1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" 71 #include "lldb/Core/Debugger.h" 72 #include "lldb/Core/Disassembler.h" 73 #include "lldb/Core/Module.h" 74 #include "lldb/Core/StreamFile.h" 75 #include "lldb/Expression/IRExecutionUnit.h" 76 #include "lldb/Expression/IRInterpreter.h" 77 #include "lldb/Host/File.h" 78 #include "lldb/Host/HostInfo.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/Reproducer.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h" 95 96 #include <cctype> 97 #include <memory> 98 99 using namespace clang; 100 using namespace llvm; 101 using namespace lldb_private; 102 103 //===----------------------------------------------------------------------===// 104 // Utility Methods for Clang 105 //===----------------------------------------------------------------------===// 106 107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 108 ClangModulesDeclVendor &m_decl_vendor; 109 ClangPersistentVariables &m_persistent_vars; 110 clang::SourceManager &m_source_mgr; 111 StreamString m_error_stream; 112 bool m_has_errors = false; 113 114 public: 115 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 116 ClangPersistentVariables &persistent_vars, 117 clang::SourceManager &source_mgr) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 119 m_source_mgr(source_mgr) {} 120 121 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 122 const clang::Module * /*null*/) override { 123 // Ignore modules that are imported in the wrapper code as these are not 124 // loaded by the user. 125 llvm::StringRef filename = 126 m_source_mgr.getPresumedLoc(import_location).getFilename(); 127 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 128 return; 129 130 SourceModule module; 131 132 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 133 module.path.push_back(ConstString(component.first->getName())); 134 135 StreamString error_stream; 136 137 ClangModulesDeclVendor::ModuleVector exported_modules; 138 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 139 m_has_errors = true; 140 141 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 142 m_persistent_vars.AddHandLoadedClangModule(module); 143 } 144 145 bool hasErrors() { return m_has_errors; } 146 147 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 148 }; 149 150 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 151 public: 152 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 153 DiagnosticOptions *m_options = new DiagnosticOptions(opts); 154 m_options->ShowPresumedLoc = true; 155 m_options->ShowLevel = false; 156 m_os.reset(new llvm::raw_string_ostream(m_output)); 157 m_passthrough.reset( 158 new clang::TextDiagnosticPrinter(*m_os, m_options, false)); 159 } 160 161 void ResetManager(DiagnosticManager *manager = nullptr) { 162 m_manager = manager; 163 } 164 165 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 166 const clang::Diagnostic &Info) override { 167 if (!m_manager) { 168 // We have no DiagnosticManager before/after parsing but we still could 169 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 170 // when we move the expression result ot the ScratchASTContext). Let's at 171 // least log these diagnostics until we find a way to properly render 172 // them and display them to the user. 173 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 174 if (log) { 175 llvm::SmallVector<char, 32> diag_str; 176 Info.FormatDiagnostic(diag_str); 177 diag_str.push_back('\0'); 178 const char *plain_diag = diag_str.data(); 179 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 180 } 181 return; 182 } 183 184 // Render diagnostic message to m_output. 185 m_output.clear(); 186 m_passthrough->HandleDiagnostic(DiagLevel, Info); 187 m_os->flush(); 188 189 lldb_private::DiagnosticSeverity severity; 190 bool make_new_diagnostic = true; 191 192 switch (DiagLevel) { 193 case DiagnosticsEngine::Level::Fatal: 194 case DiagnosticsEngine::Level::Error: 195 severity = eDiagnosticSeverityError; 196 break; 197 case DiagnosticsEngine::Level::Warning: 198 severity = eDiagnosticSeverityWarning; 199 break; 200 case DiagnosticsEngine::Level::Remark: 201 case DiagnosticsEngine::Level::Ignored: 202 severity = eDiagnosticSeverityRemark; 203 break; 204 case DiagnosticsEngine::Level::Note: 205 m_manager->AppendMessageToDiagnostic(m_output); 206 make_new_diagnostic = false; 207 } 208 if (make_new_diagnostic) { 209 // ClangDiagnostic messages are expected to have no whitespace/newlines 210 // around them. 211 std::string stripped_output = 212 std::string(llvm::StringRef(m_output).trim()); 213 214 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 215 stripped_output, severity, Info.getID()); 216 217 // Don't store away warning fixits, since the compiler doesn't have 218 // enough context in an expression for the warning to be useful. 219 // FIXME: Should we try to filter out FixIts that apply to our generated 220 // code, and not the user's expression? 221 if (severity == eDiagnosticSeverityError) { 222 size_t num_fixit_hints = Info.getNumFixItHints(); 223 for (size_t i = 0; i < num_fixit_hints; i++) { 224 const clang::FixItHint &fixit = Info.getFixItHint(i); 225 if (!fixit.isNull()) 226 new_diagnostic->AddFixitHint(fixit); 227 } 228 } 229 230 m_manager->AddDiagnostic(std::move(new_diagnostic)); 231 } 232 } 233 234 clang::TextDiagnosticPrinter *GetPassthrough() { return m_passthrough.get(); } 235 236 private: 237 DiagnosticManager *m_manager = nullptr; 238 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 239 /// Output stream of m_passthrough. 