1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/DiagnosticIDs.h" 14 #include "clang/Basic/SourceLocation.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "clang/Basic/Version.h" 17 #include "clang/CodeGen/CodeGenAction.h" 18 #include "clang/CodeGen/ModuleBuilder.h" 19 #include "clang/Edit/Commit.h" 20 #include "clang/Edit/EditedSource.h" 21 #include "clang/Edit/EditsReceiver.h" 22 #include "clang/Frontend/CompilerInstance.h" 23 #include "clang/Frontend/CompilerInvocation.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/FrontendPluginRegistry.h" 27 #include "clang/Frontend/TextDiagnosticBuffer.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Parse/ParseAST.h" 31 #include "clang/Rewrite/Core/Rewriter.h" 32 #include "clang/Rewrite/Frontend/FrontendActions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaConsumer.h" 36 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ExecutionEngine/ExecutionEngine.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/TargetSelect.h" 43 44 #pragma clang diagnostic push 45 #pragma clang diagnostic ignored "-Wglobal-constructors" 46 #include "llvm/ExecutionEngine/MCJIT.h" 47 #pragma clang diagnostic pop 48 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/Support/DynamicLibrary.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/Host.h" 54 #include "llvm/Support/MemoryBuffer.h" 55 #include "llvm/Support/Signals.h" 56 57 #include "ClangDiagnostic.h" 58 #include "ClangExpressionParser.h" 59 #include "ClangUserExpression.h" 60 61 #include "ASTUtils.h" 62 #include "ClangASTSource.h" 63 #include "ClangDiagnostic.h" 64 #include "ClangExpressionDeclMap.h" 65 #include "ClangExpressionHelper.h" 66 #include "ClangExpressionParser.h" 67 #include "ClangHost.h" 68 #include "ClangModulesDeclVendor.h" 69 #include "ClangPersistentVariables.h" 70 #include "IRForTarget.h" 71 #include "ModuleDependencyCollector.h" 72 73 #include "lldb/Core/Debugger.h" 74 #include "lldb/Core/Disassembler.h" 75 #include "lldb/Core/Module.h" 76 #include "lldb/Core/StreamFile.h" 77 #include "lldb/Expression/IRDynamicChecks.h" 78 #include "lldb/Expression/IRExecutionUnit.h" 79 #include "lldb/Expression/IRInterpreter.h" 80 #include "lldb/Host/File.h" 81 #include "lldb/Host/HostInfo.h" 82 #include "lldb/Symbol/ClangASTContext.h" 83 #include "lldb/Symbol/SymbolVendor.h" 84 #include "lldb/Target/ExecutionContext.h" 85 #include "lldb/Target/Language.h" 86 #include "lldb/Target/ObjCLanguageRuntime.h" 87 #include "lldb/Target/Process.h" 88 #include "lldb/Target/Target.h" 89 #include "lldb/Target/ThreadPlanCallFunction.h" 90 #include "lldb/Utility/DataBufferHeap.h" 91 #include "lldb/Utility/LLDBAssert.h" 92 #include "lldb/Utility/Log.h" 93 #include "lldb/Utility/Reproducer.h" 94 #include "lldb/Utility/Stream.h" 95 #include "lldb/Utility/StreamString.h" 96 #include "lldb/Utility/StringList.h" 97 98 #include <cctype> 99 #include <memory> 100 101 using namespace clang; 102 using namespace llvm; 103 using namespace lldb_private; 104 105 //===----------------------------------------------------------------------===// 106 // Utility Methods for Clang 107 //===----------------------------------------------------------------------===// 108 109 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 110 ClangModulesDeclVendor &m_decl_vendor; 111 ClangPersistentVariables &m_persistent_vars; 112 StreamString m_error_stream; 113 bool m_has_errors = false; 114 115 public: 116 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 117 ClangPersistentVariables &persistent_vars) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 119 120 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 121 const clang::Module * /*null*/) override { 122 SourceModule module; 123 124 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 125 module.path.push_back(ConstString(component.first->getName())); 126 127 StreamString error_stream; 128 129 ClangModulesDeclVendor::ModuleVector exported_modules; 130 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 131 m_has_errors = true; 132 133 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 134 m_persistent_vars.AddHandLoadedClangModule(module); 135 } 136 137 bool hasErrors() { return m_has_errors; } 138 139 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 140 }; 141 142 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 143 public: 144 ClangDiagnosticManagerAdapter() 145 : m_passthrough(new clang::TextDiagnosticBuffer) {} 146 147 ClangDiagnosticManagerAdapter( 148 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 149 : m_passthrough(passthrough) {} 150 151 void ResetManager(DiagnosticManager *manager = nullptr) { 152 m_manager = manager; 153 } 154 155 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 156 const clang::Diagnostic &Info) { 157 if (m_manager) { 158 llvm::SmallVector<char, 32> diag_str; 159 Info.FormatDiagnostic(diag_str); 160 diag_str.push_back('\0'); 161 const char *data = diag_str.data(); 162 163 lldb_private::DiagnosticSeverity severity; 164 bool make_new_diagnostic = true; 165 166 switch (DiagLevel) { 167 case DiagnosticsEngine::Level::Fatal: 168 case DiagnosticsEngine::Level::Error: 169 severity = eDiagnosticSeverityError; 170 break; 171 case DiagnosticsEngine::Level::Warning: 172 severity = eDiagnosticSeverityWarning; 173 break; 174 case DiagnosticsEngine::Level::Remark: 175 case DiagnosticsEngine::Level::Ignored: 176 severity = eDiagnosticSeverityRemark; 177 break; 178 case DiagnosticsEngine::Level::Note: 179 m_manager->AppendMessageToDiagnostic(data); 180 make_new_diagnostic = false; 181 } 182 if (make_new_diagnostic) { 183 ClangDiagnostic *new_diagnostic = 184 new ClangDiagnostic(data, severity, Info.getID()); 185 m_manager->AddDiagnostic(new_diagnostic); 186 187 // Don't store away warning fixits, since the compiler doesn't have 188 // enough context in an expression for the warning to be useful. 189 // FIXME: Should we try to filter out FixIts that apply to our generated 190 // code, and not the user's expression? 