1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/DiagnosticIDs.h" 14 #include "clang/Basic/SourceLocation.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "clang/Basic/Version.h" 17 #include "clang/CodeGen/CodeGenAction.h" 18 #include "clang/CodeGen/ModuleBuilder.h" 19 #include "clang/Edit/Commit.h" 20 #include "clang/Edit/EditedSource.h" 21 #include "clang/Edit/EditsReceiver.h" 22 #include "clang/Frontend/CompilerInstance.h" 23 #include "clang/Frontend/CompilerInvocation.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/FrontendPluginRegistry.h" 27 #include "clang/Frontend/TextDiagnosticBuffer.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Parse/ParseAST.h" 31 #include "clang/Rewrite/Core/Rewriter.h" 32 #include "clang/Rewrite/Frontend/FrontendActions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaConsumer.h" 36 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ExecutionEngine/ExecutionEngine.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/TargetSelect.h" 43 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/DynamicLibrary.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Host.h" 49 #include "llvm/Support/MemoryBuffer.h" 50 #include "llvm/Support/Signals.h" 51 52 #include "ClangDiagnostic.h" 53 #include "ClangExpressionParser.h" 54 #include "ClangUserExpression.h" 55 56 #include "ASTUtils.h" 57 #include "ClangASTSource.h" 58 #include "ClangDiagnostic.h" 59 #include "ClangExpressionDeclMap.h" 60 #include "ClangExpressionHelper.h" 61 #include "ClangExpressionParser.h" 62 #include "ClangHost.h" 63 #include "ClangModulesDeclVendor.h" 64 #include "ClangPersistentVariables.h" 65 #include "IRDynamicChecks.h" 66 #include "IRForTarget.h" 67 #include "ModuleDependencyCollector.h" 68 69 #include "lldb/Core/Debugger.h" 70 #include "lldb/Core/Disassembler.h" 71 #include "lldb/Core/Module.h" 72 #include "lldb/Core/StreamFile.h" 73 #include "lldb/Expression/IRExecutionUnit.h" 74 #include "lldb/Expression/IRInterpreter.h" 75 #include "lldb/Host/File.h" 76 #include "lldb/Host/HostInfo.h" 77 #include "lldb/Symbol/ClangASTContext.h" 78 #include "lldb/Symbol/SymbolVendor.h" 79 #include "lldb/Target/ExecutionContext.h" 80 #include "lldb/Target/Language.h" 81 #include "lldb/Target/Process.h" 82 #include "lldb/Target/Target.h" 83 #include "lldb/Target/ThreadPlanCallFunction.h" 84 #include "lldb/Utility/DataBufferHeap.h" 85 #include "lldb/Utility/LLDBAssert.h" 86 #include "lldb/Utility/Log.h" 87 #include "lldb/Utility/Reproducer.h" 88 #include "lldb/Utility/Stream.h" 89 #include "lldb/Utility/StreamString.h" 90 #include "lldb/Utility/StringList.h" 91 92 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 93 94 #include <cctype> 95 #include <memory> 96 97 using namespace clang; 98 using namespace llvm; 99 using namespace lldb_private; 100 101 //===----------------------------------------------------------------------===// 102 // Utility Methods for Clang 103 //===----------------------------------------------------------------------===// 104 105 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 106 ClangModulesDeclVendor &m_decl_vendor; 107 ClangPersistentVariables &m_persistent_vars; 108 clang::SourceManager &m_source_mgr; 109 StreamString m_error_stream; 110 bool m_has_errors = false; 111 112 public: 113 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 114 ClangPersistentVariables &persistent_vars, 115 clang::SourceManager &source_mgr) 116 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 117 m_source_mgr(source_mgr) {} 118 119 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 120 const clang::Module * /*null*/) override { 121 // Ignore modules that are imported in the wrapper code as these are not 122 // loaded by the user. 123 llvm::StringRef filename = 124 m_source_mgr.getPresumedLoc(import_location).getFilename(); 125 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 126 return; 127 128 SourceModule module; 129 130 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 131 module.path.push_back(ConstString(component.first->getName())); 132 133 StreamString error_stream; 134 135 ClangModulesDeclVendor::ModuleVector exported_modules; 136 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 137 m_has_errors = true; 138 139 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 140 m_persistent_vars.AddHandLoadedClangModule(module); 141 } 142 143 bool hasErrors() { return m_has_errors; } 144 145 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 146 }; 147 148 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 149 public: 150 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 151 DiagnosticOptions *m_options = new DiagnosticOptions(opts); 152 m_options->ShowPresumedLoc = true; 153 m_options->ShowLevel = false; 154 m_os.reset(new llvm::raw_string_ostream(m_output)); 155 m_passthrough.reset( 156 new clang::TextDiagnosticPrinter(*m_os, m_options, false)); 157 } 158 159 void ResetManager(DiagnosticManager *manager = nullptr) { 160 m_manager = manager; 161 } 162 163 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 164 const clang::Diagnostic &Info) override { 165 if (!m_manager) { 166 // We have no DiagnosticManager before/after parsing but we still could 167 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 168 // when we move the expression result ot the ScratchASTContext). Let's at 169 // least log these diagnostics until we find a way to properly render 170 // them and display them to the user. 171 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 172 if (log) { 173 llvm::SmallVector<char, 32> diag_str; 174 Info.FormatDiagnostic(diag_str); 175 diag_str.push_back('\0'); 176 const char *plain_diag = diag_str.data(); 177 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 178 } 179 return; 180 } 181 182 // Render diagnostic message to m_output. 