1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/DiagnosticIDs.h"
14 #include "clang/Basic/SourceLocation.h"
15 #include "clang/Basic/TargetInfo.h"
16 #include "clang/Basic/Version.h"
17 #include "clang/CodeGen/CodeGenAction.h"
18 #include "clang/CodeGen/ModuleBuilder.h"
19 #include "clang/Edit/Commit.h"
20 #include "clang/Edit/EditedSource.h"
21 #include "clang/Edit/EditsReceiver.h"
22 #include "clang/Frontend/CompilerInstance.h"
23 #include "clang/Frontend/CompilerInvocation.h"
24 #include "clang/Frontend/FrontendActions.h"
25 #include "clang/Frontend/FrontendDiagnostic.h"
26 #include "clang/Frontend/FrontendPluginRegistry.h"
27 #include "clang/Frontend/TextDiagnosticBuffer.h"
28 #include "clang/Frontend/TextDiagnosticPrinter.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Parse/ParseAST.h"
31 #include "clang/Rewrite/Core/Rewriter.h"
32 #include "clang/Rewrite/Frontend/FrontendActions.h"
33 #include "clang/Sema/CodeCompleteConsumer.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaConsumer.h"
36 
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ExecutionEngine/ExecutionEngine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/FileSystem.h"
41 #include "llvm/Support/TargetSelect.h"
42 
43 #pragma clang diagnostic push
44 #pragma clang diagnostic ignored "-Wglobal-constructors"
45 #include "llvm/ExecutionEngine/MCJIT.h"
46 #pragma clang diagnostic pop
47 
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/Support/DynamicLibrary.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Host.h"
53 #include "llvm/Support/MemoryBuffer.h"
54 #include "llvm/Support/Signals.h"
55 
56 #include "ClangASTSource.h"
57 #include "ClangDiagnostic.h"
58 #include "ClangExpressionDeclMap.h"
59 #include "ClangExpressionHelper.h"
60 #include "ClangExpressionParser.h"
61 #include "ClangModulesDeclVendor.h"
62 #include "ClangPersistentVariables.h"
63 #include "IRForTarget.h"
64 #include "ModuleDependencyCollector.h"
65 
66 #include "lldb/Core/Debugger.h"
67 #include "lldb/Core/Disassembler.h"
68 #include "lldb/Core/Module.h"
69 #include "lldb/Core/StreamFile.h"
70 #include "lldb/Expression/IRDynamicChecks.h"
71 #include "lldb/Expression/IRExecutionUnit.h"
72 #include "lldb/Expression/IRInterpreter.h"
73 #include "lldb/Host/File.h"
74 #include "lldb/Host/HostInfo.h"
75 #include "lldb/Symbol/ClangASTContext.h"
76 #include "lldb/Symbol/SymbolVendor.h"
77 #include "lldb/Target/ExecutionContext.h"
78 #include "lldb/Target/Language.h"
79 #include "lldb/Target/ObjCLanguageRuntime.h"
80 #include "lldb/Target/Process.h"
81 #include "lldb/Target/Target.h"
82 #include "lldb/Target/ThreadPlanCallFunction.h"
83 #include "lldb/Utility/DataBufferHeap.h"
84 #include "lldb/Utility/LLDBAssert.h"
85 #include "lldb/Utility/Log.h"
86 #include "lldb/Utility/Reproducer.h"
87 #include "lldb/Utility/Stream.h"
88 #include "lldb/Utility/StreamString.h"
89 #include "lldb/Utility/StringList.h"
90 
91 #include <cctype>
92 #include <memory>
93 
94 using namespace clang;
95 using namespace llvm;
96 using namespace lldb_private;
97 
98 //===----------------------------------------------------------------------===//
99 // Utility Methods for Clang
100 //===----------------------------------------------------------------------===//
101 
102 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
103   ClangModulesDeclVendor &m_decl_vendor;
104   ClangPersistentVariables &m_persistent_vars;
105   StreamString m_error_stream;
106   bool m_has_errors = false;
107 
108 public:
109   LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
110                             ClangPersistentVariables &persistent_vars)
111       : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {}
112 
113   void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
114                     const clang::Module * /*null*/) override {
115     SourceModule module;
116 
117     for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
118       module.path.push_back(ConstString(component.first->getName()));
119 
120     StreamString error_stream;
121 
122     ClangModulesDeclVendor::ModuleVector exported_modules;
123     if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
124       m_has_errors = true;
125 
126     for (ClangModulesDeclVendor::ModuleID module : exported_modules)
127       m_persistent_vars.AddHandLoadedClangModule(module);
128   }
129 
130   bool hasErrors() { return m_has_errors; }
131 
132   llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
133 };
134 
135 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
136 public:
137   ClangDiagnosticManagerAdapter()
138       : m_passthrough(new clang::TextDiagnosticBuffer) {}
139 
140   ClangDiagnosticManagerAdapter(
141       const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
142       : m_passthrough(passthrough) {}
143 
144   void ResetManager(DiagnosticManager *manager = nullptr) {
145     m_manager = manager;
146   }
147 
148   void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
149                         const clang::Diagnostic &Info) {
150     if (m_manager) {
151       llvm::SmallVector<char, 32> diag_str;
152       Info.FormatDiagnostic(diag_str);
153       diag_str.push_back('\0');
154       const char *data = diag_str.data();
155 
156       lldb_private::DiagnosticSeverity severity;
157       bool make_new_diagnostic = true;
158 
159       switch (DiagLevel) {
160       case DiagnosticsEngine::Level::Fatal:
161       case DiagnosticsEngine::Level::Error:
162         severity = eDiagnosticSeverityError;
163         break;
164       case DiagnosticsEngine::Level::Warning:
165         severity = eDiagnosticSeverityWarning;
166         break;
167       case DiagnosticsEngine::Level::Remark:
168       case DiagnosticsEngine::Level::Ignored:
169         severity = eDiagnosticSeverityRemark;
170         break;
171       case DiagnosticsEngine::Level::Note:
172         m_manager->AppendMessageToDiagnostic(data);
173         make_new_diagnostic = false;
174       }
175       if (make_new_diagnostic) {
176         ClangDiagnostic *new_diagnostic =
177             new ClangDiagnostic(data, severity, Info.getID());
178         m_manager->AddDiagnostic(new_diagnostic);
179 
180         // Don't store away warning fixits, since the compiler doesn't have
181         // enough context in an expression for the warning to be useful.
