1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/DiagnosticIDs.h" 14 #include "clang/Basic/SourceLocation.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "clang/Basic/Version.h" 17 #include "clang/CodeGen/CodeGenAction.h" 18 #include "clang/CodeGen/ModuleBuilder.h" 19 #include "clang/Edit/Commit.h" 20 #include "clang/Edit/EditedSource.h" 21 #include "clang/Edit/EditsReceiver.h" 22 #include "clang/Frontend/CompilerInstance.h" 23 #include "clang/Frontend/CompilerInvocation.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/FrontendPluginRegistry.h" 27 #include "clang/Frontend/TextDiagnosticBuffer.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Parse/ParseAST.h" 31 #include "clang/Rewrite/Core/Rewriter.h" 32 #include "clang/Rewrite/Frontend/FrontendActions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaConsumer.h" 36 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ExecutionEngine/ExecutionEngine.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/TargetSelect.h" 43 44 #pragma clang diagnostic push 45 #pragma clang diagnostic ignored "-Wglobal-constructors" 46 #include "llvm/ExecutionEngine/MCJIT.h" 47 #pragma clang diagnostic pop 48 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/Support/DynamicLibrary.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/Host.h" 54 #include "llvm/Support/MemoryBuffer.h" 55 #include "llvm/Support/Signals.h" 56 57 #include "ClangDiagnostic.h" 58 #include "ClangExpressionParser.h" 59 #include "ClangUserExpression.h" 60 61 #include "ASTUtils.h" 62 #include "ClangASTSource.h" 63 #include "ClangDiagnostic.h" 64 #include "ClangExpressionDeclMap.h" 65 #include "ClangExpressionHelper.h" 66 #include "ClangExpressionParser.h" 67 #include "ClangHost.h" 68 #include "ClangModulesDeclVendor.h" 69 #include "ClangPersistentVariables.h" 70 #include "IRForTarget.h" 71 #include "ModuleDependencyCollector.h" 72 73 #include "lldb/Core/Debugger.h" 74 #include "lldb/Core/Disassembler.h" 75 #include "lldb/Core/Module.h" 76 #include "lldb/Core/StreamFile.h" 77 #include "lldb/Expression/IRDynamicChecks.h" 78 #include "lldb/Expression/IRExecutionUnit.h" 79 #include "lldb/Expression/IRInterpreter.h" 80 #include "lldb/Host/File.h" 81 #include "lldb/Host/HostInfo.h" 82 #include "lldb/Symbol/ClangASTContext.h" 83 #include "lldb/Symbol/SymbolVendor.h" 84 #include "lldb/Target/ExecutionContext.h" 85 #include "lldb/Target/Language.h" 86 #include "lldb/Target/ObjCLanguageRuntime.h" 87 #include "lldb/Target/Process.h" 88 #include "lldb/Target/Target.h" 89 #include "lldb/Target/ThreadPlanCallFunction.h" 90 #include "lldb/Utility/DataBufferHeap.h" 91 #include "lldb/Utility/LLDBAssert.h" 92 #include "lldb/Utility/Log.h" 93 #include "lldb/Utility/Reproducer.h" 94 #include "lldb/Utility/Stream.h" 95 #include "lldb/Utility/StreamString.h" 96 #include "lldb/Utility/StringList.h" 97 98 #include <cctype> 99 #include <memory> 100 101 using namespace clang; 102 using namespace llvm; 103 using namespace lldb_private; 104 105 //===----------------------------------------------------------------------===// 106 // Utility Methods for Clang 107 //===----------------------------------------------------------------------===// 108 109 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 110 ClangModulesDeclVendor &m_decl_vendor; 111 ClangPersistentVariables &m_persistent_vars; 112 StreamString m_error_stream; 113 bool m_has_errors = false; 114 115 public: 116 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 117 ClangPersistentVariables &persistent_vars) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 119 120 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 121 const clang::Module * /*null*/) override { 122 SourceModule module; 123 124 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 125 module.path.push_back(ConstString(component.first->getName())); 126 127 StreamString error_stream; 128 129 ClangModulesDeclVendor::ModuleVector exported_modules; 130 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 131 m_has_errors = true; 132 133 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 134 m_persistent_vars.AddHandLoadedClangModule(module); 135 } 136 137 bool hasErrors() { return m_has_errors; } 138 139 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 140 }; 141 142 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 143 public: 144 ClangDiagnosticManagerAdapter() 145 : m_passthrough(new clang::TextDiagnosticBuffer) {} 146 147 ClangDiagnosticManagerAdapter( 148 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 149 : m_passthrough(passthrough) {} 150 151 void ResetManager(DiagnosticManager *manager = nullptr) { 152 m_manager = manager; 153 } 154 155 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 156 const clang::Diagnostic &Info) { 157 if (m_manager) { 158 llvm::SmallVector<char, 32> diag_str; 159 Info.FormatDiagnostic(diag_str); 160 diag_str.push_back('\0'); 161 const char *data = diag_str.data(); 162 163 lldb_private::DiagnosticSeverity severity; 164 bool make_new_diagnostic = true; 165 166 switch (DiagLevel) { 167 case DiagnosticsEngine::Level::Fatal: 168 case DiagnosticsEngine::Level::Error: 169 severity = eDiagnosticSeverityError; 170 break; 171 case DiagnosticsEngine::Level::Warning: 172 severity = eDiagnosticSeverityWarning; 173 break; 174 case DiagnosticsEngine::Level::Remark: 175 case DiagnosticsEngine::Level::Ignored: 176 severity = eDiagnosticSeverityRemark; 177 break; 178 case DiagnosticsEngine::Level::Note: 179 m_manager->AppendMessageToDiagnostic(data); 180 make_new_diagnostic = false; 181 } 182 if (make_new_diagnostic) { 183 ClangDiagnostic *new_diagnostic = 184 new ClangDiagnostic(data, severity, Info.getID()); 185 m_manager->AddDiagnostic(new_diagnostic); 186 187 // Don't store away warning fixits, since the compiler doesn't have 188 // enough context in an expression for the warning to be useful. 189 // FIXME: Should we try to filter out FixIts that apply to our generated 190 // code, and not the user's expression? 