1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" 71 #include "lldb/Core/Debugger.h" 72 #include "lldb/Core/Disassembler.h" 73 #include "lldb/Core/Module.h" 74 #include "lldb/Core/StreamFile.h" 75 #include "lldb/Expression/IRExecutionUnit.h" 76 #include "lldb/Expression/IRInterpreter.h" 77 #include "lldb/Host/File.h" 78 #include "lldb/Host/HostInfo.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/ReproducerProvider.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h" 95 96 #include <cctype> 97 #include <memory> 98 99 using namespace clang; 100 using namespace llvm; 101 using namespace lldb_private; 102 103 //===----------------------------------------------------------------------===// 104 // Utility Methods for Clang 105 //===----------------------------------------------------------------------===// 106 107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 108 ClangModulesDeclVendor &m_decl_vendor; 109 ClangPersistentVariables &m_persistent_vars; 110 clang::SourceManager &m_source_mgr; 111 StreamString m_error_stream; 112 bool m_has_errors = false; 113 114 public: 115 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 116 ClangPersistentVariables &persistent_vars, 117 clang::SourceManager &source_mgr) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 119 m_source_mgr(source_mgr) {} 120 121 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 122 const clang::Module * /*null*/) override { 123 // Ignore modules that are imported in the wrapper code as these are not 124 // loaded by the user. 125 llvm::StringRef filename = 126 m_source_mgr.getPresumedLoc(import_location).getFilename(); 127 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 128 return; 129 130 SourceModule module; 131 132 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 133 module.path.push_back(ConstString(component.first->getName())); 134 135 StreamString error_stream; 136 137 ClangModulesDeclVendor::ModuleVector exported_modules; 138 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 139 m_has_errors = true; 140 141 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 142 m_persistent_vars.AddHandLoadedClangModule(module); 143 } 144 145 bool hasErrors() { return m_has_errors; } 146 147 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 148 }; 149 150 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) { 151 for (auto &fix_it : Info.getFixItHints()) { 152 if (fix_it.isNull()) 153 continue; 154 diag->AddFixitHint(fix_it); 155 } 156 } 157 158 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 159 public: 160 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 161 DiagnosticOptions *options = new DiagnosticOptions(opts); 162 options->ShowPresumedLoc = true; 163 options->ShowLevel = false; 164 m_os = std::make_shared<llvm::raw_string_ostream>(m_output); 165 m_passthrough = 166 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options); 167 } 168 169 void ResetManager(DiagnosticManager *manager = nullptr) { 170 m_manager = manager; 171 } 172 173 /// Returns the last ClangDiagnostic message that the DiagnosticManager 174 /// received or a nullptr if the DiagnosticMangager hasn't seen any 175 /// Clang diagnostics yet. 176 ClangDiagnostic *MaybeGetLastClangDiag() const { 177 if (m_manager->Diagnostics().empty()) 178 return nullptr; 179 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get(); 180 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag); 181 return clang_diag; 182 } 183 184 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 185 const clang::Diagnostic &Info) override { 186 if (!m_manager) { 187 // We have no DiagnosticManager before/after parsing but we still could 188 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 189 // when we move the expression result ot the ScratchASTContext). Let's at 190 // least log these diagnostics until we find a way to properly render 191 // them and display them to the user. 192 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 193 if (log) { 194 llvm::SmallVector<char, 32> diag_str; 195 Info.FormatDiagnostic(diag_str); 196 diag_str.push_back('\0'); 197 const char *plain_diag = diag_str.data(); 198 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 199 } 200 return; 201 } 202 203 // Update error/warning counters. 204 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info); 205 206 // Render diagnostic message to m_output. 207 m_output.clear(); 208 m_passthrough->HandleDiagnostic(DiagLevel, Info); 209 m_os->flush(); 210 211 lldb_private::DiagnosticSeverity severity; 212 bool make_new_diagnostic = true; 213 214 switch (DiagLevel) { 215 case DiagnosticsEngine::Level::Fatal: 216 case DiagnosticsEngine::Level::Error: 217 severity = eDiagnosticSeverityError; 218 break; 219 case DiagnosticsEngine::Level::Warning: 220 severity = eDiagnosticSeverityWarning; 221 break; 222 case DiagnosticsEngine::Level::Remark: 223 case DiagnosticsEngine::Level::Ignored: 224 severity = eDiagnosticSeverityRemark; 225 break; 226 case DiagnosticsEngine::Level::Note: 227 m_manager->AppendMessageToDiagnostic(m_output); 228 make_new_diagnostic = false; 229 230 // 'note:' diagnostics for errors and warnings can also contain Fix-Its. 231 // We add these Fix-Its to the last error diagnostic to make sure 232 // that we later have all Fix-Its related to an 'error' diagnostic when 233 // we apply them to the user expression. 234 auto *clang_diag = MaybeGetLastClangDiag(); 235 // If we don't have a previous diagnostic there is nothing to do. 236 // If the previous diagnostic already has its own Fix-Its, assume that 237 // the 'note:' Fix-It is just an alternative way to solve the issue and 238 // ignore these Fix-Its. 239 if (!clang_diag || clang_diag->HasFixIts()) 240 break; 241 // Ignore all Fix-Its that are not associated with an error. 242 if (clang_diag->GetSeverity() != eDiagnosticSeverityError) 243 break; 244 AddAllFixIts(clang_diag, Info); 245 break; 246 } 247 if (make_new_diagnostic) { 248 // ClangDiagnostic messages are expected to have no whitespace/newlines 249 // around them. 250 std::string stripped_output = 251 std::string(llvm::StringRef(m_output).trim()); 252 253 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 254 stripped_output, severity, Info.getID()); 255 256 // Don't store away warning fixits, since the compiler doesn't have 257 // enough context in an expression for the warning to be useful. 258 // FIXME: Should we try to filter out FixIts that apply to our generated 259 // code, and not the user's expression? 