240 std::shared_ptr<llvm::raw_string_ostream> m_os; 241 /// Output string filled by m_os. 242 std::string m_output; 243 }; 244 245 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 246 std::vector<std::string> include_directories, 247 lldb::TargetSP target_sp) { 248 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 249 250 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 251 252 for (const std::string &dir : include_directories) { 253 search_opts.AddPath(dir, frontend::System, false, true); 254 LLDB_LOG(log, "Added user include dir: {0}", dir); 255 } 256 257 llvm::SmallString<128> module_cache; 258 const auto &props = ModuleList::GetGlobalModuleListProperties(); 259 props.GetClangModulesCachePath().GetPath(module_cache); 260 search_opts.ModuleCachePath = std::string(module_cache.str()); 261 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 262 263 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 264 265 search_opts.ImplicitModuleMaps = true; 266 } 267 268 //===----------------------------------------------------------------------===// 269 // Implementation of ClangExpressionParser 270 //===----------------------------------------------------------------------===// 271 272 ClangExpressionParser::ClangExpressionParser( 273 ExecutionContextScope *exe_scope, Expression &expr, 274 bool generate_debug_info, std::vector<std::string> include_directories, 275 std::string filename) 276 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 277 m_pp_callbacks(nullptr), 278 m_include_directories(std::move(include_directories)), 279 m_filename(std::move(filename)) { 280 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 281 282 // We can't compile expressions without a target. So if the exe_scope is 283 // null or doesn't have a target, then we just need to get out of here. I'll 284 // lldbassert and not make any of the compiler objects since 285 // I can't return errors directly from the constructor. Further calls will 286 // check if the compiler was made and 287 // bag out if it wasn't. 288 289 if (!exe_scope) { 290 lldbassert(exe_scope && 291 "Can't make an expression parser with a null scope."); 292 return; 293 } 294 295 lldb::TargetSP target_sp; 296 target_sp = exe_scope->CalculateTarget(); 297 if (!target_sp) { 298 lldbassert(target_sp.get() && 299 "Can't make an expression parser with a null target."); 300 return; 301 } 302 303 // 1. Create a new compiler instance. 304 m_compiler.reset(new CompilerInstance()); 305 306 // When capturing a reproducer, hook up the file collector with clang to 307 // collector modules and headers. 308 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 309 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 310 m_compiler->setModuleDepCollector( 311 std::make_shared<ModuleDependencyCollectorAdaptor>( 312 fp.GetFileCollector())); 313 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 314 opts.IncludeSystemHeaders = true; 315 opts.IncludeModuleFiles = true; 316 } 317 318 // Make sure clang uses the same VFS as LLDB. 319 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 320 321 lldb::LanguageType frame_lang = 322 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 323 bool overridden_target_opts = false; 324 lldb_private::LanguageRuntime *lang_rt = nullptr; 325 326 std::string abi; 327 ArchSpec target_arch; 328 target_arch = target_sp->GetArchitecture(); 329 330 const auto target_machine = target_arch.GetMachine(); 331 332 // If the expression is being evaluated in the context of an existing stack 333 // frame, we introspect to see if the language runtime is available. 334 335 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 336 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 337 338 // Make sure the user hasn't provided a preferred execution language with 339 // `expression --language X -- ...` 340 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 341 frame_lang = frame_sp->GetLanguage(); 342 343 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 344 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 345 LLDB_LOGF(log, "Frame has language of type %s", 346 Language::GetNameForLanguageType(frame_lang)); 347 } 348 349 // 2. Configure the compiler with a set of default options that are 350 // appropriate for most situations. 351 if (target_arch.IsValid()) { 352 std::string triple = target_arch.GetTriple().str(); 353 m_compiler->getTargetOpts().Triple = triple; 354 LLDB_LOGF(log, "Using %s as the target triple", 355 m_compiler->getTargetOpts().Triple.c_str()); 356 } else { 357 // If we get here we don't have a valid target and just have to guess. 358 // Sometimes this will be ok to just use the host target triple (when we 359 // evaluate say "2+3", but other expressions like breakpoint conditions and 360 // other things that _are_ target specific really shouldn't just be using 361 // the host triple. In such a case the language runtime should expose an 362 // overridden options set (3), below. 363 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 364 LLDB_LOGF(log, "Using default target triple of %s", 365 m_compiler->getTargetOpts().Triple.c_str()); 366 } 367 // Now add some special fixes for known architectures: Any arm32 iOS 368 // environment, but not on arm64 369 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 370 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 371 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 372 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 373 } 374 // Supported subsets of x86 375 if (target_machine == llvm::Triple::x86 || 376 target_machine == llvm::Triple::x86_64) { 377 m_compiler->getTargetOpts().Features.push_back("+sse"); 378 m_compiler->getTargetOpts().Features.push_back("+sse2"); 379 } 380 381 // Set the target CPU to generate code for. This will be empty for any CPU 382 // that doesn't really need to make a special 383 // CPU string. 384 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 385 386 // Set the target ABI 387 abi = GetClangTargetABI(target_arch); 388 if (!abi.empty()) 389 m_compiler->getTargetOpts().ABI = abi; 390 391 // 3. Now allow the runtime to provide custom configuration options for the 392 // target. In this case, a specialized language runtime is available and we 393 // can query it for extra options. For 99% of use cases, this will not be 394 // needed and should be provided when basic platform detection is not enough. 