191 if (severity == eDiagnosticSeverityError) { 192 size_t num_fixit_hints = Info.getNumFixItHints(); 193 for (size_t i = 0; i < num_fixit_hints; i++) { 194 const clang::FixItHint &fixit = Info.getFixItHint(i); 195 if (!fixit.isNull()) 196 new_diagnostic->AddFixitHint(fixit); 197 } 198 } 199 } 200 } 201 202 m_passthrough->HandleDiagnostic(DiagLevel, Info); 203 } 204 205 void FlushDiagnostics(DiagnosticsEngine &Diags) { 206 m_passthrough->FlushDiagnostics(Diags); 207 } 208 209 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 210 return new ClangDiagnosticManagerAdapter(m_passthrough); 211 } 212 213 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 214 215 private: 216 DiagnosticManager *m_manager = nullptr; 217 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 218 }; 219 220 static void 221 SetupModuleHeaderPaths(CompilerInstance *compiler, 222 std::vector<ConstString> include_directories, 223 lldb::TargetSP target_sp) { 224 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 225 226 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 227 228 for (ConstString dir : include_directories) { 229 search_opts.AddPath(dir.AsCString(), frontend::System, false, true); 230 LLDB_LOG(log, "Added user include dir: {0}", dir); 231 } 232 233 llvm::SmallString<128> module_cache; 234 auto props = ModuleList::GetGlobalModuleListProperties(); 235 props.GetClangModulesCachePath().GetPath(module_cache); 236 search_opts.ModuleCachePath = module_cache.str(); 237 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 238 239 FileSpec clang_resource_dir = GetClangResourceDir(); 240 std::string resource_dir = clang_resource_dir.GetPath(); 241 if (FileSystem::Instance().IsDirectory(resource_dir)) { 242 search_opts.ResourceDir = resource_dir; 243 std::string resource_include = resource_dir + "/include"; 244 search_opts.AddPath(resource_include, frontend::System, false, true); 245 246 LLDB_LOG(log, "Added resource include dir: {0}", resource_include); 247 } 248 249 search_opts.ImplicitModuleMaps = true; 250 251 std::vector<std::string> system_include_directories = 252 target_sp->GetPlatform()->GetSystemIncludeDirectories( 253 lldb::eLanguageTypeC_plus_plus); 254 255 for (const std::string &include_dir : system_include_directories) { 256 search_opts.AddPath(include_dir, frontend::System, false, true); 257 258 LLDB_LOG(log, "Added system include dir: {0}", include_dir); 259 } 260 } 261 262 //===----------------------------------------------------------------------===// 263 // Implementation of ClangExpressionParser 264 //===----------------------------------------------------------------------===// 265 266 ClangExpressionParser::ClangExpressionParser( 267 ExecutionContextScope *exe_scope, Expression &expr, 268 bool generate_debug_info, std::vector<ConstString> include_directories) 269 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 270 m_pp_callbacks(nullptr), 271 m_include_directories(std::move(include_directories)) { 272 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 273 274 // We can't compile expressions without a target. So if the exe_scope is 275 // null or doesn't have a target, then we just need to get out of here. I'll 276 // lldb_assert and not make any of the compiler objects since 277 // I can't return errors directly from the constructor. Further calls will 278 // check if the compiler was made and 279 // bag out if it wasn't. 280 281 if (!exe_scope) { 282 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 283 __FUNCTION__, __FILE__, __LINE__); 284 return; 285 } 286 287 lldb::TargetSP target_sp; 288 target_sp = exe_scope->CalculateTarget(); 289 if (!target_sp) { 290 lldb_assert(target_sp.get(), 291 "Can't make an expression parser with a null target.", 292 __FUNCTION__, __FILE__, __LINE__); 293 return; 294 } 295 296 // 1. Create a new compiler instance. 297 m_compiler.reset(new CompilerInstance()); 298 299 // When capturing a reproducer, hook up the file collector with clang to 300 // collector modules and headers. 301 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 302 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 303 m_compiler->setModuleDepCollector( 304 std::make_shared<ModuleDependencyCollectorAdaptor>( 305 fp.GetFileCollector())); 306 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 307 opts.IncludeSystemHeaders = true; 308 opts.IncludeModuleFiles = true; 309 } 310 311 // Make sure clang uses the same VFS as LLDB. 312 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 313 314 lldb::LanguageType frame_lang = 315 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 316 bool overridden_target_opts = false; 317 lldb_private::LanguageRuntime *lang_rt = nullptr; 318 319 std::string abi; 320 ArchSpec target_arch; 321 target_arch = target_sp->GetArchitecture(); 322 323 const auto target_machine = target_arch.GetMachine(); 324 325 // If the expression is being evaluated in the context of an existing stack 326 // frame, we introspect to see if the language runtime is available. 327 328 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 329 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 330 331 // Make sure the user hasn't provided a preferred execution language with 332 // `expression --language X -- ...` 333 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 334 frame_lang = frame_sp->GetLanguage(); 335 336 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 337 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 338 if (log) 339 log->Printf("Frame has language of type %s", 340 Language::GetNameForLanguageType(frame_lang)); 341 } 342 343 // 2. Configure the compiler with a set of default options that are 344 // appropriate for most situations. 345 if (target_arch.IsValid()) { 346 std::string triple = target_arch.GetTriple().str(); 347 m_compiler->getTargetOpts().Triple = triple; 348 if (log) 349 log->Printf("Using %s as the target triple", 350 m_compiler->getTargetOpts().Triple.c_str()); 351 } else { 352 // If we get here we don't have a valid target and just have to guess. 353 // Sometimes this will be ok to just use the host target triple (when we 354 // evaluate say "2+3", but other expressions like breakpoint conditions and 355 // other things that _are_ target specific really shouldn't just be using 356 // the host triple. In such a case the language runtime should expose an 357 // overridden options set (3), below. 