191 if (severity == eDiagnosticSeverityError) { 192 size_t num_fixit_hints = Info.getNumFixItHints(); 193 for (size_t i = 0; i < num_fixit_hints; i++) { 194 const clang::FixItHint &fixit = Info.getFixItHint(i); 195 if (!fixit.isNull()) 196 new_diagnostic->AddFixitHint(fixit); 197 } 198 } 199 } 200 } 201 202 m_passthrough->HandleDiagnostic(DiagLevel, Info); 203 } 204 205 void FlushDiagnostics(DiagnosticsEngine &Diags) { 206 m_passthrough->FlushDiagnostics(Diags); 207 } 208 209 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 210 return new ClangDiagnosticManagerAdapter(m_passthrough); 211 } 212 213 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 214 215 private: 216 DiagnosticManager *m_manager = nullptr; 217 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 218 }; 219 220 static void 221 SetupModuleHeaderPaths(CompilerInstance *compiler, 222 std::vector<ConstString> include_directories, 223 lldb::TargetSP target_sp) { 224 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 225 226 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 227 228 for (ConstString dir : include_directories) { 229 search_opts.AddPath(dir.AsCString(), frontend::System, false, true); 230 LLDB_LOG(log, "Added user include dir: {0}", dir); 231 } 232 233 llvm::SmallString<128> module_cache; 234 auto props = ModuleList::GetGlobalModuleListProperties(); 235 props.GetClangModulesCachePath().GetPath(module_cache); 236 search_opts.ModuleCachePath = module_cache.str(); 237 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 238 239 FileSpec clang_resource_dir = GetClangResourceDir(); 240 std::string resource_dir = clang_resource_dir.GetPath(); 241 if (FileSystem::Instance().IsDirectory(resource_dir)) { 242 search_opts.ResourceDir = resource_dir; 243 std::string resource_include = resource_dir + "/include"; 244 search_opts.AddPath(resource_include, frontend::System, false, true); 245 246 LLDB_LOG(log, "Added resource include dir: {0}", resource_include); 247 } 248 249 search_opts.ImplicitModuleMaps = true; 250 251 std::vector<std::string> system_include_directories = 252 target_sp->GetPlatform()->GetSystemIncludeDirectories( 253 lldb::eLanguageTypeC_plus_plus); 254 255 for (const std::string &include_dir : system_include_directories) { 256 search_opts.AddPath(include_dir, frontend::System, false, true); 257 258 LLDB_LOG(log, "Added system include dir: {0}", include_dir); 259 } 260 } 261 262 //===----------------------------------------------------------------------===// 263 // Implementation of ClangExpressionParser 264 //===----------------------------------------------------------------------===// 265 266 ClangExpressionParser::ClangExpressionParser( 267 ExecutionContextScope *exe_scope, Expression &expr, 268 bool generate_debug_info, std::vector<ConstString> include_directories) 269 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 270 m_pp_callbacks(nullptr), 271 m_include_directories(std::move(include_directories)) { 272 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 273 274 // We can't compile expressions without a target. So if the exe_scope is 275 // null or doesn't have a target, then we just need to get out of here. I'll 276 // lldb_assert and not make any of the compiler objects since 277 // I can't return errors directly from the constructor. Further calls will 278 // check if the compiler was made and 279 // bag out if it wasn't. 280 281 if (!exe_scope) { 282 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 283 __FUNCTION__, __FILE__, __LINE__); 284 return; 285 } 286 287 lldb::TargetSP target_sp; 288 target_sp = exe_scope->CalculateTarget(); 289 if (!target_sp) { 290 lldb_assert(target_sp.get(), 291 "Can't make an expression parser with a null target.", 292 __FUNCTION__, __FILE__, __LINE__); 293 return; 294 } 295 296 // 1. Create a new compiler instance. 297 m_compiler.reset(new CompilerInstance()); 298 299 // When capturing a reproducer, hook up the file collector with clang to 300 // collector modules and headers. 301 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 302 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 303 m_compiler->setModuleDepCollector( 304 std::make_shared<ModuleDependencyCollectorAdaptor>( 305 fp.GetFileCollector())); 306 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 307 opts.IncludeSystemHeaders = true; 308 opts.IncludeModuleFiles = true; 309 } 310 311 // Make sure clang uses the same VFS as LLDB. 312 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 313 314 lldb::LanguageType frame_lang = 315 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 316 bool overridden_target_opts = false; 317 lldb_private::LanguageRuntime *lang_rt = nullptr; 318 319 std::string abi; 320 ArchSpec target_arch; 321 target_arch = target_sp->GetArchitecture(); 322 323 const auto target_machine = target_arch.GetMachine(); 324 325 // If the expression is being evaluated in the context of an existing stack 326 // frame, we introspect to see if the language runtime is available. 327 328 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 329 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 330 331 // Make sure the user hasn't provided a preferred execution language with 332 // `expression --language X -- ...` 333 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 334 frame_lang = frame_sp->GetLanguage(); 335 336 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 337 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 338 if (log) 339 log->Printf("Frame has language of type %s", 340 Language::GetNameForLanguageType(frame_lang)); 341 } 342 343 // 2. Configure the compiler with a set of default options that are 344 // appropriate for most situations. 345 if (target_arch.IsValid()) { 346 std::string triple = target_arch.GetTriple().str(); 347 m_compiler->getTargetOpts().Triple = triple; 348 if (log) 349 log->Printf("Using %s as the target triple", 350 m_compiler->getTargetOpts().Triple.c_str()); 351 } else { 352 // If we get here we don't have a valid target and just have to guess. 353 // Sometimes this will be ok to just use the host target triple (when we 354 // evaluate say "2+3", but other expressions like breakpoint conditions and 355 // other things that _are_ target specific really shouldn't just be using 356 // the host triple. In such a case the language runtime should expose an 357 // overridden options set (3), below. 