395 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this 396 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime 397 // having knowledge of clang::TargetOpts. 398 if (auto *renderscript_rt = 399 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt)) 400 overridden_target_opts = 401 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 402 403 if (overridden_target_opts) 404 if (log && log->GetVerbose()) { 405 LLDB_LOGV( 406 log, "Using overridden target options for the expression evaluation"); 407 408 auto opts = m_compiler->getTargetOpts(); 409 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 410 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 411 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 412 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 413 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 414 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 415 StringList::LogDump(log, opts.Features, "Features"); 416 } 417 418 // 4. Create and install the target on the compiler. 419 m_compiler->createDiagnostics(); 420 auto target_info = TargetInfo::CreateTargetInfo( 421 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 422 if (log) { 423 LLDB_LOGF(log, "Using SIMD alignment: %d", 424 target_info->getSimdDefaultAlign()); 425 LLDB_LOGF(log, "Target datalayout string: '%s'", 426 target_info->getDataLayout().getStringRepresentation().c_str()); 427 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 428 LLDB_LOGF(log, "Target vector alignment: %d", 429 target_info->getMaxVectorAlign()); 430 } 431 m_compiler->setTarget(target_info); 432 433 assert(m_compiler->hasTarget()); 434 435 // 5. Set language options. 436 lldb::LanguageType language = expr.Language(); 437 LangOptions &lang_opts = m_compiler->getLangOpts(); 438 439 switch (language) { 440 case lldb::eLanguageTypeC: 441 case lldb::eLanguageTypeC89: 442 case lldb::eLanguageTypeC99: 443 case lldb::eLanguageTypeC11: 444 // FIXME: the following language option is a temporary workaround, 445 // to "ask for C, get C++." 446 // For now, the expression parser must use C++ anytime the language is a C 447 // family language, because the expression parser uses features of C++ to 448 // capture values. 449 lang_opts.CPlusPlus = true; 450 break; 451 case lldb::eLanguageTypeObjC: 452 lang_opts.ObjC = true; 453 // FIXME: the following language option is a temporary workaround, 454 // to "ask for ObjC, get ObjC++" (see comment above). 455 lang_opts.CPlusPlus = true; 456 457 // Clang now sets as default C++14 as the default standard (with 458 // GNU extensions), so we do the same here to avoid mismatches that 459 // cause compiler error when evaluating expressions (e.g. nullptr not found 460 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 461 // two lines below) so we decide to be consistent with that, but this could 462 // be re-evaluated in the future. 463 lang_opts.CPlusPlus11 = true; 464 break; 465 case lldb::eLanguageTypeC_plus_plus: 466 case lldb::eLanguageTypeC_plus_plus_11: 467 case lldb::eLanguageTypeC_plus_plus_14: 468 lang_opts.CPlusPlus11 = true; 469 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 470 LLVM_FALLTHROUGH; 471 case lldb::eLanguageTypeC_plus_plus_03: 472 lang_opts.CPlusPlus = true; 473 if (process_sp) 474 lang_opts.ObjC = 475 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 476 break; 477 case lldb::eLanguageTypeObjC_plus_plus: 478 case lldb::eLanguageTypeUnknown: 479 default: 480 lang_opts.ObjC = true; 481 lang_opts.CPlusPlus = true; 482 lang_opts.CPlusPlus11 = true; 483 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 484 break; 485 } 486 487 lang_opts.Bool = true; 488 lang_opts.WChar = true; 489 lang_opts.Blocks = true; 490 lang_opts.DebuggerSupport = 491 true; // Features specifically for debugger clients 492 if (expr.DesiredResultType() == Expression::eResultTypeId) 493 lang_opts.DebuggerCastResultToId = true; 494 495 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 496 .CharIsSignedByDefault(); 497 498 // Spell checking is a nice feature, but it ends up completing a lot of types 499 // that we didn't strictly speaking need to complete. As a result, we spend a 500 // long time parsing and importing debug information. 501 lang_opts.SpellChecking = false; 502 503 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 504 if (clang_expr && clang_expr->DidImportCxxModules()) { 505 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 506 507 lang_opts.Modules = true; 508 // We want to implicitly build modules. 509 lang_opts.ImplicitModules = true; 510 // To automatically import all submodules when we import 'std'. 511 lang_opts.ModulesLocalVisibility = false; 512 513 // We use the @import statements, so we need this: 514 // FIXME: We could use the modules-ts, but that currently doesn't work. 515 lang_opts.ObjC = true; 516 517 // Options we need to parse libc++ code successfully. 518 // FIXME: We should ask the driver for the appropriate default flags. 519 lang_opts.GNUMode = true; 520 lang_opts.GNUKeywords = true; 521 lang_opts.DoubleSquareBracketAttributes = true; 522 lang_opts.CPlusPlus11 = true; 523 524 // The Darwin libc expects this macro to be set. 525 lang_opts.GNUCVersion = 40201; 526 527 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 528 target_sp); 529 } 530 531 if (process_sp && lang_opts.ObjC) { 532 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 533 if (runtime->GetRuntimeVersion() == 534 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 535 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 536 else 537 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 538 VersionTuple(10, 7)); 539 540 if (runtime->HasNewLiteralsAndIndexing()) 541 lang_opts.DebuggerObjCLiteral = true; 542 } 543 } 544 545 lang_opts.ThreadsafeStatics = false; 546 lang_opts.AccessControl = false; // Debuggers get universal access 547 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 548 // We enable all builtin functions beside the builtins from libc/libm (e.g. 549 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 550 // additionally enabling them as expandable builtins is breaking Clang. 