358 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 359 if (log) 360 log->Printf("Using default target triple of %s", 361 m_compiler->getTargetOpts().Triple.c_str()); 362 } 363 // Now add some special fixes for known architectures: Any arm32 iOS 364 // environment, but not on arm64 365 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 366 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 367 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 368 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 369 } 370 // Supported subsets of x86 371 if (target_machine == llvm::Triple::x86 || 372 target_machine == llvm::Triple::x86_64) { 373 m_compiler->getTargetOpts().Features.push_back("+sse"); 374 m_compiler->getTargetOpts().Features.push_back("+sse2"); 375 } 376 377 // Set the target CPU to generate code for. This will be empty for any CPU 378 // that doesn't really need to make a special 379 // CPU string. 380 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 381 382 // Set the target ABI 383 abi = GetClangTargetABI(target_arch); 384 if (!abi.empty()) 385 m_compiler->getTargetOpts().ABI = abi; 386 387 // 3. Now allow the runtime to provide custom configuration options for the 388 // target. In this case, a specialized language runtime is available and we 389 // can query it for extra options. For 99% of use cases, this will not be 390 // needed and should be provided when basic platform detection is not enough. 391 if (lang_rt) 392 overridden_target_opts = 393 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 394 395 if (overridden_target_opts) 396 if (log && log->GetVerbose()) { 397 LLDB_LOGV( 398 log, "Using overridden target options for the expression evaluation"); 399 400 auto opts = m_compiler->getTargetOpts(); 401 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 402 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 403 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 404 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 405 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 406 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 407 StringList::LogDump(log, opts.Features, "Features"); 408 } 409 410 // 4. Create and install the target on the compiler. 411 m_compiler->createDiagnostics(); 412 auto target_info = TargetInfo::CreateTargetInfo( 413 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 414 if (log) { 415 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); 416 log->Printf("Target datalayout string: '%s'", 417 target_info->getDataLayout().getStringRepresentation().c_str()); 418 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); 419 log->Printf("Target vector alignment: %d", 420 target_info->getMaxVectorAlign()); 421 } 422 m_compiler->setTarget(target_info); 423 424 assert(m_compiler->hasTarget()); 425 426 // 5. Set language options. 427 lldb::LanguageType language = expr.Language(); 428 LangOptions &lang_opts = m_compiler->getLangOpts(); 429 430 switch (language) { 431 case lldb::eLanguageTypeC: 432 case lldb::eLanguageTypeC89: 433 case lldb::eLanguageTypeC99: 434 case lldb::eLanguageTypeC11: 435 // FIXME: the following language option is a temporary workaround, 436 // to "ask for C, get C++." 437 // For now, the expression parser must use C++ anytime the language is a C 438 // family language, because the expression parser uses features of C++ to 439 // capture values. 440 lang_opts.CPlusPlus = true; 441 break; 442 case lldb::eLanguageTypeObjC: 443 lang_opts.ObjC = true; 444 // FIXME: the following language option is a temporary workaround, 445 // to "ask for ObjC, get ObjC++" (see comment above). 446 lang_opts.CPlusPlus = true; 447 448 // Clang now sets as default C++14 as the default standard (with 449 // GNU extensions), so we do the same here to avoid mismatches that 450 // cause compiler error when evaluating expressions (e.g. nullptr not found 451 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 452 // two lines below) so we decide to be consistent with that, but this could 453 // be re-evaluated in the future. 454 lang_opts.CPlusPlus11 = true; 455 break; 456 case lldb::eLanguageTypeC_plus_plus: 457 case lldb::eLanguageTypeC_plus_plus_11: 458 case lldb::eLanguageTypeC_plus_plus_14: 459 lang_opts.CPlusPlus11 = true; 460 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 461 LLVM_FALLTHROUGH; 462 case lldb::eLanguageTypeC_plus_plus_03: 463 lang_opts.CPlusPlus = true; 464 if (process_sp) 465 lang_opts.ObjC = 466 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 467 break; 468 case lldb::eLanguageTypeObjC_plus_plus: 469 case lldb::eLanguageTypeUnknown: 470 default: 471 lang_opts.ObjC = true; 472 lang_opts.CPlusPlus = true; 473 lang_opts.CPlusPlus11 = true; 474 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 475 break; 476 } 477 478 lang_opts.Bool = true; 479 lang_opts.WChar = true; 480 lang_opts.Blocks = true; 481 lang_opts.DebuggerSupport = 482 true; // Features specifically for debugger clients 483 if (expr.DesiredResultType() == Expression::eResultTypeId) 484 lang_opts.DebuggerCastResultToId = true; 485 486 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 487 .CharIsSignedByDefault(); 488 489 // Spell checking is a nice feature, but it ends up completing a lot of types 490 // that we didn't strictly speaking need to complete. As a result, we spend a 491 // long time parsing and importing debug information. 492 lang_opts.SpellChecking = false; 493 494 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 495 if (clang_expr && clang_expr->DidImportCxxModules()) { 496 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 497 498 lang_opts.Modules = true; 499 // We want to implicitly build modules. 500 lang_opts.ImplicitModules = true; 501 // To automatically import all submodules when we import 'std'. 502 lang_opts.ModulesLocalVisibility = false; 503 504 // We use the @import statements, so we need this: 505 // FIXME: We could use the modules-ts, but that currently doesn't work. 506 lang_opts.ObjC = true; 507 508 // Options we need to parse libc++ code successfully. 509 // FIXME: We should ask the driver for the appropriate default flags. 