183 m_output.clear(); 184 m_passthrough->HandleDiagnostic(DiagLevel, Info); 185 m_os->flush(); 186 187 lldb_private::DiagnosticSeverity severity; 188 bool make_new_diagnostic = true; 189 190 switch (DiagLevel) { 191 case DiagnosticsEngine::Level::Fatal: 192 case DiagnosticsEngine::Level::Error: 193 severity = eDiagnosticSeverityError; 194 break; 195 case DiagnosticsEngine::Level::Warning: 196 severity = eDiagnosticSeverityWarning; 197 break; 198 case DiagnosticsEngine::Level::Remark: 199 case DiagnosticsEngine::Level::Ignored: 200 severity = eDiagnosticSeverityRemark; 201 break; 202 case DiagnosticsEngine::Level::Note: 203 m_manager->AppendMessageToDiagnostic(m_output); 204 make_new_diagnostic = false; 205 } 206 if (make_new_diagnostic) { 207 // ClangDiagnostic messages are expected to have no whitespace/newlines 208 // around them. 209 std::string stripped_output = llvm::StringRef(m_output).trim(); 210 211 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 212 stripped_output, severity, Info.getID()); 213 214 // Don't store away warning fixits, since the compiler doesn't have 215 // enough context in an expression for the warning to be useful. 216 // FIXME: Should we try to filter out FixIts that apply to our generated 217 // code, and not the user's expression? 218 if (severity == eDiagnosticSeverityError) { 219 size_t num_fixit_hints = Info.getNumFixItHints(); 220 for (size_t i = 0; i < num_fixit_hints; i++) { 221 const clang::FixItHint &fixit = Info.getFixItHint(i); 222 if (!fixit.isNull()) 223 new_diagnostic->AddFixitHint(fixit); 224 } 225 } 226 227 m_manager->AddDiagnostic(std::move(new_diagnostic)); 228 } 229 } 230 231 clang::TextDiagnosticPrinter *GetPassthrough() { return m_passthrough.get(); } 232 233 private: 234 DiagnosticManager *m_manager = nullptr; 235 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 236 /// Output stream of m_passthrough. 237 std::shared_ptr<llvm::raw_string_ostream> m_os; 238 /// Output string filled by m_os. 239 std::string m_output; 240 }; 241 242 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 243 std::vector<std::string> include_directories, 244 lldb::TargetSP target_sp) { 245 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 246 247 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 248 249 for (const std::string &dir : include_directories) { 250 search_opts.AddPath(dir, frontend::System, false, true); 251 LLDB_LOG(log, "Added user include dir: {0}", dir); 252 } 253 254 llvm::SmallString<128> module_cache; 255 auto props = ModuleList::GetGlobalModuleListProperties(); 256 props.GetClangModulesCachePath().GetPath(module_cache); 257 search_opts.ModuleCachePath = module_cache.str(); 258 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 259 260 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 261 262 search_opts.ImplicitModuleMaps = true; 263 } 264 265 //===----------------------------------------------------------------------===// 266 // Implementation of ClangExpressionParser 267 //===----------------------------------------------------------------------===// 268 269 ClangExpressionParser::ClangExpressionParser( 270 ExecutionContextScope *exe_scope, Expression &expr, 271 bool generate_debug_info, std::vector<std::string> include_directories, 272 std::string filename) 273 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 274 m_pp_callbacks(nullptr), 275 m_include_directories(std::move(include_directories)), 276 m_filename(std::move(filename)) { 277 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 278 279 // We can't compile expressions without a target. So if the exe_scope is 280 // null or doesn't have a target, then we just need to get out of here. I'll 281 // lldb_assert and not make any of the compiler objects since 282 // I can't return errors directly from the constructor. Further calls will 283 // check if the compiler was made and 284 // bag out if it wasn't. 285 286 if (!exe_scope) { 287 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 288 __FUNCTION__, __FILE__, __LINE__); 289 return; 290 } 291 292 lldb::TargetSP target_sp; 293 target_sp = exe_scope->CalculateTarget(); 294 if (!target_sp) { 295 lldb_assert(target_sp.get(), 296 "Can't make an expression parser with a null target.", 297 __FUNCTION__, __FILE__, __LINE__); 298 return; 299 } 300 301 // 1. Create a new compiler instance. 302 m_compiler.reset(new CompilerInstance()); 303 304 // When capturing a reproducer, hook up the file collector with clang to 305 // collector modules and headers. 306 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 307 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 308 m_compiler->setModuleDepCollector( 309 std::make_shared<ModuleDependencyCollectorAdaptor>( 310 fp.GetFileCollector())); 311 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 312 opts.IncludeSystemHeaders = true; 313 opts.IncludeModuleFiles = true; 314 } 315 316 // Make sure clang uses the same VFS as LLDB. 317 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 318 319 lldb::LanguageType frame_lang = 320 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 321 bool overridden_target_opts = false; 322 lldb_private::LanguageRuntime *lang_rt = nullptr; 323 324 std::string abi; 325 ArchSpec target_arch; 326 target_arch = target_sp->GetArchitecture(); 327 328 const auto target_machine = target_arch.GetMachine(); 329 330 // If the expression is being evaluated in the context of an existing stack 331 // frame, we introspect to see if the language runtime is available. 332 333 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 334 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 335 336 // Make sure the user hasn't provided a preferred execution language with 337 // `expression --language X -- ...` 338 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 339 frame_lang = frame_sp->GetLanguage(); 340 341 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 342 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 343 LLDB_LOGF(log, "Frame has language of type %s", 344 Language::GetNameForLanguageType(frame_lang)); 345 } 346 347 // 2. Configure the compiler with a set of default options that are 348 // appropriate for most situations. 349 if (target_arch.IsValid()) { 350 std::string triple = target_arch.GetTriple().str(); 351 m_compiler->getTargetOpts().Triple = triple; 352 LLDB_LOGF(log, "Using %s as the target triple", 353 m_compiler->getTargetOpts().Triple.c_str()); 354 } else { 355 // If we get here we don't have a valid target and just have to guess. 356 // Sometimes this will be ok to just use the host target triple (when we 357 // evaluate say "2+3", but other expressions like breakpoint conditions and 358 // other things that _are_ target specific really shouldn't just be using 359 // the host triple. In such a case the language runtime should expose an 360 // overridden options set (3), below. 