1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <cctype> // for alnum 13 // Other libraries and framework includes 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTDiagnostic.h" 16 #include "clang/AST/ExternalASTSource.h" 17 #include "clang/Basic/DiagnosticIDs.h" 18 #include "clang/Basic/FileManager.h" 19 #include "clang/Basic/SourceLocation.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Basic/Version.h" 22 #include "clang/CodeGen/CodeGenAction.h" 23 #include "clang/CodeGen/ModuleBuilder.h" 24 #include "clang/Edit/Commit.h" 25 #include "clang/Edit/EditedSource.h" 26 #include "clang/Edit/EditsReceiver.h" 27 #include "clang/Frontend/CompilerInstance.h" 28 #include "clang/Frontend/CompilerInvocation.h" 29 #include "clang/Frontend/FrontendActions.h" 30 #include "clang/Frontend/FrontendDiagnostic.h" 31 #include "clang/Frontend/FrontendPluginRegistry.h" 32 #include "clang/Frontend/TextDiagnosticBuffer.h" 33 #include "clang/Frontend/TextDiagnosticPrinter.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "clang/Parse/ParseAST.h" 36 #include "clang/Rewrite/Core/Rewriter.h" 37 #include "clang/Rewrite/Frontend/FrontendActions.h" 38 #include "clang/Sema/CodeCompleteConsumer.h" 39 #include "clang/Sema/Sema.h" 40 #include "clang/Sema/SemaConsumer.h" 41 42 #include "llvm/ADT/StringRef.h" 43 #include "llvm/ExecutionEngine/ExecutionEngine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/FileSystem.h" 46 #include "llvm/Support/TargetSelect.h" 47 48 #pragma clang diagnostic push 49 #pragma clang diagnostic ignored "-Wglobal-constructors" 50 #include "llvm/ExecutionEngine/MCJIT.h" 51 #pragma clang diagnostic pop 52 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/Support/DynamicLibrary.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/Host.h" 58 #include "llvm/Support/MemoryBuffer.h" 59 #include "llvm/Support/Signals.h" 60 61 // Project includes 62 #include "ClangDiagnostic.h" 63 #include "ClangExpressionParser.h" 64 65 #include "ClangASTSource.h" 66 #include "ClangExpressionDeclMap.h" 67 #include "ClangExpressionHelper.h" 68 #include "ClangModulesDeclVendor.h" 69 #include "ClangPersistentVariables.h" 70 #include "IRForTarget.h" 71 72 #include "lldb/Core/Debugger.h" 73 #include "lldb/Core/Disassembler.h" 74 #include "lldb/Core/Module.h" 75 #include "lldb/Core/StreamFile.h" 76 #include "lldb/Expression/IRDynamicChecks.h" 77 #include "lldb/Expression/IRExecutionUnit.h" 78 #include "lldb/Expression/IRInterpreter.h" 79 #include "lldb/Host/File.h" 80 #include "lldb/Host/HostInfo.h" 81 #include "lldb/Symbol/ClangASTContext.h" 82 #include "lldb/Symbol/SymbolVendor.h" 83 #include "lldb/Target/ExecutionContext.h" 84 #include "lldb/Target/Language.h" 85 #include "lldb/Target/ObjCLanguageRuntime.h" 86 #include "lldb/Target/Process.h" 87 #include "lldb/Target/Target.h" 88 #include "lldb/Target/ThreadPlanCallFunction.h" 89 #include "lldb/Utility/DataBufferHeap.h" 90 #include "lldb/Utility/LLDBAssert.h" 91 #include "lldb/Utility/Log.h" 92 #include "lldb/Utility/Stream.h" 93 #include "lldb/Utility/StreamString.h" 94 #include "lldb/Utility/StringList.h" 95 96 using namespace clang; 97 using namespace llvm; 98 using namespace lldb_private; 99 100 //===----------------------------------------------------------------------===// 101 // Utility Methods for Clang 102 //===----------------------------------------------------------------------===// 103 104 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 105 ClangModulesDeclVendor &m_decl_vendor; 106 ClangPersistentVariables &m_persistent_vars; 107 StreamString m_error_stream; 108 bool m_has_errors = false; 109 110 public: 111 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 112 ClangPersistentVariables &persistent_vars) 113 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 114 115 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 116 const clang::Module * /*null*/) override { 117 std::vector<ConstString> string_path; 118 119 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) { 120 string_path.push_back(ConstString(component.first->getName())); 121 } 122 123 StreamString error_stream; 124 125 ClangModulesDeclVendor::ModuleVector exported_modules; 126 127 if (!m_decl_vendor.AddModule(string_path, &exported_modules, 128 m_error_stream)) { 129 m_has_errors = true; 130 } 131 132 for (ClangModulesDeclVendor::ModuleID module : exported_modules) { 133 m_persistent_vars.AddHandLoadedClangModule(module); 134 } 135 } 136 137 bool hasErrors() { return m_has_errors; } 138 139 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 140 }; 141 142 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 143 public: 144 ClangDiagnosticManagerAdapter() 145 : m_passthrough(new clang::TextDiagnosticBuffer) {} 146 147 ClangDiagnosticManagerAdapter( 148 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 149 : m_passthrough(passthrough) {} 150 151 void ResetManager(DiagnosticManager *manager = nullptr) { 152 m_manager = manager; 153 } 154 155 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 156 const clang::Diagnostic &Info) { 157 if (m_manager) { 158 llvm::SmallVector<char, 32> diag_str; 159 Info.FormatDiagnostic(diag_str); 160 diag_str.push_back('\0'); 161 const char *data = diag_str.data(); 162 163 lldb_private::DiagnosticSeverity severity; 164 bool make_new_diagnostic = true; 165 166 switch (DiagLevel) { 167 case DiagnosticsEngine::Level::Fatal: 168 case DiagnosticsEngine::Level::Error: 169 severity = eDiagnosticSeverityError; 170 break; 171 case DiagnosticsEngine::Level::Warning: 172 severity = eDiagnosticSeverityWarning; 173 break; 174 case DiagnosticsEngine::Level::Remark: 175 case DiagnosticsEngine::Level::Ignored: 176 severity = eDiagnosticSeverityRemark; 177 break; 178 case DiagnosticsEngine::Level::Note: 179 m_manager->AppendMessageToDiagnostic(data); 180 make_new_diagnostic = false; 181 } 182 if (make_new_diagnostic) { 183 ClangDiagnostic *new_diagnostic = 184 new ClangDiagnostic(data, severity, Info.getID()); 185 m_manager->AddDiagnostic(new_diagnostic); 186 187 // Don't store away warning fixits, since the compiler doesn't have 188 // enough context in an expression for the warning to be useful. 