1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/DiagnosticIDs.h" 14 #include "clang/Basic/SourceLocation.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "clang/Basic/Version.h" 17 #include "clang/CodeGen/CodeGenAction.h" 18 #include "clang/CodeGen/ModuleBuilder.h" 19 #include "clang/Edit/Commit.h" 20 #include "clang/Edit/EditedSource.h" 21 #include "clang/Edit/EditsReceiver.h" 22 #include "clang/Frontend/CompilerInstance.h" 23 #include "clang/Frontend/CompilerInvocation.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/FrontendPluginRegistry.h" 27 #include "clang/Frontend/TextDiagnosticBuffer.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Parse/ParseAST.h" 31 #include "clang/Rewrite/Core/Rewriter.h" 32 #include "clang/Rewrite/Frontend/FrontendActions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaConsumer.h" 36 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ExecutionEngine/ExecutionEngine.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/TargetSelect.h" 43 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/DynamicLibrary.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Host.h" 49 #include "llvm/Support/MemoryBuffer.h" 50 #include "llvm/Support/Signals.h" 51 52 #include "ClangDiagnostic.h" 53 #include "ClangExpressionParser.h" 54 #include "ClangUserExpression.h" 55 56 #include "ASTUtils.h" 57 #include "ClangASTSource.h" 58 #include "ClangDiagnostic.h" 59 #include "ClangExpressionDeclMap.h" 60 #include "ClangExpressionHelper.h" 61 #include "ClangExpressionParser.h" 62 #include "ClangHost.h" 63 #include "ClangModulesDeclVendor.h" 64 #include "ClangPersistentVariables.h" 65 #include "IRForTarget.h" 66 #include "ModuleDependencyCollector.h" 67 68 #include "lldb/Core/Debugger.h" 69 #include "lldb/Core/Disassembler.h" 70 #include "lldb/Core/Module.h" 71 #include "lldb/Core/StreamFile.h" 72 #include "lldb/Expression/IRDynamicChecks.h" 73 #include "lldb/Expression/IRExecutionUnit.h" 74 #include "lldb/Expression/IRInterpreter.h" 75 #include "lldb/Host/File.h" 76 #include "lldb/Host/HostInfo.h" 77 #include "lldb/Symbol/ClangASTContext.h" 78 #include "lldb/Symbol/SymbolVendor.h" 79 #include "lldb/Target/ExecutionContext.h" 80 #include "lldb/Target/Language.h" 81 #include "lldb/Target/ObjCLanguageRuntime.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/Reproducer.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include <cctype> 94 #include <memory> 95 96 using namespace clang; 97 using namespace llvm; 98 using namespace lldb_private; 99 100 //===----------------------------------------------------------------------===// 101 // Utility Methods for Clang 102 //===----------------------------------------------------------------------===// 103 104 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 105 ClangModulesDeclVendor &m_decl_vendor; 106 ClangPersistentVariables &m_persistent_vars; 107 StreamString m_error_stream; 108 bool m_has_errors = false; 109 110 public: 111 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 112 ClangPersistentVariables &persistent_vars) 113 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 114 115 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 116 const clang::Module * /*null*/) override { 117 SourceModule module; 118 119 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 120 module.path.push_back(ConstString(component.first->getName())); 121 122 StreamString error_stream; 123 124 ClangModulesDeclVendor::ModuleVector exported_modules; 125 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 126 m_has_errors = true; 127 128 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 129 m_persistent_vars.AddHandLoadedClangModule(module); 130 } 131 132 bool hasErrors() { return m_has_errors; } 133 134 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 135 }; 136 137 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 138 public: 139 ClangDiagnosticManagerAdapter() 140 : m_passthrough(new clang::TextDiagnosticBuffer) {} 141 142 ClangDiagnosticManagerAdapter( 143 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 144 : m_passthrough(passthrough) {} 145 146 void ResetManager(DiagnosticManager *manager = nullptr) { 147 m_manager = manager; 148 } 149 150 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 151 const clang::Diagnostic &Info) override { 152 if (m_manager) { 153 llvm::SmallVector<char, 32> diag_str; 154 Info.FormatDiagnostic(diag_str); 155 diag_str.push_back('\0'); 156 const char *data = diag_str.data(); 157 158 lldb_private::DiagnosticSeverity severity; 159 bool make_new_diagnostic = true; 160 161 switch (DiagLevel) { 162 case DiagnosticsEngine::Level::Fatal: 163 case DiagnosticsEngine::Level::Error: 164 severity = eDiagnosticSeverityError; 165 break; 166 case DiagnosticsEngine::Level::Warning: 167 severity = eDiagnosticSeverityWarning; 168 break; 169 case DiagnosticsEngine::Level::Remark: 170 case DiagnosticsEngine::Level::Ignored: 171 severity = eDiagnosticSeverityRemark; 172 break; 173 case DiagnosticsEngine::Level::Note: 174 m_manager->AppendMessageToDiagnostic(data); 175 make_new_diagnostic = false; 176 } 177 if (make_new_diagnostic) { 178 ClangDiagnostic *new_diagnostic = 179 new ClangDiagnostic(data, severity, Info.getID()); 180 m_manager->AddDiagnostic(new_diagnostic); 181 182 // Don't store away warning fixits, since the compiler doesn't have 183 // enough context in an expression for the warning to be useful. 184 // FIXME: Should we try to filter out FixIts that apply to our generated 185 // code, and not the user's expression? 