182         // FIXME: Should we try to filter out FixIts that apply to our generated
183         // code, and not the user's expression?
184         if (severity == eDiagnosticSeverityError) {
185           size_t num_fixit_hints = Info.getNumFixItHints();
186           for (size_t i = 0; i < num_fixit_hints; i++) {
187             const clang::FixItHint &fixit = Info.getFixItHint(i);
188             if (!fixit.isNull())
189               new_diagnostic->AddFixitHint(fixit);
190           }
191         }
192       }
193     }
194 
195     m_passthrough->HandleDiagnostic(DiagLevel, Info);
196   }
197 
198   void FlushDiagnostics(DiagnosticsEngine &Diags) {
199     m_passthrough->FlushDiagnostics(Diags);
200   }
201 
202   DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
203     return new ClangDiagnosticManagerAdapter(m_passthrough);
204   }
205 
206   clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); }
207 
208 private:
209   DiagnosticManager *m_manager = nullptr;
210   std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
211 };
212 
213 //===----------------------------------------------------------------------===//
214 // Implementation of ClangExpressionParser
215 //===----------------------------------------------------------------------===//
216 
217 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope,
218                                              Expression &expr,
219                                              bool generate_debug_info)
220     : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
221       m_pp_callbacks(nullptr) {
222   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
223 
224   // We can't compile expressions without a target.  So if the exe_scope is
225   // null or doesn't have a target, then we just need to get out of here.  I'll
226   // lldb_assert and not make any of the compiler objects since
227   // I can't return errors directly from the constructor.  Further calls will
228   // check if the compiler was made and
229   // bag out if it wasn't.
230 
231   if (!exe_scope) {
232     lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
233                 __FUNCTION__, __FILE__, __LINE__);
234     return;
235   }
236 
237   lldb::TargetSP target_sp;
238   target_sp = exe_scope->CalculateTarget();
239   if (!target_sp) {
240     lldb_assert(target_sp.get(),
241                 "Can't make an expression parser with a null target.",
242                 __FUNCTION__, __FILE__, __LINE__);
243     return;
244   }
245 
246   // 1. Create a new compiler instance.
247   m_compiler.reset(new CompilerInstance());
248 
249   // When capturing a reproducer, hook up the file collector with clang to
250   // collector modules and headers.
251   if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
252     repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
253     m_compiler->setModuleDepCollector(
254         std::make_shared<ModuleDependencyCollectorAdaptor>(
255             fp.GetFileCollector()));
256     DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts();
257     opts.IncludeSystemHeaders = true;
258     opts.IncludeModuleFiles = true;
259   }
260 
261   // Make sure clang uses the same VFS as LLDB.
262   m_compiler->setVirtualFileSystem(
263       FileSystem::Instance().GetVirtualFileSystem());
264 
265   lldb::LanguageType frame_lang =
266       expr.Language(); // defaults to lldb::eLanguageTypeUnknown
267   bool overridden_target_opts = false;
268   lldb_private::LanguageRuntime *lang_rt = nullptr;
269 
270   std::string abi;
271   ArchSpec target_arch;
272   target_arch = target_sp->GetArchitecture();
273 
274   const auto target_machine = target_arch.GetMachine();
275 
276   // If the expression is being evaluated in the context of an existing stack
277   // frame, we introspect to see if the language runtime is available.
278 
279   lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
280   lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
281 
282   // Make sure the user hasn't provided a preferred execution language with
283   // `expression --language X -- ...`
284   if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
285     frame_lang = frame_sp->GetLanguage();
286 
287   if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
288     lang_rt = process_sp->GetLanguageRuntime(frame_lang);
289     if (log)
290       log->Printf("Frame has language of type %s",
291                   Language::GetNameForLanguageType(frame_lang));
292   }
293 
294   // 2. Configure the compiler with a set of default options that are
295   // appropriate for most situations.
296   if (target_arch.IsValid()) {
297     std::string triple = target_arch.GetTriple().str();
298     m_compiler->getTargetOpts().Triple = triple;
299     if (log)
300       log->Printf("Using %s as the target triple",
301                   m_compiler->getTargetOpts().Triple.c_str());
302   } else {
303     // If we get here we don't have a valid target and just have to guess.
304     // Sometimes this will be ok to just use the host target triple (when we
305     // evaluate say "2+3", but other expressions like breakpoint conditions and
306     // other things that _are_ target specific really shouldn't just be using
307     // the host triple. In such a case the language runtime should expose an
308     // overridden options set (3), below.
