto multiplexer = 1142 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 1143 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 1144 ast_context.setExternalSource(Source); 1145 } else { 1146 ast_context.setExternalSource(ast_source); 1147 } 1148 decl_map->InstallASTContext(*m_ast_context); 1149 } 1150 1151 // Check that the ASTReader is properly attached to ASTContext and Sema. 1152 if (ast_context.getLangOpts().Modules) { 1153 assert(m_compiler->getASTContext().getExternalSource() && 1154 "ASTContext doesn't know about the ASTReader?"); 1155 assert(m_compiler->getSema().getExternalSource() && 1156 "Sema doesn't know about the ASTReader?"); 1157 } 1158 1159 { 1160 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1161 &m_compiler->getSema()); 1162 ParseAST(m_compiler->getSema(), false, false); 1163 } 1164 1165 // Make sure we have no pointer to the Sema we are about to destroy. 1166 if (ast_context.getLangOpts().Modules) 1167 m_ast_context->setSema(nullptr); 1168 // Destroy the Sema. This is necessary because we want to emulate the 1169 // original behavior of ParseAST (which also destroys the Sema after parsing). 1170 m_compiler->setSema(nullptr); 1171 1172 adapter->EndSourceFile(); 1173 1174 unsigned num_errors = adapter->getNumErrors(); 1175 1176 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1177 num_errors++; 1178 diagnostic_manager.PutString(eDiagnosticSeverityError, 1179 "while importing modules:"); 1180 diagnostic_manager.AppendMessageToDiagnostic( 1181 m_pp_callbacks->getErrorString()); 1182 } 1183 1184 if (!num_errors) { 1185 type_system_helper->CommitPersistentDecls(); 1186 } 1187 1188 adapter->ResetManager(); 1189 1190 return num_errors; 1191 } 1192 1193 std::string 1194 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1195 std::string abi; 1196 1197 if (target_arch.IsMIPS()) { 1198 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1199 case ArchSpec::eMIPSABI_N64: 1200 abi = "n64"; 1201 break; 1202 case ArchSpec::eMIPSABI_N32: 1203 abi = "n32"; 1204 break; 1205 case ArchSpec::eMIPSABI_O32: 1206 abi = "o32"; 1207 break; 1208 default: 1209 break; 1210 } 1211 } 1212 return abi; 1213 } 1214 1215 /// Applies the given Fix-It hint to the given commit. 1216 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) { 1217 // This is cobbed from clang::Rewrite::FixItRewriter. 1218 if (fixit.CodeToInsert.empty()) { 1219 if (fixit.InsertFromRange.isValid()) { 1220 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1221 fixit.InsertFromRange, /*afterToken=*/false, 1222 fixit.BeforePreviousInsertions); 1223 return; 1224 } 1225 commit.remove(fixit.RemoveRange); 1226 return; 1227 } 1228 if (fixit.RemoveRange.isTokenRange() || 1229 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) { 1230 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1231 return; 1232 } 1233 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1234 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1235 } 1236 1237 bool ClangExpressionParser::RewriteExpression( 1238 DiagnosticManager &diagnostic_manager) { 1239 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1240 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1241 nullptr); 1242 clang::edit::Commit commit(editor); 1243 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1244 1245 class RewritesReceiver : public edit::EditsReceiver { 1246 Rewriter &rewrite; 1247 1248 public: 1249 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1250 1251 void insert(SourceLocation loc, StringRef text) override { 1252 rewrite.InsertText(loc, text); 1253 } 1254 void replace(CharSourceRange range, StringRef text) override { 1255 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1256 } 1257 }; 1258 1259 RewritesReceiver rewrites_receiver(rewriter); 1260 1261 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1262 size_t num_diags = diagnostics.size(); 1263 if (num_diags == 0) 1264 return false; 1265 1266 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1267 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1268 if (!diagnostic) 1269 continue; 1270 if (!diagnostic->HasFixIts()) 1271 continue; 1272 for (const FixItHint &fixit : diagnostic->FixIts()) 1273 ApplyFixIt(fixit, commit); 1274 } 1275 1276 // FIXME - do we want to try to propagate specific errors here? 1277 if (!commit.isCommitable()) 1278 return false; 1279 else if (!editor.commit(commit)) 1280 return false; 1281 1282 // Now play all the edits, and stash the result in the diagnostic manager. 