1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/DiagnosticIDs.h"
14 #include "clang/Basic/SourceLocation.h"
15 #include "clang/Basic/TargetInfo.h"
16 #include "clang/Basic/Version.h"
17 #include "clang/CodeGen/CodeGenAction.h"
18 #include "clang/CodeGen/ModuleBuilder.h"
19 #include "clang/Edit/Commit.h"
20 #include "clang/Edit/EditedSource.h"
21 #include "clang/Edit/EditsReceiver.h"
22 #include "clang/Frontend/CompilerInstance.h"
23 #include "clang/Frontend/CompilerInvocation.h"
24 #include "clang/Frontend/FrontendActions.h"
25 #include "clang/Frontend/FrontendDiagnostic.h"
26 #include "clang/Frontend/FrontendPluginRegistry.h"
27 #include "clang/Frontend/TextDiagnosticBuffer.h"
28 #include "clang/Frontend/TextDiagnosticPrinter.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Parse/ParseAST.h"
31 #include "clang/Rewrite/Core/Rewriter.h"
32 #include "clang/Rewrite/Frontend/FrontendActions.h"
33 #include "clang/Sema/CodeCompleteConsumer.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaConsumer.h"
36 
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ExecutionEngine/ExecutionEngine.h"
39 #include "llvm/Support/CrashRecoveryContext.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/FileSystem.h"
42 #include "llvm/Support/TargetSelect.h"
43 
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/DynamicLibrary.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Host.h"
49 #include "llvm/Support/MemoryBuffer.h"
50 #include "llvm/Support/Signals.h"
51 
52 #include "ClangDiagnostic.h"
53 #include "ClangExpressionParser.h"
54 #include "ClangUserExpression.h"
55 
56 #include "ASTUtils.h"
57 #include "ClangASTSource.h"
58 #include "ClangDiagnostic.h"
59 #include "ClangExpressionDeclMap.h"
60 #include "ClangExpressionHelper.h"
61 #include "ClangExpressionParser.h"
62 #include "ClangHost.h"
63 #include "ClangModulesDeclVendor.h"
64 #include "ClangPersistentVariables.h"
65 #include "IRDynamicChecks.h"
66 #include "IRForTarget.h"
67 #include "ModuleDependencyCollector.h"
68 
69 #include "lldb/Core/Debugger.h"
70 #include "lldb/Core/Disassembler.h"
71 #include "lldb/Core/Module.h"
72 #include "lldb/Core/StreamFile.h"
73 #include "lldb/Expression/IRExecutionUnit.h"
74 #include "lldb/Expression/IRInterpreter.h"
75 #include "lldb/Host/File.h"
76 #include "lldb/Host/HostInfo.h"
77 #include "lldb/Symbol/ClangASTContext.h"
78 #include "lldb/Symbol/SymbolVendor.h"
79 #include "lldb/Target/ExecutionContext.h"
80 #include "lldb/Target/Language.h"
81 #include "lldb/Target/Process.h"
82 #include "lldb/Target/Target.h"
83 #include "lldb/Target/ThreadPlanCallFunction.h"
84 #include "lldb/Utility/DataBufferHeap.h"
85 #include "lldb/Utility/LLDBAssert.h"
86 #include "lldb/Utility/Log.h"
87 #include "lldb/Utility/Reproducer.h"
88 #include "lldb/Utility/Stream.h"
89 #include "lldb/Utility/StreamString.h"
90 #include "lldb/Utility/StringList.h"
91 
92 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
93 
94 #include <cctype>
95 #include <memory>
96 
97 using namespace clang;
98 using namespace llvm;
99 using namespace lldb_private;
100 
101 //===----------------------------------------------------------------------===//
102 // Utility Methods for Clang
103 //===----------------------------------------------------------------------===//
104 
105 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
106   ClangModulesDeclVendor &m_decl_vendor;
107   ClangPersistentVariables &m_persistent_vars;
108   StreamString m_error_stream;
109   bool m_has_errors = false;
110 
111 public:
112   LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
113                             ClangPersistentVariables &persistent_vars)
114       : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {}
115 
116   void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
117                     const clang::Module * /*null*/) override {
118     SourceModule module;
119 
120     for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
121       module.path.push_back(ConstString(component.first->getName()));
122 
123     StreamString error_stream;
124 
125     ClangModulesDeclVendor::ModuleVector exported_modules;
126     if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
127       m_has_errors = true;
128 
129     for (ClangModulesDeclVendor::ModuleID module : exported_modules)
130       m_persistent_vars.AddHandLoadedClangModule(module);
131   }
132 
133   bool hasErrors() { return m_has_errors; }
134 
135   llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
136 };
137 
138 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
139 public:
140   ClangDiagnosticManagerAdapter()
141       : m_passthrough(new clang::TextDiagnosticBuffer) {}
142 
143   ClangDiagnosticManagerAdapter(
144       const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
145       : m_passthrough(passthrough) {}
146 
147   void ResetManager(DiagnosticManager *manager = nullptr) {
148     m_manager = manager;
149   }
150 
151   void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
152                         const clang::Diagnostic &Info) override {
153     if (m_manager) {
154       llvm::SmallVector<char, 32> diag_str;
155       Info.FormatDiagnostic(diag_str);
156       diag_str.push_back('\0');
157       const char *data = diag_str.data();
158 
159       lldb_private::DiagnosticSeverity severity;
160       bool make_new_diagnostic = true;
161 
162       switch (DiagLevel) {
163       case DiagnosticsEngine::Level::Fatal:
164       case DiagnosticsEngine::Level::Error:
165         severity = eDiagnosticSeverityError;
166         break;
167       case DiagnosticsEngine::Level::Warning:
168         severity = eDiagnosticSeverityWarning;
169         break;
170       case DiagnosticsEngine::Level::Remark:
171       case DiagnosticsEngine::Level::Ignored:
172         severity = eDiagnosticSeverityRemark;
173         break;
174       case DiagnosticsEngine::Level::Note:
175         m_manager->AppendMessageToDiagnostic(data);
176         make_new_diagnostic = false;
177       }
178       if (make_new_diagnostic) {
179         ClangDiagnostic *new_diagnostic =
180             new ClangDiagnostic(data, severity, Info.getID());
181         m_manager->AddDiagnostic(new_diagnostic);
182 
183         // Don't store away warning fixits, since the compiler doesn't have
184         // enough context in an expression for the warning to be useful.