309     m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
310     if (log)
311       log->Printf("Using default target triple of %s",
312                   m_compiler->getTargetOpts().Triple.c_str());
313   }
314   // Now add some special fixes for known architectures: Any arm32 iOS
315   // environment, but not on arm64
316   if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
317       m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
318       m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
319     m_compiler->getTargetOpts().ABI = "apcs-gnu";
320   }
321   // Supported subsets of x86
322   if (target_machine == llvm::Triple::x86 ||
323       target_machine == llvm::Triple::x86_64) {
324     m_compiler->getTargetOpts().Features.push_back("+sse");
325     m_compiler->getTargetOpts().Features.push_back("+sse2");
326   }
327 
328   // Set the target CPU to generate code for. This will be empty for any CPU
329   // that doesn't really need to make a special
330   // CPU string.
331   m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
332 
333   // Set the target ABI
334   abi = GetClangTargetABI(target_arch);
335   if (!abi.empty())
336     m_compiler->getTargetOpts().ABI = abi;
337 
338   // 3. Now allow the runtime to provide custom configuration options for the
339   // target. In this case, a specialized language runtime is available and we
340   // can query it for extra options. For 99% of use cases, this will not be
341   // needed and should be provided when basic platform detection is not enough.
342   if (lang_rt)
343     overridden_target_opts =
344         lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
345 
346   if (overridden_target_opts)
347     if (log && log->GetVerbose()) {
348       LLDB_LOGV(
349           log, "Using overridden target options for the expression evaluation");
350 
351       auto opts = m_compiler->getTargetOpts();
352       LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
353       LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
354       LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
355       LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
356       LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
357       StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
358       StringList::LogDump(log, opts.Features, "Features");
359     }
360 
361   // 4. Create and install the target on the compiler.
362   m_compiler->createDiagnostics();
363   auto target_info = TargetInfo::CreateTargetInfo(
364       m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
365   if (log) {
366     log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign());
367     log->Printf("Target datalayout string: '%s'",
368                 target_info->getDataLayout().getStringRepresentation().c_str());
369     log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str());
370     log->Printf("Target vector alignment: %d",
371                 target_info->getMaxVectorAlign());
372   }
373   m_compiler->setTarget(target_info);
374 
375   assert(m_compiler->hasTarget());
376 
377   // 5. Set language options.
378   lldb::LanguageType language = expr.Language();
379   LangOptions &lang_opts = m_compiler->getLangOpts();
380 
381   switch (language) {
382   case lldb::eLanguageTypeC:
383   case lldb::eLanguageTypeC89:
384   case lldb::eLanguageTypeC99:
385   case lldb::eLanguageTypeC11:
386     // FIXME: the following language option is a temporary workaround,
387     // to "ask for C, get C++."
388     // For now, the expression parser must use C++ anytime the language is a C
389     // family language, because the expression parser uses features of C++ to
390     // capture values.
391     lang_opts.CPlusPlus = true;
392     break;
393   case lldb::eLanguageTypeObjC:
394     lang_opts.ObjC = true;
395     // FIXME: the following language option is a temporary workaround,
396     // to "ask for ObjC, get ObjC++" (see comment above).
397     lang_opts.CPlusPlus = true;
398 
399     // Clang now sets as default C++14 as the default standard (with
400     // GNU extensions), so we do the same here to avoid mismatches that
401     // cause compiler error when evaluating expressions (e.g. nullptr not found
402     // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
403     // two lines below) so we decide to be consistent with that, but this could
404     // be re-evaluated in the future.
405     lang_opts.CPlusPlus11 = true;
406     break;
407   case lldb::eLanguageTypeC_plus_plus:
408   case lldb::eLanguageTypeC_plus_plus_11:
409   case lldb::eLanguageTypeC_plus_plus_14:
410     lang_opts.CPlusPlus11 = true;
411     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
412     LLVM_FALLTHROUGH;
413   case lldb::eLanguageTypeC_plus_plus_03:
414     lang_opts.CPlusPlus = true;
415     if (process_sp)
416       lang_opts.ObjC =
417           process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
418     break;
419   case lldb::eLanguageTypeObjC_plus_plus:
420   case lldb::eLanguageTypeUnknown:
421   default:
422     lang_opts.ObjC = true;
423     lang_opts.CPlusPlus = true;
424     lang_opts.CPlusPlus11 = true;
425     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
426     break;
427   }
428 
429   lang_opts.Bool = true;
430   lang_opts.WChar = true;
431   lang_opts.Blocks = true;
432   lang_opts.DebuggerSupport =
433       true; // Features specifically for debugger clients
434   if (expr.DesiredResultType() == Expression::eResultTypeId)
435     lang_opts.DebuggerCastResultToId = true;
436 
437   lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
438                                .CharIsSignedByDefault();
439 
440   // Spell checking is a nice feature, but it ends up completing a lot of types
441   // that we didn't strictly speaking need to complete. As a result, we spend a
442   // long time parsing and importing debug information.
443   lang_opts.SpellChecking = false;
444 
445   if (process_sp && lang_opts.ObjC) {
446     if (process_sp->GetObjCLanguageRuntime()) {
447       if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() ==
448           ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
449         lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
450       else
451         lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
452                                   VersionTuple(10, 7));
453 
454       if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing())
455         lang_opts.DebuggerObjCLiteral = true;
456     }
457   }
458 
459   lang_opts.ThreadsafeStatics = false;
460   lang_opts.AccessControl = false; // Debuggers get universal access
461   lang_opts.DollarIdents = true;   // $ indicates a persistent variable name
462   // We enable all builtin functions beside the builtins from libc/libm (e.g.
463   // 'fopen'). Those libc functions are already correctly handled by LLDB, and
464   // additionally enabling them as expandable builtins is breaking Clang.