510 lang_opts.GNUMode = true; 511 lang_opts.GNUKeywords = true; 512 lang_opts.DoubleSquareBracketAttributes = true; 513 lang_opts.CPlusPlus11 = true; 514 515 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 516 target_sp); 517 } 518 519 if (process_sp && lang_opts.ObjC) { 520 if (process_sp->GetObjCLanguageRuntime()) { 521 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == 522 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 523 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 524 else 525 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 526 VersionTuple(10, 7)); 527 528 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) 529 lang_opts.DebuggerObjCLiteral = true; 530 } 531 } 532 533 lang_opts.ThreadsafeStatics = false; 534 lang_opts.AccessControl = false; // Debuggers get universal access 535 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 536 // We enable all builtin functions beside the builtins from libc/libm (e.g. 537 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 538 // additionally enabling them as expandable builtins is breaking Clang. 539 lang_opts.NoBuiltin = true; 540 541 // Set CodeGen options 542 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 543 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 544 m_compiler->getCodeGenOpts().DisableFPElim = true; 545 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; 546 if (generate_debug_info) 547 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 548 else 549 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 550 551 // Disable some warnings. 552 m_compiler->getDiagnostics().setSeverityForGroup( 553 clang::diag::Flavor::WarningOrError, "unused-value", 554 clang::diag::Severity::Ignored, SourceLocation()); 555 m_compiler->getDiagnostics().setSeverityForGroup( 556 clang::diag::Flavor::WarningOrError, "odr", 557 clang::diag::Severity::Ignored, SourceLocation()); 558 559 // Inform the target of the language options 560 // 561 // FIXME: We shouldn't need to do this, the target should be immutable once 562 // created. This complexity should be lifted elsewhere. 563 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 564 565 // 6. Set up the diagnostic buffer for reporting errors 566 567 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 568 569 // 7. Set up the source management objects inside the compiler 570 m_compiler->createFileManager(); 571 if (!m_compiler->hasSourceManager()) 572 m_compiler->createSourceManager(m_compiler->getFileManager()); 573 m_compiler->createPreprocessor(TU_Complete); 574 575 if (ClangModulesDeclVendor *decl_vendor = 576 target_sp->GetClangModulesDeclVendor()) { 577 ClangPersistentVariables *clang_persistent_vars = 578 llvm::cast<ClangPersistentVariables>( 579 target_sp->GetPersistentExpressionStateForLanguage( 580 lldb::eLanguageTypeC)); 581 std::unique_ptr<PPCallbacks> pp_callbacks( 582 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 583 m_pp_callbacks = 584 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 585 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 586 } 587 588 // 8. Most of this we get from the CompilerInstance, but we also want to give 589 // the context an ExternalASTSource. 590 591 auto &PP = m_compiler->getPreprocessor(); 592 auto &builtin_context = PP.getBuiltinInfo(); 593 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 594 m_compiler->getLangOpts()); 595 596 m_compiler->createASTContext(); 597 clang::ASTContext &ast_context = m_compiler->getASTContext(); 598 599 m_ast_context.reset( 600 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 601 m_ast_context->setASTContext(&ast_context); 602 603 std::string module_name("$__lldb_module"); 604 605 m_llvm_context.reset(new LLVMContext()); 606 m_code_generator.reset(CreateLLVMCodeGen( 607 m_compiler->getDiagnostics(), module_name, 608 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 609 m_compiler->getCodeGenOpts(), *m_llvm_context)); 610 } 611 612 ClangExpressionParser::~ClangExpressionParser() {} 613 614 namespace { 615 616 /// \class CodeComplete 617 /// 618 /// A code completion consumer for the clang Sema that is responsible for 619 /// creating the completion suggestions when a user requests completion 620 /// of an incomplete `expr` invocation. 621 class CodeComplete : public CodeCompleteConsumer { 622 CodeCompletionTUInfo m_info; 623 624 std::string m_expr; 625 unsigned m_position = 0; 626 CompletionRequest &m_request; 627 /// The printing policy we use when printing declarations for our completion 628 /// descriptions. 629 clang::PrintingPolicy m_desc_policy; 630 631 /// Returns true if the given character can be used in an identifier. 632 /// This also returns true for numbers because for completion we usually 633 /// just iterate backwards over iterators. 634 /// 635 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 636 static bool IsIdChar(char c) { 637 return c == '_' || std::isalnum(c) || c == '$'; 638 } 639 640 /// Returns true if the given character is used to separate arguments 641 /// in the command line of lldb. 642 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 643 644 /// Drops all tokens in front of the expression that are unrelated for 645 /// the completion of the cmd line. 'unrelated' means here that the token 646 /// is not interested for the lldb completion API result. 647 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 648 if (cmd.empty()) 649 return cmd; 650 651 // If we are at the start of a word, then all tokens are unrelated to 652 // the current completion logic. 653 if (IsTokenSeparator(cmd.back())) 654 return StringRef(); 655 656 // Remove all previous tokens from the string as they are unrelated 657 // to completing the current token. 658 StringRef to_remove = cmd; 659 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 660 to_remove = to_remove.drop_back(); 661 } 662 cmd = cmd.drop_front(to_remove.size()); 663 664 return cmd; 665 } 666 667 /// Removes the last identifier token from the given cmd line. 668 StringRef removeLastToken(StringRef cmd) { 669 while (!cmd.empty() && IsIdChar(cmd.back())) { 670 cmd = cmd.drop_back(); 671 } 672 return cmd; 673 } 674 675 /// Attemps to merge the given completion from the given position into the 676 /// existing command. Returns the completion string that can be returned to 677 /// the lldb completion API. 678 std::string mergeCompletion(StringRef existing, unsigned pos, 679 StringRef completion) { 680 StringRef existing_command = existing.substr(0, pos); 681 // We rewrite the last token with the completion, so let's drop that 682 // token from the command. 