358 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 359 if (log) 360 log->Printf("Using default target triple of %s", 361 m_compiler->getTargetOpts().Triple.c_str()); 362 } 363 // Now add some special fixes for known architectures: Any arm32 iOS 364 // environment, but not on arm64 365 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 366 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 367 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 368 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 369 } 370 // Supported subsets of x86 371 if (target_machine == llvm::Triple::x86 || 372 target_machine == llvm::Triple::x86_64) { 373 m_compiler->getTargetOpts().Features.push_back("+sse"); 374 m_compiler->getTargetOpts().Features.push_back("+sse2"); 375 } 376 377 // Set the target CPU to generate code for. This will be empty for any CPU 378 // that doesn't really need to make a special 379 // CPU string. 380 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 381 382 // Set the target ABI 383 abi = GetClangTargetABI(target_arch); 384 if (!abi.empty()) 385 m_compiler->getTargetOpts().ABI = abi; 386 387 // 3. Now allow the runtime to provide custom configuration options for the 388 // target. In this case, a specialized language runtime is available and we 389 // can query it for extra options. For 99% of use cases, this will not be 390 // needed and should be provided when basic platform detection is not enough. 391 if (lang_rt) 392 overridden_target_opts = 393 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 394 395 if (overridden_target_opts) 396 if (log && log->GetVerbose()) { 397 LLDB_LOGV( 398 log, "Using overridden target options for the expression evaluation"); 399 400 auto opts = m_compiler->getTargetOpts(); 401 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 402 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 403 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 404 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 405 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 406 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 407 StringList::LogDump(log, opts.Features, "Features"); 408 } 409 410 // 4. Create and install the target on the compiler. 411 m_compiler->createDiagnostics(); 412 auto target_info = TargetInfo::CreateTargetInfo( 413 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 414 if (log) { 415 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); 416 log->Printf("Target datalayout string: '%s'", 417 target_info->getDataLayout().getStringRepresentation().c_str()); 418 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); 419 log->Printf("Target vector alignment: %d", 420 target_info->getMaxVectorAlign()); 421 } 422 m_compiler->setTarget(target_info); 423 424 assert(m_compiler->hasTarget()); 425 426 // 5. Set language options. 427 lldb::LanguageType language = expr.Language(); 428 LangOptions &lang_opts = m_compiler->getLangOpts(); 429 430 switch (language) { 431 case lldb::eLanguageTypeC: 432 case lldb::eLanguageTypeC89: 433 case lldb::eLanguageTypeC99: 434 case lldb::eLanguageTypeC11: 435 // FIXME: the following language option is a temporary workaround, 436 // to "ask for C, get C++." 437 // For now, the expression parser must use C++ anytime the language is a C 438 // family language, because the expression parser uses features of C++ to 439 // capture values. 440 lang_opts.CPlusPlus = true; 441 break; 442 case lldb::eLanguageTypeObjC: 443 lang_opts.ObjC = true; 444 // FIXME: the following language option is a temporary workaround, 445 // to "ask for ObjC, get ObjC++" (see comment above). 446 lang_opts.CPlusPlus = true; 447 448 // Clang now sets as default C++14 as the default standard (with 449 // GNU extensions), so we do the same here to avoid mismatches that 450 // cause compiler error when evaluating expressions (e.g. nullptr not found 451 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 452 // two lines below) so we decide to be consistent with that, but this could 453 // be re-evaluated in the future. 454 lang_opts.CPlusPlus11 = true; 455 break; 456 case lldb::eLanguageTypeC_plus_plus: 457 case lldb::eLanguageTypeC_plus_plus_11: 458 case lldb::eLanguageTypeC_plus_plus_14: 459 lang_opts.CPlusPlus11 = true; 460 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 461 LLVM_FALLTHROUGH; 462 case lldb::eLanguageTypeC_plus_plus_03: 463 lang_opts.CPlusPlus = true; 464 if (process_sp) 465 lang_opts.ObjC = 466 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 467 break; 468 case lldb::eLanguageTypeObjC_plus_plus: 469 case lldb::eLanguageTypeUnknown: 470 default: 471 lang_opts.ObjC = true; 472 lang_opts.CPlusPlus = true; 473 lang_opts.CPlusPlus11 = true; 474 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 475 break; 476 } 477 478 lang_opts.Bool = true; 479 lang_opts.WChar = true; 480 lang_opts.Blocks = true; 481 lang_opts.DebuggerSupport = 482 true; // Features specifically for debugger clients 483 if (expr.DesiredResultType() == Expression::eResultTypeId) 484 lang_opts.DebuggerCastResultToId = true; 485 486 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 487 .CharIsSignedByDefault(); 488 489 // Spell checking is a nice feature, but it ends up completing a lot of types 490 // that we didn't strictly speaking need to complete. As a result, we spend a 491 // long time parsing and importing debug information. 492 lang_opts.SpellChecking = false; 493 494 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 495 if (clang_expr && clang_expr->DidImportCxxModules()) { 496 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 497 498 lang_opts.Modules = true; 499 // We want to implicitly build modules. 500 lang_opts.ImplicitModules = true; 501 // To automatically import all submodules when we import 'std'. 502 lang_opts.ModulesLocalVisibility = false; 503 504 // We use the @import statements, so we need this: 505 // FIXME: We could use the modules-ts, but that currently doesn't work. 506 lang_opts.ObjC = true; 507 508 // Options we need to parse libc++ code successfully. 509 // FIXME: We should ask the driver for the appropriate default flags. 