465   lang_opts.NoBuiltin = true;
466 
467   // Set CodeGen options
468   m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
469   m_compiler->getCodeGenOpts().InstrumentFunctions = false;
470   m_compiler->getCodeGenOpts().DisableFPElim = true;
471   m_compiler->getCodeGenOpts().OmitLeafFramePointer = false;
472   if (generate_debug_info)
473     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
474   else
475     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
476 
477   // Disable some warnings.
478   m_compiler->getDiagnostics().setSeverityForGroup(
479       clang::diag::Flavor::WarningOrError, "unused-value",
480       clang::diag::Severity::Ignored, SourceLocation());
481   m_compiler->getDiagnostics().setSeverityForGroup(
482       clang::diag::Flavor::WarningOrError, "odr",
483       clang::diag::Severity::Ignored, SourceLocation());
484 
485   // Inform the target of the language options
486   //
487   // FIXME: We shouldn't need to do this, the target should be immutable once
488   // created. This complexity should be lifted elsewhere.
489   m_compiler->getTarget().adjust(m_compiler->getLangOpts());
490 
491   // 6. Set up the diagnostic buffer for reporting errors
492 
493   m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
494 
495   // 7. Set up the source management objects inside the compiler
496   m_compiler->createFileManager();
497   if (!m_compiler->hasSourceManager())
498     m_compiler->createSourceManager(m_compiler->getFileManager());
499   m_compiler->createPreprocessor(TU_Complete);
500 
501   if (ClangModulesDeclVendor *decl_vendor =
502           target_sp->GetClangModulesDeclVendor()) {
503     ClangPersistentVariables *clang_persistent_vars =
504         llvm::cast<ClangPersistentVariables>(
505             target_sp->GetPersistentExpressionStateForLanguage(
506                 lldb::eLanguageTypeC));
507     std::unique_ptr<PPCallbacks> pp_callbacks(
508         new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
509     m_pp_callbacks =
510         static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
511     m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
512   }
513 
514   // 8. Most of this we get from the CompilerInstance, but we also want to give
515   // the context an ExternalASTSource.
516 
517   auto &PP = m_compiler->getPreprocessor();
518   auto &builtin_context = PP.getBuiltinInfo();
519   builtin_context.initializeBuiltins(PP.getIdentifierTable(),
520                                      m_compiler->getLangOpts());
521 
522   m_compiler->createASTContext();
523   clang::ASTContext &ast_context = m_compiler->getASTContext();
524 
525   ClangExpressionHelper *type_system_helper =
526       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
527   ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
528 
529   if (decl_map) {
530     llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source(
531         decl_map->CreateProxy());
532     decl_map->InstallASTContext(ast_context, m_compiler->getFileManager());
533     ast_context.setExternalSource(ast_source);
534   }
535 
536   m_ast_context.reset(
537       new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
538   m_ast_context->setASTContext(&ast_context);
539 
540   std::string module_name("$__lldb_module");
541 
542   m_llvm_context.reset(new LLVMContext());
543   m_code_generator.reset(CreateLLVMCodeGen(
544       m_compiler->getDiagnostics(), module_name,
545       m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
546       m_compiler->getCodeGenOpts(), *m_llvm_context));
547 }
548 
549 ClangExpressionParser::~ClangExpressionParser() {}
550 
551 namespace {
552 
553 //----------------------------------------------------------------------
554 /// @class CodeComplete
555 ///
556 /// A code completion consumer for the clang Sema that is responsible for
557 /// creating the completion suggestions when a user requests completion
558 /// of an incomplete `expr` invocation.
559 //----------------------------------------------------------------------
560 class CodeComplete : public CodeCompleteConsumer {
561   CodeCompletionTUInfo m_info;
562 
563   std::string m_expr;
564   unsigned m_position = 0;
565   CompletionRequest &m_request;
566   /// The printing policy we use when printing declarations for our completion
567   /// descriptions.
568   clang::PrintingPolicy m_desc_policy;
569 
570   /// Returns true if the given character can be used in an identifier.
571   /// This also returns true for numbers because for completion we usually
572   /// just iterate backwards over iterators.
573   ///
574   /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
575   static bool IsIdChar(char c) {
576     return c == '_' || std::isalnum(c) || c == '$';
577   }
578 
579   /// Returns true if the given character is used to separate arguments
580   /// in the command line of lldb.
581   static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
582 
583   /// Drops all tokens in front of the expression that are unrelated for
584   /// the completion of the cmd line. 'unrelated' means here that the token
585   /// is not interested for the lldb completion API result.
586   StringRef dropUnrelatedFrontTokens(StringRef cmd) {
587     if (cmd.empty())
588       return cmd;
589 
590     // If we are at the start of a word, then all tokens are unrelated to
591     // the current completion logic.
592     if (IsTokenSeparator(cmd.back()))
593       return StringRef();
594 
595     // Remove all previous tokens from the string as they are unrelated
596     // to completing the current token.
597     StringRef to_remove = cmd;
598     while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
599       to_remove = to_remove.drop_back();
600     }
601     cmd = cmd.drop_front(to_remove.size());
602 
603     return cmd;
604   }
605 
606   /// Removes the last identifier token from the given cmd line.
607   StringRef removeLastToken(StringRef cmd) {
608     while (!cmd.empty() && IsIdChar(cmd.back())) {
609       cmd = cmd.drop_back();
610     }
611     return cmd;
612   }
613 
614   /// Attemps to merge the given completion from the given position into the
615   /// existing command. Returns the completion string that can be returned to
616   /// the lldb completion API.