551 lang_opts.NoBuiltin = true; 552 553 // Set CodeGen options 554 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 555 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 556 m_compiler->getCodeGenOpts().setFramePointer( 557 CodeGenOptions::FramePointerKind::All); 558 if (generate_debug_info) 559 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 560 else 561 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 562 563 // Disable some warnings. 564 m_compiler->getDiagnostics().setSeverityForGroup( 565 clang::diag::Flavor::WarningOrError, "unused-value", 566 clang::diag::Severity::Ignored, SourceLocation()); 567 m_compiler->getDiagnostics().setSeverityForGroup( 568 clang::diag::Flavor::WarningOrError, "odr", 569 clang::diag::Severity::Ignored, SourceLocation()); 570 571 // Inform the target of the language options 572 // 573 // FIXME: We shouldn't need to do this, the target should be immutable once 574 // created. This complexity should be lifted elsewhere. 575 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 576 577 // 6. Set up the diagnostic buffer for reporting errors 578 579 auto diag_mgr = new ClangDiagnosticManagerAdapter( 580 m_compiler->getDiagnostics().getDiagnosticOptions()); 581 m_compiler->getDiagnostics().setClient(diag_mgr); 582 583 // 7. Set up the source management objects inside the compiler 584 m_compiler->createFileManager(); 585 if (!m_compiler->hasSourceManager()) 586 m_compiler->createSourceManager(m_compiler->getFileManager()); 587 m_compiler->createPreprocessor(TU_Complete); 588 589 if (ClangModulesDeclVendor *decl_vendor = 590 target_sp->GetClangModulesDeclVendor()) { 591 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 592 target_sp->GetPersistentExpressionStateForLanguage( 593 lldb::eLanguageTypeC))) { 594 std::unique_ptr<PPCallbacks> pp_callbacks( 595 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 596 m_compiler->getSourceManager())); 597 m_pp_callbacks = 598 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 599 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 600 } 601 } 602 603 // 8. Most of this we get from the CompilerInstance, but we also want to give 604 // the context an ExternalASTSource. 605 606 auto &PP = m_compiler->getPreprocessor(); 607 auto &builtin_context = PP.getBuiltinInfo(); 608 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 609 m_compiler->getLangOpts()); 610 611 m_compiler->createASTContext(); 612 clang::ASTContext &ast_context = m_compiler->getASTContext(); 613 614 m_ast_context.reset(new TypeSystemClang( 615 "Expression ASTContext for '" + m_filename + "'", ast_context)); 616 617 std::string module_name("$__lldb_module"); 618 619 m_llvm_context.reset(new LLVMContext()); 620 m_code_generator.reset(CreateLLVMCodeGen( 621 m_compiler->getDiagnostics(), module_name, 622 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 623 m_compiler->getCodeGenOpts(), *m_llvm_context)); 624 } 625 626 ClangExpressionParser::~ClangExpressionParser() {} 627 628 namespace { 629 630 /// \class CodeComplete 631 /// 632 /// A code completion consumer for the clang Sema that is responsible for 633 /// creating the completion suggestions when a user requests completion 634 /// of an incomplete `expr` invocation. 635 class CodeComplete : public CodeCompleteConsumer { 636 CodeCompletionTUInfo m_info; 637 638 std::string m_expr; 639 unsigned m_position = 0; 640 CompletionRequest &m_request; 641 /// The printing policy we use when printing declarations for our completion 642 /// descriptions. 643 clang::PrintingPolicy m_desc_policy; 644 645 /// Returns true if the given character can be used in an identifier. 646 /// This also returns true for numbers because for completion we usually 647 /// just iterate backwards over iterators. 648 /// 649 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 650 static bool IsIdChar(char c) { 651 return c == '_' || std::isalnum(c) || c == '$'; 652 } 653 654 /// Returns true if the given character is used to separate arguments 655 /// in the command line of lldb. 656 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 657 658 /// Drops all tokens in front of the expression that are unrelated for 659 /// the completion of the cmd line. 'unrelated' means here that the token 660 /// is not interested for the lldb completion API result. 661 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 662 if (cmd.empty()) 663 return cmd; 664 665 // If we are at the start of a word, then all tokens are unrelated to 666 // the current completion logic. 667 if (IsTokenSeparator(cmd.back())) 668 return StringRef(); 669 670 // Remove all previous tokens from the string as they are unrelated 671 // to completing the current token. 672 StringRef to_remove = cmd; 673 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 674 to_remove = to_remove.drop_back(); 675 } 676 cmd = cmd.drop_front(to_remove.size()); 677 678 return cmd; 679 } 680 681 /// Removes the last identifier token from the given cmd line. 682 StringRef removeLastToken(StringRef cmd) { 683 while (!cmd.empty() && IsIdChar(cmd.back())) { 684 cmd = cmd.drop_back(); 685 } 686 return cmd; 687 } 688 689 /// Attemps to merge the given completion from the given position into the 690 /// existing command. Returns the completion string that can be returned to 691 /// the lldb completion API. 692 std::string mergeCompletion(StringRef existing, unsigned pos, 693 StringRef completion) { 694 StringRef existing_command = existing.substr(0, pos); 695 // We rewrite the last token with the completion, so let's drop that 696 // token from the command. 697 existing_command = removeLastToken(existing_command); 698 // We also should remove all previous tokens from the command as they 699 // would otherwise be added to the completion that already has the 700 // completion. 