683 existing_command = removeLastToken(existing_command); 684 // We also should remove all previous tokens from the command as they 685 // would otherwise be added to the completion that already has the 686 // completion. 687 existing_command = dropUnrelatedFrontTokens(existing_command); 688 return existing_command.str() + completion.str(); 689 } 690 691 public: 692 /// Constructs a CodeComplete consumer that can be attached to a Sema. 693 /// \param[out] matches 694 /// The list of matches that the lldb completion API expects as a result. 695 /// This may already contain matches, so it's only allowed to append 696 /// to this variable. 697 /// \param[out] expr 698 /// The whole expression string that we are currently parsing. This 699 /// string needs to be equal to the input the user typed, and NOT the 700 /// final code that Clang is parsing. 701 /// \param[out] position 702 /// The character position of the user cursor in the `expr` parameter. 703 /// 704 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 705 std::string expr, unsigned position) 706 : CodeCompleteConsumer(CodeCompleteOptions()), 707 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 708 m_position(position), m_request(request), m_desc_policy(ops) { 709 710 // Ensure that the printing policy is producing a description that is as 711 // short as possible. 712 m_desc_policy.SuppressScope = true; 713 m_desc_policy.SuppressTagKeyword = true; 714 m_desc_policy.FullyQualifiedName = false; 715 m_desc_policy.TerseOutput = true; 716 m_desc_policy.IncludeNewlines = false; 717 m_desc_policy.UseVoidForZeroParams = false; 718 m_desc_policy.Bool = true; 719 } 720 721 /// Deregisters and destroys this code-completion consumer. 722 virtual ~CodeComplete() {} 723 724 /// \name Code-completion filtering 725 /// Check if the result should be filtered out. 726 bool isResultFilteredOut(StringRef Filter, 727 CodeCompletionResult Result) override { 728 // This code is mostly copied from CodeCompleteConsumer. 729 switch (Result.Kind) { 730 case CodeCompletionResult::RK_Declaration: 731 return !( 732 Result.Declaration->getIdentifier() && 733 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 734 case CodeCompletionResult::RK_Keyword: 735 return !StringRef(Result.Keyword).startswith(Filter); 736 case CodeCompletionResult::RK_Macro: 737 return !Result.Macro->getName().startswith(Filter); 738 case CodeCompletionResult::RK_Pattern: 739 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 740 } 741 // If we trigger this assert or the above switch yields a warning, then 742 // CodeCompletionResult has been enhanced with more kinds of completion 743 // results. Expand the switch above in this case. 744 assert(false && "Unknown completion result type?"); 745 // If we reach this, then we should just ignore whatever kind of unknown 746 // result we got back. We probably can't turn it into any kind of useful 747 // completion suggestion with the existing code. 748 return true; 749 } 750 751 /// \name Code-completion callbacks 752 /// Process the finalized code-completion results. 753 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 754 CodeCompletionResult *Results, 755 unsigned NumResults) override { 756 757 // The Sema put the incomplete token we try to complete in here during 758 // lexing, so we need to retrieve it here to know what we are completing. 759 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 760 761 // Iterate over all the results. Filter out results we don't want and 762 // process the rest. 763 for (unsigned I = 0; I != NumResults; ++I) { 764 // Filter the results with the information from the Sema. 765 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 766 continue; 767 768 CodeCompletionResult &R = Results[I]; 769 std::string ToInsert; 770 std::string Description; 771 // Handle the different completion kinds that come from the Sema. 772 switch (R.Kind) { 773 case CodeCompletionResult::RK_Declaration: { 774 const NamedDecl *D = R.Declaration; 775 ToInsert = R.Declaration->getNameAsString(); 776 // If we have a function decl that has no arguments we want to 777 // complete the empty parantheses for the user. If the function has 778 // arguments, we at least complete the opening bracket. 779 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 780 if (F->getNumParams() == 0) 781 ToInsert += "()"; 782 else 783 ToInsert += "("; 784 raw_string_ostream OS(Description); 785 F->print(OS, m_desc_policy, false); 786 OS.flush(); 787 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 788 Description = V->getType().getAsString(m_desc_policy); 789 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 790 Description = F->getType().getAsString(m_desc_policy); 791 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 792 // If we try to complete a namespace, then we can directly append 793 // the '::'. 794 if (!N->isAnonymousNamespace()) 795 ToInsert += "::"; 796 } 797 break; 798 } 799 case CodeCompletionResult::RK_Keyword: 800 ToInsert = R.Keyword; 801 break; 802 case CodeCompletionResult::RK_Macro: 803 ToInsert = R.Macro->getName().str(); 804 break; 805 case CodeCompletionResult::RK_Pattern: 806 ToInsert = R.Pattern->getTypedText(); 807 break; 808 } 809 // At this point all information is in the ToInsert string. 810 811 // We also filter some internal lldb identifiers here. The user 812 // shouldn't see these. 813 if (StringRef(ToInsert).startswith("$__lldb_")) 814 continue; 815 if (!ToInsert.empty()) { 816 // Merge the suggested Token into the existing command line to comply 817 // with the kind of result the lldb API expects. 