617   std::string mergeCompletion(StringRef existing, unsigned pos,
618                               StringRef completion) {
619     StringRef existing_command = existing.substr(0, pos);
620     // We rewrite the last token with the completion, so let's drop that
621     // token from the command.
622     existing_command = removeLastToken(existing_command);
623     // We also should remove all previous tokens from the command as they
624     // would otherwise be added to the completion that already has the
625     // completion.
626     existing_command = dropUnrelatedFrontTokens(existing_command);
627     return existing_command.str() + completion.str();
628   }
629 
630 public:
631   /// Constructs a CodeComplete consumer that can be attached to a Sema.
632   /// @param[out] matches
633   ///    The list of matches that the lldb completion API expects as a result.
634   ///    This may already contain matches, so it's only allowed to append
635   ///    to this variable.
636   /// @param[out] expr
637   ///    The whole expression string that we are currently parsing. This
638   ///    string needs to be equal to the input the user typed, and NOT the
639   ///    final code that Clang is parsing.
640   /// @param[out] position
641   ///    The character position of the user cursor in the `expr` parameter.
642   ///
643   CodeComplete(CompletionRequest &request, clang::LangOptions ops,
644                std::string expr, unsigned position)
645       : CodeCompleteConsumer(CodeCompleteOptions(), false),
646         m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
647         m_position(position), m_request(request), m_desc_policy(ops) {
648 
649     // Ensure that the printing policy is producing a description that is as
650     // short as possible.
651     m_desc_policy.SuppressScope = true;
652     m_desc_policy.SuppressTagKeyword = true;
653     m_desc_policy.FullyQualifiedName = false;
654     m_desc_policy.TerseOutput = true;
655     m_desc_policy.IncludeNewlines = false;
656     m_desc_policy.UseVoidForZeroParams = false;
657     m_desc_policy.Bool = true;
658   }
659 
660   /// Deregisters and destroys this code-completion consumer.
661   virtual ~CodeComplete() {}
662 
663   /// \name Code-completion filtering
664   /// Check if the result should be filtered out.
665   bool isResultFilteredOut(StringRef Filter,
666                            CodeCompletionResult Result) override {
667     // This code is mostly copied from CodeCompleteConsumer.
668     switch (Result.Kind) {
669     case CodeCompletionResult::RK_Declaration:
670       return !(
671           Result.Declaration->getIdentifier() &&
672           Result.Declaration->getIdentifier()->getName().startswith(Filter));
673     case CodeCompletionResult::RK_Keyword:
674       return !StringRef(Result.Keyword).startswith(Filter);
675     case CodeCompletionResult::RK_Macro:
676       return !Result.Macro->getName().startswith(Filter);
677     case CodeCompletionResult::RK_Pattern:
678       return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
679     }
680     // If we trigger this assert or the above switch yields a warning, then
681     // CodeCompletionResult has been enhanced with more kinds of completion
682     // results. Expand the switch above in this case.
683     assert(false && "Unknown completion result type?");
684     // If we reach this, then we should just ignore whatever kind of unknown
685     // result we got back. We probably can't turn it into any kind of useful
686     // completion suggestion with the existing code.
687     return true;
688   }
689 
690   /// \name Code-completion callbacks
691   /// Process the finalized code-completion results.
692   void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
693                                   CodeCompletionResult *Results,
694                                   unsigned NumResults) override {
695 
696     // The Sema put the incomplete token we try to complete in here during
697     // lexing, so we need to retrieve it here to know what we are completing.
698     StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
699 
700     // Iterate over all the results. Filter out results we don't want and
701     // process the rest.
702     for (unsigned I = 0; I != NumResults; ++I) {
703       // Filter the results with the information from the Sema.
704       if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
705         continue;
706 
707       CodeCompletionResult &R = Results[I];
708       std::string ToInsert;
709       std::string Description;
710       // Handle the different completion kinds that come from the Sema.
711       switch (R.Kind) {
712       case CodeCompletionResult::RK_Declaration: {
713         const NamedDecl *D = R.Declaration;
714         ToInsert = R.Declaration->getNameAsString();
715         // If we have a function decl that has no arguments we want to
716         // complete the empty parantheses for the user. If the function has
717         // arguments, we at least complete the opening bracket.
718         if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
719           if (F->getNumParams() == 0)
720             ToInsert += "()";
721           else
722             ToInsert += "(";
723           raw_string_ostream OS(Description);
724           F->print(OS, m_desc_policy, false);
725           OS.flush();
726         } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
727           Description = V->getType().getAsString(m_desc_policy);
728         } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
729           Description = F->getType().getAsString(m_desc_policy);
730         } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
731           // If we try to complete a namespace, then we can directly append
732           // the '::'.
733           if (!N->isAnonymousNamespace())
734             ToInsert += "::";
735         }
736         break;
737       }
738       case CodeCompletionResult::RK_Keyword:
739         ToInsert = R.Keyword;
740         break;
741       case CodeCompletionResult::RK_Macro:
742         ToInsert = R.Macro->getName().str();
743         break;
744       case CodeCompletionResult::RK_Pattern:
745         ToInsert = R.Pattern->getTypedText();
746         break;
747       }
748       // At this point all information is in the ToInsert string.
749 
750       // We also filter some internal lldb identifiers here. The user
751       // shouldn't see these.
752       if (StringRef(ToInsert).startswith("$__lldb_"))
753         continue;
754       if (!ToInsert.empty()) {
755         // Merge the suggested Token into the existing command line to comply
756         // with the kind of result the lldb API expects.