186 if (severity == eDiagnosticSeverityError) { 187 size_t num_fixit_hints = Info.getNumFixItHints(); 188 for (size_t i = 0; i < num_fixit_hints; i++) { 189 const clang::FixItHint &fixit = Info.getFixItHint(i); 190 if (!fixit.isNull()) 191 new_diagnostic->AddFixitHint(fixit); 192 } 193 } 194 } 195 } 196 197 m_passthrough->HandleDiagnostic(DiagLevel, Info); 198 } 199 200 void FlushDiagnostics(DiagnosticsEngine &Diags) { 201 m_passthrough->FlushDiagnostics(Diags); 202 } 203 204 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 205 return new ClangDiagnosticManagerAdapter(m_passthrough); 206 } 207 208 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 209 210 private: 211 DiagnosticManager *m_manager = nullptr; 212 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 213 }; 214 215 static void 216 SetupModuleHeaderPaths(CompilerInstance *compiler, 217 std::vector<ConstString> include_directories, 218 lldb::TargetSP target_sp) { 219 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 220 221 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 222 223 for (ConstString dir : include_directories) { 224 search_opts.AddPath(dir.AsCString(), frontend::System, false, true); 225 LLDB_LOG(log, "Added user include dir: {0}", dir); 226 } 227 228 llvm::SmallString<128> module_cache; 229 auto props = ModuleList::GetGlobalModuleListProperties(); 230 props.GetClangModulesCachePath().GetPath(module_cache); 231 search_opts.ModuleCachePath = module_cache.str(); 232 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 233 234 FileSpec clang_resource_dir = GetClangResourceDir(); 235 std::string resource_dir = clang_resource_dir.GetPath(); 236 if (FileSystem::Instance().IsDirectory(resource_dir)) { 237 search_opts.ResourceDir = resource_dir; 238 std::string resource_include = resource_dir + "/include"; 239 search_opts.AddPath(resource_include, frontend::System, false, true); 240 241 LLDB_LOG(log, "Added resource include dir: {0}", resource_include); 242 } 243 244 search_opts.ImplicitModuleMaps = true; 245 246 std::vector<std::string> system_include_directories = 247 target_sp->GetPlatform()->GetSystemIncludeDirectories( 248 lldb::eLanguageTypeC_plus_plus); 249 250 for (const std::string &include_dir : system_include_directories) { 251 search_opts.AddPath(include_dir, frontend::System, false, true); 252 253 LLDB_LOG(log, "Added system include dir: {0}", include_dir); 254 } 255 } 256 257 //===----------------------------------------------------------------------===// 258 // Implementation of ClangExpressionParser 259 //===----------------------------------------------------------------------===// 260 261 ClangExpressionParser::ClangExpressionParser( 262 ExecutionContextScope *exe_scope, Expression &expr, 263 bool generate_debug_info, std::vector<ConstString> include_directories) 264 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 265 m_pp_callbacks(nullptr), 266 m_include_directories(std::move(include_directories)) { 267 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 268 269 // We can't compile expressions without a target. So if the exe_scope is 270 // null or doesn't have a target, then we just need to get out of here. I'll 271 // lldb_assert and not make any of the compiler objects since 272 // I can't return errors directly from the constructor. Further calls will 273 // check if the compiler was made and 274 // bag out if it wasn't. 275 276 if (!exe_scope) { 277 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 278 __FUNCTION__, __FILE__, __LINE__); 279 return; 280 } 281 282 lldb::TargetSP target_sp; 283 target_sp = exe_scope->CalculateTarget(); 284 if (!target_sp) { 285 lldb_assert(target_sp.get(), 286 "Can't make an expression parser with a null target.", 287 __FUNCTION__, __FILE__, __LINE__); 288 return; 289 } 290 291 // 1. Create a new compiler instance. 292 m_compiler.reset(new CompilerInstance()); 293 294 // When capturing a reproducer, hook up the file collector with clang to 295 // collector modules and headers. 296 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 297 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 298 m_compiler->setModuleDepCollector( 299 std::make_shared<ModuleDependencyCollectorAdaptor>( 300 fp.GetFileCollector())); 301 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 302 opts.IncludeSystemHeaders = true; 303 opts.IncludeModuleFiles = true; 304 } 305 306 // Make sure clang uses the same VFS as LLDB. 307 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 308 309 lldb::LanguageType frame_lang = 310 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 311 bool overridden_target_opts = false; 312 lldb_private::LanguageRuntime *lang_rt = nullptr; 313 314 std::string abi; 315 ArchSpec target_arch; 316 target_arch = target_sp->GetArchitecture(); 317 318 const auto target_machine = target_arch.GetMachine(); 319 320 // If the expression is being evaluated in the context of an existing stack 321 // frame, we introspect to see if the language runtime is available. 322 323 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 324 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 325 326 // Make sure the user hasn't provided a preferred execution language with 327 // `expression --language X -- ...` 328 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 329 frame_lang = frame_sp->GetLanguage(); 330 331 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 332 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 333 if (log) 334 log->Printf("Frame has language of type %s", 335 Language::GetNameForLanguageType(frame_lang)); 336 } 337 338 // 2. Configure the compiler with a set of default options that are 339 // appropriate for most situations. 340 if (target_arch.IsValid()) { 341 std::string triple = target_arch.GetTriple().str(); 342 m_compiler->getTargetOpts().Triple = triple; 343 if (log) 344 log->Printf("Using %s as the target triple", 345 m_compiler->getTargetOpts().Triple.c_str()); 346 } else { 347 // If we get here we don't have a valid target and just have to guess. 348 // Sometimes this will be ok to just use the host target triple (when we 349 // evaluate say "2+3", but other expressions like breakpoint conditions and 350 // other things that _are_ target specific really shouldn't just be using 351 // the host triple. In such a case the language runtime should expose an 352 // overridden options set (3), below. 