260 if (severity == eDiagnosticSeverityError) 261 AddAllFixIts(new_diagnostic.get(), Info); 262 263 m_manager->AddDiagnostic(std::move(new_diagnostic)); 264 } 265 } 266 267 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override { 268 m_passthrough->BeginSourceFile(LO, PP); 269 } 270 271 void EndSourceFile() override { m_passthrough->EndSourceFile(); } 272 273 private: 274 DiagnosticManager *m_manager = nullptr; 275 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 276 /// Output stream of m_passthrough. 277 std::shared_ptr<llvm::raw_string_ostream> m_os; 278 /// Output string filled by m_os. 279 std::string m_output; 280 }; 281 282 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 283 std::vector<std::string> include_directories, 284 lldb::TargetSP target_sp) { 285 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 286 287 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 288 289 for (const std::string &dir : include_directories) { 290 search_opts.AddPath(dir, frontend::System, false, true); 291 LLDB_LOG(log, "Added user include dir: {0}", dir); 292 } 293 294 llvm::SmallString<128> module_cache; 295 const auto &props = ModuleList::GetGlobalModuleListProperties(); 296 props.GetClangModulesCachePath().GetPath(module_cache); 297 search_opts.ModuleCachePath = std::string(module_cache.str()); 298 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 299 300 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 301 302 search_opts.ImplicitModuleMaps = true; 303 } 304 305 //===----------------------------------------------------------------------===// 306 // Implementation of ClangExpressionParser 307 //===----------------------------------------------------------------------===// 308 309 ClangExpressionParser::ClangExpressionParser( 310 ExecutionContextScope *exe_scope, Expression &expr, 311 bool generate_debug_info, std::vector<std::string> include_directories, 312 std::string filename) 313 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 314 m_pp_callbacks(nullptr), 315 m_include_directories(std::move(include_directories)), 316 m_filename(std::move(filename)) { 317 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 318 319 // We can't compile expressions without a target. So if the exe_scope is 320 // null or doesn't have a target, then we just need to get out of here. I'll 321 // lldbassert and not make any of the compiler objects since 322 // I can't return errors directly from the constructor. Further calls will 323 // check if the compiler was made and 324 // bag out if it wasn't. 325 326 if (!exe_scope) { 327 lldbassert(exe_scope && 328 "Can't make an expression parser with a null scope."); 329 return; 330 } 331 332 lldb::TargetSP target_sp; 333 target_sp = exe_scope->CalculateTarget(); 334 if (!target_sp) { 335 lldbassert(target_sp.get() && 336 "Can't make an expression parser with a null target."); 337 return; 338 } 339 340 // 1. Create a new compiler instance. 341 m_compiler = std::make_unique<CompilerInstance>(); 342 343 // When capturing a reproducer, hook up the file collector with clang to 344 // collector modules and headers. 345 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 346 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 347 m_compiler->setModuleDepCollector( 348 std::make_shared<ModuleDependencyCollectorAdaptor>( 349 fp.GetFileCollector())); 350 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 351 opts.IncludeSystemHeaders = true; 352 opts.IncludeModuleFiles = true; 353 } 354 355 // Make sure clang uses the same VFS as LLDB. 356 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 357 358 lldb::LanguageType frame_lang = 359 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 360 bool overridden_target_opts = false; 361 lldb_private::LanguageRuntime *lang_rt = nullptr; 362 363 std::string abi; 364 ArchSpec target_arch; 365 target_arch = target_sp->GetArchitecture(); 366 367 const auto target_machine = target_arch.GetMachine(); 368 369 // If the expression is being evaluated in the context of an existing stack 370 // frame, we introspect to see if the language runtime is available. 371 372 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 373 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 374 375 // Make sure the user hasn't provided a preferred execution language with 376 // `expression --language X -- ...` 377 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 378 frame_lang = frame_sp->GetLanguage(); 379 380 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 381 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 382 LLDB_LOGF(log, "Frame has language of type %s", 383 Language::GetNameForLanguageType(frame_lang)); 384 } 385 386 // 2. Configure the compiler with a set of default options that are 387 // appropriate for most situations. 388 if (target_arch.IsValid()) { 389 std::string triple = target_arch.GetTriple().str(); 390 m_compiler->getTargetOpts().Triple = triple; 391 LLDB_LOGF(log, "Using %s as the target triple", 392 m_compiler->getTargetOpts().Triple.c_str()); 393 } else { 394 // If we get here we don't have a valid target and just have to guess. 395 // Sometimes this will be ok to just use the host target triple (when we 396 // evaluate say "2+3", but other expressions like breakpoint conditions and 397 // other things that _are_ target specific really shouldn't just be using 398 // the host triple. In such a case the language runtime should expose an 399 // overridden options set (3), below. 400 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 401 LLDB_LOGF(log, "Using default target triple of %s", 402 m_compiler->getTargetOpts().Triple.c_str()); 403 } 404 // Now add some special fixes for known architectures: Any arm32 iOS 405 // environment, but not on arm64 406 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 407 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 408 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 409 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 410 } 411 // Supported subsets of x86 412 if (target_machine == llvm::Triple::x86 || 413 target_machine == llvm::Triple::x86_64) { 414 m_compiler->getTargetOpts().Features.push_back("+sse"); 415 m_compiler->getTargetOpts().Features.push_back("+sse2"); 416 } 417 418 // Set the target CPU to generate code for. This will be empty for any CPU 419 // that doesn't really need to make a special 420 // CPU string. 