185         // FIXME: Should we try to filter out FixIts that apply to our generated
186         // code, and not the user's expression?
187         if (severity == eDiagnosticSeverityError) {
188           size_t num_fixit_hints = Info.getNumFixItHints();
189           for (size_t i = 0; i < num_fixit_hints; i++) {
190             const clang::FixItHint &fixit = Info.getFixItHint(i);
191             if (!fixit.isNull())
192               new_diagnostic->AddFixitHint(fixit);
193           }
194         }
195       }
196     }
197 
198     m_passthrough->HandleDiagnostic(DiagLevel, Info);
199   }
200 
201   void FlushDiagnostics(DiagnosticsEngine &Diags) {
202     m_passthrough->FlushDiagnostics(Diags);
203   }
204 
205   DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
206     return new ClangDiagnosticManagerAdapter(m_passthrough);
207   }
208 
209   clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); }
210 
211 private:
212   DiagnosticManager *m_manager = nullptr;
213   std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
214 };
215 
216 static void SetupModuleHeaderPaths(CompilerInstance *compiler,
217                                    std::vector<std::string> include_directories,
218                                    lldb::TargetSP target_sp) {
219   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
220 
221   HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
222 
223   for (const std::string &dir : include_directories) {
224     search_opts.AddPath(dir, frontend::System, false, true);
225     LLDB_LOG(log, "Added user include dir: {0}", dir);
226   }
227 
228   llvm::SmallString<128> module_cache;
229   auto props = ModuleList::GetGlobalModuleListProperties();
230   props.GetClangModulesCachePath().GetPath(module_cache);
231   search_opts.ModuleCachePath = module_cache.str();
232   LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
233 
234   FileSpec clang_resource_dir = GetClangResourceDir();
235   std::string resource_dir = clang_resource_dir.GetPath();
236   if (FileSystem::Instance().IsDirectory(resource_dir)) {
237     search_opts.ResourceDir = resource_dir;
238     std::string resource_include = resource_dir + "/include";
239     search_opts.AddPath(resource_include, frontend::System, false, true);
240 
241     LLDB_LOG(log, "Added resource include dir: {0}", resource_include);
242   }
243 
244   search_opts.ImplicitModuleMaps = true;
245 
246   std::vector<std::string> system_include_directories =
247       target_sp->GetPlatform()->GetSystemIncludeDirectories(
248           lldb::eLanguageTypeC_plus_plus);
249 
250   for (const std::string &include_dir : system_include_directories) {
251     search_opts.AddPath(include_dir, frontend::System, false, true);
252 
253     LLDB_LOG(log, "Added system include dir: {0}", include_dir);
254   }
255 }
256 
257 //===----------------------------------------------------------------------===//
258 // Implementation of ClangExpressionParser
259 //===----------------------------------------------------------------------===//
260 
261 ClangExpressionParser::ClangExpressionParser(
262     ExecutionContextScope *exe_scope, Expression &expr,
263     bool generate_debug_info, std::vector<std::string> include_directories)
264     : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
265       m_pp_callbacks(nullptr),
266       m_include_directories(std::move(include_directories)) {
267   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
268 
269   // We can't compile expressions without a target.  So if the exe_scope is
270   // null or doesn't have a target, then we just need to get out of here.  I'll
271   // lldb_assert and not make any of the compiler objects since
272   // I can't return errors directly from the constructor.  Further calls will
273   // check if the compiler was made and
274   // bag out if it wasn't.
275 
276   if (!exe_scope) {
277     lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
278                 __FUNCTION__, __FILE__, __LINE__);
279     return;
280   }
281 
282   lldb::TargetSP target_sp;
283   target_sp = exe_scope->CalculateTarget();
284   if (!target_sp) {
285     lldb_assert(target_sp.get(),
286                 "Can't make an expression parser with a null target.",
287                 __FUNCTION__, __FILE__, __LINE__);
288     return;
289   }
290 
291   // 1. Create a new compiler instance.
292   m_compiler.reset(new CompilerInstance());
293 
294   // When capturing a reproducer, hook up the file collector with clang to
295   // collector modules and headers.
296   if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
297     repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
298     m_compiler->setModuleDepCollector(
299         std::make_shared<ModuleDependencyCollectorAdaptor>(
300             fp.GetFileCollector()));
301     DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts();
302     opts.IncludeSystemHeaders = true;
303     opts.IncludeModuleFiles = true;
304   }
305 
306   // Make sure clang uses the same VFS as LLDB.
307   m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
308 
309   lldb::LanguageType frame_lang =
310       expr.Language(); // defaults to lldb::eLanguageTypeUnknown
311   bool overridden_target_opts = false;
312   lldb_private::LanguageRuntime *lang_rt = nullptr;
313 
314   std::string abi;
315   ArchSpec target_arch;
316   target_arch = target_sp->GetArchitecture();
317 
318   const auto target_machine = target_arch.GetMachine();
319 
320   // If the expression is being evaluated in the context of an existing stack
321   // frame, we introspect to see if the language runtime is available.
322 
323   lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
324   lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
325 
326   // Make sure the user hasn't provided a preferred execution language with
327   // `expression --language X -- ...`
328   if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
329     frame_lang = frame_sp->GetLanguage();
330 
331   if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
332     lang_rt = process_sp->GetLanguageRuntime(frame_lang);
333     LLDB_LOGF(log, "Frame has language of type %s",
334               Language::GetNameForLanguageType(frame_lang));
335   }
336 
337   // 2. Configure the compiler with a set of default options that are
338   // appropriate for most situations.
339   if (target_arch.IsValid()) {
340     std::string triple = target_arch.GetTriple().str();
341     m_compiler->getTargetOpts().Triple = triple;
342     LLDB_LOGF(log, "Using %s as the target triple",
343               m_compiler->getTargetOpts().Triple.c_str());
344   } else {
345     // If we get here we don't have a valid target and just have to guess.