510 lang_opts.GNUMode = true; 511 lang_opts.GNUKeywords = true; 512 lang_opts.DoubleSquareBracketAttributes = true; 513 lang_opts.CPlusPlus11 = true; 514 515 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 516 target_sp); 517 } 518 519 if (process_sp && lang_opts.ObjC) { 520 if (process_sp->GetObjCLanguageRuntime()) { 521 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == 522 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 523 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 524 else 525 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 526 VersionTuple(10, 7)); 527 528 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) 529 lang_opts.DebuggerObjCLiteral = true; 530 } 531 } 532 533 lang_opts.ThreadsafeStatics = false; 534 lang_opts.AccessControl = false; // Debuggers get universal access 535 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 536 // We enable all builtin functions beside the builtins from libc/libm (e.g. 537 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 538 // additionally enabling them as expandable builtins is breaking Clang. 539 lang_opts.NoBuiltin = true; 540 541 // Set CodeGen options 542 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 543 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 544 m_compiler->getCodeGenOpts().DisableFPElim = true; 545 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; 546 if (generate_debug_info) 547 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 548 else 549 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 550 551 // Disable some warnings. 552 m_compiler->getDiagnostics().setSeverityForGroup( 553 clang::diag::Flavor::WarningOrError, "unused-value", 554 clang::diag::Severity::Ignored, SourceLocation()); 555 m_compiler->getDiagnostics().setSeverityForGroup( 556 clang::diag::Flavor::WarningOrError, "odr", 557 clang::diag::Severity::Ignored, SourceLocation()); 558 559 // Inform the target of the language options 560 // 561 // FIXME: We shouldn't need to do this, the target should be immutable once 562 // created. This complexity should be lifted elsewhere. 563 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 564 565 // 6. Set up the diagnostic buffer for reporting errors 566 567 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 568 569 // 7. Set up the source management objects inside the compiler 570 m_compiler->createFileManager(); 571 if (!m_compiler->hasSourceManager()) 572 m_compiler->createSourceManager(m_compiler->getFileManager()); 573 m_compiler->createPreprocessor(TU_Complete); 574 575 if (ClangModulesDeclVendor *decl_vendor = 576 target_sp->GetClangModulesDeclVendor()) { 577 ClangPersistentVariables *clang_persistent_vars = 578 llvm::cast<ClangPersistentVariables>( 579 target_sp->GetPersistentExpressionStateForLanguage( 580 lldb::eLanguageTypeC)); 581 std::unique_ptr<PPCallbacks> pp_callbacks( 582 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 583 m_pp_callbacks = 584 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 585 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 586 } 587 588 // 8. Most of this we get from the CompilerInstance, but we also want to give 589 // the context an ExternalASTSource. 590 591 auto &PP = m_compiler->getPreprocessor(); 592 auto &builtin_context = PP.getBuiltinInfo(); 593 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 594 m_compiler->getLangOpts()); 595 596 m_compiler->createASTContext(); 597 clang::ASTContext &ast_context = m_compiler->getASTContext(); 598 599 m_ast_context.reset( 600 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 601 m_ast_context->setASTContext(&ast_context); 602 603 std::string module_name("$__lldb_module"); 604 605 m_llvm_context.reset(new LLVMContext()); 606 m_code_generator.reset(CreateLLVMCodeGen( 607 m_compiler->getDiagnostics(), module_name, 608 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 609 m_compiler->getCodeGenOpts(), *m_llvm_context)); 610 } 611 612 ClangExpressionParser::~ClangExpressionParser() {} 613 614 namespace { 615 616 //---------------------------------------------------------------------- 617 /// \class CodeComplete 618 /// 619 /// A code completion consumer for the clang Sema that is responsible for 620 /// creating the completion suggestions when a user requests completion 621 /// of an incomplete `expr` invocation. 622 //---------------------------------------------------------------------- 623 class CodeComplete : public CodeCompleteConsumer { 624 CodeCompletionTUInfo m_info; 625 626 std::string m_expr; 627 unsigned m_position = 0; 628 CompletionRequest &m_request; 629 /// The printing policy we use when printing declarations for our completion 630 /// descriptions. 631 clang::PrintingPolicy m_desc_policy; 632 633 /// Returns true if the given character can be used in an identifier. 634 /// This also returns true for numbers because for completion we usually 635 /// just iterate backwards over iterators. 636 /// 637 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 638 static bool IsIdChar(char c) { 639 return c == '_' || std::isalnum(c) || c == '$'; 640 } 641 642 /// Returns true if the given character is used to separate arguments 643 /// in the command line of lldb. 644 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 645 646 /// Drops all tokens in front of the expression that are unrelated for 647 /// the completion of the cmd line. 'unrelated' means here that the token 648 /// is not interested for the lldb completion API result. 649 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 650 if (cmd.empty()) 651 return cmd; 652 653 // If we are at the start of a word, then all tokens are unrelated to 654 // the current completion logic. 655 if (IsTokenSeparator(cmd.back())) 656 return StringRef(); 657 658 // Remove all previous tokens from the string as they are unrelated 659 // to completing the current token. 