189 // FIXME: Should we try to filter out FixIts that apply to our generated 190 // code, and not the user's expression? 191 if (severity == eDiagnosticSeverityError) { 192 size_t num_fixit_hints = Info.getNumFixItHints(); 193 for (size_t i = 0; i < num_fixit_hints; i++) { 194 const clang::FixItHint &fixit = Info.getFixItHint(i); 195 if (!fixit.isNull()) 196 new_diagnostic->AddFixitHint(fixit); 197 } 198 } 199 } 200 } 201 202 m_passthrough->HandleDiagnostic(DiagLevel, Info); 203 } 204 205 void FlushDiagnostics(DiagnosticsEngine &Diags) { 206 m_passthrough->FlushDiagnostics(Diags); 207 } 208 209 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 210 return new ClangDiagnosticManagerAdapter(m_passthrough); 211 } 212 213 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 214 215 private: 216 DiagnosticManager *m_manager = nullptr; 217 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 218 }; 219 220 //===----------------------------------------------------------------------===// 221 // Implementation of ClangExpressionParser 222 //===----------------------------------------------------------------------===// 223 224 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope, 225 Expression &expr, 226 bool generate_debug_info) 227 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 228 m_pp_callbacks(nullptr) { 229 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 230 231 // We can't compile expressions without a target. So if the exe_scope is 232 // null or doesn't have a target, then we just need to get out of here. I'll 233 // lldb_assert and not make any of the compiler objects since 234 // I can't return errors directly from the constructor. Further calls will 235 // check if the compiler was made and 236 // bag out if it wasn't. 237 238 if (!exe_scope) { 239 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 240 __FUNCTION__, __FILE__, __LINE__); 241 return; 242 } 243 244 lldb::TargetSP target_sp; 245 target_sp = exe_scope->CalculateTarget(); 246 if (!target_sp) { 247 lldb_assert(target_sp.get(), 248 "Can't make an expression parser with a null target.", 249 __FUNCTION__, __FILE__, __LINE__); 250 return; 251 } 252 253 // 1. Create a new compiler instance. 254 m_compiler.reset(new CompilerInstance()); 255 lldb::LanguageType frame_lang = 256 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 257 bool overridden_target_opts = false; 258 lldb_private::LanguageRuntime *lang_rt = nullptr; 259 260 std::string abi; 261 ArchSpec target_arch; 262 target_arch = target_sp->GetArchitecture(); 263 264 const auto target_machine = target_arch.GetMachine(); 265 266 // If the expression is being evaluated in the context of an existing stack 267 // frame, we introspect to see if the language runtime is available. 268 269 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 270 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 271 272 // Make sure the user hasn't provided a preferred execution language with 273 // `expression --language X -- ...` 274 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 275 frame_lang = frame_sp->GetLanguage(); 276 277 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 278 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 279 if (log) 280 log->Printf("Frame has language of type %s", 281 Language::GetNameForLanguageType(frame_lang)); 282 } 283 284 // 2. Configure the compiler with a set of default options that are 285 // appropriate for most situations. 286 if (target_arch.IsValid()) { 287 std::string triple = target_arch.GetTriple().str(); 288 m_compiler->getTargetOpts().Triple = triple; 289 if (log) 290 log->Printf("Using %s as the target triple", 291 m_compiler->getTargetOpts().Triple.c_str()); 292 } else { 293 // If we get here we don't have a valid target and just have to guess. 294 // Sometimes this will be ok to just use the host target triple (when we 295 // evaluate say "2+3", but other expressions like breakpoint conditions and 296 // other things that _are_ target specific really shouldn't just be using 297 // the host triple. In such a case the language runtime should expose an 298 // overridden options set (3), below. 299 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 300 if (log) 301 log->Printf("Using default target triple of %s", 302 m_compiler->getTargetOpts().Triple.c_str()); 303 } 304 // Now add some special fixes for known architectures: Any arm32 iOS 305 // environment, but not on arm64 306 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 307 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 308 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 309 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 310 } 311 // Supported subsets of x86 312 if (target_machine == llvm::Triple::x86 || 313 target_machine == llvm::Triple::x86_64) { 314 m_compiler->getTargetOpts().Features.push_back("+sse"); 315 m_compiler->getTargetOpts().Features.push_back("+sse2"); 316 } 317 318 // Set the target CPU to generate code for. This will be empty for any CPU 319 // that doesn't really need to make a special 320 // CPU string. 