346     // Sometimes this will be ok to just use the host target triple (when we
347     // evaluate say "2+3", but other expressions like breakpoint conditions and
348     // other things that _are_ target specific really shouldn't just be using
349     // the host triple. In such a case the language runtime should expose an
350     // overridden options set (3), below.
351     m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
352     LLDB_LOGF(log, "Using default target triple of %s",
353               m_compiler->getTargetOpts().Triple.c_str());
354   }
355   // Now add some special fixes for known architectures: Any arm32 iOS
356   // environment, but not on arm64
357   if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
358       m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
359       m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
360     m_compiler->getTargetOpts().ABI = "apcs-gnu";
361   }
362   // Supported subsets of x86
363   if (target_machine == llvm::Triple::x86 ||
364       target_machine == llvm::Triple::x86_64) {
365     m_compiler->getTargetOpts().Features.push_back("+sse");
366     m_compiler->getTargetOpts().Features.push_back("+sse2");
367   }
368 
369   // Set the target CPU to generate code for. This will be empty for any CPU
370   // that doesn't really need to make a special
371   // CPU string.
372   m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
373 
374   // Set the target ABI
375   abi = GetClangTargetABI(target_arch);
376   if (!abi.empty())
377     m_compiler->getTargetOpts().ABI = abi;
378 
379   // 3. Now allow the runtime to provide custom configuration options for the
380   // target. In this case, a specialized language runtime is available and we
381   // can query it for extra options. For 99% of use cases, this will not be
382   // needed and should be provided when basic platform detection is not enough.
383   if (lang_rt)
384     overridden_target_opts =
385         lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
386 
387   if (overridden_target_opts)
388     if (log && log->GetVerbose()) {
389       LLDB_LOGV(
390           log, "Using overridden target options for the expression evaluation");
391 
392       auto opts = m_compiler->getTargetOpts();
393       LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
394       LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
395       LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
396       LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
397       LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
398       StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
399       StringList::LogDump(log, opts.Features, "Features");
400     }
401 
402   // 4. Create and install the target on the compiler.
403   m_compiler->createDiagnostics();
404   auto target_info = TargetInfo::CreateTargetInfo(
405       m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
406   if (log) {
407     LLDB_LOGF(log, "Using SIMD alignment: %d",
408               target_info->getSimdDefaultAlign());
409     LLDB_LOGF(log, "Target datalayout string: '%s'",
410               target_info->getDataLayout().getStringRepresentation().c_str());
411     LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
412     LLDB_LOGF(log, "Target vector alignment: %d",
413               target_info->getMaxVectorAlign());
414   }
415   m_compiler->setTarget(target_info);
416 
417   assert(m_compiler->hasTarget());
418 
419   // 5. Set language options.
420   lldb::LanguageType language = expr.Language();
421   LangOptions &lang_opts = m_compiler->getLangOpts();
422 
423   switch (language) {
424   case lldb::eLanguageTypeC:
425   case lldb::eLanguageTypeC89:
426   case lldb::eLanguageTypeC99:
427   case lldb::eLanguageTypeC11:
428     // FIXME: the following language option is a temporary workaround,
429     // to "ask for C, get C++."
430     // For now, the expression parser must use C++ anytime the language is a C
431     // family language, because the expression parser uses features of C++ to
432     // capture values.
433     lang_opts.CPlusPlus = true;
434     break;
435   case lldb::eLanguageTypeObjC:
436     lang_opts.ObjC = true;
437     // FIXME: the following language option is a temporary workaround,
438     // to "ask for ObjC, get ObjC++" (see comment above).
439     lang_opts.CPlusPlus = true;
440 
441     // Clang now sets as default C++14 as the default standard (with
442     // GNU extensions), so we do the same here to avoid mismatches that
443     // cause compiler error when evaluating expressions (e.g. nullptr not found
444     // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
445     // two lines below) so we decide to be consistent with that, but this could
446     // be re-evaluated in the future.
447     lang_opts.CPlusPlus11 = true;
448     break;
449   case lldb::eLanguageTypeC_plus_plus:
450   case lldb::eLanguageTypeC_plus_plus_11:
451   case lldb::eLanguageTypeC_plus_plus_14:
452     lang_opts.CPlusPlus11 = true;
453     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
454     LLVM_FALLTHROUGH;
455   case lldb::eLanguageTypeC_plus_plus_03:
456     lang_opts.CPlusPlus = true;
457     if (process_sp)
458       lang_opts.ObjC =
459           process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
460     break;
461   case lldb::eLanguageTypeObjC_plus_plus:
462   case lldb::eLanguageTypeUnknown:
463   default:
464     lang_opts.ObjC = true;
465     lang_opts.CPlusPlus = true;
466     lang_opts.CPlusPlus11 = true;
467     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
468     break;
469   }
470 
471   lang_opts.Bool = true;
472   lang_opts.WChar = true;
473   lang_opts.Blocks = true;
474   lang_opts.DebuggerSupport =
475       true; // Features specifically for debugger clients
476   if (expr.DesiredResultType() == Expression::eResultTypeId)
477     lang_opts.DebuggerCastResultToId = true;
478 
479   lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
480                                .CharIsSignedByDefault();
481 
482   // Spell checking is a nice feature, but it ends up completing a lot of types
483   // that we didn't strictly speaking need to complete. As a result, we spend a
484   // long time parsing and importing debug information.
485   lang_opts.SpellChecking = false;
486 
487   auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
488   if (clang_expr && clang_expr->DidImportCxxModules()) {
489     LLDB_LOG(log, "Adding lang options for importing C++ modules");
490 
491     lang_opts.Modules = true;
492     // We want to implicitly build modules.
493     lang_opts.ImplicitModules = true;
494     // To automatically import all submodules when we import 'std'.
495     lang_opts.ModulesLocalVisibility = false;
496 
497     // We use the @import statements, so we need this:
498     // FIXME: We could use the modules-ts, but that currently doesn't work.