361 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 362 LLDB_LOGF(log, "Using default target triple of %s", 363 m_compiler->getTargetOpts().Triple.c_str()); 364 } 365 // Now add some special fixes for known architectures: Any arm32 iOS 366 // environment, but not on arm64 367 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 368 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 369 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 370 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 371 } 372 // Supported subsets of x86 373 if (target_machine == llvm::Triple::x86 || 374 target_machine == llvm::Triple::x86_64) { 375 m_compiler->getTargetOpts().Features.push_back("+sse"); 376 m_compiler->getTargetOpts().Features.push_back("+sse2"); 377 } 378 379 // Set the target CPU to generate code for. This will be empty for any CPU 380 // that doesn't really need to make a special 381 // CPU string. 382 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 383 384 // Set the target ABI 385 abi = GetClangTargetABI(target_arch); 386 if (!abi.empty()) 387 m_compiler->getTargetOpts().ABI = abi; 388 389 // 3. Now allow the runtime to provide custom configuration options for the 390 // target. In this case, a specialized language runtime is available and we 391 // can query it for extra options. For 99% of use cases, this will not be 392 // needed and should be provided when basic platform detection is not enough. 393 if (lang_rt) 394 overridden_target_opts = 395 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 396 397 if (overridden_target_opts) 398 if (log && log->GetVerbose()) { 399 LLDB_LOGV( 400 log, "Using overridden target options for the expression evaluation"); 401 402 auto opts = m_compiler->getTargetOpts(); 403 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 404 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 405 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 406 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 407 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 408 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 409 StringList::LogDump(log, opts.Features, "Features"); 410 } 411 412 // 4. Create and install the target on the compiler. 413 m_compiler->createDiagnostics(); 414 auto target_info = TargetInfo::CreateTargetInfo( 415 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 416 if (log) { 417 LLDB_LOGF(log, "Using SIMD alignment: %d", 418 target_info->getSimdDefaultAlign()); 419 LLDB_LOGF(log, "Target datalayout string: '%s'", 420 target_info->getDataLayout().getStringRepresentation().c_str()); 421 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 422 LLDB_LOGF(log, "Target vector alignment: %d", 423 target_info->getMaxVectorAlign()); 424 } 425 m_compiler->setTarget(target_info); 426 427 assert(m_compiler->hasTarget()); 428 429 // 5. Set language options. 430 lldb::LanguageType language = expr.Language(); 431 LangOptions &lang_opts = m_compiler->getLangOpts(); 432 433 switch (language) { 434 case lldb::eLanguageTypeC: 435 case lldb::eLanguageTypeC89: 436 case lldb::eLanguageTypeC99: 437 case lldb::eLanguageTypeC11: 438 // FIXME: the following language option is a temporary workaround, 439 // to "ask for C, get C++." 440 // For now, the expression parser must use C++ anytime the language is a C 441 // family language, because the expression parser uses features of C++ to 442 // capture values. 443 lang_opts.CPlusPlus = true; 444 break; 445 case lldb::eLanguageTypeObjC: 446 lang_opts.ObjC = true; 447 // FIXME: the following language option is a temporary workaround, 448 // to "ask for ObjC, get ObjC++" (see comment above). 449 lang_opts.CPlusPlus = true; 450 451 // Clang now sets as default C++14 as the default standard (with 452 // GNU extensions), so we do the same here to avoid mismatches that 453 // cause compiler error when evaluating expressions (e.g. nullptr not found 454 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 455 // two lines below) so we decide to be consistent with that, but this could 456 // be re-evaluated in the future. 457 lang_opts.CPlusPlus11 = true; 458 break; 459 case lldb::eLanguageTypeC_plus_plus: 460 case lldb::eLanguageTypeC_plus_plus_11: 461 case lldb::eLanguageTypeC_plus_plus_14: 462 lang_opts.CPlusPlus11 = true; 463 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 464 LLVM_FALLTHROUGH; 465 case lldb::eLanguageTypeC_plus_plus_03: 466 lang_opts.CPlusPlus = true; 467 if (process_sp) 468 lang_opts.ObjC = 469 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 470 break; 471 case lldb::eLanguageTypeObjC_plus_plus: 472 case lldb::eLanguageTypeUnknown: 473 default: 474 lang_opts.ObjC = true; 475 lang_opts.CPlusPlus = true; 476 lang_opts.CPlusPlus11 = true; 477 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 478 break; 479 } 480 481 lang_opts.Bool = true; 482 lang_opts.WChar = true; 483 lang_opts.Blocks = true; 484 lang_opts.DebuggerSupport = 485 true; // Features specifically for debugger clients 486 if (expr.DesiredResultType() == Expression::eResultTypeId) 487 lang_opts.DebuggerCastResultToId = true; 488 489 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 490 .CharIsSignedByDefault(); 491 492 // Spell checking is a nice feature, but it ends up completing a lot of types 493 // that we didn't strictly speaking need to complete. As a result, we spend a 494 // long time parsing and importing debug information. 495 lang_opts.SpellChecking = false; 496 497 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 498 if (clang_expr && clang_expr->DidImportCxxModules()) { 499 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 500 501 lang_opts.Modules = true; 502 // We want to implicitly build modules. 503 lang_opts.ImplicitModules = true; 504 // To automatically import all submodules when we import 'std'. 505 lang_opts.ModulesLocalVisibility = false; 506 507 // We use the @import statements, so we need this: 508 // FIXME: We could use the modules-ts, but that currently doesn't work. 509 lang_opts.ObjC = true; 510 511 // Options we need to parse libc++ code successfully. 