353 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 354 if (log) 355 log->Printf("Using default target triple of %s", 356 m_compiler->getTargetOpts().Triple.c_str()); 357 } 358 // Now add some special fixes for known architectures: Any arm32 iOS 359 // environment, but not on arm64 360 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 361 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 362 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 363 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 364 } 365 // Supported subsets of x86 366 if (target_machine == llvm::Triple::x86 || 367 target_machine == llvm::Triple::x86_64) { 368 m_compiler->getTargetOpts().Features.push_back("+sse"); 369 m_compiler->getTargetOpts().Features.push_back("+sse2"); 370 } 371 372 // Set the target CPU to generate code for. This will be empty for any CPU 373 // that doesn't really need to make a special 374 // CPU string. 375 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 376 377 // Set the target ABI 378 abi = GetClangTargetABI(target_arch); 379 if (!abi.empty()) 380 m_compiler->getTargetOpts().ABI = abi; 381 382 // 3. Now allow the runtime to provide custom configuration options for the 383 // target. In this case, a specialized language runtime is available and we 384 // can query it for extra options. For 99% of use cases, this will not be 385 // needed and should be provided when basic platform detection is not enough. 386 if (lang_rt) 387 overridden_target_opts = 388 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 389 390 if (overridden_target_opts) 391 if (log && log->GetVerbose()) { 392 LLDB_LOGV( 393 log, "Using overridden target options for the expression evaluation"); 394 395 auto opts = m_compiler->getTargetOpts(); 396 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 397 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 398 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 399 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 400 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 401 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 402 StringList::LogDump(log, opts.Features, "Features"); 403 } 404 405 // 4. Create and install the target on the compiler. 406 m_compiler->createDiagnostics(); 407 auto target_info = TargetInfo::CreateTargetInfo( 408 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 409 if (log) { 410 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); 411 log->Printf("Target datalayout string: '%s'", 412 target_info->getDataLayout().getStringRepresentation().c_str()); 413 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); 414 log->Printf("Target vector alignment: %d", 415 target_info->getMaxVectorAlign()); 416 } 417 m_compiler->setTarget(target_info); 418 419 assert(m_compiler->hasTarget()); 420 421 // 5. Set language options. 422 lldb::LanguageType language = expr.Language(); 423 LangOptions &lang_opts = m_compiler->getLangOpts(); 424 425 switch (language) { 426 case lldb::eLanguageTypeC: 427 case lldb::eLanguageTypeC89: 428 case lldb::eLanguageTypeC99: 429 case lldb::eLanguageTypeC11: 430 // FIXME: the following language option is a temporary workaround, 431 // to "ask for C, get C++." 432 // For now, the expression parser must use C++ anytime the language is a C 433 // family language, because the expression parser uses features of C++ to 434 // capture values. 435 lang_opts.CPlusPlus = true; 436 break; 437 case lldb::eLanguageTypeObjC: 438 lang_opts.ObjC = true; 439 // FIXME: the following language option is a temporary workaround, 440 // to "ask for ObjC, get ObjC++" (see comment above). 441 lang_opts.CPlusPlus = true; 442 443 // Clang now sets as default C++14 as the default standard (with 444 // GNU extensions), so we do the same here to avoid mismatches that 445 // cause compiler error when evaluating expressions (e.g. nullptr not found 446 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 447 // two lines below) so we decide to be consistent with that, but this could 448 // be re-evaluated in the future. 449 lang_opts.CPlusPlus11 = true; 450 break; 451 case lldb::eLanguageTypeC_plus_plus: 452 case lldb::eLanguageTypeC_plus_plus_11: 453 case lldb::eLanguageTypeC_plus_plus_14: 454 lang_opts.CPlusPlus11 = true; 455 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 456 LLVM_FALLTHROUGH; 457 case lldb::eLanguageTypeC_plus_plus_03: 458 lang_opts.CPlusPlus = true; 459 if (process_sp) 460 lang_opts.ObjC = 461 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 462 break; 463 case lldb::eLanguageTypeObjC_plus_plus: 464 case lldb::eLanguageTypeUnknown: 465 default: 466 lang_opts.ObjC = true; 467 lang_opts.CPlusPlus = true; 468 lang_opts.CPlusPlus11 = true; 469 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 470 break; 471 } 472 473 lang_opts.Bool = true; 474 lang_opts.WChar = true; 475 lang_opts.Blocks = true; 476 lang_opts.DebuggerSupport = 477 true; // Features specifically for debugger clients 478 if (expr.DesiredResultType() == Expression::eResultTypeId) 479 lang_opts.DebuggerCastResultToId = true; 480 481 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 482 .CharIsSignedByDefault(); 483 484 // Spell checking is a nice feature, but it ends up completing a lot of types 485 // that we didn't strictly speaking need to complete. As a result, we spend a 486 // long time parsing and importing debug information. 487 lang_opts.SpellChecking = false; 488 489 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 490 if (clang_expr && clang_expr->DidImportCxxModules()) { 491 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 492 493 lang_opts.Modules = true; 494 // We want to implicitly build modules. 495 lang_opts.ImplicitModules = true; 496 // To automatically import all submodules when we import 'std'. 497 lang_opts.ModulesLocalVisibility = false; 498 499 // We use the @import statements, so we need this: 500 // FIXME: We could use the modules-ts, but that currently doesn't work. 501 lang_opts.ObjC = true; 502 503 // Options we need to parse libc++ code successfully. 504 // FIXME: We should ask the driver for the appropriate default flags. 