499     lang_opts.ObjC = true;
500 
501     // Options we need to parse libc++ code successfully.
502     // FIXME: We should ask the driver for the appropriate default flags.
503     lang_opts.GNUMode = true;
504     lang_opts.GNUKeywords = true;
505     lang_opts.DoubleSquareBracketAttributes = true;
506     lang_opts.CPlusPlus11 = true;
507 
508     SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
509                            target_sp);
510   }
511 
512   if (process_sp && lang_opts.ObjC) {
513     if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
514       if (runtime->GetRuntimeVersion() ==
515           ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
516         lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
517       else
518         lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
519                                   VersionTuple(10, 7));
520 
521       if (runtime->HasNewLiteralsAndIndexing())
522         lang_opts.DebuggerObjCLiteral = true;
523     }
524   }
525 
526   lang_opts.ThreadsafeStatics = false;
527   lang_opts.AccessControl = false; // Debuggers get universal access
528   lang_opts.DollarIdents = true;   // $ indicates a persistent variable name
529   // We enable all builtin functions beside the builtins from libc/libm (e.g.
530   // 'fopen'). Those libc functions are already correctly handled by LLDB, and
531   // additionally enabling them as expandable builtins is breaking Clang.
532   lang_opts.NoBuiltin = true;
533 
534   // Set CodeGen options
535   m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
536   m_compiler->getCodeGenOpts().InstrumentFunctions = false;
537   m_compiler->getCodeGenOpts().setFramePointer(
538                                     CodeGenOptions::FramePointerKind::All);
539   if (generate_debug_info)
540     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
541   else
542     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
543 
544   // Disable some warnings.
545   m_compiler->getDiagnostics().setSeverityForGroup(
546       clang::diag::Flavor::WarningOrError, "unused-value",
547       clang::diag::Severity::Ignored, SourceLocation());
548   m_compiler->getDiagnostics().setSeverityForGroup(
549       clang::diag::Flavor::WarningOrError, "odr",
550       clang::diag::Severity::Ignored, SourceLocation());
551 
552   // Inform the target of the language options
553   //
554   // FIXME: We shouldn't need to do this, the target should be immutable once
555   // created. This complexity should be lifted elsewhere.
556   m_compiler->getTarget().adjust(m_compiler->getLangOpts());
557 
558   // 6. Set up the diagnostic buffer for reporting errors
559 
560   m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
561 
562   // 7. Set up the source management objects inside the compiler
563   m_compiler->createFileManager();
564   if (!m_compiler->hasSourceManager())
565     m_compiler->createSourceManager(m_compiler->getFileManager());
566   m_compiler->createPreprocessor(TU_Complete);
567 
568   if (ClangModulesDeclVendor *decl_vendor =
569           target_sp->GetClangModulesDeclVendor()) {
570     ClangPersistentVariables *clang_persistent_vars =
571         llvm::cast<ClangPersistentVariables>(
572             target_sp->GetPersistentExpressionStateForLanguage(
573                 lldb::eLanguageTypeC));
574     std::unique_ptr<PPCallbacks> pp_callbacks(
575         new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
576     m_pp_callbacks =
577         static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
578     m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
579   }
580 
581   // 8. Most of this we get from the CompilerInstance, but we also want to give
582   // the context an ExternalASTSource.
583 
584   auto &PP = m_compiler->getPreprocessor();
585   auto &builtin_context = PP.getBuiltinInfo();
586   builtin_context.initializeBuiltins(PP.getIdentifierTable(),
587                                      m_compiler->getLangOpts());
588 
589   m_compiler->createASTContext();
590   clang::ASTContext &ast_context = m_compiler->getASTContext();
591 
592   m_ast_context.reset(
593       new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
594   m_ast_context->setASTContext(&ast_context);
595 
596   std::string module_name("$__lldb_module");
597 
598   m_llvm_context.reset(new LLVMContext());
599   m_code_generator.reset(CreateLLVMCodeGen(
600       m_compiler->getDiagnostics(), module_name,
601       m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
602       m_compiler->getCodeGenOpts(), *m_llvm_context));
603 }
604 
605 ClangExpressionParser::~ClangExpressionParser() {}
606 
607 namespace {
608 
609 /// \class CodeComplete
610 ///
611 /// A code completion consumer for the clang Sema that is responsible for
612 /// creating the completion suggestions when a user requests completion
613 /// of an incomplete `expr` invocation.
614 class CodeComplete : public CodeCompleteConsumer {
615   CodeCompletionTUInfo m_info;
616 
617   std::string m_expr;
618   unsigned m_position = 0;
619   CompletionRequest &m_request;
620   /// The printing policy we use when printing declarations for our completion
621   /// descriptions.
622   clang::PrintingPolicy m_desc_policy;
623 
624   /// Returns true if the given character can be used in an identifier.
625   /// This also returns true for numbers because for completion we usually
626   /// just iterate backwards over iterators.
627   ///
628   /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
629   static bool IsIdChar(char c) {
630     return c == '_' || std::isalnum(c) || c == '$';
631   }
632 
633   /// Returns true if the given character is used to separate arguments
634   /// in the command line of lldb.
635   static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
636 
637   /// Drops all tokens in front of the expression that are unrelated for
638   /// the completion of the cmd line. 'unrelated' means here that the token
639   /// is not interested for the lldb completion API result.
640   StringRef dropUnrelatedFrontTokens(StringRef cmd) {
641     if (cmd.empty())
642       return cmd;
643 
644     // If we are at the start of a word, then all tokens are unrelated to
645     // the current completion logic.
646     if (IsTokenSeparator(cmd.back()))
647       return StringRef();
648 
649     // Remove all previous tokens from the string as they are unrelated
650     // to completing the current token.
651     StringRef to_remove = cmd;
652     while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
653       to_remove = to_remove.drop_back();
654     }
655     cmd = cmd.drop_front(to_remove.size());
656 
657     return cmd;
658   }
659 
660   /// Removes the last identifier token from the given cmd line.