512 // FIXME: We should ask the driver for the appropriate default flags. 513 lang_opts.GNUMode = true; 514 lang_opts.GNUKeywords = true; 515 lang_opts.DoubleSquareBracketAttributes = true; 516 lang_opts.CPlusPlus11 = true; 517 518 // The Darwin libc expects this macro to be set. 519 lang_opts.GNUCVersion = 40201; 520 521 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 522 target_sp); 523 } 524 525 if (process_sp && lang_opts.ObjC) { 526 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 527 if (runtime->GetRuntimeVersion() == 528 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 529 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 530 else 531 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 532 VersionTuple(10, 7)); 533 534 if (runtime->HasNewLiteralsAndIndexing()) 535 lang_opts.DebuggerObjCLiteral = true; 536 } 537 } 538 539 lang_opts.ThreadsafeStatics = false; 540 lang_opts.AccessControl = false; // Debuggers get universal access 541 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 542 // We enable all builtin functions beside the builtins from libc/libm (e.g. 543 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 544 // additionally enabling them as expandable builtins is breaking Clang. 545 lang_opts.NoBuiltin = true; 546 547 // Set CodeGen options 548 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 549 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 550 m_compiler->getCodeGenOpts().setFramePointer( 551 CodeGenOptions::FramePointerKind::All); 552 if (generate_debug_info) 553 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 554 else 555 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 556 557 // Disable some warnings. 558 m_compiler->getDiagnostics().setSeverityForGroup( 559 clang::diag::Flavor::WarningOrError, "unused-value", 560 clang::diag::Severity::Ignored, SourceLocation()); 561 m_compiler->getDiagnostics().setSeverityForGroup( 562 clang::diag::Flavor::WarningOrError, "odr", 563 clang::diag::Severity::Ignored, SourceLocation()); 564 565 // Inform the target of the language options 566 // 567 // FIXME: We shouldn't need to do this, the target should be immutable once 568 // created. This complexity should be lifted elsewhere. 569 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 570 571 // 6. Set up the diagnostic buffer for reporting errors 572 573 auto diag_mgr = new ClangDiagnosticManagerAdapter( 574 m_compiler->getDiagnostics().getDiagnosticOptions()); 575 m_compiler->getDiagnostics().setClient(diag_mgr); 576 577 // 7. Set up the source management objects inside the compiler 578 m_compiler->createFileManager(); 579 if (!m_compiler->hasSourceManager()) 580 m_compiler->createSourceManager(m_compiler->getFileManager()); 581 m_compiler->createPreprocessor(TU_Complete); 582 583 if (ClangModulesDeclVendor *decl_vendor = 584 target_sp->GetClangModulesDeclVendor()) { 585 ClangPersistentVariables *clang_persistent_vars = 586 llvm::cast<ClangPersistentVariables>( 587 target_sp->GetPersistentExpressionStateForLanguage( 588 lldb::eLanguageTypeC)); 589 std::unique_ptr<PPCallbacks> pp_callbacks(new LLDBPreprocessorCallbacks( 590 *decl_vendor, *clang_persistent_vars, m_compiler->getSourceManager())); 591 m_pp_callbacks = 592 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 593 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 594 } 595 596 // 8. Most of this we get from the CompilerInstance, but we also want to give 597 // the context an ExternalASTSource. 598 599 auto &PP = m_compiler->getPreprocessor(); 600 auto &builtin_context = PP.getBuiltinInfo(); 601 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 602 m_compiler->getLangOpts()); 603 604 m_compiler->createASTContext(); 605 clang::ASTContext &ast_context = m_compiler->getASTContext(); 606 607 m_ast_context.reset(new ClangASTContext(ast_context)); 608 609 std::string module_name("$__lldb_module"); 610 611 m_llvm_context.reset(new LLVMContext()); 612 m_code_generator.reset(CreateLLVMCodeGen( 613 m_compiler->getDiagnostics(), module_name, 614 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 615 m_compiler->getCodeGenOpts(), *m_llvm_context)); 616 } 617 618 ClangExpressionParser::~ClangExpressionParser() {} 619 620 namespace { 621 622 /// \class CodeComplete 623 /// 624 /// A code completion consumer for the clang Sema that is responsible for 625 /// creating the completion suggestions when a user requests completion 626 /// of an incomplete `expr` invocation. 627 class CodeComplete : public CodeCompleteConsumer { 628 CodeCompletionTUInfo m_info; 629 630 std::string m_expr; 631 unsigned m_position = 0; 632 CompletionRequest &m_request; 633 /// The printing policy we use when printing declarations for our completion 634 /// descriptions. 635 clang::PrintingPolicy m_desc_policy; 636 637 /// Returns true if the given character can be used in an identifier. 638 /// This also returns true for numbers because for completion we usually 639 /// just iterate backwards over iterators. 640 /// 641 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 642 static bool IsIdChar(char c) { 643 return c == '_' || std::isalnum(c) || c == '$'; 644 } 645 646 /// Returns true if the given character is used to separate arguments 647 /// in the command line of lldb. 648 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 649 650 /// Drops all tokens in front of the expression that are unrelated for 651 /// the completion of the cmd line. 'unrelated' means here that the token 652 /// is not interested for the lldb completion API result. 653 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 654 if (cmd.empty()) 655 return cmd; 656 657 // If we are at the start of a word, then all tokens are unrelated to 658 // the current completion logic. 659 if (IsTokenSeparator(cmd.back())) 660 return StringRef(); 661 662 // Remove all previous tokens from the string as they are unrelated 663 // to completing the current token. 