421 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 422 423 // Set the target ABI 424 abi = GetClangTargetABI(target_arch); 425 if (!abi.empty()) 426 m_compiler->getTargetOpts().ABI = abi; 427 428 // 3. Now allow the runtime to provide custom configuration options for the 429 // target. In this case, a specialized language runtime is available and we 430 // can query it for extra options. For 99% of use cases, this will not be 431 // needed and should be provided when basic platform detection is not enough. 432 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this 433 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime 434 // having knowledge of clang::TargetOpts. 435 if (auto *renderscript_rt = 436 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt)) 437 overridden_target_opts = 438 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 439 440 if (overridden_target_opts) 441 if (log && log->GetVerbose()) { 442 LLDB_LOGV( 443 log, "Using overridden target options for the expression evaluation"); 444 445 auto opts = m_compiler->getTargetOpts(); 446 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 447 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 448 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 449 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 450 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 451 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 452 StringList::LogDump(log, opts.Features, "Features"); 453 } 454 455 // 4. Create and install the target on the compiler. 456 m_compiler->createDiagnostics(); 457 // Limit the number of error diagnostics we emit. 458 // A value of 0 means no limit for both LLDB and Clang. 459 m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit()); 460 461 auto target_info = TargetInfo::CreateTargetInfo( 462 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 463 if (log) { 464 LLDB_LOGF(log, "Using SIMD alignment: %d", 465 target_info->getSimdDefaultAlign()); 466 LLDB_LOGF(log, "Target datalayout string: '%s'", 467 target_info->getDataLayout().getStringRepresentation().c_str()); 468 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 469 LLDB_LOGF(log, "Target vector alignment: %d", 470 target_info->getMaxVectorAlign()); 471 } 472 m_compiler->setTarget(target_info); 473 474 assert(m_compiler->hasTarget()); 475 476 // 5. Set language options. 477 lldb::LanguageType language = expr.Language(); 478 LangOptions &lang_opts = m_compiler->getLangOpts(); 479 480 switch (language) { 481 case lldb::eLanguageTypeC: 482 case lldb::eLanguageTypeC89: 483 case lldb::eLanguageTypeC99: 484 case lldb::eLanguageTypeC11: 485 // FIXME: the following language option is a temporary workaround, 486 // to "ask for C, get C++." 487 // For now, the expression parser must use C++ anytime the language is a C 488 // family language, because the expression parser uses features of C++ to 489 // capture values. 490 lang_opts.CPlusPlus = true; 491 break; 492 case lldb::eLanguageTypeObjC: 493 lang_opts.ObjC = true; 494 // FIXME: the following language option is a temporary workaround, 495 // to "ask for ObjC, get ObjC++" (see comment above). 496 lang_opts.CPlusPlus = true; 497 498 // Clang now sets as default C++14 as the default standard (with 499 // GNU extensions), so we do the same here to avoid mismatches that 500 // cause compiler error when evaluating expressions (e.g. nullptr not found 501 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 502 // two lines below) so we decide to be consistent with that, but this could 503 // be re-evaluated in the future. 504 lang_opts.CPlusPlus11 = true; 505 break; 506 case lldb::eLanguageTypeC_plus_plus: 507 case lldb::eLanguageTypeC_plus_plus_11: 508 case lldb::eLanguageTypeC_plus_plus_14: 509 lang_opts.CPlusPlus11 = true; 510 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 511 LLVM_FALLTHROUGH; 512 case lldb::eLanguageTypeC_plus_plus_03: 513 lang_opts.CPlusPlus = true; 514 if (process_sp) 515 lang_opts.ObjC = 516 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 517 break; 518 case lldb::eLanguageTypeObjC_plus_plus: 519 case lldb::eLanguageTypeUnknown: 520 default: 521 lang_opts.ObjC = true; 522 lang_opts.CPlusPlus = true; 523 lang_opts.CPlusPlus11 = true; 524 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 525 break; 526 } 527 528 lang_opts.Bool = true; 529 lang_opts.WChar = true; 530 lang_opts.Blocks = true; 531 lang_opts.DebuggerSupport = 532 true; // Features specifically for debugger clients 533 if (expr.DesiredResultType() == Expression::eResultTypeId) 534 lang_opts.DebuggerCastResultToId = true; 535 536 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 537 .CharIsSignedByDefault(); 538 539 // Spell checking is a nice feature, but it ends up completing a lot of types 540 // that we didn't strictly speaking need to complete. As a result, we spend a 541 // long time parsing and importing debug information. 542 lang_opts.SpellChecking = false; 543 544 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 545 if (clang_expr && clang_expr->DidImportCxxModules()) { 546 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 547 548 lang_opts.Modules = true; 549 // We want to implicitly build modules. 550 lang_opts.ImplicitModules = true; 551 // To automatically import all submodules when we import 'std'. 552 lang_opts.ModulesLocalVisibility = false; 553 554 // We use the @import statements, so we need this: 555 // FIXME: We could use the modules-ts, but that currently doesn't work. 556 lang_opts.ObjC = true; 557 558 // Options we need to parse libc++ code successfully. 559 // FIXME: We should ask the driver for the appropriate default flags. 560 lang_opts.GNUMode = true; 561 lang_opts.GNUKeywords = true; 562 lang_opts.DoubleSquareBracketAttributes = true; 563 lang_opts.CPlusPlus11 = true; 564 565 // The Darwin libc expects this macro to be set. 566 lang_opts.GNUCVersion = 40201; 567 568 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 569 target_sp); 570 } 571 572 if (process_sp && lang_opts.ObjC) { 573 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 574 if (runtime->GetRuntimeVersion() == 575 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 576 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 577 else 578 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 579 VersionTuple(10, 7)); 580 581 if (runtime->HasNewLiteralsAndIndexing()) 582 lang_opts.DebuggerObjCLiteral = true; 583 } 584 } 585 586 lang_opts.ThreadsafeStatics = false; 587 lang_opts.AccessControl = false; // Debuggers get universal access 588 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 589 // We enable all builtin functions beside the builtins from libc/libm (e.g. 590 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 591 // additionally enabling them as expandable builtins is breaking Clang. 