321 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 322 323 // Set the target ABI 324 abi = GetClangTargetABI(target_arch); 325 if (!abi.empty()) 326 m_compiler->getTargetOpts().ABI = abi; 327 328 // 3. Now allow the runtime to provide custom configuration options for the 329 // target. In this case, a specialized language runtime is available and we 330 // can query it for extra options. For 99% of use cases, this will not be 331 // needed and should be provided when basic platform detection is not enough. 332 if (lang_rt) 333 overridden_target_opts = 334 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 335 336 if (overridden_target_opts) 337 if (log && log->GetVerbose()) { 338 LLDB_LOGV( 339 log, "Using overridden target options for the expression evaluation"); 340 341 auto opts = m_compiler->getTargetOpts(); 342 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 343 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 344 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 345 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 346 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 347 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 348 StringList::LogDump(log, opts.Features, "Features"); 349 } 350 351 // 4. Create and install the target on the compiler. 352 m_compiler->createDiagnostics(); 353 auto target_info = TargetInfo::CreateTargetInfo( 354 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 355 if (log) { 356 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); 357 log->Printf("Target datalayout string: '%s'", 358 target_info->getDataLayout().getStringRepresentation().c_str()); 359 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); 360 log->Printf("Target vector alignment: %d", 361 target_info->getMaxVectorAlign()); 362 } 363 m_compiler->setTarget(target_info); 364 365 assert(m_compiler->hasTarget()); 366 367 // 5. Set language options. 368 lldb::LanguageType language = expr.Language(); 369 370 switch (language) { 371 case lldb::eLanguageTypeC: 372 case lldb::eLanguageTypeC89: 373 case lldb::eLanguageTypeC99: 374 case lldb::eLanguageTypeC11: 375 // FIXME: the following language option is a temporary workaround, 376 // to "ask for C, get C++." 377 // For now, the expression parser must use C++ anytime the language is a C 378 // family language, because the expression parser uses features of C++ to 379 // capture values. 380 m_compiler->getLangOpts().CPlusPlus = true; 381 break; 382 case lldb::eLanguageTypeObjC: 383 m_compiler->getLangOpts().ObjC1 = true; 384 m_compiler->getLangOpts().ObjC2 = true; 385 // FIXME: the following language option is a temporary workaround, 386 // to "ask for ObjC, get ObjC++" (see comment above). 387 m_compiler->getLangOpts().CPlusPlus = true; 388 389 // Clang now sets as default C++14 as the default standard (with 390 // GNU extensions), so we do the same here to avoid mismatches that 391 // cause compiler error when evaluating expressions (e.g. nullptr not found 392 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 393 // two lines below) so we decide to be consistent with that, but this could 394 // be re-evaluated in the future. 395 m_compiler->getLangOpts().CPlusPlus11 = true; 396 break; 397 case lldb::eLanguageTypeC_plus_plus: 398 case lldb::eLanguageTypeC_plus_plus_11: 399 case lldb::eLanguageTypeC_plus_plus_14: 400 m_compiler->getLangOpts().CPlusPlus11 = true; 401 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 402 LLVM_FALLTHROUGH; 403 case lldb::eLanguageTypeC_plus_plus_03: 404 m_compiler->getLangOpts().CPlusPlus = true; 405 // FIXME: the following language option is a temporary workaround, 406 // to "ask for C++, get ObjC++". Apple hopes to remove this requirement on 407 // non-Apple platforms, but for now it is needed. 408 m_compiler->getLangOpts().ObjC1 = true; 409 break; 410 case lldb::eLanguageTypeObjC_plus_plus: 411 case lldb::eLanguageTypeUnknown: 412 default: 413 m_compiler->getLangOpts().ObjC1 = true; 414 m_compiler->getLangOpts().ObjC2 = true; 415 m_compiler->getLangOpts().CPlusPlus = true; 416 m_compiler->getLangOpts().CPlusPlus11 = true; 417 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 418 break; 419 } 420 421 m_compiler->getLangOpts().Bool = true; 422 m_compiler->getLangOpts().WChar = true; 423 m_compiler->getLangOpts().Blocks = true; 424 m_compiler->getLangOpts().DebuggerSupport = 425 true; // Features specifically for debugger clients 426 if (expr.DesiredResultType() == Expression::eResultTypeId) 427 m_compiler->getLangOpts().DebuggerCastResultToId = true; 428 429 m_compiler->getLangOpts().CharIsSigned = 430 ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 431 .CharIsSignedByDefault(); 432 433 // Spell checking is a nice feature, but it ends up completing a lot of types 434 // that we didn't strictly speaking need to complete. As a result, we spend a 435 // long time parsing and importing debug information. 436 m_compiler->getLangOpts().SpellChecking = false; 437 438 if (process_sp && m_compiler->getLangOpts().ObjC1) { 439 if (process_sp->GetObjCLanguageRuntime()) { 440 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == 441 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 442 m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX, 443 VersionTuple(10, 7)); 444 else 445 m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 446 VersionTuple(10, 7)); 447 448 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) 449 m_compiler->getLangOpts().DebuggerObjCLiteral = true; 450 } 451 } 452 453 m_compiler->getLangOpts().ThreadsafeStatics = false; 454 m_compiler->getLangOpts().AccessControl = 455 false; // Debuggers get universal access 456 m_compiler->getLangOpts().DollarIdents = 457 true; // $ indicates a persistent variable name 458 // We enable all builtin functions beside the builtins from libc/libm (e.g. 459 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 460 // additionally enabling them as expandable builtins is breaking Clang. 