701 existing_command = dropUnrelatedFrontTokens(existing_command); 702 return existing_command.str() + completion.str(); 703 } 704 705 public: 706 /// Constructs a CodeComplete consumer that can be attached to a Sema. 707 /// 708 /// \param[out] expr 709 /// The whole expression string that we are currently parsing. This 710 /// string needs to be equal to the input the user typed, and NOT the 711 /// final code that Clang is parsing. 712 /// \param[out] position 713 /// The character position of the user cursor in the `expr` parameter. 714 /// 715 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 716 std::string expr, unsigned position) 717 : CodeCompleteConsumer(CodeCompleteOptions()), 718 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 719 m_position(position), m_request(request), m_desc_policy(ops) { 720 721 // Ensure that the printing policy is producing a description that is as 722 // short as possible. 723 m_desc_policy.SuppressScope = true; 724 m_desc_policy.SuppressTagKeyword = true; 725 m_desc_policy.FullyQualifiedName = false; 726 m_desc_policy.TerseOutput = true; 727 m_desc_policy.IncludeNewlines = false; 728 m_desc_policy.UseVoidForZeroParams = false; 729 m_desc_policy.Bool = true; 730 } 731 732 /// Deregisters and destroys this code-completion consumer. 733 ~CodeComplete() override {} 734 735 /// \name Code-completion filtering 736 /// Check if the result should be filtered out. 737 bool isResultFilteredOut(StringRef Filter, 738 CodeCompletionResult Result) override { 739 // This code is mostly copied from CodeCompleteConsumer. 740 switch (Result.Kind) { 741 case CodeCompletionResult::RK_Declaration: 742 return !( 743 Result.Declaration->getIdentifier() && 744 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 745 case CodeCompletionResult::RK_Keyword: 746 return !StringRef(Result.Keyword).startswith(Filter); 747 case CodeCompletionResult::RK_Macro: 748 return !Result.Macro->getName().startswith(Filter); 749 case CodeCompletionResult::RK_Pattern: 750 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 751 } 752 // If we trigger this assert or the above switch yields a warning, then 753 // CodeCompletionResult has been enhanced with more kinds of completion 754 // results. Expand the switch above in this case. 755 assert(false && "Unknown completion result type?"); 756 // If we reach this, then we should just ignore whatever kind of unknown 757 // result we got back. We probably can't turn it into any kind of useful 758 // completion suggestion with the existing code. 759 return true; 760 } 761 762 /// \name Code-completion callbacks 763 /// Process the finalized code-completion results. 764 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 765 CodeCompletionResult *Results, 766 unsigned NumResults) override { 767 768 // The Sema put the incomplete token we try to complete in here during 769 // lexing, so we need to retrieve it here to know what we are completing. 770 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 771 772 // Iterate over all the results. Filter out results we don't want and 773 // process the rest. 774 for (unsigned I = 0; I != NumResults; ++I) { 775 // Filter the results with the information from the Sema. 776 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 777 continue; 778 779 CodeCompletionResult &R = Results[I]; 780 std::string ToInsert; 781 std::string Description; 782 // Handle the different completion kinds that come from the Sema. 783 switch (R.Kind) { 784 case CodeCompletionResult::RK_Declaration: { 785 const NamedDecl *D = R.Declaration; 786 ToInsert = R.Declaration->getNameAsString(); 787 // If we have a function decl that has no arguments we want to 788 // complete the empty parantheses for the user. If the function has 789 // arguments, we at least complete the opening bracket. 790 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 791 if (F->getNumParams() == 0) 792 ToInsert += "()"; 793 else 794 ToInsert += "("; 795 raw_string_ostream OS(Description); 796 F->print(OS, m_desc_policy, false); 797 OS.flush(); 798 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 799 Description = V->getType().getAsString(m_desc_policy); 800 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 801 Description = F->getType().getAsString(m_desc_policy); 802 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 803 // If we try to complete a namespace, then we can directly append 804 // the '::'. 805 if (!N->isAnonymousNamespace()) 806 ToInsert += "::"; 807 } 808 break; 809 } 810 case CodeCompletionResult::RK_Keyword: 811 ToInsert = R.Keyword; 812 break; 813 case CodeCompletionResult::RK_Macro: 814 ToInsert = R.Macro->getName().str(); 815 break; 816 case CodeCompletionResult::RK_Pattern: 817 ToInsert = R.Pattern->getTypedText(); 818 break; 819 } 820 // At this point all information is in the ToInsert string. 821 822 // We also filter some internal lldb identifiers here. The user 823 // shouldn't see these. 824 if (StringRef(ToInsert).startswith("$__lldb_")) 825 continue; 826 if (!ToInsert.empty()) { 827 // Merge the suggested Token into the existing command line to comply 828 // with the kind of result the lldb API expects. 829 std::string CompletionSuggestion = 830 mergeCompletion(m_expr, m_position, ToInsert); 831 m_request.AddCompletion(CompletionSuggestion, Description); 832 } 833 } 834 } 835 836 /// \param S the semantic-analyzer object for which code-completion is being 837 /// done. 838 /// 839 /// \param CurrentArg the index of the current argument. 840 /// 841 /// \param Candidates an array of overload candidates. 842 /// 843 /// \param NumCandidates the number of overload candidates 844 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 845 OverloadCandidate *Candidates, 846 unsigned NumCandidates, 847 SourceLocation OpenParLoc) override { 848 // At the moment we don't filter out any overloaded candidates. 