818 std::string CompletionSuggestion = 819 mergeCompletion(m_expr, m_position, ToInsert); 820 m_request.AddCompletion(CompletionSuggestion, Description); 821 } 822 } 823 } 824 825 /// \param S the semantic-analyzer object for which code-completion is being 826 /// done. 827 /// 828 /// \param CurrentArg the index of the current argument. 829 /// 830 /// \param Candidates an array of overload candidates. 831 /// 832 /// \param NumCandidates the number of overload candidates 833 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 834 OverloadCandidate *Candidates, 835 unsigned NumCandidates, 836 SourceLocation OpenParLoc) override { 837 // At the moment we don't filter out any overloaded candidates. 838 } 839 840 CodeCompletionAllocator &getAllocator() override { 841 return m_info.getAllocator(); 842 } 843 844 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 845 }; 846 } // namespace 847 848 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 849 unsigned pos, unsigned typed_pos) { 850 DiagnosticManager mgr; 851 // We need the raw user expression here because that's what the CodeComplete 852 // class uses to provide completion suggestions. 853 // However, the `Text` method only gives us the transformed expression here. 854 // To actually get the raw user input here, we have to cast our expression to 855 // the LLVMUserExpression which exposes the right API. This should never fail 856 // as we always have a ClangUserExpression whenever we call this. 857 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 858 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 859 typed_pos); 860 // We don't need a code generator for parsing. 861 m_code_generator.reset(); 862 // Start parsing the expression with our custom code completion consumer. 863 ParseInternal(mgr, &CC, line, pos); 864 return true; 865 } 866 867 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 868 return ParseInternal(diagnostic_manager); 869 } 870 871 unsigned 872 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 873 CodeCompleteConsumer *completion_consumer, 874 unsigned completion_line, 875 unsigned completion_column) { 876 ClangDiagnosticManagerAdapter *adapter = 877 static_cast<ClangDiagnosticManagerAdapter *>( 878 m_compiler->getDiagnostics().getClient()); 879 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 880 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 881 882 adapter->ResetManager(&diagnostic_manager); 883 884 const char *expr_text = m_expr.Text(); 885 886 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 887 bool created_main_file = false; 888 889 // Clang wants to do completion on a real file known by Clang's file manager, 890 // so we have to create one to make this work. 891 // TODO: We probably could also simulate to Clang's file manager that there 892 // is a real file that contains our code. 893 bool should_create_file = completion_consumer != nullptr; 894 895 // We also want a real file on disk if we generate full debug info. 896 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 897 codegenoptions::FullDebugInfo; 898 899 if (should_create_file) { 900 int temp_fd = -1; 901 llvm::SmallString<128> result_path; 902 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 903 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 904 std::string temp_source_path = tmpdir_file_spec.GetPath(); 905 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 906 } else { 907 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 908 } 909 910 if (temp_fd != -1) { 911 lldb_private::File file(temp_fd, true); 912 const size_t expr_text_len = strlen(expr_text); 913 size_t bytes_written = expr_text_len; 914 if (file.Write(expr_text, bytes_written).Success()) { 915 if (bytes_written == expr_text_len) { 916 file.Close(); 917 source_mgr.setMainFileID(source_mgr.createFileID( 918 m_compiler->getFileManager().getFile(result_path), 919 SourceLocation(), SrcMgr::C_User)); 920 created_main_file = true; 921 } 922 } 923 } 924 } 925 926 if (!created_main_file) { 927 std::unique_ptr<MemoryBuffer> memory_buffer = 928 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); 929 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 930 } 931 932 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 933 &m_compiler->getPreprocessor()); 934 935 ClangExpressionHelper *type_system_helper = 936 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 937 938 // If we want to parse for code completion, we need to attach our code 939 // completion consumer to the Sema and specify a completion position. 940 // While parsing the Sema will call this consumer with the provided 941 // completion suggestions. 942 if (completion_consumer) { 943 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 944 auto &PP = m_compiler->getPreprocessor(); 945 // Lines and columns start at 1 in Clang, but code completion positions are 946 // indexed from 0, so we need to add 1 to the line and column here. 947 ++completion_line; 948 ++completion_column; 949 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 950 } 951 952 ASTConsumer *ast_transformer = 953 type_system_helper->ASTTransformer(m_code_generator.get()); 954 955 std::unique_ptr<clang::ASTConsumer> Consumer; 956 if (ast_transformer) { 957 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 958 } else if (m_code_generator) { 959 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 960 } else { 961 Consumer.reset(new ASTConsumer()); 962 } 963 964 clang::ASTContext &ast_context = m_compiler->getASTContext(); 965 966 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 967 *Consumer, TU_Complete, completion_consumer)); 968 m_compiler->setASTConsumer(std::move(Consumer)); 969 970 if (ast_context.getLangOpts().Modules) 971 m_compiler->createModuleManager(); 972 973 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 974 if (decl_map) { 975 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 976 977 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 978 979 if (ast_context.getExternalSource()) { 980 auto module_wrapper = 981 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 982 983 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 984 985 auto multiplexer = 986 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 987 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 988 ast_context.setExternalSource(Source); 989 } else { 990 ast_context.setExternalSource(ast_source); 991 } 992 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 993 } 994 995 // Check that the ASTReader is properly attached to ASTContext and Sema. 996 if (ast_context.getLangOpts().Modules) { 997 assert(m_compiler->getASTContext().getExternalSource() && 998 "ASTContext doesn't know about the ASTReader?"); 999 assert(m_compiler->getSema().getExternalSource() && 1000 "Sema doesn't know about the ASTReader?"); 1001 } 1002 1003 { 1004 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1005 &m_compiler->getSema()); 1006 ParseAST(m_compiler->getSema(), false, false); 1007 } 1008 // Destroy the Sema. This is necessary because we want to emulate the 1009 // original behavior of ParseAST (which also destroys the Sema after parsing). 