461 m_compiler->getLangOpts().NoBuiltin = true; 462 463 // Set CodeGen options 464 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 465 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 466 m_compiler->getCodeGenOpts().DisableFPElim = true; 467 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; 468 if (generate_debug_info) 469 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 470 else 471 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 472 473 // Disable some warnings. 474 m_compiler->getDiagnostics().setSeverityForGroup( 475 clang::diag::Flavor::WarningOrError, "unused-value", 476 clang::diag::Severity::Ignored, SourceLocation()); 477 m_compiler->getDiagnostics().setSeverityForGroup( 478 clang::diag::Flavor::WarningOrError, "odr", 479 clang::diag::Severity::Ignored, SourceLocation()); 480 481 // Inform the target of the language options 482 // 483 // FIXME: We shouldn't need to do this, the target should be immutable once 484 // created. This complexity should be lifted elsewhere. 485 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 486 487 // 6. Set up the diagnostic buffer for reporting errors 488 489 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 490 491 // 7. Set up the source management objects inside the compiler 492 493 clang::FileSystemOptions file_system_options; 494 m_file_manager.reset(new clang::FileManager(file_system_options)); 495 496 if (!m_compiler->hasSourceManager()) 497 m_compiler->createSourceManager(*m_file_manager.get()); 498 499 m_compiler->createFileManager(); 500 m_compiler->createPreprocessor(TU_Complete); 501 502 if (ClangModulesDeclVendor *decl_vendor = 503 target_sp->GetClangModulesDeclVendor()) { 504 ClangPersistentVariables *clang_persistent_vars = 505 llvm::cast<ClangPersistentVariables>( 506 target_sp->GetPersistentExpressionStateForLanguage( 507 lldb::eLanguageTypeC)); 508 std::unique_ptr<PPCallbacks> pp_callbacks( 509 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 510 m_pp_callbacks = 511 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 512 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 513 } 514 515 // 8. Most of this we get from the CompilerInstance, but we also want to give 516 // the context an ExternalASTSource. 517 518 auto &PP = m_compiler->getPreprocessor(); 519 auto &builtin_context = PP.getBuiltinInfo(); 520 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 521 m_compiler->getLangOpts()); 522 523 m_compiler->createASTContext(); 524 clang::ASTContext &ast_context = m_compiler->getASTContext(); 525 526 ClangExpressionHelper *type_system_helper = 527 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 528 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 529 530 if (decl_map) { 531 llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source( 532 decl_map->CreateProxy()); 533 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 534 ast_context.setExternalSource(ast_source); 535 } 536 537 m_ast_context.reset( 538 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 539 m_ast_context->setASTContext(&ast_context); 540 541 std::string module_name("$__lldb_module"); 542 543 m_llvm_context.reset(new LLVMContext()); 544 m_code_generator.reset(CreateLLVMCodeGen( 545 m_compiler->getDiagnostics(), module_name, 546 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 547 m_compiler->getCodeGenOpts(), *m_llvm_context)); 548 } 549 550 ClangExpressionParser::~ClangExpressionParser() {} 551 552 namespace { 553 554 //---------------------------------------------------------------------- 555 /// @class CodeComplete 556 /// 557 /// A code completion consumer for the clang Sema that is responsible for 558 /// creating the completion suggestions when a user requests completion 559 /// of an incomplete `expr` invocation. 560 //---------------------------------------------------------------------- 561 class CodeComplete : public CodeCompleteConsumer { 562 CodeCompletionTUInfo m_info; 563 564 std::string m_expr; 565 unsigned m_position = 0; 566 CompletionRequest &m_request; 567 568 /// Returns true if the given character can be used in an identifier. 569 /// This also returns true for numbers because for completion we usually 570 /// just iterate backwards over iterators. 571 /// 572 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 573 static bool IsIdChar(char c) { 574 return c == '_' || std::isalnum(c) || c == '$'; 575 } 576 577 /// Returns true if the given character is used to separate arguments 578 /// in the command line of lldb. 579 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 580 581 /// Drops all tokens in front of the expression that are unrelated for 582 /// the completion of the cmd line. 'unrelated' means here that the token 583 /// is not interested for the lldb completion API result. 584 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 585 if (cmd.empty()) 586 return cmd; 587 588 // If we are at the start of a word, then all tokens are unrelated to 589 // the current completion logic. 590 if (IsTokenSeparator(cmd.back())) 591 return StringRef(); 592 593 // Remove all previous tokens from the string as they are unrelated 594 // to completing the current token. 