592 lang_opts.NoBuiltin = true; 593 594 // Set CodeGen options 595 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 596 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 597 m_compiler->getCodeGenOpts().setFramePointer( 598 CodeGenOptions::FramePointerKind::All); 599 if (generate_debug_info) 600 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 601 else 602 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 603 604 // Disable some warnings. 605 m_compiler->getDiagnostics().setSeverityForGroup( 606 clang::diag::Flavor::WarningOrError, "unused-value", 607 clang::diag::Severity::Ignored, SourceLocation()); 608 m_compiler->getDiagnostics().setSeverityForGroup( 609 clang::diag::Flavor::WarningOrError, "odr", 610 clang::diag::Severity::Ignored, SourceLocation()); 611 612 // Inform the target of the language options 613 // 614 // FIXME: We shouldn't need to do this, the target should be immutable once 615 // created. This complexity should be lifted elsewhere. 616 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 617 618 // 6. Set up the diagnostic buffer for reporting errors 619 620 auto diag_mgr = new ClangDiagnosticManagerAdapter( 621 m_compiler->getDiagnostics().getDiagnosticOptions()); 622 m_compiler->getDiagnostics().setClient(diag_mgr); 623 624 // 7. Set up the source management objects inside the compiler 625 m_compiler->createFileManager(); 626 if (!m_compiler->hasSourceManager()) 627 m_compiler->createSourceManager(m_compiler->getFileManager()); 628 m_compiler->createPreprocessor(TU_Complete); 629 630 if (ClangModulesDeclVendor *decl_vendor = 631 target_sp->GetClangModulesDeclVendor()) { 632 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 633 target_sp->GetPersistentExpressionStateForLanguage( 634 lldb::eLanguageTypeC))) { 635 std::unique_ptr<PPCallbacks> pp_callbacks( 636 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 637 m_compiler->getSourceManager())); 638 m_pp_callbacks = 639 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 640 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 641 } 642 } 643 644 // 8. Most of this we get from the CompilerInstance, but we also want to give 645 // the context an ExternalASTSource. 646 647 auto &PP = m_compiler->getPreprocessor(); 648 auto &builtin_context = PP.getBuiltinInfo(); 649 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 650 m_compiler->getLangOpts()); 651 652 m_compiler->createASTContext(); 653 clang::ASTContext &ast_context = m_compiler->getASTContext(); 654 655 m_ast_context = std::make_unique<TypeSystemClang>( 656 "Expression ASTContext for '" + m_filename + "'", ast_context); 657 658 std::string module_name("$__lldb_module"); 659 660 m_llvm_context = std::make_unique<LLVMContext>(); 661 m_code_generator.reset(CreateLLVMCodeGen( 662 m_compiler->getDiagnostics(), module_name, 663 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 664 m_compiler->getCodeGenOpts(), *m_llvm_context)); 665 } 666 667 ClangExpressionParser::~ClangExpressionParser() {} 668 669 namespace { 670 671 /// \class CodeComplete 672 /// 673 /// A code completion consumer for the clang Sema that is responsible for 674 /// creating the completion suggestions when a user requests completion 675 /// of an incomplete `expr` invocation. 676 class CodeComplete : public CodeCompleteConsumer { 677 CodeCompletionTUInfo m_info; 678 679 std::string m_expr; 680 unsigned m_position = 0; 681 /// The printing policy we use when printing declarations for our completion 682 /// descriptions. 683 clang::PrintingPolicy m_desc_policy; 684 685 struct CompletionWithPriority { 686 CompletionResult::Completion completion; 687 /// See CodeCompletionResult::Priority; 688 unsigned Priority; 689 690 /// Establishes a deterministic order in a list of CompletionWithPriority. 691 /// The order returned here is the order in which the completions are 692 /// displayed to the user. 693 bool operator<(const CompletionWithPriority &o) const { 694 // High priority results should come first. 695 if (Priority != o.Priority) 696 return Priority > o.Priority; 697 698 // Identical priority, so just make sure it's a deterministic order. 699 return completion.GetUniqueKey() < o.completion.GetUniqueKey(); 700 } 701 }; 702 703 /// The stored completions. 704 /// Warning: These are in a non-deterministic order until they are sorted 705 /// and returned back to the caller. 706 std::vector<CompletionWithPriority> m_completions; 707 708 /// Returns true if the given character can be used in an identifier. 709 /// This also returns true for numbers because for completion we usually 710 /// just iterate backwards over iterators. 711 /// 712 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 713 static bool IsIdChar(char c) { 714 return c == '_' || std::isalnum(c) || c == '$'; 715 } 716 717 /// Returns true if the given character is used to separate arguments 718 /// in the command line of lldb. 719 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 720 721 /// Drops all tokens in front of the expression that are unrelated for 722 /// the completion of the cmd line. 'unrelated' means here that the token 723 /// is not interested for the lldb completion API result. 724 StringRef dropUnrelatedFrontTokens(StringRef cmd) const { 725 if (cmd.empty()) 726 return cmd; 727 728 // If we are at the start of a word, then all tokens are unrelated to 729 // the current completion logic. 730 if (IsTokenSeparator(cmd.back())) 731 return StringRef(); 732 733 // Remove all previous tokens from the string as they are unrelated 734 // to completing the current token. 735 StringRef to_remove = cmd; 736 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 737 to_remove = to_remove.drop_back(); 738 } 739 cmd = cmd.drop_front(to_remove.size()); 740 741 return cmd; 742 } 743 744 /// Removes the last identifier token from the given cmd line. 745 StringRef removeLastToken(StringRef cmd) const { 746 while (!cmd.empty() && IsIdChar(cmd.back())) { 747 cmd = cmd.drop_back(); 748 } 749 return cmd; 750 } 751 752 /// Attempts to merge the given completion from the given position into the 753 /// existing command. Returns the completion string that can be returned to 754 /// the lldb completion API. 755 std::string mergeCompletion(StringRef existing, unsigned pos, 756 StringRef completion) const { 757 StringRef existing_command = existing.substr(0, pos); 758 // We rewrite the last token with the completion, so let's drop that 759 // token from the command. 