661   StringRef removeLastToken(StringRef cmd) {
662     while (!cmd.empty() && IsIdChar(cmd.back())) {
663       cmd = cmd.drop_back();
664     }
665     return cmd;
666   }
667 
668   /// Attemps to merge the given completion from the given position into the
669   /// existing command. Returns the completion string that can be returned to
670   /// the lldb completion API.
671   std::string mergeCompletion(StringRef existing, unsigned pos,
672                               StringRef completion) {
673     StringRef existing_command = existing.substr(0, pos);
674     // We rewrite the last token with the completion, so let's drop that
675     // token from the command.
676     existing_command = removeLastToken(existing_command);
677     // We also should remove all previous tokens from the command as they
678     // would otherwise be added to the completion that already has the
679     // completion.
680     existing_command = dropUnrelatedFrontTokens(existing_command);
681     return existing_command.str() + completion.str();
682   }
683 
684 public:
685   /// Constructs a CodeComplete consumer that can be attached to a Sema.
686   /// \param[out] matches
687   ///    The list of matches that the lldb completion API expects as a result.
688   ///    This may already contain matches, so it's only allowed to append
689   ///    to this variable.
690   /// \param[out] expr
691   ///    The whole expression string that we are currently parsing. This
692   ///    string needs to be equal to the input the user typed, and NOT the
693   ///    final code that Clang is parsing.
694   /// \param[out] position
695   ///    The character position of the user cursor in the `expr` parameter.
696   ///
697   CodeComplete(CompletionRequest &request, clang::LangOptions ops,
698                std::string expr, unsigned position)
699       : CodeCompleteConsumer(CodeCompleteOptions()),
700         m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
701         m_position(position), m_request(request), m_desc_policy(ops) {
702 
703     // Ensure that the printing policy is producing a description that is as
704     // short as possible.
705     m_desc_policy.SuppressScope = true;
706     m_desc_policy.SuppressTagKeyword = true;
707     m_desc_policy.FullyQualifiedName = false;
708     m_desc_policy.TerseOutput = true;
709     m_desc_policy.IncludeNewlines = false;
710     m_desc_policy.UseVoidForZeroParams = false;
711     m_desc_policy.Bool = true;
712   }
713 
714   /// Deregisters and destroys this code-completion consumer.
715   ~CodeComplete() override {}
716 
717   /// \name Code-completion filtering
718   /// Check if the result should be filtered out.
719   bool isResultFilteredOut(StringRef Filter,
720                            CodeCompletionResult Result) override {
721     // This code is mostly copied from CodeCompleteConsumer.
722     switch (Result.Kind) {
723     case CodeCompletionResult::RK_Declaration:
724       return !(
725           Result.Declaration->getIdentifier() &&
726           Result.Declaration->getIdentifier()->getName().startswith(Filter));
727     case CodeCompletionResult::RK_Keyword:
728       return !StringRef(Result.Keyword).startswith(Filter);
729     case CodeCompletionResult::RK_Macro:
730       return !Result.Macro->getName().startswith(Filter);
731     case CodeCompletionResult::RK_Pattern:
732       return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
733     }
734     // If we trigger this assert or the above switch yields a warning, then
735     // CodeCompletionResult has been enhanced with more kinds of completion
736     // results. Expand the switch above in this case.
737     assert(false && "Unknown completion result type?");
738     // If we reach this, then we should just ignore whatever kind of unknown
739     // result we got back. We probably can't turn it into any kind of useful
740     // completion suggestion with the existing code.
741     return true;
742   }
743 
744   /// \name Code-completion callbacks
745   /// Process the finalized code-completion results.
746   void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
747                                   CodeCompletionResult *Results,
748                                   unsigned NumResults) override {
749 
750     // The Sema put the incomplete token we try to complete in here during
751     // lexing, so we need to retrieve it here to know what we are completing.
752     StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
753 
754     // Iterate over all the results. Filter out results we don't want and
755     // process the rest.
756     for (unsigned I = 0; I != NumResults; ++I) {
757       // Filter the results with the information from the Sema.
758       if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
759         continue;
760 
761       CodeCompletionResult &R = Results[I];
762       std::string ToInsert;
763       std::string Description;
764       // Handle the different completion kinds that come from the Sema.
765       switch (R.Kind) {
766       case CodeCompletionResult::RK_Declaration: {
767         const NamedDecl *D = R.Declaration;
768         ToInsert = R.Declaration->getNameAsString();
769         // If we have a function decl that has no arguments we want to
770         // complete the empty parantheses for the user. If the function has
771         // arguments, we at least complete the opening bracket.
772         if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
773           if (F->getNumParams() == 0)
774             ToInsert += "()";
775           else
776             ToInsert += "(";
777           raw_string_ostream OS(Description);
778           F->print(OS, m_desc_policy, false);
779           OS.flush();
780         } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
781           Description = V->getType().getAsString(m_desc_policy);
782         } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
783           Description = F->getType().getAsString(m_desc_policy);
784         } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
785           // If we try to complete a namespace, then we can directly append
786           // the '::'.
787           if (!N->isAnonymousNamespace())
788             ToInsert += "::";
789         }
790         break;
791       }
792       case CodeCompletionResult::RK_Keyword:
793         ToInsert = R.Keyword;
794         break;
795       case CodeCompletionResult::RK_Macro:
796         ToInsert = R.Macro->getName().str();
797         break;
798       case CodeCompletionResult::RK_Pattern:
799         ToInsert = R.Pattern->getTypedText();
800         break;
801       }
802       // At this point all information is in the ToInsert string.
803 
804       // We also filter some internal lldb identifiers here. The user
805       // shouldn't see these.
806       if (StringRef(ToInsert).startswith("$__lldb_"))
807         continue;
808       if (!ToInsert.empty()) {
809         // Merge the suggested Token into the existing command line to comply
810         // with the kind of result the lldb API expects.
811         std::string CompletionSuggestion =
812             mergeCompletion(m_expr, m_position, ToInsert);
813         m_request.AddCompletion(CompletionSuggestion, Description);
814       }
815     }
816   }
817 
818   /// \param S the semantic-analyzer object for which code-completion is being
819   /// done.
820   ///
821   /// \param CurrentArg the index of the current argument.