595 StringRef to_remove = cmd; 596 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 597 to_remove = to_remove.drop_back(); 598 } 599 cmd = cmd.drop_front(to_remove.size()); 600 601 return cmd; 602 } 603 604 /// Removes the last identifier token from the given cmd line. 605 StringRef removeLastToken(StringRef cmd) { 606 while (!cmd.empty() && IsIdChar(cmd.back())) { 607 cmd = cmd.drop_back(); 608 } 609 return cmd; 610 } 611 612 /// Attemps to merge the given completion from the given position into the 613 /// existing command. Returns the completion string that can be returned to 614 /// the lldb completion API. 615 std::string mergeCompletion(StringRef existing, unsigned pos, 616 StringRef completion) { 617 StringRef existing_command = existing.substr(0, pos); 618 // We rewrite the last token with the completion, so let's drop that 619 // token from the command. 620 existing_command = removeLastToken(existing_command); 621 // We also should remove all previous tokens from the command as they 622 // would otherwise be added to the completion that already has the 623 // completion. 624 existing_command = dropUnrelatedFrontTokens(existing_command); 625 return existing_command.str() + completion.str(); 626 } 627 628 public: 629 /// Constructs a CodeComplete consumer that can be attached to a Sema. 630 /// @param[out] matches 631 /// The list of matches that the lldb completion API expects as a result. 632 /// This may already contain matches, so it's only allowed to append 633 /// to this variable. 634 /// @param[out] expr 635 /// The whole expression string that we are currently parsing. This 636 /// string needs to be equal to the input the user typed, and NOT the 637 /// final code that Clang is parsing. 638 /// @param[out] position 639 /// The character position of the user cursor in the `expr` parameter. 640 /// 641 CodeComplete(CompletionRequest &request, std::string expr, unsigned position) 642 : CodeCompleteConsumer(CodeCompleteOptions(), false), 643 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 644 m_position(position), m_request(request) {} 645 646 /// Deregisters and destroys this code-completion consumer. 647 virtual ~CodeComplete() {} 648 649 /// \name Code-completion filtering 650 /// Check if the result should be filtered out. 651 bool isResultFilteredOut(StringRef Filter, 652 CodeCompletionResult Result) override { 653 // This code is mostly copied from CodeCompleteConsumer. 654 switch (Result.Kind) { 655 case CodeCompletionResult::RK_Declaration: 656 return !( 657 Result.Declaration->getIdentifier() && 658 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 659 case CodeCompletionResult::RK_Keyword: 660 return !StringRef(Result.Keyword).startswith(Filter); 661 case CodeCompletionResult::RK_Macro: 662 return !Result.Macro->getName().startswith(Filter); 663 case CodeCompletionResult::RK_Pattern: 664 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 665 } 666 // If we trigger this assert or the above switch yields a warning, then 667 // CodeCompletionResult has been enhanced with more kinds of completion 668 // results. Expand the switch above in this case. 669 assert(false && "Unknown completion result type?"); 670 // If we reach this, then we should just ignore whatever kind of unknown 671 // result we got back. We probably can't turn it into any kind of useful 672 // completion suggestion with the existing code. 673 return true; 674 } 675 676 /// \name Code-completion callbacks 677 /// Process the finalized code-completion results. 678 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 679 CodeCompletionResult *Results, 680 unsigned NumResults) override { 681 682 // The Sema put the incomplete token we try to complete in here during 683 // lexing, so we need to retrieve it here to know what we are completing. 684 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 685 686 // Iterate over all the results. Filter out results we don't want and 687 // process the rest. 688 for (unsigned I = 0; I != NumResults; ++I) { 689 // Filter the results with the information from the Sema. 690 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 691 continue; 692 693 CodeCompletionResult &R = Results[I]; 694 std::string ToInsert; 695 // Handle the different completion kinds that come from the Sema. 696 switch (R.Kind) { 697 case CodeCompletionResult::RK_Declaration: { 698 const NamedDecl *D = R.Declaration; 699 ToInsert = R.Declaration->getNameAsString(); 700 // If we have a function decl that has no arguments we want to 701 // complete the empty parantheses for the user. If the function has 702 // arguments, we at least complete the opening bracket. 703 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 704 if (F->getNumParams() == 0) 705 ToInsert += "()"; 706 else 707 ToInsert += "("; 708 } 709 // If we try to complete a namespace, then we can directly append 710 // the '::'. 711 if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 712 if (!N->isAnonymousNamespace()) 713 ToInsert += "::"; 714 } 715 break; 716 } 717 case CodeCompletionResult::RK_Keyword: 718 ToInsert = R.Keyword; 719 break; 720 case CodeCompletionResult::RK_Macro: 721 ToInsert = R.Macro->getName().str(); 722 break; 723 case CodeCompletionResult::RK_Pattern: 724 ToInsert = R.Pattern->getTypedText(); 725 break; 726 } 727 // At this point all information is in the ToInsert string. 728 729 // We also filter some internal lldb identifiers here. The user 730 // shouldn't see these. 731 if (StringRef(ToInsert).startswith("$__lldb_")) 732 continue; 733 if (!ToInsert.empty()) { 734 // Merge the suggested Token into the existing command line to comply 735 // with the kind of result the lldb API expects. 