1010 m_compiler->setSema(nullptr); 1011 1012 diag_buf->EndSourceFile(); 1013 1014 unsigned num_errors = diag_buf->getNumErrors(); 1015 1016 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1017 num_errors++; 1018 diagnostic_manager.PutString(eDiagnosticSeverityError, 1019 "while importing modules:"); 1020 diagnostic_manager.AppendMessageToDiagnostic( 1021 m_pp_callbacks->getErrorString()); 1022 } 1023 1024 if (!num_errors) { 1025 if (type_system_helper->DeclMap() && 1026 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 1027 diagnostic_manager.Printf(eDiagnosticSeverityError, 1028 "Couldn't infer the type of a variable"); 1029 num_errors++; 1030 } 1031 } 1032 1033 if (!num_errors) { 1034 type_system_helper->CommitPersistentDecls(); 1035 } 1036 1037 adapter->ResetManager(); 1038 1039 return num_errors; 1040 } 1041 1042 std::string 1043 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1044 std::string abi; 1045 1046 if (target_arch.IsMIPS()) { 1047 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1048 case ArchSpec::eMIPSABI_N64: 1049 abi = "n64"; 1050 break; 1051 case ArchSpec::eMIPSABI_N32: 1052 abi = "n32"; 1053 break; 1054 case ArchSpec::eMIPSABI_O32: 1055 abi = "o32"; 1056 break; 1057 default: 1058 break; 1059 } 1060 } 1061 return abi; 1062 } 1063 1064 bool ClangExpressionParser::RewriteExpression( 1065 DiagnosticManager &diagnostic_manager) { 1066 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1067 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1068 nullptr); 1069 clang::edit::Commit commit(editor); 1070 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1071 1072 class RewritesReceiver : public edit::EditsReceiver { 1073 Rewriter &rewrite; 1074 1075 public: 1076 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1077 1078 void insert(SourceLocation loc, StringRef text) override { 1079 rewrite.InsertText(loc, text); 1080 } 1081 void replace(CharSourceRange range, StringRef text) override { 1082 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1083 } 1084 }; 1085 1086 RewritesReceiver rewrites_receiver(rewriter); 1087 1088 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1089 size_t num_diags = diagnostics.size(); 1090 if (num_diags == 0) 1091 return false; 1092 1093 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 1094 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 1095 if (diagnostic && diagnostic->HasFixIts()) { 1096 for (const FixItHint &fixit : diagnostic->FixIts()) { 1097 // This is cobbed from clang::Rewrite::FixItRewriter. 1098 if (fixit.CodeToInsert.empty()) { 1099 if (fixit.InsertFromRange.isValid()) { 1100 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1101 fixit.InsertFromRange, /*afterToken=*/false, 1102 fixit.BeforePreviousInsertions); 1103 } else 1104 commit.remove(fixit.RemoveRange); 1105 } else { 1106 if (fixit.RemoveRange.isTokenRange() || 1107 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1108 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1109 else 1110 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1111 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1112 } 1113 } 1114 } 1115 } 1116 1117 // FIXME - do we want to try to propagate specific errors here? 1118 if (!commit.isCommitable()) 1119 return false; 1120 else if (!editor.commit(commit)) 1121 return false; 1122 1123 // Now play all the edits, and stash the result in the diagnostic manager. 1124 editor.applyRewrites(rewrites_receiver); 1125 RewriteBuffer &main_file_buffer = 1126 rewriter.getEditBuffer(source_manager.getMainFileID()); 1127 1128 std::string fixed_expression; 1129 llvm::raw_string_ostream out_stream(fixed_expression); 1130 1131 main_file_buffer.write(out_stream); 1132 out_stream.flush(); 1133 diagnostic_manager.SetFixedExpression(fixed_expression); 1134 1135 return true; 1136 } 1137 1138 static bool FindFunctionInModule(ConstString &mangled_name, 1139 llvm::Module *module, const char *orig_name) { 1140 for (const auto &func : module->getFunctionList()) { 1141 const StringRef &name = func.getName(); 1142 if (name.find(orig_name) != StringRef::npos) { 1143 mangled_name.SetString(name); 1144 return true; 1145 } 1146 } 1147 1148 return false; 1149 } 1150 1151 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1152 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1153 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1154 bool &can_interpret, ExecutionPolicy execution_policy) { 1155 func_addr = LLDB_INVALID_ADDRESS; 1156 func_end = LLDB_INVALID_ADDRESS; 1157 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1158 1159 lldb_private::Status err; 1160 1161 std::unique_ptr<llvm::Module> llvm_module_up( 1162 m_code_generator->ReleaseModule()); 1163 1164 if (!llvm_module_up) { 1165 err.SetErrorToGenericError(); 1166 err.SetErrorString("IR doesn't contain a module"); 1167 return err; 1168 } 1169 1170 ConstString function_name; 1171 1172 if (execution_policy != eExecutionPolicyTopLevel) { 1173 // Find the actual name of the function (it's often mangled somehow) 1174 1175 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1176 m_expr.FunctionName())) { 1177 err.SetErrorToGenericError(); 1178 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1179 m_expr.FunctionName()); 1180 return err; 1181 } else { 1182 if (log) 1183 log->Printf("Found function %s for %s", function_name.AsCString(), 1184 