760 existing_command = removeLastToken(existing_command); 761 // We also should remove all previous tokens from the command as they 762 // would otherwise be added to the completion that already has the 763 // completion. 764 existing_command = dropUnrelatedFrontTokens(existing_command); 765 return existing_command.str() + completion.str(); 766 } 767 768 public: 769 /// Constructs a CodeComplete consumer that can be attached to a Sema. 770 /// 771 /// \param[out] expr 772 /// The whole expression string that we are currently parsing. This 773 /// string needs to be equal to the input the user typed, and NOT the 774 /// final code that Clang is parsing. 775 /// \param[out] position 776 /// The character position of the user cursor in the `expr` parameter. 777 /// 778 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position) 779 : CodeCompleteConsumer(CodeCompleteOptions()), 780 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 781 m_position(position), m_desc_policy(ops) { 782 783 // Ensure that the printing policy is producing a description that is as 784 // short as possible. 785 m_desc_policy.SuppressScope = true; 786 m_desc_policy.SuppressTagKeyword = true; 787 m_desc_policy.FullyQualifiedName = false; 788 m_desc_policy.TerseOutput = true; 789 m_desc_policy.IncludeNewlines = false; 790 m_desc_policy.UseVoidForZeroParams = false; 791 m_desc_policy.Bool = true; 792 } 793 794 /// \name Code-completion filtering 795 /// Check if the result should be filtered out. 796 bool isResultFilteredOut(StringRef Filter, 797 CodeCompletionResult Result) override { 798 // This code is mostly copied from CodeCompleteConsumer. 799 switch (Result.Kind) { 800 case CodeCompletionResult::RK_Declaration: 801 return !( 802 Result.Declaration->getIdentifier() && 803 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 804 case CodeCompletionResult::RK_Keyword: 805 return !StringRef(Result.Keyword).startswith(Filter); 806 case CodeCompletionResult::RK_Macro: 807 return !Result.Macro->getName().startswith(Filter); 808 case CodeCompletionResult::RK_Pattern: 809 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 810 } 811 // If we trigger this assert or the above switch yields a warning, then 812 // CodeCompletionResult has been enhanced with more kinds of completion 813 // results. Expand the switch above in this case. 814 assert(false && "Unknown completion result type?"); 815 // If we reach this, then we should just ignore whatever kind of unknown 816 // result we got back. We probably can't turn it into any kind of useful 817 // completion suggestion with the existing code. 818 return true; 819 } 820 821 private: 822 /// Generate the completion strings for the given CodeCompletionResult. 823 /// Note that this function has to process results that could come in 824 /// non-deterministic order, so this function should have no side effects. 825 /// To make this easier to enforce, this function and all its parameters 826 /// should always be const-qualified. 827 /// \return Returns llvm::None if no completion should be provided for the 828 /// given CodeCompletionResult. 829 llvm::Optional<CompletionWithPriority> 830 getCompletionForResult(const CodeCompletionResult &R) const { 831 std::string ToInsert; 832 std::string Description; 833 // Handle the different completion kinds that come from the Sema. 834 switch (R.Kind) { 835 case CodeCompletionResult::RK_Declaration: { 836 const NamedDecl *D = R.Declaration; 837 ToInsert = R.Declaration->getNameAsString(); 838 // If we have a function decl that has no arguments we want to 839 // complete the empty parantheses for the user. If the function has 840 // arguments, we at least complete the opening bracket. 841 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 842 if (F->getNumParams() == 0) 843 ToInsert += "()"; 844 else 845 ToInsert += "("; 846 raw_string_ostream OS(Description); 847 F->print(OS, m_desc_policy, false); 848 OS.flush(); 849 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 850 Description = V->getType().getAsString(m_desc_policy); 851 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 852 Description = F->getType().getAsString(m_desc_policy); 853 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 854 // If we try to complete a namespace, then we can directly append 855 // the '::'. 856 if (!N->isAnonymousNamespace()) 857 ToInsert += "::"; 858 } 859 break; 860 } 861 case CodeCompletionResult::RK_Keyword: 862 ToInsert = R.Keyword; 863 break; 864 case CodeCompletionResult::RK_Macro: 865 ToInsert = R.Macro->getName().str(); 866 break; 867 case CodeCompletionResult::RK_Pattern: 868 ToInsert = R.Pattern->getTypedText(); 869 break; 870 } 871 // We also filter some internal lldb identifiers here. The user 872 // shouldn't see these. 873 if (llvm::StringRef(ToInsert).startswith("$__lldb_")) 874 return llvm::None; 875 if (ToInsert.empty()) 876 return llvm::None; 877 // Merge the suggested Token into the existing command line to comply 878 // with the kind of result the lldb API expects. 879 std::string CompletionSuggestion = 880 mergeCompletion(m_expr, m_position, ToInsert); 881 882 CompletionResult::Completion completion(CompletionSuggestion, Description, 883 CompletionMode::Normal); 884 return {{completion, R.Priority}}; 885 } 886 887 public: 888 /// Adds the completions to the given CompletionRequest. 889 void GetCompletions(CompletionRequest &request) { 890 // Bring m_completions into a deterministic order and pass it on to the 891 // CompletionRequest. 892 llvm::sort(m_completions); 893 894 for (const CompletionWithPriority &C : m_completions) 895 request.AddCompletion(C.completion.GetCompletion(), 896 C.completion.GetDescription(), 897 C.completion.GetMode()); 898 } 899 900 /// \name Code-completion callbacks 901 /// Process the finalized code-completion results. 902 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 903 CodeCompletionResult *Results, 904 unsigned NumResults) override { 905 906 // The Sema put the incomplete token we try to complete in here during 907 // lexing, so we need to retrieve it here to know what we are completing. 