757         std::string CompletionSuggestion =
758             mergeCompletion(m_expr, m_position, ToInsert);
759         m_request.AddCompletion(CompletionSuggestion, Description);
760       }
761     }
762   }
763 
764   /// \param S the semantic-analyzer object for which code-completion is being
765   /// done.
766   ///
767   /// \param CurrentArg the index of the current argument.
768   ///
769   /// \param Candidates an array of overload candidates.
770   ///
771   /// \param NumCandidates the number of overload candidates
772   void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
773                                  OverloadCandidate *Candidates,
774                                  unsigned NumCandidates,
775                                  SourceLocation OpenParLoc) override {
776     // At the moment we don't filter out any overloaded candidates.
777   }
778 
779   CodeCompletionAllocator &getAllocator() override {
780     return m_info.getAllocator();
781   }
782 
783   CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
784 };
785 } // namespace
786 
787 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
788                                      unsigned pos, unsigned typed_pos) {
789   DiagnosticManager mgr;
790   // We need the raw user expression here because that's what the CodeComplete
791   // class uses to provide completion suggestions.
792   // However, the `Text` method only gives us the transformed expression here.
793   // To actually get the raw user input here, we have to cast our expression to
794   // the LLVMUserExpression which exposes the right API. This should never fail
795   // as we always have a ClangUserExpression whenever we call this.
796   LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr);
797   CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(),
798                   typed_pos);
799   // We don't need a code generator for parsing.
800   m_code_generator.reset();
801   // Start parsing the expression with our custom code completion consumer.
802   ParseInternal(mgr, &CC, line, pos);
803   return true;
804 }
805 
806 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
807   return ParseInternal(diagnostic_manager);
808 }
809 
810 unsigned
811 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
812                                      CodeCompleteConsumer *completion_consumer,
813                                      unsigned completion_line,
814                                      unsigned completion_column) {
815   ClangDiagnosticManagerAdapter *adapter =
816       static_cast<ClangDiagnosticManagerAdapter *>(
817           m_compiler->getDiagnostics().getClient());
818   clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
819   diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
820 
821   adapter->ResetManager(&diagnostic_manager);
822 
823   const char *expr_text = m_expr.Text();
824 
825   clang::SourceManager &source_mgr = m_compiler->getSourceManager();
826   bool created_main_file = false;
827 
828   // Clang wants to do completion on a real file known by Clang's file manager,
829   // so we have to create one to make this work.
830   // TODO: We probably could also simulate to Clang's file manager that there
831   // is a real file that contains our code.
832   bool should_create_file = completion_consumer != nullptr;
833 
834   // We also want a real file on disk if we generate full debug info.
835   should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
836                         codegenoptions::FullDebugInfo;
837 
838   if (should_create_file) {
839     int temp_fd = -1;
840     llvm::SmallString<128> result_path;
841     if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
842       tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
843       std::string temp_source_path = tmpdir_file_spec.GetPath();
844       llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
845     } else {
846       llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
847     }
848 
849     if (temp_fd != -1) {
850       lldb_private::File file(temp_fd, true);
851       const size_t expr_text_len = strlen(expr_text);
852       size_t bytes_written = expr_text_len;
853       if (file.Write(expr_text, bytes_written).Success()) {
854         if (bytes_written == expr_text_len) {
855           file.Close();
856           source_mgr.setMainFileID(source_mgr.createFileID(
857               m_compiler->getFileManager().getFile(result_path),
858               SourceLocation(), SrcMgr::C_User));
859           created_main_file = true;
860         }
861       }
862     }
863   }
864 
865   if (!created_main_file) {
866     std::unique_ptr<MemoryBuffer> memory_buffer =
867         MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__);
868     source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
869   }
870 
871   diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
872                             &m_compiler->getPreprocessor());
873 
874   ClangExpressionHelper *type_system_helper =
875       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
876 
877   ASTConsumer *ast_transformer =
878       type_system_helper->ASTTransformer(m_code_generator.get());
879 
880   if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap())
881     decl_map->InstallCodeGenerator(m_code_generator.get());
882 
883   // If we want to parse for code completion, we need to attach our code
884   // completion consumer to the Sema and specify a completion position.
885   // While parsing the Sema will call this consumer with the provided
886   // completion suggestions.
887   if (completion_consumer) {
888     auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
889     auto &PP = m_compiler->getPreprocessor();
890     // Lines and columns start at 1 in Clang, but code completion positions are
891     // indexed from 0, so we need to add 1 to the line and column here.