505 lang_opts.GNUMode = true; 506 lang_opts.GNUKeywords = true; 507 lang_opts.DoubleSquareBracketAttributes = true; 508 lang_opts.CPlusPlus11 = true; 509 510 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 511 target_sp); 512 } 513 514 if (process_sp && lang_opts.ObjC) { 515 if (process_sp->GetObjCLanguageRuntime()) { 516 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == 517 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 518 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 519 else 520 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 521 VersionTuple(10, 7)); 522 523 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) 524 lang_opts.DebuggerObjCLiteral = true; 525 } 526 } 527 528 lang_opts.ThreadsafeStatics = false; 529 lang_opts.AccessControl = false; // Debuggers get universal access 530 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 531 // We enable all builtin functions beside the builtins from libc/libm (e.g. 532 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 533 // additionally enabling them as expandable builtins is breaking Clang. 534 lang_opts.NoBuiltin = true; 535 536 // Set CodeGen options 537 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 538 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 539 m_compiler->getCodeGenOpts().DisableFPElim = true; 540 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; 541 if (generate_debug_info) 542 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 543 else 544 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 545 546 // Disable some warnings. 547 m_compiler->getDiagnostics().setSeverityForGroup( 548 clang::diag::Flavor::WarningOrError, "unused-value", 549 clang::diag::Severity::Ignored, SourceLocation()); 550 m_compiler->getDiagnostics().setSeverityForGroup( 551 clang::diag::Flavor::WarningOrError, "odr", 552 clang::diag::Severity::Ignored, SourceLocation()); 553 554 // Inform the target of the language options 555 // 556 // FIXME: We shouldn't need to do this, the target should be immutable once 557 // created. This complexity should be lifted elsewhere. 558 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 559 560 // 6. Set up the diagnostic buffer for reporting errors 561 562 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 563 564 // 7. Set up the source management objects inside the compiler 565 m_compiler->createFileManager(); 566 if (!m_compiler->hasSourceManager()) 567 m_compiler->createSourceManager(m_compiler->getFileManager()); 568 m_compiler->createPreprocessor(TU_Complete); 569 570 if (ClangModulesDeclVendor *decl_vendor = 571 target_sp->GetClangModulesDeclVendor()) { 572 ClangPersistentVariables *clang_persistent_vars = 573 llvm::cast<ClangPersistentVariables>( 574 target_sp->GetPersistentExpressionStateForLanguage( 575 lldb::eLanguageTypeC)); 576 std::unique_ptr<PPCallbacks> pp_callbacks( 577 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 578 m_pp_callbacks = 579 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 580 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 581 } 582 583 // 8. Most of this we get from the CompilerInstance, but we also want to give 584 // the context an ExternalASTSource. 585 586 auto &PP = m_compiler->getPreprocessor(); 587 auto &builtin_context = PP.getBuiltinInfo(); 588 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 589 m_compiler->getLangOpts()); 590 591 m_compiler->createASTContext(); 592 clang::ASTContext &ast_context = m_compiler->getASTContext(); 593 594 m_ast_context.reset( 595 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 596 m_ast_context->setASTContext(&ast_context); 597 598 std::string module_name("$__lldb_module"); 599 600 m_llvm_context.reset(new LLVMContext()); 601 m_code_generator.reset(CreateLLVMCodeGen( 602 m_compiler->getDiagnostics(), module_name, 603 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 604 m_compiler->getCodeGenOpts(), *m_llvm_context)); 605 } 606 607 ClangExpressionParser::~ClangExpressionParser() {} 608 609 namespace { 610 611 /// \class CodeComplete 612 /// 613 /// A code completion consumer for the clang Sema that is responsible for 614 /// creating the completion suggestions when a user requests completion 615 /// of an incomplete `expr` invocation. 616 class CodeComplete : public CodeCompleteConsumer { 617 CodeCompletionTUInfo m_info; 618 619 std::string m_expr; 620 unsigned m_position = 0; 621 CompletionRequest &m_request; 622 /// The printing policy we use when printing declarations for our completion 623 /// descriptions. 624 clang::PrintingPolicy m_desc_policy; 625 626 /// Returns true if the given character can be used in an identifier. 627 /// This also returns true for numbers because for completion we usually 628 /// just iterate backwards over iterators. 629 /// 630 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 631 static bool IsIdChar(char c) { 632 return c == '_' || std::isalnum(c) || c == '$'; 633 } 634 635 /// Returns true if the given character is used to separate arguments 636 /// in the command line of lldb. 637 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 638 639 /// Drops all tokens in front of the expression that are unrelated for 640 /// the completion of the cmd line. 'unrelated' means here that the token 641 /// is not interested for the lldb completion API result. 642 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 643 if (cmd.empty()) 644 return cmd; 645 646 // If we are at the start of a word, then all tokens are unrelated to 647 // the current completion logic. 648 if (IsTokenSeparator(cmd.back())) 649 return StringRef(); 650 651 // Remove all previous tokens from the string as they are unrelated 652 // to completing the current token. 653 StringRef to_remove = cmd; 654 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 655 to_remove = to_remove.drop_back(); 656 } 657 cmd = cmd.drop_front(to_remove.size()); 658 659 return cmd; 660 } 661 662 /// Removes the last identifier token from the given cmd line. 663 StringRef removeLastToken(StringRef cmd) { 664 while (!cmd.empty() && IsIdChar(cmd.back())) { 665 cmd = cmd.drop_back(); 666 } 667 return cmd; 668 } 669 670 /// Attemps to merge the given completion from the given position into the 671 /// existing command. Returns the completion string that can be returned to 672 /// the lldb completion API. 673 std::string mergeCompletion(StringRef existing, unsigned pos, 674 StringRef completion) { 675 StringRef existing_command = existing.substr(0, pos); 676 // We rewrite the last token with the completion, so let's drop that 677 // token from the command. 