908 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 909 910 // Iterate over all the results. Filter out results we don't want and 911 // process the rest. 912 for (unsigned I = 0; I != NumResults; ++I) { 913 // Filter the results with the information from the Sema. 914 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 915 continue; 916 917 CodeCompletionResult &R = Results[I]; 918 llvm::Optional<CompletionWithPriority> CompletionAndPriority = 919 getCompletionForResult(R); 920 if (!CompletionAndPriority) 921 continue; 922 m_completions.push_back(*CompletionAndPriority); 923 } 924 } 925 926 /// \param S the semantic-analyzer object for which code-completion is being 927 /// done. 928 /// 929 /// \param CurrentArg the index of the current argument. 930 /// 931 /// \param Candidates an array of overload candidates. 932 /// 933 /// \param NumCandidates the number of overload candidates 934 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 935 OverloadCandidate *Candidates, 936 unsigned NumCandidates, 937 SourceLocation OpenParLoc) override { 938 // At the moment we don't filter out any overloaded candidates. 939 } 940 941 CodeCompletionAllocator &getAllocator() override { 942 return m_info.getAllocator(); 943 } 944 945 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 946 }; 947 } // namespace 948 949 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 950 unsigned pos, unsigned typed_pos) { 951 DiagnosticManager mgr; 952 // We need the raw user expression here because that's what the CodeComplete 953 // class uses to provide completion suggestions. 954 // However, the `Text` method only gives us the transformed expression here. 955 // To actually get the raw user input here, we have to cast our expression to 956 // the LLVMUserExpression which exposes the right API. This should never fail 957 // as we always have a ClangUserExpression whenever we call this. 958 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 959 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(), 960 typed_pos); 961 // We don't need a code generator for parsing. 962 m_code_generator.reset(); 963 // Start parsing the expression with our custom code completion consumer. 964 ParseInternal(mgr, &CC, line, pos); 965 CC.GetCompletions(request); 966 return true; 967 } 968 969 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 970 return ParseInternal(diagnostic_manager); 971 } 972 973 unsigned 974 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 975 CodeCompleteConsumer *completion_consumer, 976 unsigned completion_line, 977 unsigned completion_column) { 978 ClangDiagnosticManagerAdapter *adapter = 979 static_cast<ClangDiagnosticManagerAdapter *>( 980 m_compiler->getDiagnostics().getClient()); 981 982 adapter->ResetManager(&diagnostic_manager); 983 984 const char *expr_text = m_expr.Text(); 985 986 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 987 bool created_main_file = false; 988 989 // Clang wants to do completion on a real file known by Clang's file manager, 990 // so we have to create one to make this work. 991 // TODO: We probably could also simulate to Clang's file manager that there 992 // is a real file that contains our code. 993 bool should_create_file = completion_consumer != nullptr; 994 995 // We also want a real file on disk if we generate full debug info. 996 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 997 codegenoptions::FullDebugInfo; 998 999 if (should_create_file) { 1000 int temp_fd = -1; 1001 llvm::SmallString<128> result_path; 1002 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 1003 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 1004 std::string temp_source_path = tmpdir_file_spec.GetPath(); 1005 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 1006 } else { 1007 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 1008 } 1009 1010 if (temp_fd != -1) { 1011 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true); 1012 const size_t expr_text_len = strlen(expr_text); 1013 size_t bytes_written = expr_text_len; 1014 if (file.Write(expr_text, bytes_written).Success()) { 1015 if (bytes_written == expr_text_len) { 1016 file.Close(); 1017 if (auto fileEntry = 1018 m_compiler->getFileManager().getFile(result_path)) { 1019 source_mgr.setMainFileID(source_mgr.createFileID( 1020 *fileEntry, 1021 SourceLocation(), SrcMgr::C_User)); 1022 created_main_file = true; 1023 } 1024 } 1025 } 1026 } 1027 } 1028 1029 if (!created_main_file) { 1030 std::unique_ptr<MemoryBuffer> memory_buffer = 1031 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 1032 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 1033 } 1034 1035 adapter->BeginSourceFile(m_compiler->getLangOpts(), 1036 &m_compiler->getPreprocessor()); 1037 1038 ClangExpressionHelper *type_system_helper = 1039 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1040 1041 // If we want to parse for code completion, we need to attach our code 1042 // completion consumer to the Sema and specify a completion position. 1043 // While parsing the Sema will call this consumer with the provided 1044 // completion suggestions. 1045 if (completion_consumer) { 1046 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 1047 auto &PP = m_compiler->getPreprocessor(); 1048 // Lines and columns start at 1 in Clang, but code completion positions are 1049 // indexed from 0, so we need to add 1 to the line and column here. 1050 ++completion_line; 1051 ++completion_column; 1052 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 1053 } 1054 1055 ASTConsumer *ast_transformer = 1056 type_system_helper->ASTTransformer(m_code_generator.get()); 1057 1058 std::unique_ptr<clang::ASTConsumer> Consumer; 1059 if (ast_transformer) { 1060 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer); 1061 } else if (m_code_generator) { 1062 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get()); 1063 } else { 1064 Consumer = std::make_unique<ASTConsumer>(); 1065 } 1066 1067 clang::ASTContext &ast_context = m_compiler->getASTContext(); 1068 1069 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 1070 *Consumer, TU_Complete, completion_consumer)); 1071 m_compiler->setASTConsumer(std::move(Consumer)); 1072 1073 if (ast_context.getLangOpts().Modules) { 1074 m_compiler->createASTReader(); 1075 m_ast_context->setSema(&m_compiler->getSema()); 1076 } 1077 1078 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 