664 StringRef to_remove = cmd; 665 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 666 to_remove = to_remove.drop_back(); 667 } 668 cmd = cmd.drop_front(to_remove.size()); 669 670 return cmd; 671 } 672 673 /// Removes the last identifier token from the given cmd line. 674 StringRef removeLastToken(StringRef cmd) { 675 while (!cmd.empty() && IsIdChar(cmd.back())) { 676 cmd = cmd.drop_back(); 677 } 678 return cmd; 679 } 680 681 /// Attemps to merge the given completion from the given position into the 682 /// existing command. Returns the completion string that can be returned to 683 /// the lldb completion API. 684 std::string mergeCompletion(StringRef existing, unsigned pos, 685 StringRef completion) { 686 StringRef existing_command = existing.substr(0, pos); 687 // We rewrite the last token with the completion, so let's drop that 688 // token from the command. 689 existing_command = removeLastToken(existing_command); 690 // We also should remove all previous tokens from the command as they 691 // would otherwise be added to the completion that already has the 692 // completion. 693 existing_command = dropUnrelatedFrontTokens(existing_command); 694 return existing_command.str() + completion.str(); 695 } 696 697 public: 698 /// Constructs a CodeComplete consumer that can be attached to a Sema. 699 /// \param[out] matches 700 /// The list of matches that the lldb completion API expects as a result. 701 /// This may already contain matches, so it's only allowed to append 702 /// to this variable. 703 /// \param[out] expr 704 /// The whole expression string that we are currently parsing. This 705 /// string needs to be equal to the input the user typed, and NOT the 706 /// final code that Clang is parsing. 707 /// \param[out] position 708 /// The character position of the user cursor in the `expr` parameter. 709 /// 710 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 711 std::string expr, unsigned position) 712 : CodeCompleteConsumer(CodeCompleteOptions()), 713 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 714 m_position(position), m_request(request), m_desc_policy(ops) { 715 716 // Ensure that the printing policy is producing a description that is as 717 // short as possible. 718 m_desc_policy.SuppressScope = true; 719 m_desc_policy.SuppressTagKeyword = true; 720 m_desc_policy.FullyQualifiedName = false; 721 m_desc_policy.TerseOutput = true; 722 m_desc_policy.IncludeNewlines = false; 723 m_desc_policy.UseVoidForZeroParams = false; 724 m_desc_policy.Bool = true; 725 } 726 727 /// Deregisters and destroys this code-completion consumer. 728 ~CodeComplete() override {} 729 730 /// \name Code-completion filtering 731 /// Check if the result should be filtered out. 732 bool isResultFilteredOut(StringRef Filter, 733 CodeCompletionResult Result) override { 734 // This code is mostly copied from CodeCompleteConsumer. 735 switch (Result.Kind) { 736 case CodeCompletionResult::RK_Declaration: 737 return !( 738 Result.Declaration->getIdentifier() && 739 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 740 case CodeCompletionResult::RK_Keyword: 741 return !StringRef(Result.Keyword).startswith(Filter); 742 case CodeCompletionResult::RK_Macro: 743 return !Result.Macro->getName().startswith(Filter); 744 case CodeCompletionResult::RK_Pattern: 745 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 746 } 747 // If we trigger this assert or the above switch yields a warning, then 748 // CodeCompletionResult has been enhanced with more kinds of completion 749 // results. Expand the switch above in this case. 750 assert(false && "Unknown completion result type?"); 751 // If we reach this, then we should just ignore whatever kind of unknown 752 // result we got back. We probably can't turn it into any kind of useful 753 // completion suggestion with the existing code. 754 return true; 755 } 756 757 /// \name Code-completion callbacks 758 /// Process the finalized code-completion results. 759 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 760 CodeCompletionResult *Results, 761 unsigned NumResults) override { 762 763 // The Sema put the incomplete token we try to complete in here during 764 // lexing, so we need to retrieve it here to know what we are completing. 765 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 766 767 // Iterate over all the results. Filter out results we don't want and 768 // process the rest. 769 for (unsigned I = 0; I != NumResults; ++I) { 770 // Filter the results with the information from the Sema. 771 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 772 continue; 773 774 CodeCompletionResult &R = Results[I]; 775 std::string ToInsert; 776 std::string Description; 777 // Handle the different completion kinds that come from the Sema. 778 switch (R.Kind) { 779 case CodeCompletionResult::RK_Declaration: { 780 const NamedDecl *D = R.Declaration; 781 ToInsert = R.Declaration->getNameAsString(); 782 // If we have a function decl that has no arguments we want to 783 // complete the empty parantheses for the user. If the function has 784 // arguments, we at least complete the opening bracket. 785 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 786 if (F->getNumParams() == 0) 787 ToInsert += "()"; 788 else 789 ToInsert += "("; 790 raw_string_ostream OS(Description); 791 F->print(OS, m_desc_policy, false); 792 OS.flush(); 793 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 794 Description = V->getType().getAsString(m_desc_policy); 795 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 796 Description = F->getType().getAsString(m_desc_policy); 797 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 798 // If we try to complete a namespace, then we can directly append 799 // the '::'. 800 if (!N->isAnonymousNamespace()) 801 ToInsert += "::"; 802 } 803 break; 804 } 805 case CodeCompletionResult::RK_Keyword: 806 ToInsert = R.Keyword; 807 break; 808 case CodeCompletionResult::RK_Macro: 809 ToInsert = R.Macro->getName().str(); 810 break; 811 case CodeCompletionResult::RK_Pattern: 812 ToInsert = R.Pattern->getTypedText(); 813 break; 814 } 815 // At this point all information is in the ToInsert string. 816 817 // We also filter some internal lldb identifiers here. The user 818 // shouldn't see these. 819 if (StringRef(ToInsert).startswith("$__lldb_")) 820 continue; 821 if (!ToInsert.empty()) { 822 // Merge the suggested Token into the existing command line to comply 823 // with the kind of result the lldb API expects. 