678 existing_command = removeLastToken(existing_command); 679 // We also should remove all previous tokens from the command as they 680 // would otherwise be added to the completion that already has the 681 // completion. 682 existing_command = dropUnrelatedFrontTokens(existing_command); 683 return existing_command.str() + completion.str(); 684 } 685 686 public: 687 /// Constructs a CodeComplete consumer that can be attached to a Sema. 688 /// \param[out] matches 689 /// The list of matches that the lldb completion API expects as a result. 690 /// This may already contain matches, so it's only allowed to append 691 /// to this variable. 692 /// \param[out] expr 693 /// The whole expression string that we are currently parsing. This 694 /// string needs to be equal to the input the user typed, and NOT the 695 /// final code that Clang is parsing. 696 /// \param[out] position 697 /// The character position of the user cursor in the `expr` parameter. 698 /// 699 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 700 std::string expr, unsigned position) 701 : CodeCompleteConsumer(CodeCompleteOptions()), 702 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 703 m_position(position), m_request(request), m_desc_policy(ops) { 704 705 // Ensure that the printing policy is producing a description that is as 706 // short as possible. 707 m_desc_policy.SuppressScope = true; 708 m_desc_policy.SuppressTagKeyword = true; 709 m_desc_policy.FullyQualifiedName = false; 710 m_desc_policy.TerseOutput = true; 711 m_desc_policy.IncludeNewlines = false; 712 m_desc_policy.UseVoidForZeroParams = false; 713 m_desc_policy.Bool = true; 714 } 715 716 /// Deregisters and destroys this code-completion consumer. 717 ~CodeComplete() override {} 718 719 /// \name Code-completion filtering 720 /// Check if the result should be filtered out. 721 bool isResultFilteredOut(StringRef Filter, 722 CodeCompletionResult Result) override { 723 // This code is mostly copied from CodeCompleteConsumer. 724 switch (Result.Kind) { 725 case CodeCompletionResult::RK_Declaration: 726 return !( 727 Result.Declaration->getIdentifier() && 728 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 729 case CodeCompletionResult::RK_Keyword: 730 return !StringRef(Result.Keyword).startswith(Filter); 731 case CodeCompletionResult::RK_Macro: 732 return !Result.Macro->getName().startswith(Filter); 733 case CodeCompletionResult::RK_Pattern: 734 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 735 } 736 // If we trigger this assert or the above switch yields a warning, then 737 // CodeCompletionResult has been enhanced with more kinds of completion 738 // results. Expand the switch above in this case. 739 assert(false && "Unknown completion result type?"); 740 // If we reach this, then we should just ignore whatever kind of unknown 741 // result we got back. We probably can't turn it into any kind of useful 742 // completion suggestion with the existing code. 743 return true; 744 } 745 746 /// \name Code-completion callbacks 747 /// Process the finalized code-completion results. 748 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 749 CodeCompletionResult *Results, 750 unsigned NumResults) override { 751 752 // The Sema put the incomplete token we try to complete in here during 753 // lexing, so we need to retrieve it here to know what we are completing. 754 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 755 756 // Iterate over all the results. Filter out results we don't want and 757 // process the rest. 758 for (unsigned I = 0; I != NumResults; ++I) { 759 // Filter the results with the information from the Sema. 760 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 761 continue; 762 763 CodeCompletionResult &R = Results[I]; 764 std::string ToInsert; 765 std::string Description; 766 // Handle the different completion kinds that come from the Sema. 767 switch (R.Kind) { 768 case CodeCompletionResult::RK_Declaration: { 769 const NamedDecl *D = R.Declaration; 770 ToInsert = R.Declaration->getNameAsString(); 771 // If we have a function decl that has no arguments we want to 772 // complete the empty parantheses for the user. If the function has 773 // arguments, we at least complete the opening bracket. 774 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 775 if (F->getNumParams() == 0) 776 ToInsert += "()"; 777 else 778 ToInsert += "("; 779 raw_string_ostream OS(Description); 780 F->print(OS, m_desc_policy, false); 781 OS.flush(); 782 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 783 Description = V->getType().getAsString(m_desc_policy); 784 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 785 Description = F->getType().getAsString(m_desc_policy); 786 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 787 // If we try to complete a namespace, then we can directly append 788 // the '::'. 789 if (!N->isAnonymousNamespace()) 790 ToInsert += "::"; 791 } 792 break; 793 } 794 case CodeCompletionResult::RK_Keyword: 795 ToInsert = R.Keyword; 796 break; 797 case CodeCompletionResult::RK_Macro: 798 ToInsert = R.Macro->getName().str(); 799 break; 800 case CodeCompletionResult::RK_Pattern: 801 ToInsert = R.Pattern->getTypedText(); 802 break; 803 } 804 // At this point all information is in the ToInsert string. 805 806 // We also filter some internal lldb identifiers here. The user 807 // shouldn't see these. 808 if (StringRef(ToInsert).startswith("$__lldb_")) 809 continue; 810 if (!ToInsert.empty()) { 811 // Merge the suggested Token into the existing command line to comply 812 // with the kind of result the lldb API expects. 813 std::string CompletionSuggestion = 814 mergeCompletion(m_expr, m_position, ToInsert); 815 m_request.AddCompletion(CompletionSuggestion, Description); 816 } 817 } 818 } 819 820 /// \param S the semantic-analyzer object for which code-completion is being 821 /// done. 822 /// 823 /// \param CurrentArg the index of the current argument. 824 /// 825 /// \param Candidates an array of overload candidates. 