660 StringRef to_remove = cmd; 661 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 662 to_remove = to_remove.drop_back(); 663 } 664 cmd = cmd.drop_front(to_remove.size()); 665 666 return cmd; 667 } 668 669 /// Removes the last identifier token from the given cmd line. 670 StringRef removeLastToken(StringRef cmd) { 671 while (!cmd.empty() && IsIdChar(cmd.back())) { 672 cmd = cmd.drop_back(); 673 } 674 return cmd; 675 } 676 677 /// Attemps to merge the given completion from the given position into the 678 /// existing command. Returns the completion string that can be returned to 679 /// the lldb completion API. 680 std::string mergeCompletion(StringRef existing, unsigned pos, 681 StringRef completion) { 682 StringRef existing_command = existing.substr(0, pos); 683 // We rewrite the last token with the completion, so let's drop that 684 // token from the command. 685 existing_command = removeLastToken(existing_command); 686 // We also should remove all previous tokens from the command as they 687 // would otherwise be added to the completion that already has the 688 // completion. 689 existing_command = dropUnrelatedFrontTokens(existing_command); 690 return existing_command.str() + completion.str(); 691 } 692 693 public: 694 /// Constructs a CodeComplete consumer that can be attached to a Sema. 695 /// \param[out] matches 696 /// The list of matches that the lldb completion API expects as a result. 697 /// This may already contain matches, so it's only allowed to append 698 /// to this variable. 699 /// \param[out] expr 700 /// The whole expression string that we are currently parsing. This 701 /// string needs to be equal to the input the user typed, and NOT the 702 /// final code that Clang is parsing. 703 /// \param[out] position 704 /// The character position of the user cursor in the `expr` parameter. 705 /// 706 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 707 std::string expr, unsigned position) 708 : CodeCompleteConsumer(CodeCompleteOptions(), false), 709 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 710 m_position(position), m_request(request), m_desc_policy(ops) { 711 712 // Ensure that the printing policy is producing a description that is as 713 // short as possible. 714 m_desc_policy.SuppressScope = true; 715 m_desc_policy.SuppressTagKeyword = true; 716 m_desc_policy.FullyQualifiedName = false; 717 m_desc_policy.TerseOutput = true; 718 m_desc_policy.IncludeNewlines = false; 719 m_desc_policy.UseVoidForZeroParams = false; 720 m_desc_policy.Bool = true; 721 } 722 723 /// Deregisters and destroys this code-completion consumer. 724 virtual ~CodeComplete() {} 725 726 /// \name Code-completion filtering 727 /// Check if the result should be filtered out. 728 bool isResultFilteredOut(StringRef Filter, 729 CodeCompletionResult Result) override { 730 // This code is mostly copied from CodeCompleteConsumer. 731 switch (Result.Kind) { 732 case CodeCompletionResult::RK_Declaration: 733 return !( 734 Result.Declaration->getIdentifier() && 735 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 736 case CodeCompletionResult::RK_Keyword: 737 return !StringRef(Result.Keyword).startswith(Filter); 738 case CodeCompletionResult::RK_Macro: 739 return !Result.Macro->getName().startswith(Filter); 740 case CodeCompletionResult::RK_Pattern: 741 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 742 } 743 // If we trigger this assert or the above switch yields a warning, then 744 // CodeCompletionResult has been enhanced with more kinds of completion 745 // results. Expand the switch above in this case. 746 assert(false && "Unknown completion result type?"); 747 // If we reach this, then we should just ignore whatever kind of unknown 748 // result we got back. We probably can't turn it into any kind of useful 749 // completion suggestion with the existing code. 750 return true; 751 } 752 753 /// \name Code-completion callbacks 754 /// Process the finalized code-completion results. 755 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 756 CodeCompletionResult *Results, 757 unsigned NumResults) override { 758 759 // The Sema put the incomplete token we try to complete in here during 760 // lexing, so we need to retrieve it here to know what we are completing. 761 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 762 763 // Iterate over all the results. Filter out results we don't want and 764 // process the rest. 765 for (unsigned I = 0; I != NumResults; ++I) { 766 // Filter the results with the information from the Sema. 767 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 768 continue; 769 770 CodeCompletionResult &R = Results[I]; 771 std::string ToInsert; 772 std::string Description; 773 // Handle the different completion kinds that come from the Sema. 774 switch (R.Kind) { 775 case CodeCompletionResult::RK_Declaration: { 776 const NamedDecl *D = R.Declaration; 777 ToInsert = R.Declaration->getNameAsString(); 778 // If we have a function decl that has no arguments we want to 779 // complete the empty parantheses for the user. If the function has 780 // arguments, we at least complete the opening bracket. 781 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 782 if (F->getNumParams() == 0) 783 ToInsert += "()"; 784 else 785 ToInsert += "("; 786 raw_string_ostream OS(Description); 787 F->print(OS, m_desc_policy, false); 788 OS.flush(); 789 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 790 Description = V->getType().getAsString(m_desc_policy); 791 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 792 Description = F->getType().getAsString(m_desc_policy); 793 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 794 // If we try to complete a namespace, then we can directly append 795 // the '::'. 796 if (!N->isAnonymousNamespace()) 797 ToInsert += "::"; 798 } 799 break; 800 } 801 case CodeCompletionResult::RK_Keyword: 802 ToInsert = R.Keyword; 803 break; 804 case CodeCompletionResult::RK_Macro: 805 ToInsert = R.Macro->getName().str(); 806 break; 807 case CodeCompletionResult::RK_Pattern: 808 ToInsert = R.Pattern->getTypedText(); 809 break; 810 } 811 // At this point all information is in the ToInsert string. 812 813 // We also filter some internal lldb identifiers here. The user 814 // shouldn't see these. 815 if (StringRef(ToInsert).startswith("$__lldb_")) 816 continue; 817 if (!ToInsert.empty()) { 818 // Merge the suggested Token into the existing command line to comply 819 // with the kind of result the lldb API expects. 