822   ///
823   /// \param Candidates an array of overload candidates.
824   ///
825   /// \param NumCandidates the number of overload candidates
826   void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
827                                  OverloadCandidate *Candidates,
828                                  unsigned NumCandidates,
829                                  SourceLocation OpenParLoc) override {
830     // At the moment we don't filter out any overloaded candidates.
831   }
832 
833   CodeCompletionAllocator &getAllocator() override {
834     return m_info.getAllocator();
835   }
836 
837   CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
838 };
839 } // namespace
840 
841 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
842                                      unsigned pos, unsigned typed_pos) {
843   DiagnosticManager mgr;
844   // We need the raw user expression here because that's what the CodeComplete
845   // class uses to provide completion suggestions.
846   // However, the `Text` method only gives us the transformed expression here.
847   // To actually get the raw user input here, we have to cast our expression to
848   // the LLVMUserExpression which exposes the right API. This should never fail
849   // as we always have a ClangUserExpression whenever we call this.
850   ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
851   CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(),
852                   typed_pos);
853   // We don't need a code generator for parsing.
854   m_code_generator.reset();
855   // Start parsing the expression with our custom code completion consumer.
856   ParseInternal(mgr, &CC, line, pos);
857   return true;
858 }
859 
860 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
861   return ParseInternal(diagnostic_manager);
862 }
863 
864 unsigned
865 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
866                                      CodeCompleteConsumer *completion_consumer,
867                                      unsigned completion_line,
868                                      unsigned completion_column) {
869   ClangDiagnosticManagerAdapter *adapter =
870       static_cast<ClangDiagnosticManagerAdapter *>(
871           m_compiler->getDiagnostics().getClient());
872   clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
873   diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
874 
875   adapter->ResetManager(&diagnostic_manager);
876 
877   const char *expr_text = m_expr.Text();
878 
879   clang::SourceManager &source_mgr = m_compiler->getSourceManager();
880   bool created_main_file = false;
881 
882   // Clang wants to do completion on a real file known by Clang's file manager,
883   // so we have to create one to make this work.
884   // TODO: We probably could also simulate to Clang's file manager that there
885   // is a real file that contains our code.
886   bool should_create_file = completion_consumer != nullptr;
887 
888   // We also want a real file on disk if we generate full debug info.
889   should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
890                         codegenoptions::FullDebugInfo;
891 
892   if (should_create_file) {
893     int temp_fd = -1;
894     llvm::SmallString<128> result_path;
895     if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
896       tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
897       std::string temp_source_path = tmpdir_file_spec.GetPath();
898       llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
899     } else {
900       llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
901     }
902 
903     if (temp_fd != -1) {
904       lldb_private::File file(temp_fd, true);
905       const size_t expr_text_len = strlen(expr_text);
906       size_t bytes_written = expr_text_len;
907       if (file.Write(expr_text, bytes_written).Success()) {
908         if (bytes_written == expr_text_len) {
909           file.Close();
910           if (auto fileEntry =
911                   m_compiler->getFileManager().getFile(result_path)) {
912             source_mgr.setMainFileID(source_mgr.createFileID(
913                 *fileEntry,
914                 SourceLocation(), SrcMgr::C_User));
915             created_main_file = true;
916           }
917         }
918       }
919     }
920   }
921 
922   if (!created_main_file) {
923     std::unique_ptr<MemoryBuffer> memory_buffer =
924         MemoryBuffer::getMemBufferCopy(expr_text, "<lldb-expr>");
925     source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
926   }
927 
928   diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
929                             &m_compiler->getPreprocessor());
930 
931   ClangExpressionHelper *type_system_helper =
932       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
933 
934   // If we want to parse for code completion, we need to attach our code
935   // completion consumer to the Sema and specify a completion position.
936   // While parsing the Sema will call this consumer with the provided
937   // completion suggestions.
938   if (completion_consumer) {
939     auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
940     auto &PP = m_compiler->getPreprocessor();
941     // Lines and columns start at 1 in Clang, but code completion positions are
942     // indexed from 0, so we need to add 1 to the line and column here.
943     ++completion_line;
944     ++completion_column;
945     PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
946   }
947 
948   ASTConsumer *ast_transformer =
949       type_system_helper->ASTTransformer(m_code_generator.get());
950 
951   std::unique_ptr<clang::ASTConsumer> Consumer;
952   if (ast_transformer) {
953     Consumer.reset(new ASTConsumerForwarder(ast_transformer));
954   } else if (m_code_generator) {
955     Consumer.reset(new ASTConsumerForwarder(m_code_generator.get()));
956   } else {
957     Consumer.reset(new ASTConsumer());
958   }
959 
960   clang::ASTContext &ast_context = m_compiler->getASTContext();
961 
962   m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
963                                *Consumer, TU_Complete, completion_consumer));
964   m_compiler->setASTConsumer(std::move(Consumer));
965 
966   if (ast_context.getLangOpts().Modules) {
967     m_compiler->createModuleManager();
968     m_ast_context->setSema(&m_compiler->getSema());
969   }
970 
971   ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
972   if (decl_map) {
973     decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
974 
975     clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
976 
977     if (ast_context.getExternalSource()) {
978       auto module_wrapper =
979           new ExternalASTSourceWrapper(ast_context.getExternalSource());
980 
981       auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
982 
983       auto multiplexer =
984           new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
985       IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
986       ast_context.setExternalSource(Source);
987     } else {
988       ast_context.setExternalSource(ast_source);
989     }
990     decl_map->InstallASTContext(ast_context, m_compiler->getFileManager());
991   }
992 
993   // Check that the ASTReader is properly attached to ASTContext and Sema.
994   if (ast_context.getLangOpts().Modules) {
995     assert(m_compiler->getASTContext().getExternalSource() &&
996            "ASTContext doesn't know about the ASTReader?");
997     assert(m_compiler->getSema().getExternalSource() &&
998            "Sema doesn't know about the ASTReader?");
999   }
1000 
1001   {
1002     llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1003         &m_compiler->getSema());
1004     ParseAST(m_compiler->getSema(), false, false);
1005   }
1006 
1007   // Make sure we have no pointer to the Sema we are about to destroy.