824 std::string CompletionSuggestion = 825 mergeCompletion(m_expr, m_position, ToInsert); 826 m_request.AddCompletion(CompletionSuggestion, Description); 827 } 828 } 829 } 830 831 /// \param S the semantic-analyzer object for which code-completion is being 832 /// done. 833 /// 834 /// \param CurrentArg the index of the current argument. 835 /// 836 /// \param Candidates an array of overload candidates. 837 /// 838 /// \param NumCandidates the number of overload candidates 839 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 840 OverloadCandidate *Candidates, 841 unsigned NumCandidates, 842 SourceLocation OpenParLoc) override { 843 // At the moment we don't filter out any overloaded candidates. 844 } 845 846 CodeCompletionAllocator &getAllocator() override { 847 return m_info.getAllocator(); 848 } 849 850 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 851 }; 852 } // namespace 853 854 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 855 unsigned pos, unsigned typed_pos) { 856 DiagnosticManager mgr; 857 // We need the raw user expression here because that's what the CodeComplete 858 // class uses to provide completion suggestions. 859 // However, the `Text` method only gives us the transformed expression here. 860 // To actually get the raw user input here, we have to cast our expression to 861 // the LLVMUserExpression which exposes the right API. This should never fail 862 // as we always have a ClangUserExpression whenever we call this. 863 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 864 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 865 typed_pos); 866 // We don't need a code generator for parsing. 867 m_code_generator.reset(); 868 // Start parsing the expression with our custom code completion consumer. 869 ParseInternal(mgr, &CC, line, pos); 870 return true; 871 } 872 873 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 874 return ParseInternal(diagnostic_manager); 875 } 876 877 unsigned 878 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 879 CodeCompleteConsumer *completion_consumer, 880 unsigned completion_line, 881 unsigned completion_column) { 882 ClangDiagnosticManagerAdapter *adapter = 883 static_cast<ClangDiagnosticManagerAdapter *>( 884 m_compiler->getDiagnostics().getClient()); 885 auto diag_buf = adapter->GetPassthrough(); 886 887 adapter->ResetManager(&diagnostic_manager); 888 889 const char *expr_text = m_expr.Text(); 890 891 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 892 bool created_main_file = false; 893 894 // Clang wants to do completion on a real file known by Clang's file manager, 895 // so we have to create one to make this work. 896 // TODO: We probably could also simulate to Clang's file manager that there 897 // is a real file that contains our code. 898 bool should_create_file = completion_consumer != nullptr; 899 900 // We also want a real file on disk if we generate full debug info. 901 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 902 codegenoptions::FullDebugInfo; 903 904 if (should_create_file) { 905 int temp_fd = -1; 906 llvm::SmallString<128> result_path; 907 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 908 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 909 std::string temp_source_path = tmpdir_file_spec.GetPath(); 910 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 911 } else { 912 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 913 } 914 915 if (temp_fd != -1) { 916 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true); 917 const size_t expr_text_len = strlen(expr_text); 918 size_t bytes_written = expr_text_len; 919 if (file.Write(expr_text, bytes_written).Success()) { 920 if (bytes_written == expr_text_len) { 921 file.Close(); 922 if (auto fileEntry = 923 m_compiler->getFileManager().getFile(result_path)) { 924 source_mgr.setMainFileID(source_mgr.createFileID( 925 *fileEntry, 926 SourceLocation(), SrcMgr::C_User)); 927 created_main_file = true; 928 } 929 } 930 } 931 } 932 } 933 934 if (!created_main_file) { 935 std::unique_ptr<MemoryBuffer> memory_buffer = 936 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 937 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 938 } 939 940 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 941 &m_compiler->getPreprocessor()); 942 943 ClangExpressionHelper *type_system_helper = 944 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 945 946 // If we want to parse for code completion, we need to attach our code 947 // completion consumer to the Sema and specify a completion position. 948 // While parsing the Sema will call this consumer with the provided 949 // completion suggestions. 950 if (completion_consumer) { 951 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 952 auto &PP = m_compiler->getPreprocessor(); 953 // Lines and columns start at 1 in Clang, but code completion positions are 954 // indexed from 0, so we need to add 1 to the line and column here. 955 ++completion_line; 956 ++completion_column; 957 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 958 } 959 960 ASTConsumer *ast_transformer = 961 type_system_helper->ASTTransformer(m_code_generator.get()); 962 963 std::unique_ptr<clang::ASTConsumer> Consumer; 964 if (ast_transformer) { 965 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 966 } else if (m_code_generator) { 967 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 968 } else { 969 Consumer.reset(new ASTConsumer()); 970 } 971 972 clang::ASTContext &ast_context = m_compiler->getASTContext(); 973 974 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 975 *Consumer, TU_Complete, completion_consumer)); 976 m_compiler->setASTConsumer(std::move(Consumer)); 977 978 if (ast_context.getLangOpts().Modules) { 979 m_compiler->createModuleManager(); 980 m_ast_context->setSema(&m_compiler->getSema()); 981 } 982 983 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 984 if (decl_map) { 985 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 986 987 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 988 989 if (ast_context.getExternalSource()) { 990 auto module_wrapper = 991 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 992 993 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 994 995 auto multiplexer = 996 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 997 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 998 ast_context.setExternalSource(Source); 999 } else { 1000 ast_context.setExternalSource(ast_source); 1001 } 1002 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 1003 } 1004 1005 // Check that the ASTReader is properly attached to ASTContext and Sema. 1006 if (ast_context.getLangOpts().Modules) { 1007 assert(m_compiler->getASTContext().getExternalSource() && 1008 "ASTContext doesn't know about the ASTReader?"); 1009 assert(m_compiler->getSema().getExternalSource() && 1010 "Sema doesn't know about the ASTReader?"); 1011 } 1012 1013 { 1014 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1015 &m_compiler->getSema()); 1016 ParseAST(m_compiler->getSema(), false, false); 1017 } 1018 1019 // Make sure we have no pointer to the Sema we are about to destroy. 