820 std::string CompletionSuggestion = 821 mergeCompletion(m_expr, m_position, ToInsert); 822 m_request.AddCompletion(CompletionSuggestion, Description); 823 } 824 } 825 } 826 827 /// \param S the semantic-analyzer object for which code-completion is being 828 /// done. 829 /// 830 /// \param CurrentArg the index of the current argument. 831 /// 832 /// \param Candidates an array of overload candidates. 833 /// 834 /// \param NumCandidates the number of overload candidates 835 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 836 OverloadCandidate *Candidates, 837 unsigned NumCandidates, 838 SourceLocation OpenParLoc) override { 839 // At the moment we don't filter out any overloaded candidates. 840 } 841 842 CodeCompletionAllocator &getAllocator() override { 843 return m_info.getAllocator(); 844 } 845 846 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 847 }; 848 } // namespace 849 850 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 851 unsigned pos, unsigned typed_pos) { 852 DiagnosticManager mgr; 853 // We need the raw user expression here because that's what the CodeComplete 854 // class uses to provide completion suggestions. 855 // However, the `Text` method only gives us the transformed expression here. 856 // To actually get the raw user input here, we have to cast our expression to 857 // the LLVMUserExpression which exposes the right API. This should never fail 858 // as we always have a ClangUserExpression whenever we call this. 859 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 860 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 861 typed_pos); 862 // We don't need a code generator for parsing. 863 m_code_generator.reset(); 864 // Start parsing the expression with our custom code completion consumer. 865 ParseInternal(mgr, &CC, line, pos); 866 return true; 867 } 868 869 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 870 return ParseInternal(diagnostic_manager); 871 } 872 873 unsigned 874 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 875 CodeCompleteConsumer *completion_consumer, 876 unsigned completion_line, 877 unsigned completion_column) { 878 ClangDiagnosticManagerAdapter *adapter = 879 static_cast<ClangDiagnosticManagerAdapter *>( 880 m_compiler->getDiagnostics().getClient()); 881 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 882 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 883 884 adapter->ResetManager(&diagnostic_manager); 885 886 const char *expr_text = m_expr.Text(); 887 888 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 889 bool created_main_file = false; 890 891 // Clang wants to do completion on a real file known by Clang's file manager, 892 // so we have to create one to make this work. 893 // TODO: We probably could also simulate to Clang's file manager that there 894 // is a real file that contains our code. 895 bool should_create_file = completion_consumer != nullptr; 896 897 // We also want a real file on disk if we generate full debug info. 898 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 899 codegenoptions::FullDebugInfo; 900 901 if (should_create_file) { 902 int temp_fd = -1; 903 llvm::SmallString<128> result_path; 904 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 905 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 906 std::string temp_source_path = tmpdir_file_spec.GetPath(); 907 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 908 } else { 909 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 910 } 911 912 if (temp_fd != -1) { 913 lldb_private::File file(temp_fd, true); 914 const size_t expr_text_len = strlen(expr_text); 915 size_t bytes_written = expr_text_len; 916 if (file.Write(expr_text, bytes_written).Success()) { 917 if (bytes_written == expr_text_len) { 918 file.Close(); 919 source_mgr.setMainFileID(source_mgr.createFileID( 920 m_compiler->getFileManager().getFile(result_path), 921 SourceLocation(), SrcMgr::C_User)); 922 created_main_file = true; 923 } 924 } 925 } 926 } 927 928 if (!created_main_file) { 929 std::unique_ptr<MemoryBuffer> memory_buffer = 930 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); 931 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 932 } 933 934 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 935 &m_compiler->getPreprocessor()); 936 937 ClangExpressionHelper *type_system_helper = 938 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 939 940 // If we want to parse for code completion, we need to attach our code 941 // completion consumer to the Sema and specify a completion position. 942 // While parsing the Sema will call this consumer with the provided 943 // completion suggestions. 944 if (completion_consumer) { 945 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 946 auto &PP = m_compiler->getPreprocessor(); 947 // Lines and columns start at 1 in Clang, but code completion positions are 948 // indexed from 0, so we need to add 1 to the line and column here. 949 ++completion_line; 950 ++completion_column; 951 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 952 } 953 954 ASTConsumer *ast_transformer = 955 type_system_helper->ASTTransformer(m_code_generator.get()); 956 957 std::unique_ptr<clang::ASTConsumer> Consumer; 958 if (ast_transformer) { 959 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 960 } else if (m_code_generator) { 961 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 962 } else { 963 Consumer.reset(new ASTConsumer()); 964 } 965 966 clang::ASTContext &ast_context = m_compiler->getASTContext(); 967 968 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 969 *Consumer, TU_Complete, completion_consumer)); 970 m_compiler->setASTConsumer(std::move(Consumer)); 971 972 if (ast_context.getLangOpts().Modules) 973 m_compiler->createModuleManager(); 974 975 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 976 if (decl_map) { 977 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 978 979 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 980 981 if (ast_context.getExternalSource()) { 982 auto module_wrapper = 983 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 984 985 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 986 987 auto multiplexer = 988 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 989 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 990 ast_context.setExternalSource(Source); 991 } else { 992 ast_context.setExternalSource(ast_source); 993 } 994 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 995 } 996 997 // Check that the ASTReader is properly attached to ASTContext and Sema. 998 if (ast_context.getLangOpts().Modules) { 999 assert(m_compiler->getASTContext().getExternalSource() && 1000 "ASTContext doesn't know about the ASTReader?"); 1001 assert(m_compiler->getSema().getExternalSource() && 1002 "Sema doesn't know about the ASTReader?"); 1003 } 1004 1005 { 1006 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1007 &m_compiler->getSema()); 1008 ParseAST(m_compiler->getSema(), false, false); 1009 } 1010 // Destroy the Sema. This is necessary because we want to emulate the 1011 // original behavior of ParseAST (which also destroys the Sema after parsing). 