m_expr.FunctionName()); 1185 } 1186 } 1187 1188 SymbolContext sc; 1189 1190 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1191 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1192 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1193 sc.target_sp = target_sp; 1194 } 1195 1196 LLVMUserExpression::IRPasses custom_passes; 1197 { 1198 auto lang = m_expr.Language(); 1199 if (log) 1200 log->Printf("%s - Current expression language is %s\n", __FUNCTION__, 1201 Language::GetNameForLanguageType(lang)); 1202 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1203 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1204 auto runtime = process_sp->GetLanguageRuntime(lang); 1205 if (runtime) 1206 runtime->GetIRPasses(custom_passes); 1207 } 1208 } 1209 1210 if (custom_passes.EarlyPasses) { 1211 if (log) 1212 log->Printf("%s - Running Early IR Passes from LanguageRuntime on " 1213 "expression module '%s'", 1214 __FUNCTION__, m_expr.FunctionName()); 1215 1216 custom_passes.EarlyPasses->run(*llvm_module_up); 1217 } 1218 1219 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1220 m_llvm_context, // handed off here 1221 llvm_module_up, // handed off here 1222 function_name, exe_ctx.GetTargetSP(), sc, 1223 m_compiler->getTargetOpts().Features); 1224 1225 ClangExpressionHelper *type_system_helper = 1226 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1227 ClangExpressionDeclMap *decl_map = 1228 type_system_helper->DeclMap(); // result can be NULL 1229 1230 if (decl_map) { 1231 Stream *error_stream = NULL; 1232 Target *target = exe_ctx.GetTargetPtr(); 1233 error_stream = target->GetDebugger().GetErrorFile().get(); 1234 1235 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1236 *execution_unit_sp, *error_stream, 1237 function_name.AsCString()); 1238 1239 bool ir_can_run = 1240 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1241 1242 if (!ir_can_run) { 1243 err.SetErrorString( 1244 "The expression could not be prepared to run in the target"); 1245 return err; 1246 } 1247 1248 Process *process = exe_ctx.GetProcessPtr(); 1249 1250 if (execution_policy != eExecutionPolicyAlways && 1251 execution_policy != eExecutionPolicyTopLevel) { 1252 lldb_private::Status interpret_error; 1253 1254 bool interpret_function_calls = 1255 !process ? false : process->CanInterpretFunctionCalls(); 1256 can_interpret = IRInterpreter::CanInterpret( 1257 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1258 interpret_error, interpret_function_calls); 1259 1260 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1261 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1262 interpret_error.AsCString()); 1263 return err; 1264 } 1265 } 1266 1267 if (!process && execution_policy == eExecutionPolicyAlways) { 1268 err.SetErrorString("Expression needed to run in the target, but the " 1269 "target can't be run"); 1270 return err; 1271 } 1272 1273 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1274 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1275 "target, but the target can't be run"); 1276 return err; 1277 } 1278 1279 if (execution_policy == eExecutionPolicyAlways || 1280 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1281 if (m_expr.NeedsValidation() && process) { 1282 if (!process->GetDynamicCheckers()) { 1283 DynamicCheckerFunctions *dynamic_checkers = 1284 new DynamicCheckerFunctions(); 1285 1286 DiagnosticManager install_diagnostics; 1287 1288 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1289 if (install_diagnostics.Diagnostics().size()) 1290 err.SetErrorString(install_diagnostics.GetString().c_str()); 1291 else 1292 err.SetErrorString("couldn't install checkers, unknown error"); 1293 1294 return err; 1295 } 1296 1297 process->SetDynamicCheckers(dynamic_checkers); 1298 1299 if (log) 1300 log->Printf("== [ClangExpressionParser::PrepareForExecution] " 1301 "Finished installing dynamic checkers =="); 1302 } 1303 1304 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), 1305 function_name.AsCString()); 1306 1307 llvm::Module *module = execution_unit_sp->GetModule(); 1308 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1309 err.SetErrorToGenericError(); 1310 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1311 return err; 1312 } 1313 1314 if (custom_passes.LatePasses) { 1315 if (log) 1316 log->Printf("%s - Running Late IR Passes from LanguageRuntime on " 1317 "expression module '%s'", 1318 __FUNCTION__, m_expr.FunctionName()); 1319 1320 custom_passes.LatePasses->run(*module); 1321 } 1322 } 1323 } 1324 1325 if (execution_policy == eExecutionPolicyAlways || 1326 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1327 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1328 } 1329 } else { 1330 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1331 } 1332 1333 return err; 1334 } 1335 1336 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1337 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1338 lldb_private::Status err; 1339 1340 lldbassert(execution_unit_sp.get()); 1341 lldbassert(exe_ctx.HasThreadScope()); 1342 1343 if (!execution_unit_sp.get()) { 1344 err.SetErrorString( 1345 "can't run static initializers for a NULL execution unit"); 1346 return err; 1347 } 1348 1349 if (!exe_ctx.HasThreadScope()) { 1350 err.SetErrorString("can't run static initializers without a thread"); 1351 return err; 1352 } 1353 1354 std::vector<lldb::addr_t> static_initializers; 1355 1356 execution_unit_sp->GetStaticInitializers(static_initializers); 1357 1358 for (lldb::addr_t static_initializer : static_initializers) { 1359 EvaluateExpressionOptions options; 1360 1361 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1362 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1363 llvm::ArrayRef<lldb::addr_t>(), options)); 1364 1365 DiagnosticManager execution_errors; 1366 lldb::ExpressionResults results = 1367 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1368 exe_ctx, call_static_initializer, options, execution_errors); 1369 1370 if (results != lldb::eExpressionCompleted) { 1371 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1372 execution_errors.GetString().c_str()); 1373 return err; 1374 } 1375 } 1376 1377 return err; 1378 } 1379