1079 if (decl_map) { 1080 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 1081 decl_map->InstallDiagnosticManager(diagnostic_manager); 1082 1083 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 1084 1085 if (ast_context.getExternalSource()) { 1086 auto module_wrapper = 1087 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 1088 1089 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 1090 1091 auto multiplexer = 1092 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 1093 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 1094 ast_context.setExternalSource(Source); 1095 } else { 1096 ast_context.setExternalSource(ast_source); 1097 } 1098 decl_map->InstallASTContext(*m_ast_context); 1099 } 1100 1101 // Check that the ASTReader is properly attached to ASTContext and Sema. 1102 if (ast_context.getLangOpts().Modules) { 1103 assert(m_compiler->getASTContext().getExternalSource() && 1104 "ASTContext doesn't know about the ASTReader?"); 1105 assert(m_compiler->getSema().getExternalSource() && 1106 "Sema doesn't know about the ASTReader?"); 1107 } 1108 1109 { 1110 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1111 &m_compiler->getSema()); 1112 ParseAST(m_compiler->getSema(), false, false); 1113 } 1114 1115 // Make sure we have no pointer to the Sema we are about to destroy. 1116 if (ast_context.getLangOpts().Modules) 1117 m_ast_context->setSema(nullptr); 1118 // Destroy the Sema. This is necessary because we want to emulate the 1119 // original behavior of ParseAST (which also destroys the Sema after parsing). 1120 m_compiler->setSema(nullptr); 1121 1122 adapter->EndSourceFile(); 1123 1124 unsigned num_errors = adapter->getNumErrors(); 1125 1126 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1127 num_errors++; 1128 diagnostic_manager.PutString(eDiagnosticSeverityError, 1129 "while importing modules:"); 1130 diagnostic_manager.AppendMessageToDiagnostic( 1131 m_pp_callbacks->getErrorString()); 1132 } 1133 1134 if (!num_errors) { 1135 type_system_helper->CommitPersistentDecls(); 1136 } 1137 1138 adapter->ResetManager(); 1139 1140 return num_errors; 1141 } 1142 1143 std::string 1144 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1145 std::string abi; 1146 1147 if (target_arch.IsMIPS()) { 1148 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1149 case ArchSpec::eMIPSABI_N64: 1150 abi = "n64"; 1151 break; 1152 case ArchSpec::eMIPSABI_N32: 1153 abi = "n32"; 1154 break; 1155 case ArchSpec::eMIPSABI_O32: 1156 abi = "o32"; 1157 break; 1158 default: 1159 break; 1160 } 1161 } 1162 return abi; 1163 } 1164 1165 /// Applies the given Fix-It hint to the given commit. 1166 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) { 1167 // This is cobbed from clang::Rewrite::FixItRewriter. 1168 if (fixit.CodeToInsert.empty()) { 1169 if (fixit.InsertFromRange.isValid()) { 1170 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1171 fixit.InsertFromRange, /*afterToken=*/false, 1172 fixit.BeforePreviousInsertions); 1173 return; 1174 } 1175 commit.remove(fixit.RemoveRange); 1176 return; 1177 } 1178 if (fixit.RemoveRange.isTokenRange() || 1179 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) { 1180 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1181 return; 1182 } 1183 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1184 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1185 } 1186 1187 bool ClangExpressionParser::RewriteExpression( 1188 DiagnosticManager &diagnostic_manager) { 1189 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1190 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1191 nullptr); 1192 clang::edit::Commit commit(editor); 1193 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1194 1195 class RewritesReceiver : public edit::EditsReceiver { 1196 Rewriter &rewrite; 1197 1198 public: 1199 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1200 1201 void insert(SourceLocation loc, StringRef text) override { 1202 rewrite.InsertText(loc, text); 1203 } 1204 void replace(CharSourceRange range, StringRef text) override { 1205 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1206 } 1207 }; 1208 1209 RewritesReceiver rewrites_receiver(rewriter); 1210 1211 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1212 size_t num_diags = diagnostics.size(); 1213 if (num_diags == 0) 1214 return false; 1215 1216 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1217 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1218 if (!diagnostic) 1219 continue; 1220 if (!diagnostic->HasFixIts()) 1221 continue; 1222 for (const FixItHint &fixit : diagnostic->FixIts()) 1223 ApplyFixIt(fixit, commit); 1224 } 1225 1226 // FIXME - do we want to try to propagate specific errors here? 1227 if (!commit.isCommitable()) 1228 return false; 1229 else if (!editor.commit(commit)) 1230 return false; 1231 1232 // Now play all the edits, and stash the result in the diagnostic manager. 1233 editor.applyRewrites(rewrites_receiver); 1234 RewriteBuffer &main_file_buffer = 1235 rewriter.getEditBuffer(source_manager.getMainFileID()); 1236 1237 std::string fixed_expression; 1238 llvm::raw_string_ostream out_stream(fixed_expression); 1239 1240 main_file_buffer.write(out_stream); 1241 out_stream.flush(); 1242 diagnostic_manager.SetFixedExpression(fixed_expression); 1243 1244 return true; 1245 } 1246 1247 static bool FindFunctionInModule(ConstString &mangled_name, 1248 llvm::Module *module, const char *orig_name) { 1249 for (const auto &func : module->getFunctionList()) { 1250 const StringRef &name = func.getName(); 1251 if (name.find(orig_name) != StringRef::npos) { 1252 mangled_name.SetString(name); 1253 return true; 1254 } 1255 } 1256 1257 return false; 1258 } 1259 1260 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1261 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1262 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1263 bool &can_interpret, ExecutionPolicy execution_policy) { 1264 func_addr = LLDB_INVALID_ADDRESS; 1265 func_end = LLDB_INVALID_ADDRESS; 1266 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1267 1268 lldb_private::Status err; 1269 1270 std::unique_ptr<llvm::Module> llvm_module_up( 1271 m_code_generator->ReleaseModule()); 1272 1273 if (!llvm_module_up) { 1274 err.SetErrorToGenericError(); 1275 err.SetErrorString("IR doesn't contain a module"); 1276 return err; 1277 } 1278 1279 ConstString function_name; 1280 1281 if (execution_policy != eExecutionPolicyTopLevel) { 