1020 if (ast_context.getLangOpts().Modules) 1021 m_ast_context->setSema(nullptr); 1022 // Destroy the Sema. This is necessary because we want to emulate the 1023 // original behavior of ParseAST (which also destroys the Sema after parsing). 1024 m_compiler->setSema(nullptr); 1025 1026 diag_buf->EndSourceFile(); 1027 1028 unsigned num_errors = diag_buf->getNumErrors(); 1029 1030 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1031 num_errors++; 1032 diagnostic_manager.PutString(eDiagnosticSeverityError, 1033 "while importing modules:"); 1034 diagnostic_manager.AppendMessageToDiagnostic( 1035 m_pp_callbacks->getErrorString()); 1036 } 1037 1038 if (!num_errors) { 1039 if (type_system_helper->DeclMap() && 1040 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 1041 diagnostic_manager.Printf(eDiagnosticSeverityError, 1042 "Couldn't infer the type of a variable"); 1043 num_errors++; 1044 } 1045 } 1046 1047 if (!num_errors) { 1048 type_system_helper->CommitPersistentDecls(); 1049 } 1050 1051 adapter->ResetManager(); 1052 1053 return num_errors; 1054 } 1055 1056 std::string 1057 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1058 std::string abi; 1059 1060 if (target_arch.IsMIPS()) { 1061 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1062 case ArchSpec::eMIPSABI_N64: 1063 abi = "n64"; 1064 break; 1065 case ArchSpec::eMIPSABI_N32: 1066 abi = "n32"; 1067 break; 1068 case ArchSpec::eMIPSABI_O32: 1069 abi = "o32"; 1070 break; 1071 default: 1072 break; 1073 } 1074 } 1075 return abi; 1076 } 1077 1078 bool ClangExpressionParser::RewriteExpression( 1079 DiagnosticManager &diagnostic_manager) { 1080 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1081 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1082 nullptr); 1083 clang::edit::Commit commit(editor); 1084 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1085 1086 class RewritesReceiver : public edit::EditsReceiver { 1087 Rewriter &rewrite; 1088 1089 public: 1090 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1091 1092 void insert(SourceLocation loc, StringRef text) override { 1093 rewrite.InsertText(loc, text); 1094 } 1095 void replace(CharSourceRange range, StringRef text) override { 1096 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1097 } 1098 }; 1099 1100 RewritesReceiver rewrites_receiver(rewriter); 1101 1102 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1103 size_t num_diags = diagnostics.size(); 1104 if (num_diags == 0) 1105 return false; 1106 1107 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1108 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1109 if (diagnostic && diagnostic->HasFixIts()) { 1110 for (const FixItHint &fixit : diagnostic->FixIts()) { 1111 // This is cobbed from clang::Rewrite::FixItRewriter. 1112 if (fixit.CodeToInsert.empty()) { 1113 if (fixit.InsertFromRange.isValid()) { 1114 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1115 fixit.InsertFromRange, /*afterToken=*/false, 1116 fixit.BeforePreviousInsertions); 1117 } else 1118 commit.remove(fixit.RemoveRange); 1119 } else { 1120 if (fixit.RemoveRange.isTokenRange() || 1121 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1122 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1123 else 1124 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1125 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1126 } 1127 } 1128 } 1129 } 1130 1131 // FIXME - do we want to try to propagate specific errors here? 1132 if (!commit.isCommitable()) 1133 return false; 1134 else if (!editor.commit(commit)) 1135 return false; 1136 1137 // Now play all the edits, and stash the result in the diagnostic manager. 1138 editor.applyRewrites(rewrites_receiver); 1139 RewriteBuffer &main_file_buffer = 1140 rewriter.getEditBuffer(source_manager.getMainFileID()); 1141 1142 std::string fixed_expression; 1143 llvm::raw_string_ostream out_stream(fixed_expression); 1144 1145 main_file_buffer.write(out_stream); 1146 out_stream.flush(); 1147 diagnostic_manager.SetFixedExpression(fixed_expression); 1148 1149 return true; 1150 } 1151 1152 static bool FindFunctionInModule(ConstString &mangled_name, 1153 llvm::Module *module, const char *orig_name) { 1154 for (const auto &func : module->getFunctionList()) { 1155 const StringRef &name = func.getName(); 1156 if (name.find(orig_name) != StringRef::npos) { 1157 mangled_name.SetString(name); 1158 return true; 1159 } 1160 } 1161 1162 return false; 1163 } 1164 1165 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1166 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1167 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1168 bool &can_interpret, ExecutionPolicy execution_policy) { 1169 func_addr = LLDB_INVALID_ADDRESS; 1170 func_end = LLDB_INVALID_ADDRESS; 1171 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1172 1173 lldb_private::Status err; 1174 1175 std::unique_ptr<llvm::Module> llvm_module_up( 1176 m_code_generator->ReleaseModule()); 1177 1178 if (!llvm_module_up) { 1179 err.SetErrorToGenericError(); 1180 err.SetErrorString("IR doesn't contain a module"); 1181 return err; 1182 } 1183 1184 ConstString function_name; 1185 1186 if (execution_policy != eExecutionPolicyTopLevel) { 1187 // Find the actual name of the function (it's often mangled somehow) 1188 1189 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1190 m_expr.FunctionName())) { 1191 err.SetErrorToGenericError(); 1192 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1193 m_expr.FunctionName()); 1194 return err; 