892     ++completion_line;
893     ++completion_column;
894     PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
895   }
896 
897   if (ast_transformer) {
898     ast_transformer->Initialize(m_compiler->getASTContext());
899     ParseAST(m_compiler->getPreprocessor(), ast_transformer,
900              m_compiler->getASTContext(), false, TU_Complete,
901              completion_consumer);
902   } else {
903     m_code_generator->Initialize(m_compiler->getASTContext());
904     ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(),
905              m_compiler->getASTContext(), false, TU_Complete,
906              completion_consumer);
907   }
908 
909   diag_buf->EndSourceFile();
910 
911   unsigned num_errors = diag_buf->getNumErrors();
912 
913   if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
914     num_errors++;
915     diagnostic_manager.PutString(eDiagnosticSeverityError,
916                                  "while importing modules:");
917     diagnostic_manager.AppendMessageToDiagnostic(
918         m_pp_callbacks->getErrorString());
919   }
920 
921   if (!num_errors) {
922     if (type_system_helper->DeclMap() &&
923         !type_system_helper->DeclMap()->ResolveUnknownTypes()) {
924       diagnostic_manager.Printf(eDiagnosticSeverityError,
925                                 "Couldn't infer the type of a variable");
926       num_errors++;
927     }
928   }
929 
930   if (!num_errors) {
931     type_system_helper->CommitPersistentDecls();
932   }
933 
934   adapter->ResetManager();
935 
936   return num_errors;
937 }
938 
939 std::string
940 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
941   std::string abi;
942 
943   if (target_arch.IsMIPS()) {
944     switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
945     case ArchSpec::eMIPSABI_N64:
946       abi = "n64";
947       break;
948     case ArchSpec::eMIPSABI_N32:
949       abi = "n32";
950       break;
951     case ArchSpec::eMIPSABI_O32:
952       abi = "o32";
953       break;
954     default:
955       break;
956     }
957   }
958   return abi;
959 }
960 
961 bool ClangExpressionParser::RewriteExpression(
962     DiagnosticManager &diagnostic_manager) {
963   clang::SourceManager &source_manager = m_compiler->getSourceManager();
964   clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
965                                    nullptr);
966   clang::edit::Commit commit(editor);
967   clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
968 
969   class RewritesReceiver : public edit::EditsReceiver {
970     Rewriter &rewrite;
971 
972   public:
973     RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
974 
975     void insert(SourceLocation loc, StringRef text) override {
976       rewrite.InsertText(loc, text);
977     }
978     void replace(CharSourceRange range, StringRef text) override {
979       rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
980     }
981   };
982 
983   RewritesReceiver rewrites_receiver(rewriter);
984 
985   const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
986   size_t num_diags = diagnostics.size();
987   if (num_diags == 0)
988     return false;
989 
990   for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) {
991     const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
992     if (diagnostic && diagnostic->HasFixIts()) {
993       for (const FixItHint &fixit : diagnostic->FixIts()) {
994         // This is cobbed from clang::Rewrite::FixItRewriter.
995         if (fixit.CodeToInsert.empty()) {
996           if (fixit.InsertFromRange.isValid()) {
997             commit.insertFromRange(fixit.RemoveRange.getBegin(),
998                                    fixit.InsertFromRange, /*afterToken=*/false,
999                                    fixit.BeforePreviousInsertions);
1000           } else
1001             commit.remove(fixit.RemoveRange);
1002         } else {
1003           if (fixit.RemoveRange.isTokenRange() ||
1004               fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
1005             commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1006           else
1007             commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1008                           /*afterToken=*/false, fixit.BeforePreviousInsertions);
1009         }
1010       }
1011     }
1012   }
1013 
1014   // FIXME - do we want to try to propagate specific errors here?
1015   if (!commit.isCommitable())
1016     return false;
1017   else if (!editor.commit(commit))
1018     return false;
1019 
1020   // Now play all the edits, and stash the result in the diagnostic manager.
1021   editor.applyRewrites(rewrites_receiver);
1022   RewriteBuffer &main_file_buffer =
1023       rewriter.getEditBuffer(source_manager.getMainFileID());
1024 
1025   std::string fixed_expression;
1026   llvm::raw_string_ostream out_stream(fixed_expression);
1027 
1028   main_file_buffer.write(out_stream);
1029   out_stream.flush();
1030   diagnostic_manager.SetFixedExpression(fixed_expression);
1031 
1032   return true;
1033 }
1034 
1035 static bool FindFunctionInModule(ConstString &mangled_name,
1036                                  llvm::Module *module, const char *orig_name) {
1037   for (const auto &func : module->getFunctionList()) {
1038     const StringRef &name = func.getName();
1039     if (name.find(orig_name) != StringRef::npos) {
1040       mangled_name.SetString(name);
1041       return true;
1042     }
1043   }
1044 
1045   return false;
1046 }
1047 
1048 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1049     lldb::addr_t &func_addr, lldb::addr_t &func_end,
1050     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1051     bool &can_interpret, ExecutionPolicy execution_policy) {
1052   func_addr = LLDB_INVALID_ADDRESS;
1053   func_end = LLDB_INVALID_ADDRESS;
1054   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1055 
1056   lldb_private::Status err;
1057 
1058   std::unique_ptr<llvm::Module> llvm_module_up(
1059       m_code_generator->ReleaseModule());
1060 
1061   if (!llvm_module_up) {
1062     err.SetErrorToGenericError();
1063     err.SetErrorString("IR doesn't contain a module");
1064     return err;
1065   }
1066 
1067   ConstString function_name;
1068 
1069   if (execution_policy != eExecutionPolicyTopLevel) {
1070     // Find the actual name of the function (it's often mangled somehow)
1071 
1072     if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1073                               m_expr.FunctionName())) {
1074       err.SetErrorToGenericError();
1075       err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1076                                    m_expr.FunctionName());
1077       return err;
1078     } else {
1079       if (log)
1080         log->Printf("Found function %s for %s", function_name.AsCString(),
1081                     m_expr.FunctionName());
1082     }
1083   }
1084 
1085   SymbolContext sc;
1086 
1087   if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1088     sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1089   } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1090     sc.target_sp = target_sp;
1091   }
1092 