736 std::string CompletionSuggestion = 737 mergeCompletion(m_expr, m_position, ToInsert); 738 m_request.AddCompletion(CompletionSuggestion); 739 } 740 } 741 } 742 743 /// \param S the semantic-analyzer object for which code-completion is being 744 /// done. 745 /// 746 /// \param CurrentArg the index of the current argument. 747 /// 748 /// \param Candidates an array of overload candidates. 749 /// 750 /// \param NumCandidates the number of overload candidates 751 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 752 OverloadCandidate *Candidates, 753 unsigned NumCandidates, 754 SourceLocation OpenParLoc) override { 755 // At the moment we don't filter out any overloaded candidates. 756 } 757 758 CodeCompletionAllocator &getAllocator() override { 759 return m_info.getAllocator(); 760 } 761 762 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 763 }; 764 } // namespace 765 766 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 767 unsigned pos, unsigned typed_pos) { 768 DiagnosticManager mgr; 769 // We need the raw user expression here because that's what the CodeComplete 770 // class uses to provide completion suggestions. 771 // However, the `Text` method only gives us the transformed expression here. 772 // To actually get the raw user input here, we have to cast our expression to 773 // the LLVMUserExpression which exposes the right API. This should never fail 774 // as we always have a ClangUserExpression whenever we call this. 775 LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr); 776 CodeComplete CC(request, llvm_expr.GetUserText(), typed_pos); 777 // We don't need a code generator for parsing. 778 m_code_generator.reset(); 779 // Start parsing the expression with our custom code completion consumer. 780 ParseInternal(mgr, &CC, line, pos); 781 return true; 782 } 783 784 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 785 return ParseInternal(diagnostic_manager); 786 } 787 788 unsigned 789 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 790 CodeCompleteConsumer *completion_consumer, 791 unsigned completion_line, 792 unsigned completion_column) { 793 ClangDiagnosticManagerAdapter *adapter = 794 static_cast<ClangDiagnosticManagerAdapter *>( 795 m_compiler->getDiagnostics().getClient()); 796 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 797 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 798 799 adapter->ResetManager(&diagnostic_manager); 800 801 const char *expr_text = m_expr.Text(); 802 803 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 804 bool created_main_file = false; 805 806 // Clang wants to do completion on a real file known by Clang's file manager, 807 // so we have to create one to make this work. 808 // TODO: We probably could also simulate to Clang's file manager that there 809 // is a real file that contains our code. 810 bool should_create_file = completion_consumer != nullptr; 811 812 // We also want a real file on disk if we generate full debug info. 813 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 814 codegenoptions::FullDebugInfo; 815 816 if (should_create_file) { 817 int temp_fd = -1; 818 llvm::SmallString<PATH_MAX> result_path; 819 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 820 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 821 std::string temp_source_path = tmpdir_file_spec.GetPath(); 822 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 823 } else { 824 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 825 } 826 827 if (temp_fd != -1) { 828 lldb_private::File file(temp_fd, true); 829 const size_t expr_text_len = strlen(expr_text); 830 size_t bytes_written = expr_text_len; 831 if (file.Write(expr_text, bytes_written).Success()) { 832 if (bytes_written == expr_text_len) { 833 file.Close(); 834 source_mgr.setMainFileID( 835 source_mgr.createFileID(m_file_manager->getFile(result_path), 836 SourceLocation(), SrcMgr::C_User)); 837 created_main_file = true; 838 } 839 } 840 } 841 } 842 843 if (!created_main_file) { 844 std::unique_ptr<MemoryBuffer> memory_buffer = 845 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); 846 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 847 } 848 849 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 850 &m_compiler->getPreprocessor()); 851 852 ClangExpressionHelper *type_system_helper = 853 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 854 855 ASTConsumer *ast_transformer = 856 type_system_helper->ASTTransformer(m_code_generator.get()); 857 858 if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) 859 decl_map->InstallCodeGenerator(m_code_generator.get()); 860 861 // If we want to parse for code completion, we need to attach our code 862 // completion consumer to the Sema and specify a completion position. 863 // While parsing the Sema will call this consumer with the provided 864 // completion suggestions. 865 if (completion_consumer) { 866 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 867 auto &PP = m_compiler->getPreprocessor(); 868 // Lines and columns start at 1 in Clang, but code completion positions are 869 // indexed from 0, so we need to add 1 to the line and column here. 870 ++completion_line; 871 ++completion_column; 872 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 873 } 874 875 if (ast_transformer) { 876 ast_transformer->Initialize(m_compiler->getASTContext()); 877 ParseAST(m_compiler->getPreprocessor(), ast_transformer, 878 m_compiler->getASTContext(), false, TU_Complete, 879 completion_consumer); 880 } else { 881 m_code_generator->Initialize(m_compiler->getASTContext()); 882 ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), 883 m_compiler->getASTContext(), false, TU_Complete, 884 completion_consumer); 885 } 886 887 diag_buf->EndSourceFile(); 888 889 unsigned num_errors = diag_buf->getNumErrors(); 890 