1008   if (ast_context.getLangOpts().Modules)
1009     m_ast_context->setSema(nullptr);
1010   // Destroy the Sema. This is necessary because we want to emulate the
1011   // original behavior of ParseAST (which also destroys the Sema after parsing).
1012   m_compiler->setSema(nullptr);
1013 
1014   diag_buf->EndSourceFile();
1015 
1016   unsigned num_errors = diag_buf->getNumErrors();
1017 
1018   if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1019     num_errors++;
1020     diagnostic_manager.PutString(eDiagnosticSeverityError,
1021                                  "while importing modules:");
1022     diagnostic_manager.AppendMessageToDiagnostic(
1023         m_pp_callbacks->getErrorString());
1024   }
1025 
1026   if (!num_errors) {
1027     if (type_system_helper->DeclMap() &&
1028         !type_system_helper->DeclMap()->ResolveUnknownTypes()) {
1029       diagnostic_manager.Printf(eDiagnosticSeverityError,
1030                                 "Couldn't infer the type of a variable");
1031       num_errors++;
1032     }
1033   }
1034 
1035   if (!num_errors) {
1036     type_system_helper->CommitPersistentDecls();
1037   }
1038 
1039   adapter->ResetManager();
1040 
1041   return num_errors;
1042 }
1043 
1044 std::string
1045 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1046   std::string abi;
1047 
1048   if (target_arch.IsMIPS()) {
1049     switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1050     case ArchSpec::eMIPSABI_N64:
1051       abi = "n64";
1052       break;
1053     case ArchSpec::eMIPSABI_N32:
1054       abi = "n32";
1055       break;
1056     case ArchSpec::eMIPSABI_O32:
1057       abi = "o32";
1058       break;
1059     default:
1060       break;
1061     }
1062   }
1063   return abi;
1064 }
1065 
1066 bool ClangExpressionParser::RewriteExpression(
1067     DiagnosticManager &diagnostic_manager) {
1068   clang::SourceManager &source_manager = m_compiler->getSourceManager();
1069   clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1070                                    nullptr);
1071   clang::edit::Commit commit(editor);
1072   clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1073 
1074   class RewritesReceiver : public edit::EditsReceiver {
1075     Rewriter &rewrite;
1076 
1077   public:
1078     RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1079 
1080     void insert(SourceLocation loc, StringRef text) override {
1081       rewrite.InsertText(loc, text);
1082     }
1083     void replace(CharSourceRange range, StringRef text) override {
1084       rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1085     }
1086   };
1087 
1088   RewritesReceiver rewrites_receiver(rewriter);
1089 
1090   const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1091   size_t num_diags = diagnostics.size();
1092   if (num_diags == 0)
1093     return false;
1094 
1095   for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) {
1096     const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
1097     if (diagnostic && diagnostic->HasFixIts()) {
1098       for (const FixItHint &fixit : diagnostic->FixIts()) {
1099         // This is cobbed from clang::Rewrite::FixItRewriter.
1100         if (fixit.CodeToInsert.empty()) {
1101           if (fixit.InsertFromRange.isValid()) {
1102             commit.insertFromRange(fixit.RemoveRange.getBegin(),
1103                                    fixit.InsertFromRange, /*afterToken=*/false,
1104                                    fixit.BeforePreviousInsertions);
1105           } else
1106             commit.remove(fixit.RemoveRange);
1107         } else {
1108           if (fixit.RemoveRange.isTokenRange() ||
1109               fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
1110             commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1111           else
1112             commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1113                           /*afterToken=*/false, fixit.BeforePreviousInsertions);
1114         }
1115       }
1116     }
1117   }
1118 
1119   // FIXME - do we want to try to propagate specific errors here?
1120   if (!commit.isCommitable())
1121     return false;
1122   else if (!editor.commit(commit))
1123     return false;
1124 
1125   // Now play all the edits, and stash the result in the diagnostic manager.
1126   editor.applyRewrites(rewrites_receiver);
1127   RewriteBuffer &main_file_buffer =
1128       rewriter.getEditBuffer(source_manager.getMainFileID());
1129 
1130   std::string fixed_expression;
1131   llvm::raw_string_ostream out_stream(fixed_expression);
1132 
1133   main_file_buffer.write(out_stream);
1134   out_stream.flush();
1135   diagnostic_manager.SetFixedExpression(fixed_expression);
1136 
1137   return true;
1138 }
1139 
1140 static bool FindFunctionInModule(ConstString &mangled_name,
1141                                  llvm::Module *module, const char *orig_name) {
1142   for (const auto &func : module->getFunctionList()) {
1143     const StringRef &name = func.getName();
1144     if (name.find(orig_name) != StringRef::npos) {
1145       mangled_name.SetString(name);
1146       return true;
1147     }
1148   }
1149 
1150   return false;
1151 }
1152 
1153 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1154     lldb::addr_t &func_addr, lldb::addr_t &func_end,
1155     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1156     bool &can_interpret, ExecutionPolicy execution_policy) {
1157   func_addr = LLDB_INVALID_ADDRESS;
1158   func_end = LLDB_INVALID_ADDRESS;
1159   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1160 
1161   lldb_private::Status err;
1162 
1163   std::unique_ptr<llvm::Module> llvm_module_up(
1164       m_code_generator->ReleaseModule());
1165 
1166   if (!llvm_module_up) {
1167     err.SetErrorToGenericError();
1168     err.SetErrorString("IR doesn't contain a module");
1169     return err;
1170   }
1171 
1172   ConstString function_name;
1173 
1174   if (execution_policy != eExecutionPolicyTopLevel) {
1175     // Find the actual name of the function (it's often mangled somehow)
1176 
1177     if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1178                               m_expr.FunctionName())) {
1179       err.SetErrorToGenericError();
1180       err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1181                                    m_expr.FunctionName());
1182       return err;
1183     } else {
1184       LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1185                 m_expr.FunctionName());
1186     }
1187   }
1188 
1189   SymbolContext sc;
1190 
1191   if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1192     sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1193   } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1194     sc.target_sp = target_sp;
1195   }
1196 
1197   LLVMUserExpression::IRPasses custom_passes;
1198   {
1199     auto lang = m_expr.Language();
1200     LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1201               Language::GetNameForLanguageType(lang));