1093   LLVMUserExpression::IRPasses custom_passes;
1094   {
1095     auto lang = m_expr.Language();
1096     if (log)
1097       log->Printf("%s - Current expression language is %s\n", __FUNCTION__,
1098                   Language::GetNameForLanguageType(lang));
1099     lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1100     if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1101       auto runtime = process_sp->GetLanguageRuntime(lang);
1102       if (runtime)
1103         runtime->GetIRPasses(custom_passes);
1104     }
1105   }
1106 
1107   if (custom_passes.EarlyPasses) {
1108     if (log)
1109       log->Printf("%s - Running Early IR Passes from LanguageRuntime on "
1110                   "expression module '%s'",
1111                   __FUNCTION__, m_expr.FunctionName());
1112 
1113     custom_passes.EarlyPasses->run(*llvm_module_up);
1114   }
1115 
1116   execution_unit_sp = std::make_shared<IRExecutionUnit>(
1117       m_llvm_context, // handed off here
1118       llvm_module_up, // handed off here
1119       function_name, exe_ctx.GetTargetSP(), sc,
1120       m_compiler->getTargetOpts().Features);
1121 
1122   ClangExpressionHelper *type_system_helper =
1123       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1124   ClangExpressionDeclMap *decl_map =
1125       type_system_helper->DeclMap(); // result can be NULL
1126 
1127   if (decl_map) {
1128     Stream *error_stream = NULL;
1129     Target *target = exe_ctx.GetTargetPtr();
1130     error_stream = target->GetDebugger().GetErrorFile().get();
1131 
1132     IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1133                               *execution_unit_sp, *error_stream,
1134                               function_name.AsCString());
1135 
1136     bool ir_can_run =
1137         ir_for_target.runOnModule(*execution_unit_sp->GetModule());
1138 
1139     if (!ir_can_run) {
1140       err.SetErrorString(
1141           "The expression could not be prepared to run in the target");
1142       return err;
1143     }
1144 
1145     Process *process = exe_ctx.GetProcessPtr();
1146 
1147     if (execution_policy != eExecutionPolicyAlways &&
1148         execution_policy != eExecutionPolicyTopLevel) {
1149       lldb_private::Status interpret_error;
1150 
1151       bool interpret_function_calls =
1152           !process ? false : process->CanInterpretFunctionCalls();
1153       can_interpret = IRInterpreter::CanInterpret(
1154           *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1155           interpret_error, interpret_function_calls);
1156 
1157       if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1158         err.SetErrorStringWithFormat("Can't run the expression locally: %s",
1159                                      interpret_error.AsCString());
1160         return err;
1161       }
1162     }
1163 
1164     if (!process && execution_policy == eExecutionPolicyAlways) {
1165       err.SetErrorString("Expression needed to run in the target, but the "
1166                          "target can't be run");
1167       return err;
1168     }
1169 
1170     if (!process && execution_policy == eExecutionPolicyTopLevel) {
1171       err.SetErrorString("Top-level code needs to be inserted into a runnable "
1172                          "target, but the target can't be run");
1173       return err;
1174     }
1175 
1176     if (execution_policy == eExecutionPolicyAlways ||
1177         (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1178       if (m_expr.NeedsValidation() && process) {
1179         if (!process->GetDynamicCheckers()) {
1180           DynamicCheckerFunctions *dynamic_checkers =
1181               new DynamicCheckerFunctions();
1182 
1183           DiagnosticManager install_diagnostics;
1184 
1185           if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1186             if (install_diagnostics.Diagnostics().size())
1187               err.SetErrorString(install_diagnostics.GetString().c_str());
1188             else
1189               err.SetErrorString("couldn't install checkers, unknown error");
1190 
1191             return err;
1192           }
1193 
1194           process->SetDynamicCheckers(dynamic_checkers);
1195 
1196           if (log)
1197             log->Printf("== [ClangExpressionParser::PrepareForExecution] "
1198                         "Finished installing dynamic checkers ==");
1199         }
1200 
1201         IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(),
1202                                           function_name.AsCString());
1203 
1204         llvm::Module *module = execution_unit_sp->GetModule();
1205         if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1206           err.SetErrorToGenericError();
1207           err.SetErrorString("Couldn't add dynamic checks to the expression");
1208           return err;
1209         }
1210 
1211         if (custom_passes.LatePasses) {
1212           if (log)
1213             log->Printf("%s - Running Late IR Passes from LanguageRuntime on "
1214                         "expression module '%s'",
1215                         __FUNCTION__, m_expr.FunctionName());
1216 
1217           custom_passes.LatePasses->run(*module);
1218         }
1219       }
1220     }
1221 
1222     if (execution_policy == eExecutionPolicyAlways ||
1223         execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1224       execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1225     }
1226   } else {
1227     execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1228   }
1229 
1230   return err;
1231 }
1232 
1233 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1234     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1235   lldb_private::Status err;
1236 
1237   lldbassert(execution_unit_sp.get());
1238   lldbassert(exe_ctx.HasThreadScope());
1239 
1240   if (!execution_unit_sp.get()) {
1241     err.SetErrorString(
1242         "can't run static initializers for a NULL execution unit");
1243     return err;
1244   }
1245 
1246   if (!exe_ctx.HasThreadScope()) {
1247     err.SetErrorString("can't run static initializers without a thread");
1248     return err;
1249   }
1250 
1251   std::vector<lldb::addr_t> static_initializers;
1252 
1253   execution_unit_sp->GetStaticInitializers(static_initializers);
1254 
1255   for (lldb::addr_t static_initializer : static_initializers) {
1256     EvaluateExpressionOptions options;
1257 
1258     lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1259         exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1260         llvm::ArrayRef<lldb::addr_t>(), options));
1261 
1262     DiagnosticManager execution_errors;
1263     lldb::ExpressionResults results =
1264         exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1265             exe_ctx, call_static_initializer, options, execution_errors);
1266 
1267     if (results != lldb::eExpressionCompleted) {
1268       err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1269                                    execution_errors.GetString().c_str());
1270       return err;
1271     }
1272   }
1273 
1274   return err;
1275 }
1276