891 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 892 num_errors++; 893 diagnostic_manager.PutString(eDiagnosticSeverityError, 894 "while importing modules:"); 895 diagnostic_manager.AppendMessageToDiagnostic( 896 m_pp_callbacks->getErrorString()); 897 } 898 899 if (!num_errors) { 900 if (type_system_helper->DeclMap() && 901 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 902 diagnostic_manager.Printf(eDiagnosticSeverityError, 903 "Couldn't infer the type of a variable"); 904 num_errors++; 905 } 906 } 907 908 if (!num_errors) { 909 type_system_helper->CommitPersistentDecls(); 910 } 911 912 adapter->ResetManager(); 913 914 return num_errors; 915 } 916 917 std::string 918 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 919 std::string abi; 920 921 if (target_arch.IsMIPS()) { 922 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 923 case ArchSpec::eMIPSABI_N64: 924 abi = "n64"; 925 break; 926 case ArchSpec::eMIPSABI_N32: 927 abi = "n32"; 928 break; 929 case ArchSpec::eMIPSABI_O32: 930 abi = "o32"; 931 break; 932 default: 933 break; 934 } 935 } 936 return abi; 937 } 938 939 bool ClangExpressionParser::RewriteExpression( 940 DiagnosticManager &diagnostic_manager) { 941 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 942 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 943 nullptr); 944 clang::edit::Commit commit(editor); 945 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 946 947 class RewritesReceiver : public edit::EditsReceiver { 948 Rewriter &rewrite; 949 950 public: 951 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 952 953 void insert(SourceLocation loc, StringRef text) override { 954 rewrite.InsertText(loc, text); 955 } 956 void replace(CharSourceRange range, StringRef text) override { 957 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 958 } 959 }; 960 961 RewritesReceiver rewrites_receiver(rewriter); 962 963 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 964 size_t num_diags = diagnostics.size(); 965 if (num_diags == 0) 966 return false; 967 968 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 969 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 970 if (diagnostic && diagnostic->HasFixIts()) { 971 for (const FixItHint &fixit : diagnostic->FixIts()) { 972 // This is cobbed from clang::Rewrite::FixItRewriter. 973 if (fixit.CodeToInsert.empty()) { 974 if (fixit.InsertFromRange.isValid()) { 975 commit.insertFromRange(fixit.RemoveRange.getBegin(), 976 fixit.InsertFromRange, /*afterToken=*/false, 977 fixit.BeforePreviousInsertions); 978 } else 979 commit.remove(fixit.RemoveRange); 980 } else { 981 if (fixit.RemoveRange.isTokenRange() || 982 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 983 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 984 else 985 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 986 /*afterToken=*/false, fixit.BeforePreviousInsertions); 987 } 988 } 989 } 990 } 991 992 // FIXME - do we want to try to propagate specific errors here? 993 if (!commit.isCommitable()) 994 return false; 995 else if (!editor.commit(commit)) 996 return false; 997 998 // Now play all the edits, and stash the result in the diagnostic manager. 999 editor.applyRewrites(rewrites_receiver); 1000 RewriteBuffer &main_file_buffer = 1001 rewriter.getEditBuffer(source_manager.getMainFileID()); 1002 1003 std::string fixed_expression; 1004 llvm::raw_string_ostream out_stream(fixed_expression); 1005 1006 main_file_buffer.write(out_stream); 1007 out_stream.flush(); 1008 diagnostic_manager.SetFixedExpression(fixed_expression); 1009 1010 return true; 1011 } 1012 1013 static bool FindFunctionInModule(ConstString &mangled_name, 1014 llvm::Module *module, const char *orig_name) { 1015 for (const auto &func : module->getFunctionList()) { 1016 const StringRef &name = func.getName(); 1017 if (name.find(orig_name) != StringRef::npos) { 1018 mangled_name.SetString(name); 1019 return true; 1020 } 1021 } 1022 1023 return false; 1024 } 1025 1026 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1027 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1028 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1029 bool &can_interpret, ExecutionPolicy execution_policy) { 1030 func_addr = LLDB_INVALID_ADDRESS; 1031 func_end = LLDB_INVALID_ADDRESS; 1032 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1033 1034 lldb_private::Status err; 1035 1036 std::unique_ptr<llvm::Module> llvm_module_ap( 1037 m_code_generator->ReleaseModule()); 1038 1039 if (!llvm_module_ap.get()) { 1040 err.SetErrorToGenericError(); 1041 err.SetErrorString("IR doesn't contain a module"); 1042 return err; 1043 } 1044 1045 ConstString function_name; 1046 1047 if (execution_policy != eExecutionPolicyTopLevel) { 1048 // Find the actual name of the function (it's often mangled somehow) 1049 1050 if (!FindFunctionInModule(function_name, llvm_module_ap.get(), 1051 m_expr.FunctionName())) { 1052 err.SetErrorToGenericError(); 1053 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1054 m_expr.FunctionName()); 1055 return err; 1056 } else { 1057 if (log) 1058 log->Printf("Found function %s for %s", function_name.AsCString(), 1059 m_expr.FunctionName()); 1060 } 1061 } 1062 1063 SymbolContext sc; 1064 1065 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1066 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1067 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1068 sc.target_sp = target_sp; 1069 } 1070 1071 LLVMUserExpression::IRPasses custom_passes; 1072 { 1073 auto lang = m_expr.Language(); 1074 if (log) 1075 log->Printf("%s - Current expression language is %s\n", __FUNCTION__, 1076 Language::GetNameForLanguageType(lang)); 