1283 editor.applyRewrites(rewrites_receiver); 1284 RewriteBuffer &main_file_buffer = 1285 rewriter.getEditBuffer(source_manager.getMainFileID()); 1286 1287 std::string fixed_expression; 1288 llvm::raw_string_ostream out_stream(fixed_expression); 1289 1290 main_file_buffer.write(out_stream); 1291 out_stream.flush(); 1292 diagnostic_manager.SetFixedExpression(fixed_expression); 1293 1294 return true; 1295 } 1296 1297 static bool FindFunctionInModule(ConstString &mangled_name, 1298 llvm::Module *module, const char *orig_name) { 1299 for (const auto &func : module->getFunctionList()) { 1300 const StringRef &name = func.getName(); 1301 if (name.find(orig_name) != StringRef::npos) { 1302 mangled_name.SetString(name); 1303 return true; 1304 } 1305 } 1306 1307 return false; 1308 } 1309 1310 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1311 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1312 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1313 bool &can_interpret, ExecutionPolicy execution_policy) { 1314 func_addr = LLDB_INVALID_ADDRESS; 1315 func_end = LLDB_INVALID_ADDRESS; 1316 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1317 1318 lldb_private::Status err; 1319 1320 std::unique_ptr<llvm::Module> llvm_module_up( 1321 m_code_generator->ReleaseModule()); 1322 1323 if (!llvm_module_up) { 1324 err.SetErrorToGenericError(); 1325 err.SetErrorString("IR doesn't contain a module"); 1326 return err; 1327 } 1328 1329 ConstString function_name; 1330 1331 if (execution_policy != eExecutionPolicyTopLevel) { 1332 // Find the actual name of the function (it's often mangled somehow) 1333 1334 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1335 m_expr.FunctionName())) { 1336 err.SetErrorToGenericError(); 1337 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1338 m_expr.FunctionName()); 1339 return err; 1340 } else { 1341 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1342 m_expr.FunctionName()); 1343 } 1344 } 1345 1346 SymbolContext sc; 1347 1348 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1349 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1350 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1351 sc.target_sp = target_sp; 1352 } 1353 1354 LLVMUserExpression::IRPasses custom_passes; 1355 { 1356 auto lang = m_expr.Language(); 1357 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1358 Language::GetNameForLanguageType(lang)); 1359 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1360 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1361 auto runtime = process_sp->GetLanguageRuntime(lang); 1362 if (runtime) 1363 runtime->GetIRPasses(custom_passes); 1364 } 1365 } 1366 1367 if (custom_passes.EarlyPasses) { 1368 LLDB_LOGF(log, 1369 "%s - Running Early IR Passes from LanguageRuntime on " 1370 "expression module '%s'", 1371 __FUNCTION__, m_expr.FunctionName()); 1372 1373 custom_passes.EarlyPasses->run(*llvm_module_up); 1374 } 1375 1376 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1377 m_llvm_context, // handed off here 1378 llvm_module_up, // handed off here 1379 function_name, exe_ctx.GetTargetSP(), sc, 1380 m_compiler->getTargetOpts().Features); 1381 1382 ClangExpressionHelper *type_system_helper = 1383 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1384 ClangExpressionDeclMap *decl_map = 1385 type_system_helper->DeclMap(); // result can be NULL 1386 1387 if (decl_map) { 1388 StreamString error_stream; 1389 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1390 *execution_unit_sp, error_stream, 1391 function_name.AsCString()); 1392 1393 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) { 1394 err.SetErrorString(error_stream.GetString()); 1395 return err; 1396 } 1397 1398 Process *process = exe_ctx.GetProcessPtr(); 1399 1400 if (execution_policy != eExecutionPolicyAlways && 1401 execution_policy != eExecutionPolicyTopLevel) { 1402 lldb_private::Status interpret_error; 1403 1404 bool interpret_function_calls = 1405 !process ? false : process->CanInterpretFunctionCalls(); 1406 can_interpret = IRInterpreter::CanInterpret( 1407 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1408 interpret_error, interpret_function_calls); 1409 1410 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1411 err.SetErrorStringWithFormat( 1412 "Can't evaluate the expression without a running target due to: %s", 1413 interpret_error.AsCString()); 1414 return err; 1415 } 1416 } 1417 1418 if (!process && execution_policy == eExecutionPolicyAlways) { 1419 err.SetErrorString("Expression needed to run in the target, but the " 1420 "target can't be run"); 1421 return err; 1422 } 1423 1424 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1425 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1426 "target, but the target can't be run"); 1427 return err; 1428 } 1429 1430 if (execution_policy == eExecutionPolicyAlways || 1431 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1432 if (m_expr.NeedsValidation() && process) { 1433 if (!process->GetDynamicCheckers()) { 1434 ClangDynamicCheckerFunctions *dynamic_checkers = 1435 new ClangDynamicCheckerFunctions(); 1436 1437 DiagnosticManager install_diagnostics; 1438 1439 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1440 if (install_diagnostics.Diagnostics().size()) 1441 err.SetErrorString(install_diagnostics.GetString().c_str()); 1442 else 1443 err.SetErrorString("couldn't install checkers, unknown error"); 1444 1445 return err; 1446 } 1447 1448 process->SetDynamicCheckers(dynamic_checkers); 1449 1450 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1451 "Finished installing dynamic checkers =="); 1452 } 1453 1454 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1455 process->GetDynamicCheckers())) { 1456 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1457 function_name.AsCString()); 1458 1459 llvm::Module *module = execution_unit_sp->GetModule(); 1460 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1461 err.SetErrorToGenericError(); 1462 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1463 return err; 1464 } 1465 1466 if (custom_passes.LatePasses) { 1467 LLDB_LOGF(log, 1468 "%s - Running Late IR Passes from LanguageRuntime on " 1469 "expression module '%s'", 1470 __FUNCTION__, m_expr.FunctionName()); 1471 1472 custom_passes.LatePasses->run(*module); 1473 } 1474 } 1475 } 1476 } 1477 1478 if (execution_policy == eExecutionPolicyAlways || 1479 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1480 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1481 } 1482 } else { 1483 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1484 } 1485 1486 return err; 1487 } 1488 1489 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1490 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1491 lldb_private::Status err; 1492 1493 lldbassert(execution_unit_sp.get()); 1494 lldbassert(exe_ctx.HasThreadScope()); 1495 1496 if (!execution_unit_sp.get()) { 1497 err.SetErrorString( 1498 "can't run static initializers for a NULL execution unit"); 1499 return err; 1500 } 1501 1502 if (!exe_ctx.HasThreadScope()) { 1503 err.SetErrorString("can't run static initializers without a thread"); 1504 return err; 1505 } 1506 1507 std::vector<lldb::addr_t> static_initializers; 1508 1509 execution_unit_sp->GetStaticInitializers(static_initializers); 1510 1511 for (lldb::addr_t static_initializer : static_initializers) { 1512 EvaluateExpressionOptions options; 1513 1514 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1515 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1516 llvm::ArrayRef<lldb::addr_t>(), options)); 1517 1518 DiagnosticManager execution_errors; 1519 lldb::ExpressionResults results = 1520 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1521 exe_ctx, call_static_initializer, options, execution_errors); 1522 1523 if (results != lldb::eExpressionCompleted) { 1524 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1525 execution_errors.GetString().c_str()); 1526 return err; 1527 } 1528 } 1529 1530 return err; 1531 } 1532