826 /// 827 /// \param NumCandidates the number of overload candidates 828 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 829 OverloadCandidate *Candidates, 830 unsigned NumCandidates, 831 SourceLocation OpenParLoc) override { 832 // At the moment we don't filter out any overloaded candidates. 833 } 834 835 CodeCompletionAllocator &getAllocator() override { 836 return m_info.getAllocator(); 837 } 838 839 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 840 }; 841 } // namespace 842 843 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 844 unsigned pos, unsigned typed_pos) { 845 DiagnosticManager mgr; 846 // We need the raw user expression here because that's what the CodeComplete 847 // class uses to provide completion suggestions. 848 // However, the `Text` method only gives us the transformed expression here. 849 // To actually get the raw user input here, we have to cast our expression to 850 // the LLVMUserExpression which exposes the right API. This should never fail 851 // as we always have a ClangUserExpression whenever we call this. 852 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 853 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 854 typed_pos); 855 // We don't need a code generator for parsing. 856 m_code_generator.reset(); 857 // Start parsing the expression with our custom code completion consumer. 858 ParseInternal(mgr, &CC, line, pos); 859 return true; 860 } 861 862 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 863 return ParseInternal(diagnostic_manager); 864 } 865 866 unsigned 867 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 868 CodeCompleteConsumer *completion_consumer, 869 unsigned completion_line, 870 unsigned completion_column) { 871 ClangDiagnosticManagerAdapter *adapter = 872 static_cast<ClangDiagnosticManagerAdapter *>( 873 m_compiler->getDiagnostics().getClient()); 874 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 875 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 876 877 adapter->ResetManager(&diagnostic_manager); 878 879 const char *expr_text = m_expr.Text(); 880 881 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 882 bool created_main_file = false; 883 884 // Clang wants to do completion on a real file known by Clang's file manager, 885 // so we have to create one to make this work. 886 // TODO: We probably could also simulate to Clang's file manager that there 887 // is a real file that contains our code. 888 bool should_create_file = completion_consumer != nullptr; 889 890 // We also want a real file on disk if we generate full debug info. 891 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 892 codegenoptions::FullDebugInfo; 893 894 if (should_create_file) { 895 int temp_fd = -1; 896 llvm::SmallString<128> result_path; 897 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 898 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 899 std::string temp_source_path = tmpdir_file_spec.GetPath(); 900 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 901 } else { 902 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 903 } 904 905 if (temp_fd != -1) { 906 lldb_private::File file(temp_fd, true); 907 const size_t expr_text_len = strlen(expr_text); 908 size_t bytes_written = expr_text_len; 909 if (file.Write(expr_text, bytes_written).Success()) { 910 if (bytes_written == expr_text_len) { 911 file.Close(); 912 source_mgr.setMainFileID(source_mgr.createFileID( 913 m_compiler->getFileManager().getFile(result_path), 914 SourceLocation(), SrcMgr::C_User)); 915 created_main_file = true; 916 } 917 } 918 } 919 } 920 921 if (!created_main_file) { 922 std::unique_ptr<MemoryBuffer> memory_buffer = 923 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); 924 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 925 } 926 927 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 928 &m_compiler->getPreprocessor()); 929 930 ClangExpressionHelper *type_system_helper = 931 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 932 933 // If we want to parse for code completion, we need to attach our code 934 // completion consumer to the Sema and specify a completion position. 935 // While parsing the Sema will call this consumer with the provided 936 // completion suggestions. 937 if (completion_consumer) { 938 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 939 auto &PP = m_compiler->getPreprocessor(); 940 // Lines and columns start at 1 in Clang, but code completion positions are 941 // indexed from 0, so we need to add 1 to the line and column here. 942 ++completion_line; 943 ++completion_column; 944 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 945 } 946 947 ASTConsumer *ast_transformer = 948 type_system_helper->ASTTransformer(m_code_generator.get()); 949 950 std::unique_ptr<clang::ASTConsumer> Consumer; 951 if (ast_transformer) { 952 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 953 } else if (m_code_generator) { 954 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 955 } else { 956 Consumer.reset(new ASTConsumer()); 957 } 958 959 clang::ASTContext &ast_context = m_compiler->getASTContext(); 960 961 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 962 *Consumer, TU_Complete, completion_consumer)); 963 m_compiler->setASTConsumer(std::move(Consumer)); 964 965 if (ast_context.getLangOpts().Modules) { 966 m_compiler->createModuleManager(); 967 m_ast_context->setSema(&m_compiler->getSema()); 968 } 969 970 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 971 if (decl_map) { 972 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 973 974 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 975 976 if (ast_context.getExternalSource()) { 977 auto module_wrapper = 978 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 979 980 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 981 982 auto multiplexer = 983 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 984 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 985 ast_context.setExternalSource(Source); 986 } else { 987 ast_context.setExternalSource(ast_source); 988 } 989 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 990 } 991 992 // Check that the ASTReader is properly attached to ASTContext and Sema. 993 if (ast_context.getLangOpts().Modules) { 994 assert(m_compiler->getASTContext().getExternalSource() && 995 "ASTContext doesn't know about the ASTReader?"); 996 assert(m_compiler->getSema().getExternalSource() && 997 "Sema doesn't know about the ASTReader?"); 998 } 999 1000 { 1001 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1002 &m_compiler->getSema()); 1003 ParseAST(m_compiler->getSema(), false, false); 1004 } 1005 1006 // Make sure we have no pointer to the Sema we are about to destroy. 