849 } 850 851 CodeCompletionAllocator &getAllocator() override { 852 return m_info.getAllocator(); 853 } 854 855 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 856 }; 857 } // namespace 858 859 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 860 unsigned pos, unsigned typed_pos) { 861 DiagnosticManager mgr; 862 // We need the raw user expression here because that's what the CodeComplete 863 // class uses to provide completion suggestions. 864 // However, the `Text` method only gives us the transformed expression here. 865 // To actually get the raw user input here, we have to cast our expression to 866 // the LLVMUserExpression which exposes the right API. This should never fail 867 // as we always have a ClangUserExpression whenever we call this. 868 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 869 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 870 typed_pos); 871 // We don't need a code generator for parsing. 872 m_code_generator.reset(); 873 // Start parsing the expression with our custom code completion consumer. 874 ParseInternal(mgr, &CC, line, pos); 875 return true; 876 } 877 878 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 879 return ParseInternal(diagnostic_manager); 880 } 881 882 unsigned 883 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 884 CodeCompleteConsumer *completion_consumer, 885 unsigned completion_line, 886 unsigned completion_column) { 887 ClangDiagnosticManagerAdapter *adapter = 888 static_cast<ClangDiagnosticManagerAdapter *>( 889 m_compiler->getDiagnostics().getClient()); 890 auto diag_buf = adapter->GetPassthrough(); 891 892 adapter->ResetManager(&diagnostic_manager); 893 894 const char *expr_text = m_expr.Text(); 895 896 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 897 bool created_main_file = false; 898 899 // Clang wants to do completion on a real file known by Clang's file manager, 900 // so we have to create one to make this work. 901 // TODO: We probably could also simulate to Clang's file manager that there 902 // is a real file that contains our code. 903 bool should_create_file = completion_consumer != nullptr; 904 905 // We also want a real file on disk if we generate full debug info. 906 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 907 codegenoptions::FullDebugInfo; 908 909 if (should_create_file) { 910 int temp_fd = -1; 911 llvm::SmallString<128> result_path; 912 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 913 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 914 std::string temp_source_path = tmpdir_file_spec.GetPath(); 915 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 916 } else { 917 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 918 } 919 920 if (temp_fd != -1) { 921 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true); 922 const size_t expr_text_len = strlen(expr_text); 923 size_t bytes_written = expr_text_len; 924 if (file.Write(expr_text, bytes_written).Success()) { 925 if (bytes_written == expr_text_len) { 926 file.Close(); 927 if (auto fileEntry = 928 m_compiler->getFileManager().getFile(result_path)) { 929 source_mgr.setMainFileID(source_mgr.createFileID( 930 *fileEntry, 931 SourceLocation(), SrcMgr::C_User)); 932 created_main_file = true; 933 } 934 } 935 } 936 } 937 } 938 939 if (!created_main_file) { 940 std::unique_ptr<MemoryBuffer> memory_buffer = 941 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 942 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 943 } 944 945 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 946 &m_compiler->getPreprocessor()); 947 948 ClangExpressionHelper *type_system_helper = 949 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 950 951 // If we want to parse for code completion, we need to attach our code 952 // completion consumer to the Sema and specify a completion position. 953 // While parsing the Sema will call this consumer with the provided 954 // completion suggestions. 955 if (completion_consumer) { 956 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 957 auto &PP = m_compiler->getPreprocessor(); 958 // Lines and columns start at 1 in Clang, but code completion positions are 959 // indexed from 0, so we need to add 1 to the line and column here. 960 ++completion_line; 961 ++completion_column; 962 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 963 } 964 965 ASTConsumer *ast_transformer = 966 type_system_helper->ASTTransformer(m_code_generator.get()); 967 968 std::unique_ptr<clang::ASTConsumer> Consumer; 969 if (ast_transformer) { 970 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 971 } else if (m_code_generator) { 972 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 973 } else { 974 Consumer.reset(new ASTConsumer()); 975 } 976 977 clang::ASTContext &ast_context = m_compiler->getASTContext(); 978 979 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 980 *Consumer, TU_Complete, completion_consumer)); 981 m_compiler->setASTConsumer(std::move(Consumer)); 982 983 if (ast_context.getLangOpts().Modules) { 984 m_compiler->createASTReader(); 985 m_ast_context->setSema(&m_compiler->getSema()); 986 } 987 988 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 989 if (decl_map) { 990 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 991 992 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 993 994 if (ast_context.getExternalSource()) { 995 auto module_wrapper = 996 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 997 998 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 999 1000 auto multiplexer = 1001 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 1002 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 1003 ast_context.setExternalSource(Source); 1004 } else { 1005 ast_context.setExternalSource(ast_source); 1006 } 1007 decl_map->InstallASTContext(*m_ast_context); 1008 } 1009 1010 // Check that the ASTReader is properly attached to ASTContext and Sema. 1011 if (ast_context.getLangOpts().Modules) { 1012 assert(m_compiler->getASTContext().getExternalSource() && 1013 "ASTContext doesn't know about the ASTReader?"); 1014 assert(m_compiler->getSema().getExternalSource() && 1015 "Sema doesn't know about the ASTReader?"); 1016 } 1017 1018 { 1019 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1020 &m_compiler->getSema()); 1021 ParseAST(m_compiler->getSema(), false, false); 1022 } 1023 1024 // Make sure we have no pointer to the Sema we are about to destroy. 