1012 m_compiler->setSema(nullptr); 1013 1014 diag_buf->EndSourceFile(); 1015 1016 unsigned num_errors = diag_buf->getNumErrors(); 1017 1018 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1019 num_errors++; 1020 diagnostic_manager.PutString(eDiagnosticSeverityError, 1021 "while importing modules:"); 1022 diagnostic_manager.AppendMessageToDiagnostic( 1023 m_pp_callbacks->getErrorString()); 1024 } 1025 1026 if (!num_errors) { 1027 if (type_system_helper->DeclMap() && 1028 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 1029 diagnostic_manager.Printf(eDiagnosticSeverityError, 1030 "Couldn't infer the type of a variable"); 1031 num_errors++; 1032 } 1033 } 1034 1035 if (!num_errors) { 1036 type_system_helper->CommitPersistentDecls(); 1037 } 1038 1039 adapter->ResetManager(); 1040 1041 return num_errors; 1042 } 1043 1044 std::string 1045 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1046 std::string abi; 1047 1048 if (target_arch.IsMIPS()) { 1049 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1050 case ArchSpec::eMIPSABI_N64: 1051 abi = "n64"; 1052 break; 1053 case ArchSpec::eMIPSABI_N32: 1054 abi = "n32"; 1055 break; 1056 case ArchSpec::eMIPSABI_O32: 1057 abi = "o32"; 1058 break; 1059 default: 1060 break; 1061 } 1062 } 1063 return abi; 1064 } 1065 1066 bool ClangExpressionParser::RewriteExpression( 1067 DiagnosticManager &diagnostic_manager) { 1068 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1069 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1070 nullptr); 1071 clang::edit::Commit commit(editor); 1072 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1073 1074 class RewritesReceiver : public edit::EditsReceiver { 1075 Rewriter &rewrite; 1076 1077 public: 1078 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1079 1080 void insert(SourceLocation loc, StringRef text) override { 1081 rewrite.InsertText(loc, text); 1082 } 1083 void replace(CharSourceRange range, StringRef text) override { 1084 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1085 } 1086 }; 1087 1088 RewritesReceiver rewrites_receiver(rewriter); 1089 1090 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1091 size_t num_diags = diagnostics.size(); 1092 if (num_diags == 0) 1093 return false; 1094 1095 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 1096 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 1097 if (diagnostic && diagnostic->HasFixIts()) { 1098 for (const FixItHint &fixit : diagnostic->FixIts()) { 1099 // This is cobbed from clang::Rewrite::FixItRewriter. 1100 if (fixit.CodeToInsert.empty()) { 1101 if (fixit.InsertFromRange.isValid()) { 1102 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1103 fixit.InsertFromRange, /*afterToken=*/false, 1104 fixit.BeforePreviousInsertions); 1105 } else 1106 commit.remove(fixit.RemoveRange); 1107 } else { 1108 if (fixit.RemoveRange.isTokenRange() || 1109 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1110 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1111 else 1112 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1113 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1114 } 1115 } 1116 } 1117 } 1118 1119 // FIXME - do we want to try to propagate specific errors here? 1120 if (!commit.isCommitable()) 1121 return false; 1122 else if (!editor.commit(commit)) 1123 return false; 1124 1125 // Now play all the edits, and stash the result in the diagnostic manager. 1126 editor.applyRewrites(rewrites_receiver); 1127 RewriteBuffer &main_file_buffer = 1128 rewriter.getEditBuffer(source_manager.getMainFileID()); 1129 1130 std::string fixed_expression; 1131 llvm::raw_string_ostream out_stream(fixed_expression); 1132 1133 main_file_buffer.write(out_stream); 1134 out_stream.flush(); 1135 diagnostic_manager.SetFixedExpression(fixed_expression); 1136 1137 return true; 1138 } 1139 1140 static bool FindFunctionInModule(ConstString &mangled_name, 1141 llvm::Module *module, const char *orig_name) { 1142 for (const auto &func : module->getFunctionList()) { 1143 const StringRef &name = func.getName(); 1144 if (name.find(orig_name) != StringRef::npos) { 1145 mangled_name.SetString(name); 1146 return true; 1147 } 1148 } 1149 1150 return false; 1151 } 1152 1153 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1154 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1155 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1156 bool &can_interpret, ExecutionPolicy execution_policy) { 1157 func_addr = LLDB_INVALID_ADDRESS; 1158 func_end = LLDB_INVALID_ADDRESS; 1159 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1160 1161 lldb_private::Status err; 1162 1163 std::unique_ptr<llvm::Module> llvm_module_up( 1164 m_code_generator->ReleaseModule()); 1165 1166 if (!llvm_module_up) { 1167 err.SetErrorToGenericError(); 1168 err.SetErrorString("IR doesn't contain a module"); 1169 return err; 1170 } 1171 1172 ConstString function_name; 1173 1174 if (execution_policy != eExecutionPolicyTopLevel) { 1175 // Find the actual name of the function (it's often mangled somehow) 1176 1177 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1178 m_expr.FunctionName())) { 1179 err.SetErrorToGenericError(); 1180 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1181 m_expr.FunctionName()); 1182 return err; 1183 } else { 1184 if (log) 1185 log->Printf("Found function %s for %s", function_name.AsCString(), 