1077 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1078 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1079 auto runtime = process_sp->GetLanguageRuntime(lang); 1080 if (runtime) 1081 runtime->GetIRPasses(custom_passes); 1082 } 1083 } 1084 1085 if (custom_passes.EarlyPasses) { 1086 if (log) 1087 log->Printf("%s - Running Early IR Passes from LanguageRuntime on " 1088 "expression module '%s'", 1089 __FUNCTION__, m_expr.FunctionName()); 1090 1091 custom_passes.EarlyPasses->run(*llvm_module_ap); 1092 } 1093 1094 execution_unit_sp.reset( 1095 new IRExecutionUnit(m_llvm_context, // handed off here 1096 llvm_module_ap, // handed off here 1097 function_name, exe_ctx.GetTargetSP(), sc, 1098 m_compiler->getTargetOpts().Features)); 1099 1100 ClangExpressionHelper *type_system_helper = 1101 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1102 ClangExpressionDeclMap *decl_map = 1103 type_system_helper->DeclMap(); // result can be NULL 1104 1105 if (decl_map) { 1106 Stream *error_stream = NULL; 1107 Target *target = exe_ctx.GetTargetPtr(); 1108 error_stream = target->GetDebugger().GetErrorFile().get(); 1109 1110 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1111 *execution_unit_sp, *error_stream, 1112 function_name.AsCString()); 1113 1114 bool ir_can_run = 1115 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1116 1117 if (!ir_can_run) { 1118 err.SetErrorString( 1119 "The expression could not be prepared to run in the target"); 1120 return err; 1121 } 1122 1123 Process *process = exe_ctx.GetProcessPtr(); 1124 1125 if (execution_policy != eExecutionPolicyAlways && 1126 execution_policy != eExecutionPolicyTopLevel) { 1127 lldb_private::Status interpret_error; 1128 1129 bool interpret_function_calls = 1130 !process ? false : process->CanInterpretFunctionCalls(); 1131 can_interpret = IRInterpreter::CanInterpret( 1132 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1133 interpret_error, interpret_function_calls); 1134 1135 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1136 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1137 interpret_error.AsCString()); 1138 return err; 1139 } 1140 } 1141 1142 if (!process && execution_policy == eExecutionPolicyAlways) { 1143 err.SetErrorString("Expression needed to run in the target, but the " 1144 "target can't be run"); 1145 return err; 1146 } 1147 1148 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1149 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1150 "target, but the target can't be run"); 1151 return err; 1152 } 1153 1154 if (execution_policy == eExecutionPolicyAlways || 1155 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1156 if (m_expr.NeedsValidation() && process) { 1157 if (!process->GetDynamicCheckers()) { 1158 DynamicCheckerFunctions *dynamic_checkers = 1159 new DynamicCheckerFunctions(); 1160 1161 DiagnosticManager install_diagnostics; 1162 1163 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1164 if (install_diagnostics.Diagnostics().size()) 1165 err.SetErrorString("couldn't install checkers, unknown error"); 1166 else 1167 err.SetErrorString(install_diagnostics.GetString().c_str()); 1168 1169 return err; 1170 } 1171 1172 process->SetDynamicCheckers(dynamic_checkers); 1173 1174 if (log) 1175 log->Printf("== [ClangUserExpression::Evaluate] Finished " 1176 "installing dynamic checkers =="); 1177 } 1178 1179 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), 1180 function_name.AsCString()); 1181 1182 llvm::Module *module = execution_unit_sp->GetModule(); 1183 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1184 err.SetErrorToGenericError(); 1185 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1186 return err; 1187 } 1188 1189 if (custom_passes.LatePasses) { 1190 if (log) 1191 log->Printf("%s - Running Late IR Passes from LanguageRuntime on " 1192 "expression module '%s'", 1193 __FUNCTION__, m_expr.FunctionName()); 1194 1195 custom_passes.LatePasses->run(*module); 1196 } 1197 } 1198 } 1199 1200 if (execution_policy == eExecutionPolicyAlways || 1201 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1202 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1203 } 1204 } else { 1205 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1206 } 1207 1208 return err; 1209 } 1210 1211 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1212 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1213 lldb_private::Status err; 1214 1215 lldbassert(execution_unit_sp.get()); 1216 lldbassert(exe_ctx.HasThreadScope()); 1217 1218 if (!execution_unit_sp.get()) { 1219 err.SetErrorString( 1220 "can't run static initializers for a NULL execution unit"); 1221 return err; 1222 } 1223 1224 if (!exe_ctx.HasThreadScope()) { 1225 err.SetErrorString("can't run static initializers without a thread"); 1226 return err; 1227 } 1228 1229 std::vector<lldb::addr_t> static_initializers; 1230 1231 execution_unit_sp->GetStaticInitializers(static_initializers); 1232 1233 for (lldb::addr_t static_initializer : static_initializers) { 1234 EvaluateExpressionOptions options; 1235 1236 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1237 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1238 llvm::ArrayRef<lldb::addr_t>(), options)); 1239 1240 DiagnosticManager execution_errors; 1241 lldb::ExpressionResults results = 1242 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1243 exe_ctx, call_static_initializer, options, execution_errors); 1244 1245 if (results != lldb::eExpressionCompleted) { 1246 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1247 execution_errors.GetString().c_str()); 1248 return err; 1249 } 1250 } 1251 1252 return err; 1253 } 1254