1025 if (ast_context.getLangOpts().Modules) 1026 m_ast_context->setSema(nullptr); 1027 // Destroy the Sema. This is necessary because we want to emulate the 1028 // original behavior of ParseAST (which also destroys the Sema after parsing). 1029 m_compiler->setSema(nullptr); 1030 1031 diag_buf->EndSourceFile(); 1032 1033 unsigned num_errors = diag_buf->getNumErrors(); 1034 1035 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1036 num_errors++; 1037 diagnostic_manager.PutString(eDiagnosticSeverityError, 1038 "while importing modules:"); 1039 diagnostic_manager.AppendMessageToDiagnostic( 1040 m_pp_callbacks->getErrorString()); 1041 } 1042 1043 if (!num_errors) { 1044 type_system_helper->CommitPersistentDecls(); 1045 } 1046 1047 adapter->ResetManager(); 1048 1049 return num_errors; 1050 } 1051 1052 std::string 1053 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1054 std::string abi; 1055 1056 if (target_arch.IsMIPS()) { 1057 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1058 case ArchSpec::eMIPSABI_N64: 1059 abi = "n64"; 1060 break; 1061 case ArchSpec::eMIPSABI_N32: 1062 abi = "n32"; 1063 break; 1064 case ArchSpec::eMIPSABI_O32: 1065 abi = "o32"; 1066 break; 1067 default: 1068 break; 1069 } 1070 } 1071 return abi; 1072 } 1073 1074 bool ClangExpressionParser::RewriteExpression( 1075 DiagnosticManager &diagnostic_manager) { 1076 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1077 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1078 nullptr); 1079 clang::edit::Commit commit(editor); 1080 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1081 1082 class RewritesReceiver : public edit::EditsReceiver { 1083 Rewriter &rewrite; 1084 1085 public: 1086 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1087 1088 void insert(SourceLocation loc, StringRef text) override { 1089 rewrite.InsertText(loc, text); 1090 } 1091 void replace(CharSourceRange range, StringRef text) override { 1092 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1093 } 1094 }; 1095 1096 RewritesReceiver rewrites_receiver(rewriter); 1097 1098 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1099 size_t num_diags = diagnostics.size(); 1100 if (num_diags == 0) 1101 return false; 1102 1103 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1104 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1105 if (diagnostic && diagnostic->HasFixIts()) { 1106 for (const FixItHint &fixit : diagnostic->FixIts()) { 1107 // This is cobbed from clang::Rewrite::FixItRewriter. 1108 if (fixit.CodeToInsert.empty()) { 1109 if (fixit.InsertFromRange.isValid()) { 1110 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1111 fixit.InsertFromRange, /*afterToken=*/false, 1112 fixit.BeforePreviousInsertions); 1113 } else 1114 commit.remove(fixit.RemoveRange); 1115 } else { 1116 if (fixit.RemoveRange.isTokenRange() || 1117 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1118 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1119 else 1120 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1121 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1122 } 1123 } 1124 } 1125 } 1126 1127 // FIXME - do we want to try to propagate specific errors here? 1128 if (!commit.isCommitable()) 1129 return false; 1130 else if (!editor.commit(commit)) 1131 return false; 1132 1133 // Now play all the edits, and stash the result in the diagnostic manager. 1134 editor.applyRewrites(rewrites_receiver); 1135 RewriteBuffer &main_file_buffer = 1136 rewriter.getEditBuffer(source_manager.getMainFileID()); 1137 1138 std::string fixed_expression; 1139 llvm::raw_string_ostream out_stream(fixed_expression); 1140 1141 main_file_buffer.write(out_stream); 1142 out_stream.flush(); 1143 diagnostic_manager.SetFixedExpression(fixed_expression); 1144 1145 return true; 1146 } 1147 1148 static bool FindFunctionInModule(ConstString &mangled_name, 1149 llvm::Module *module, const char *orig_name) { 1150 for (const auto &func : module->getFunctionList()) { 1151 const StringRef &name = func.getName(); 1152 if (name.find(orig_name) != StringRef::npos) { 1153 mangled_name.SetString(name); 1154 return true; 1155 } 1156 } 1157 1158 return false; 1159 } 1160 1161 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1162 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1163 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1164 bool &can_interpret, ExecutionPolicy execution_policy) { 1165 func_addr = LLDB_INVALID_ADDRESS; 1166 func_end = LLDB_INVALID_ADDRESS; 1167 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1168 1169 lldb_private::Status err; 1170 1171 std::unique_ptr<llvm::Module> llvm_module_up( 1172 m_code_generator->ReleaseModule()); 1173 1174 if (!llvm_module_up) { 1175 err.SetErrorToGenericError(); 1176 err.SetErrorString("IR doesn't contain a module"); 1177 return err; 1178 } 1179 1180 ConstString function_name; 1181 1182 if (execution_policy != eExecutionPolicyTopLevel) { 1183 // Find the actual name of the function (it's often mangled somehow) 1184 1185 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1186 m_expr.FunctionName())) { 1187 err.SetErrorToGenericError(); 1188 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1189 m_expr.FunctionName()); 1190 return err; 1191 } else { 1192 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1193 m_expr.FunctionName()); 1194 } 1195 } 1196 1197 SymbolContext sc; 1198 1199 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1200 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1201 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1202 sc.target_sp = target_sp; 1203 } 1204 1205 LLVMUserExpression::IRPasses custom_passes; 1206 { 1207 auto lang = m_expr.Language(); 1208 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1209 Language::GetNameForLanguageType(lang)); 1210 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1211 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1212 auto runtime = process_sp->GetLanguageRuntime(lang); 1213 if (runtime) 1214 runtime->GetIRPasses(custom_passes); 1215 } 1216 } 1217 1218 if (custom_passes.EarlyPasses) { 1219 LLDB_LOGF(log, 1220 "%s - Running Early IR Passes from LanguageRuntime on " 1221 "expression module '%s'", 1222 __FUNCTION__, m_expr.FunctionName()); 1223 1224 custom_passes.EarlyPasses->run(*llvm_module_up); 1225 } 1226 1227 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1228 m_llvm_context, // handed off here 1229 llvm_module_up, // handed off here 1230 function_name, exe_ctx.GetTargetSP(), sc, 1231 m_compiler->getTargetOpts().Features); 1232 1233 ClangExpressionHelper *type_system_helper = 1234 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1235 ClangExpressionDeclMap *decl_map = 1236 type_system_helper->DeclMap(); // result can be NULL 1237 1238 if (decl_map) { 1239 Target *target = exe_ctx.GetTargetPtr(); 1240 auto &error_stream = target->GetDebugger().GetErrorStream(); 1241 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1242 *execution_unit_sp, error_stream, 1243 function_name.AsCString()); 1244 1245 bool ir_can_run = 1246 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1247 1248 if (!ir_can_run) { 1249 err.SetErrorString( 1250 "The expression could not be prepared to run in the target"); 1251 return err; 1252 } 1253 1254 Process *process = exe_ctx.GetProcessPtr(); 1255 1256 if (execution_policy != eExecutionPolicyAlways && 1257 execution_policy != eExecutionPolicyTopLevel) { 1258 lldb_private::Status interpret_error; 1259 1260 bool interpret_function_calls = 1261 !process ? false : process->CanInterpretFunctionCalls(); 1262 can_interpret = IRInterpreter::CanInterpret( 1263 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1264 interpret_error, interpret_function_calls); 1265 1266 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1267 err.SetErrorStringWithFormat( 1268 "Can't evaluate the expression without a running target due to: %s", 1269 interpret_error.AsCString()); 1270 return err; 1271 } 1272 } 1273 1274 if (!process && execution_policy == eExecutionPolicyAlways) { 1275 err.SetErrorString("Expression needed to run in the target, but the " 1276 "target can't be run"); 1277 return err; 1278 } 1279 1280 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1281 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1282 "target, but the target can't be run"); 1283 return err; 1284 } 1285 1286 if (execution_policy == eExecutionPolicyAlways || 1287 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1288 if (m_expr.NeedsValidation() && process) { 1289 if (!process->GetDynamicCheckers()) { 1290 ClangDynamicCheckerFunctions *dynamic_checkers = 1291 new ClangDynamicCheckerFunctions(); 1292 1293 DiagnosticManager install_diagnostics; 1294 1295 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1296 if (install_diagnostics.Diagnostics().size()) 1297 err.SetErrorString(install_diagnostics.GetString().c_str()); 1298 else 1299 err.SetErrorString("couldn't install checkers, unknown error"); 1300 1301 return err; 1302 } 1303 1304 process->SetDynamicCheckers(dynamic_checkers); 1305 1306 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1307 "Finished installing dynamic checkers =="); 1308 } 1309 1310 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1311 process->GetDynamicCheckers())) { 1312 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1313 function_name.AsCString()); 1314 1315 llvm::Module *module = execution_unit_sp->GetModule(); 1316 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1317 err.SetErrorToGenericError(); 1318 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1319 return err; 1320 } 1321 1322 if (custom_passes.LatePasses) { 1323 LLDB_LOGF(log, 1324 "%s - Running Late IR Passes from LanguageRuntime on " 1325 "expression module '%s'", 1326 __FUNCTION__, m_expr.FunctionName()); 1327 1328 custom_passes.LatePasses->run(*module); 1329 } 1330 } 1331 } 1332 } 1333 1334 if (execution_policy == eExecutionPolicyAlways || 1335 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1336 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1337 } 1338 } else { 1339 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1340 } 1341 1342 return err; 1343 } 1344 1345 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1346 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1347 lldb_private::Status err; 1348 1349 lldbassert(execution_unit_sp.get()); 1350 lldbassert(exe_ctx.HasThreadScope()); 1351 1352 if (!execution_unit_sp.get()) { 1353 err.SetErrorString( 1354 "can't run static initializers for a NULL execution unit"); 1355 return err; 1356 } 1357 1358 if (!exe_ctx.HasThreadScope()) { 1359 err.SetErrorString("can't run static initializers without a thread"); 1360 return err; 1361 } 1362 1363 std::vector<lldb::addr_t> static_initializers; 1364 1365 execution_unit_sp->GetStaticInitializers(static_initializers); 1366 1367 for (lldb::addr_t static_initializer : static_initializers) { 1368 EvaluateExpressionOptions options; 1369 1370 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1371 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1372 llvm::ArrayRef<lldb::addr_t>(), options)); 1373 1374 DiagnosticManager execution_errors; 1375 lldb::ExpressionResults results = 1376 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1377 exe_ctx, call_static_initializer, options, execution_errors); 1378 1379 if (results != lldb::eExpressionCompleted) { 1380 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1381 execution_errors.GetString().c_str()); 1382 return err; 1383 } 1384 } 1385 1386 return err; 1387 } 1388