1202     lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1203     if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1204       auto runtime = process_sp->GetLanguageRuntime(lang);
1205       if (runtime)
1206         runtime->GetIRPasses(custom_passes);
1207     }
1208   }
1209 
1210   if (custom_passes.EarlyPasses) {
1211     LLDB_LOGF(log,
1212               "%s - Running Early IR Passes from LanguageRuntime on "
1213               "expression module '%s'",
1214               __FUNCTION__, m_expr.FunctionName());
1215 
1216     custom_passes.EarlyPasses->run(*llvm_module_up);
1217   }
1218 
1219   execution_unit_sp = std::make_shared<IRExecutionUnit>(
1220       m_llvm_context, // handed off here
1221       llvm_module_up, // handed off here
1222       function_name, exe_ctx.GetTargetSP(), sc,
1223       m_compiler->getTargetOpts().Features);
1224 
1225   ClangExpressionHelper *type_system_helper =
1226       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1227   ClangExpressionDeclMap *decl_map =
1228       type_system_helper->DeclMap(); // result can be NULL
1229 
1230   if (decl_map) {
1231     Stream *error_stream = nullptr;
1232     Target *target = exe_ctx.GetTargetPtr();
1233     error_stream = target->GetDebugger().GetErrorFile().get();
1234 
1235     IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1236                               *execution_unit_sp, *error_stream,
1237                               function_name.AsCString());
1238 
1239     bool ir_can_run =
1240         ir_for_target.runOnModule(*execution_unit_sp->GetModule());
1241 
1242     if (!ir_can_run) {
1243       err.SetErrorString(
1244           "The expression could not be prepared to run in the target");
1245       return err;
1246     }
1247 
1248     Process *process = exe_ctx.GetProcessPtr();
1249 
1250     if (execution_policy != eExecutionPolicyAlways &&
1251         execution_policy != eExecutionPolicyTopLevel) {
1252       lldb_private::Status interpret_error;
1253 
1254       bool interpret_function_calls =
1255           !process ? false : process->CanInterpretFunctionCalls();
1256       can_interpret = IRInterpreter::CanInterpret(
1257           *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1258           interpret_error, interpret_function_calls);
1259 
1260       if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1261         err.SetErrorStringWithFormat("Can't run the expression locally: %s",
1262                                      interpret_error.AsCString());
1263         return err;
1264       }
1265     }
1266 
1267     if (!process && execution_policy == eExecutionPolicyAlways) {
1268       err.SetErrorString("Expression needed to run in the target, but the "
1269                          "target can't be run");
1270       return err;
1271     }
1272 
1273     if (!process && execution_policy == eExecutionPolicyTopLevel) {
1274       err.SetErrorString("Top-level code needs to be inserted into a runnable "
1275                          "target, but the target can't be run");
1276       return err;
1277     }
1278 
1279     if (execution_policy == eExecutionPolicyAlways ||
1280         (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1281       if (m_expr.NeedsValidation() && process) {
1282         if (!process->GetDynamicCheckers()) {
1283           ClangDynamicCheckerFunctions *dynamic_checkers =
1284               new ClangDynamicCheckerFunctions();
1285 
1286           DiagnosticManager install_diagnostics;
1287 
1288           if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1289             if (install_diagnostics.Diagnostics().size())
1290               err.SetErrorString(install_diagnostics.GetString().c_str());
1291             else
1292               err.SetErrorString("couldn't install checkers, unknown error");
1293 
1294             return err;
1295           }
1296 
1297           process->SetDynamicCheckers(dynamic_checkers);
1298 
1299           LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1300                          "Finished installing dynamic checkers ==");
1301         }
1302 
1303         if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1304                 process->GetDynamicCheckers())) {
1305           IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1306                                             function_name.AsCString());
1307 
1308           llvm::Module *module = execution_unit_sp->GetModule();
1309           if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1310             err.SetErrorToGenericError();
1311             err.SetErrorString("Couldn't add dynamic checks to the expression");
1312             return err;
1313           }
1314 
1315           if (custom_passes.LatePasses) {
1316             LLDB_LOGF(log,
1317                       "%s - Running Late IR Passes from LanguageRuntime on "
1318                       "expression module '%s'",
1319                       __FUNCTION__, m_expr.FunctionName());
1320 
1321             custom_passes.LatePasses->run(*module);
1322           }
1323         }
1324       }
1325     }
1326 
1327     if (execution_policy == eExecutionPolicyAlways ||
1328         execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1329       execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1330     }
1331   } else {
1332     execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1333   }
1334 
1335   return err;
1336 }
1337 
1338 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1339     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1340   lldb_private::Status err;
1341 
1342   lldbassert(execution_unit_sp.get());
1343   lldbassert(exe_ctx.HasThreadScope());
1344 
1345   if (!execution_unit_sp.get()) {
1346     err.SetErrorString(
1347         "can't run static initializers for a NULL execution unit");
1348     return err;
1349   }
1350 
1351   if (!exe_ctx.HasThreadScope()) {
1352     err.SetErrorString("can't run static initializers without a thread");
1353     return err;
1354   }
1355 
1356   std::vector<lldb::addr_t> static_initializers;
1357 
1358   execution_unit_sp->GetStaticInitializers(static_initializers);
1359 
1360   for (lldb::addr_t static_initializer : static_initializers) {
1361     EvaluateExpressionOptions options;
1362 
1363     lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1364         exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1365         llvm::ArrayRef<lldb::addr_t>(), options));
1366 
1367     DiagnosticManager execution_errors;
1368     lldb::ExpressionResults results =
1369         exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1370             exe_ctx, call_static_initializer, options, execution_errors);
1371 
1372     if (results != lldb::eExpressionCompleted) {
1373       err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1374                                    execution_errors.GetString().c_str());
1375       return err;
1376     }
1377   }
1378 
1379   return err;
1380 }
1381