1007 if (ast_context.getLangOpts().Modules) 1008 m_ast_context->setSema(nullptr); 1009 // Destroy the Sema. This is necessary because we want to emulate the 1010 // original behavior of ParseAST (which also destroys the Sema after parsing). 1011 m_compiler->setSema(nullptr); 1012 1013 diag_buf->EndSourceFile(); 1014 1015 unsigned num_errors = diag_buf->getNumErrors(); 1016 1017 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1018 num_errors++; 1019 diagnostic_manager.PutString(eDiagnosticSeverityError, 1020 "while importing modules:"); 1021 diagnostic_manager.AppendMessageToDiagnostic( 1022 m_pp_callbacks->getErrorString()); 1023 } 1024 1025 if (!num_errors) { 1026 if (type_system_helper->DeclMap() && 1027 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 1028 diagnostic_manager.Printf(eDiagnosticSeverityError, 1029 "Couldn't infer the type of a variable"); 1030 num_errors++; 1031 } 1032 } 1033 1034 if (!num_errors) { 1035 type_system_helper->CommitPersistentDecls(); 1036 } 1037 1038 adapter->ResetManager(); 1039 1040 return num_errors; 1041 } 1042 1043 std::string 1044 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1045 std::string abi; 1046 1047 if (target_arch.IsMIPS()) { 1048 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1049 case ArchSpec::eMIPSABI_N64: 1050 abi = "n64"; 1051 break; 1052 case ArchSpec::eMIPSABI_N32: 1053 abi = "n32"; 1054 break; 1055 case ArchSpec::eMIPSABI_O32: 1056 abi = "o32"; 1057 break; 1058 default: 1059 break; 1060 } 1061 } 1062 return abi; 1063 } 1064 1065 bool ClangExpressionParser::RewriteExpression( 1066 DiagnosticManager &diagnostic_manager) { 1067 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1068 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1069 nullptr); 1070 clang::edit::Commit commit(editor); 1071 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1072 1073 class RewritesReceiver : public edit::EditsReceiver { 1074 Rewriter &rewrite; 1075 1076 public: 1077 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1078 1079 void insert(SourceLocation loc, StringRef text) override { 1080 rewrite.InsertText(loc, text); 1081 } 1082 void replace(CharSourceRange range, StringRef text) override { 1083 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1084 } 1085 }; 1086 1087 RewritesReceiver rewrites_receiver(rewriter); 1088 1089 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1090 size_t num_diags = diagnostics.size(); 1091 if (num_diags == 0) 1092 return false; 1093 1094 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 1095 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 1096 if (diagnostic && diagnostic->HasFixIts()) { 1097 for (const FixItHint &fixit : diagnostic->FixIts()) { 1098 // This is cobbed from clang::Rewrite::FixItRewriter. 1099 if (fixit.CodeToInsert.empty()) { 1100 if (fixit.InsertFromRange.isValid()) { 1101 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1102 fixit.InsertFromRange, /*afterToken=*/false, 1103 fixit.BeforePreviousInsertions); 1104 } else 1105 commit.remove(fixit.RemoveRange); 1106 } else { 1107 if (fixit.RemoveRange.isTokenRange() || 1108 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1109 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1110 else 1111 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1112 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1113 } 1114 } 1115 } 1116 } 1117 1118 // FIXME - do we want to try to propagate specific errors here? 1119 if (!commit.isCommitable()) 1120 return false; 1121 else if (!editor.commit(commit)) 1122 return false; 1123 1124 // Now play all the edits, and stash the result in the diagnostic manager. 1125 editor.applyRewrites(rewrites_receiver); 1126 RewriteBuffer &main_file_buffer = 1127 rewriter.getEditBuffer(source_manager.getMainFileID()); 1128 1129 std::string fixed_expression; 1130 llvm::raw_string_ostream out_stream(fixed_expression); 1131 1132 main_file_buffer.write(out_stream); 1133 out_stream.flush(); 1134 diagnostic_manager.SetFixedExpression(fixed_expression); 1135 1136 return true; 1137 } 1138 1139 static bool FindFunctionInModule(ConstString &mangled_name, 1140 llvm::Module *module, const char *orig_name) { 1141 for (const auto &func : module->getFunctionList()) { 1142 const StringRef &name = func.getName(); 1143 if (name.find(orig_name) != StringRef::npos) { 1144 mangled_name.SetString(name); 1145 return true; 1146 } 1147 } 1148 1149 return false; 1150 } 1151 1152 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1153 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1154 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1155 bool &can_interpret, ExecutionPolicy execution_policy) { 1156 func_addr = LLDB_INVALID_ADDRESS; 1157 func_end = LLDB_INVALID_ADDRESS; 1158 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1159 1160 lldb_private::Status err; 1161 1162 std::unique_ptr<llvm::Module> llvm_module_up( 1163 m_code_generator->ReleaseModule()); 1164 1165 if (!llvm_module_up) { 1166 err.SetErrorToGenericError(); 1167 err.SetErrorString("IR doesn't contain a module"); 1168 return err; 1169 } 1170 1171 ConstString function_name; 1172 1173 if (execution_policy != eExecutionPolicyTopLevel) { 1174 // Find the actual name of the function (it's often mangled somehow) 1175 1176 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1177 m_expr.FunctionName())) { 1178 err.SetErrorToGenericError(); 1179 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1180 m_expr.FunctionName()); 1181 return err; 1182 } else { 1183 if (log) 1184 log->Printf("Found function %s for %s", function_name.AsCString(), 1185 m_expr.FunctionName()); 1186 } 