1186 m_expr.FunctionName()); 1187 } 1188 } 1189 1190 SymbolContext sc; 1191 1192 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1193 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1194 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1195 sc.target_sp = target_sp; 1196 } 1197 1198 LLVMUserExpression::IRPasses custom_passes; 1199 { 1200 auto lang = m_expr.Language(); 1201 if (log) 1202 log->Printf("%s - Current expression language is %s\n", __FUNCTION__, 1203 Language::GetNameForLanguageType(lang)); 1204 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1205 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1206 auto runtime = process_sp->GetLanguageRuntime(lang); 1207 if (runtime) 1208 runtime->GetIRPasses(custom_passes); 1209 } 1210 } 1211 1212 if (custom_passes.EarlyPasses) { 1213 if (log) 1214 log->Printf("%s - Running Early IR Passes from LanguageRuntime on " 1215 "expression module '%s'", 1216 __FUNCTION__, m_expr.FunctionName()); 1217 1218 custom_passes.EarlyPasses->run(*llvm_module_up); 1219 } 1220 1221 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1222 m_llvm_context, // handed off here 1223 llvm_module_up, // handed off here 1224 function_name, exe_ctx.GetTargetSP(), sc, 1225 m_compiler->getTargetOpts().Features); 1226 1227 ClangExpressionHelper *type_system_helper = 1228 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1229 ClangExpressionDeclMap *decl_map = 1230 type_system_helper->DeclMap(); // result can be NULL 1231 1232 if (decl_map) { 1233 Stream *error_stream = NULL; 1234 Target *target = exe_ctx.GetTargetPtr(); 1235 error_stream = target->GetDebugger().GetErrorFile().get(); 1236 1237 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1238 *execution_unit_sp, *error_stream, 1239 function_name.AsCString()); 1240 1241 bool ir_can_run = 1242 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1243 1244 if (!ir_can_run) { 1245 err.SetErrorString( 1246 "The expression could not be prepared to run in the target"); 1247 return err; 1248 } 1249 1250 Process *process = exe_ctx.GetProcessPtr(); 1251 1252 if (execution_policy != eExecutionPolicyAlways && 1253 execution_policy != eExecutionPolicyTopLevel) { 1254 lldb_private::Status interpret_error; 1255 1256 bool interpret_function_calls = 1257 !process ? false : process->CanInterpretFunctionCalls(); 1258 can_interpret = IRInterpreter::CanInterpret( 1259 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1260 interpret_error, interpret_function_calls); 1261 1262 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1263 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1264 interpret_error.AsCString()); 1265 return err; 1266 } 1267 } 1268 1269 if (!process && execution_policy == eExecutionPolicyAlways) { 1270 err.SetErrorString("Expression needed to run in the target, but the " 1271 "target can't be run"); 1272 return err; 1273 } 1274 1275 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1276 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1277 "target, but the target can't be run"); 1278 return err; 1279 } 1280 1281 if (execution_policy == eExecutionPolicyAlways || 1282 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1283 if (m_expr.NeedsValidation() && process) { 1284 if (!process->GetDynamicCheckers()) { 1285 DynamicCheckerFunctions *dynamic_checkers = 1286 new DynamicCheckerFunctions(); 1287 1288 DiagnosticManager install_diagnostics; 1289 1290 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1291 if (install_diagnostics.Diagnostics().size()) 1292 err.SetErrorString(install_diagnostics.GetString().c_str()); 1293 else 1294 err.SetErrorString("couldn't install checkers, unknown error"); 1295 1296 return err; 1297 } 1298 1299 process->SetDynamicCheckers(dynamic_checkers); 1300 1301 if (log) 1302 log->Printf("== [ClangExpressionParser::PrepareForExecution] " 1303 "Finished installing dynamic checkers =="); 1304 } 1305 1306 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), 1307 function_name.AsCString()); 1308 1309 llvm::Module *module = execution_unit_sp->GetModule(); 1310 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1311 err.SetErrorToGenericError(); 1312 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1313 return err; 1314 } 1315 1316 if (custom_passes.LatePasses) { 1317 if (log) 1318 log->Printf("%s - Running Late IR Passes from LanguageRuntime on " 1319 "expression module '%s'", 1320 __FUNCTION__, m_expr.FunctionName()); 1321 1322 custom_passes.LatePasses->run(*module); 1323 } 1324 } 1325 } 1326 1327 if (execution_policy == eExecutionPolicyAlways || 1328 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1329 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1330 } 1331 } else { 1332 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1333 } 1334 1335 return err; 1336 } 1337 1338 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1339 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1340 lldb_private::Status err; 1341 1342 lldbassert(execution_unit_sp.get()); 1343 lldbassert(exe_ctx.HasThreadScope()); 1344 1345 if (!execution_unit_sp.get()) { 1346 err.SetErrorString( 1347 "can't run static initializers for a NULL execution unit"); 1348 return err; 1349 } 1350 1351 if (!exe_ctx.HasThreadScope()) { 1352 err.SetErrorString("can't run static initializers without a thread"); 1353 return err; 1354 } 1355 1356 std::vector<lldb::addr_t> static_initializers; 1357 1358 execution_unit_sp->GetStaticInitializers(static_initializers); 1359 1360 for (lldb::addr_t static_initializer : static_initializers) { 1361 EvaluateExpressionOptions options; 1362 1363 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1364 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1365 llvm::ArrayRef<lldb::addr_t>(), options)); 1366 1367 DiagnosticManager execution_errors; 1368 lldb::ExpressionResults results = 1369 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1370 exe_ctx, call_static_initializer, options, execution_errors); 1371 1372 if (results != lldb::eExpressionCompleted) { 1373 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1374 execution_errors.GetString().c_str()); 1375 return err; 1376 } 1377 } 1378 1379 return err; 1380 } 1381