1282 // Find the actual name of the function (it's often mangled somehow) 1283 1284 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1285 m_expr.FunctionName())) { 1286 err.SetErrorToGenericError(); 1287 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1288 m_expr.FunctionName()); 1289 return err; 1290 } else { 1291 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1292 m_expr.FunctionName()); 1293 } 1294 } 1295 1296 SymbolContext sc; 1297 1298 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1299 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1300 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1301 sc.target_sp = target_sp; 1302 } 1303 1304 LLVMUserExpression::IRPasses custom_passes; 1305 { 1306 auto lang = m_expr.Language(); 1307 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1308 Language::GetNameForLanguageType(lang)); 1309 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1310 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1311 auto runtime = process_sp->GetLanguageRuntime(lang); 1312 if (runtime) 1313 runtime->GetIRPasses(custom_passes); 1314 } 1315 } 1316 1317 if (custom_passes.EarlyPasses) { 1318 LLDB_LOGF(log, 1319 "%s - Running Early IR Passes from LanguageRuntime on " 1320 "expression module '%s'", 1321 __FUNCTION__, m_expr.FunctionName()); 1322 1323 custom_passes.EarlyPasses->run(*llvm_module_up); 1324 } 1325 1326 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1327 m_llvm_context, // handed off here 1328 llvm_module_up, // handed off here 1329 function_name, exe_ctx.GetTargetSP(), sc, 1330 m_compiler->getTargetOpts().Features); 1331 1332 ClangExpressionHelper *type_system_helper = 1333 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1334 ClangExpressionDeclMap *decl_map = 1335 type_system_helper->DeclMap(); // result can be NULL 1336 1337 if (decl_map) { 1338 StreamString error_stream; 1339 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1340 *execution_unit_sp, error_stream, 1341 function_name.AsCString()); 1342 1343 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) { 1344 err.SetErrorString(error_stream.GetString()); 1345 return err; 1346 } 1347 1348 Process *process = exe_ctx.GetProcessPtr(); 1349 1350 if (execution_policy != eExecutionPolicyAlways && 1351 execution_policy != eExecutionPolicyTopLevel) { 1352 lldb_private::Status interpret_error; 1353 1354 bool interpret_function_calls = 1355 !process ? false : process->CanInterpretFunctionCalls(); 1356 can_interpret = IRInterpreter::CanInterpret( 1357 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1358 interpret_error, interpret_function_calls); 1359 1360 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1361 err.SetErrorStringWithFormat( 1362 "Can't evaluate the expression without a running target due to: %s", 1363 interpret_error.AsCString()); 1364 return err; 1365 } 1366 } 1367 1368 if (!process && execution_policy == eExecutionPolicyAlways) { 1369 err.SetErrorString("Expression needed to run in the target, but the " 1370 "target can't be run"); 1371 return err; 1372 } 1373 1374 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1375 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1376 "target, but the target can't be run"); 1377 return err; 1378 } 1379 1380 if (execution_policy == eExecutionPolicyAlways || 1381 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1382 if (m_expr.NeedsValidation() && process) { 1383 if (!process->GetDynamicCheckers()) { 1384 ClangDynamicCheckerFunctions *dynamic_checkers = 1385 new ClangDynamicCheckerFunctions(); 1386 1387 DiagnosticManager install_diagnostics; 1388 1389 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1390 if (install_diagnostics.Diagnostics().size()) 1391 err.SetErrorString(install_diagnostics.GetString().c_str()); 1392 else 1393 err.SetErrorString("couldn't install checkers, unknown error"); 1394 1395 return err; 1396 } 1397 1398 process->SetDynamicCheckers(dynamic_checkers); 1399 1400 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1401 "Finished installing dynamic checkers =="); 1402 } 1403 1404 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1405 process->GetDynamicCheckers())) { 1406 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1407 function_name.AsCString()); 1408 1409 llvm::Module *module = execution_unit_sp->GetModule(); 1410 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1411 err.SetErrorToGenericError(); 1412 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1413 return err; 1414 } 1415 1416 if (custom_passes.LatePasses) { 1417 LLDB_LOGF(log, 1418 "%s - Running Late IR Passes from LanguageRuntime on " 1419 "expression module '%s'", 1420 __FUNCTION__, m_expr.FunctionName()); 1421 1422 custom_passes.LatePasses->run(*module); 1423 } 1424 } 1425 } 1426 } 1427 1428 if (execution_policy == eExecutionPolicyAlways || 1429 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1430 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1431 } 1432 } else { 1433 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1434 } 1435 1436 return err; 1437 } 1438 1439 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1440 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1441 lldb_private::Status err; 1442 1443 lldbassert(execution_unit_sp.get()); 1444 lldbassert(exe_ctx.HasThreadScope()); 1445 1446 if (!execution_unit_sp.get()) { 1447 err.SetErrorString( 1448 "can't run static initializers for a NULL execution unit"); 1449 return err; 1450 } 1451 1452 if (!exe_ctx.HasThreadScope()) { 1453 err.SetErrorString("can't run static initializers without a thread"); 1454 return err; 1455 } 1456 1457 std::vector<lldb::addr_t> static_initializers; 1458 1459 execution_unit_sp->GetStaticInitializers(static_initializers); 1460 1461 for (lldb::addr_t static_initializer : static_initializers) { 1462 EvaluateExpressionOptions options; 1463 1464 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1465 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1466 llvm::ArrayRef<lldb::addr_t>(), options)); 1467 1468 DiagnosticManager execution_errors; 1469 lldb::ExpressionResults results = 1470 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1471 exe_ctx, call_static_initializer, options, execution_errors); 1472 1473 if (results != lldb::eExpressionCompleted) { 1474 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1475 execution_errors.GetString().c_str()); 1476 return err; 1477 } 1478 } 1479 1480 return err; 1481 } 1482