1187 } 1188 1189 SymbolContext sc; 1190 1191 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1192 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1193 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1194 sc.target_sp = target_sp; 1195 } 1196 1197 LLVMUserExpression::IRPasses custom_passes; 1198 { 1199 auto lang = m_expr.Language(); 1200 if (log) 1201 log->Printf("%s - Current expression language is %s\n", __FUNCTION__, 1202 Language::GetNameForLanguageType(lang)); 1203 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1204 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1205 auto runtime = process_sp->GetLanguageRuntime(lang); 1206 if (runtime) 1207 runtime->GetIRPasses(custom_passes); 1208 } 1209 } 1210 1211 if (custom_passes.EarlyPasses) { 1212 if (log) 1213 log->Printf("%s - Running Early IR Passes from LanguageRuntime on " 1214 "expression module '%s'", 1215 __FUNCTION__, m_expr.FunctionName()); 1216 1217 custom_passes.EarlyPasses->run(*llvm_module_up); 1218 } 1219 1220 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1221 m_llvm_context, // handed off here 1222 llvm_module_up, // handed off here 1223 function_name, exe_ctx.GetTargetSP(), sc, 1224 m_compiler->getTargetOpts().Features); 1225 1226 ClangExpressionHelper *type_system_helper = 1227 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1228 ClangExpressionDeclMap *decl_map = 1229 type_system_helper->DeclMap(); // result can be NULL 1230 1231 if (decl_map) { 1232 Stream *error_stream = nullptr; 1233 Target *target = exe_ctx.GetTargetPtr(); 1234 error_stream = target->GetDebugger().GetErrorFile().get(); 1235 1236 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1237 *execution_unit_sp, *error_stream, 1238 function_name.AsCString()); 1239 1240 bool ir_can_run = 1241 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1242 1243 if (!ir_can_run) { 1244 err.SetErrorString( 1245 "The expression could not be prepared to run in the target"); 1246 return err; 1247 } 1248 1249 Process *process = exe_ctx.GetProcessPtr(); 1250 1251 if (execution_policy != eExecutionPolicyAlways && 1252 execution_policy != eExecutionPolicyTopLevel) { 1253 lldb_private::Status interpret_error; 1254 1255 bool interpret_function_calls = 1256 !process ? false : process->CanInterpretFunctionCalls(); 1257 can_interpret = IRInterpreter::CanInterpret( 1258 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1259 interpret_error, interpret_function_calls); 1260 1261 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1262 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1263 interpret_error.AsCString()); 1264 return err; 1265 } 1266 } 1267 1268 if (!process && execution_policy == eExecutionPolicyAlways) { 1269 err.SetErrorString("Expression needed to run in the target, but the " 1270 "target can't be run"); 1271 return err; 1272 } 1273 1274 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1275 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1276 "target, but the target can't be run"); 1277 return err; 1278 } 1279 1280 if (execution_policy == eExecutionPolicyAlways || 1281 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1282 if (m_expr.NeedsValidation() && process) { 1283 if (!process->GetDynamicCheckers()) { 1284 DynamicCheckerFunctions *dynamic_checkers = 1285 new DynamicCheckerFunctions(); 1286 1287 DiagnosticManager install_diagnostics; 1288 1289 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1290 if (install_diagnostics.Diagnostics().size()) 1291 err.SetErrorString(install_diagnostics.GetString().c_str()); 1292 else 1293 err.SetErrorString("couldn't install checkers, unknown error"); 1294 1295 return err; 1296 } 1297 1298 process->SetDynamicCheckers(dynamic_checkers); 1299 1300 if (log) 1301 log->Printf("== [ClangExpressionParser::PrepareForExecution] " 1302 "Finished installing dynamic checkers =="); 1303 } 1304 1305 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), 1306 function_name.AsCString()); 1307 1308 llvm::Module *module = execution_unit_sp->GetModule(); 1309 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1310 err.SetErrorToGenericError(); 1311 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1312 return err; 1313 } 1314 1315 if (custom_passes.LatePasses) { 1316 if (log) 1317 log->Printf("%s - Running Late IR Passes from LanguageRuntime on " 1318 "expression module '%s'", 1319 __FUNCTION__, m_expr.FunctionName()); 1320 1321 custom_passes.LatePasses->run(*module); 1322 } 1323 } 1324 } 1325 1326 if (execution_policy == eExecutionPolicyAlways || 1327 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1328 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1329 } 1330 } else { 1331 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1332 } 1333 1334 return err; 1335 } 1336 1337 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1338 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1339 lldb_private::Status err; 1340 1341 lldbassert(execution_unit_sp.get()); 1342 lldbassert(exe_ctx.HasThreadScope()); 1343 1344 if (!execution_unit_sp.get()) { 1345 err.SetErrorString( 1346 "can't run static initializers for a NULL execution unit"); 1347 return err; 1348 } 1349 1350 if (!exe_ctx.HasThreadScope()) { 1351 err.SetErrorString("can't run static initializers without a thread"); 1352 return err; 1353 } 1354 1355 std::vector<lldb::addr_t> static_initializers; 1356 1357 execution_unit_sp->GetStaticInitializers(static_initializers); 1358 1359 for (lldb::addr_t static_initializer : static_initializers) { 1360 EvaluateExpressionOptions options; 1361 1362 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1363 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1364 llvm::ArrayRef<lldb::addr_t>(), options)); 1365 1366 DiagnosticManager execution_errors; 1367 lldb::ExpressionResults results = 1368 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1369 exe_ctx, call_static_initializer, options, execution_errors); 1370 1371 if (results != lldb::eExpressionCompleted) { 1372 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1373 execution_errors.GetString().c_str()); 1374 return err; 1375 } 1376 } 1377 1378 return err; 1379 } 1380