1195 } else { 1196 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1197 m_expr.FunctionName()); 1198 } 1199 } 1200 1201 SymbolContext sc; 1202 1203 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1204 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1205 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1206 sc.target_sp = target_sp; 1207 } 1208 1209 LLVMUserExpression::IRPasses custom_passes; 1210 { 1211 auto lang = m_expr.Language(); 1212 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1213 Language::GetNameForLanguageType(lang)); 1214 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1215 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1216 auto runtime = process_sp->GetLanguageRuntime(lang); 1217 if (runtime) 1218 runtime->GetIRPasses(custom_passes); 1219 } 1220 } 1221 1222 if (custom_passes.EarlyPasses) { 1223 LLDB_LOGF(log, 1224 "%s - Running Early IR Passes from LanguageRuntime on " 1225 "expression module '%s'", 1226 __FUNCTION__, m_expr.FunctionName()); 1227 1228 custom_passes.EarlyPasses->run(*llvm_module_up); 1229 } 1230 1231 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1232 m_llvm_context, // handed off here 1233 llvm_module_up, // handed off here 1234 function_name, exe_ctx.GetTargetSP(), sc, 1235 m_compiler->getTargetOpts().Features); 1236 1237 ClangExpressionHelper *type_system_helper = 1238 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1239 ClangExpressionDeclMap *decl_map = 1240 type_system_helper->DeclMap(); // result can be NULL 1241 1242 if (decl_map) { 1243 Target *target = exe_ctx.GetTargetPtr(); 1244 auto &error_stream = target->GetDebugger().GetErrorStream(); 1245 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1246 *execution_unit_sp, error_stream, 1247 function_name.AsCString()); 1248 1249 bool ir_can_run = 1250 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1251 1252 if (!ir_can_run) { 1253 err.SetErrorString( 1254 "The expression could not be prepared to run in the target"); 1255 return err; 1256 } 1257 1258 Process *process = exe_ctx.GetProcessPtr(); 1259 1260 if (execution_policy != eExecutionPolicyAlways && 1261 execution_policy != eExecutionPolicyTopLevel) { 1262 lldb_private::Status interpret_error; 1263 1264 bool interpret_function_calls = 1265 !process ? false : process->CanInterpretFunctionCalls(); 1266 can_interpret = IRInterpreter::CanInterpret( 1267 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1268 interpret_error, interpret_function_calls); 1269 1270 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1271 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1272 interpret_error.AsCString()); 1273 return err; 1274 } 1275 } 1276 1277 if (!process && execution_policy == eExecutionPolicyAlways) { 1278 err.SetErrorString("Expression needed to run in the target, but the " 1279 "target can't be run"); 1280 return err; 1281 } 1282 1283 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1284 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1285 "target, but the target can't be run"); 1286 return err; 1287 } 1288 1289 if (execution_policy == eExecutionPolicyAlways || 1290 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1291 if (m_expr.NeedsValidation() && process) { 1292 if (!process->GetDynamicCheckers()) { 1293 ClangDynamicCheckerFunctions *dynamic_checkers = 1294 new ClangDynamicCheckerFunctions(); 1295 1296 DiagnosticManager install_diagnostics; 1297 1298 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1299 if (install_diagnostics.Diagnostics().size()) 1300 err.SetErrorString(install_diagnostics.GetString().c_str()); 1301 else 1302 err.SetErrorString("couldn't install checkers, unknown error"); 1303 1304 return err; 1305 } 1306 1307 process->SetDynamicCheckers(dynamic_checkers); 1308 1309 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1310 "Finished installing dynamic checkers =="); 1311 } 1312 1313 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1314 process->GetDynamicCheckers())) { 1315 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1316 function_name.AsCString()); 1317 1318 llvm::Module *module = execution_unit_sp->GetModule(); 1319 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1320 err.SetErrorToGenericError(); 1321 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1322 return err; 1323 } 1324 1325 if (custom_passes.LatePasses) { 1326 LLDB_LOGF(log, 1327 "%s - Running Late IR Passes from LanguageRuntime on " 1328 "expression module '%s'", 1329 __FUNCTION__, m_expr.FunctionName()); 1330 1331 custom_passes.LatePasses->run(*module); 1332 } 1333 } 1334 } 1335 } 1336 1337 if (execution_policy == eExecutionPolicyAlways || 1338 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1339 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1340 } 1341 } else { 1342 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1343 } 1344 1345 return err; 1346 } 1347 1348 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1349 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1350 lldb_private::Status err; 1351 1352 lldbassert(execution_unit_sp.get()); 1353 lldbassert(exe_ctx.HasThreadScope()); 1354 1355 if (!execution_unit_sp.get()) { 1356 err.SetErrorString( 1357 "can't run static initializers for a NULL execution unit"); 1358 return err; 1359 } 1360 1361 if (!exe_ctx.HasThreadScope()) { 1362 err.SetErrorString("can't run static initializers without a thread"); 1363 return err; 1364 } 1365 1366 std::vector<lldb::addr_t> static_initializers; 1367 1368 execution_unit_sp->GetStaticInitializers(static_initializers); 1369 1370 for (lldb::addr_t static_initializer : static_initializers) { 1371 EvaluateExpressionOptions options; 1372 1373 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1374 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1375 llvm::ArrayRef<lldb::addr_t>(), options)); 1376 1377 DiagnosticManager execution_errors; 1378 lldb::ExpressionResults results = 1379 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1380 exe_ctx, call_static_initializer, options, execution_errors); 1381 1382 if (results != lldb::eExpressionCompleted) { 1383 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1384 execution_errors.GetString().c_str()); 1385 return err; 1386 } 1387 } 1388 1389 return err; 1390 } 1391