1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/DiagnosticIDs.h" 14 #include "clang/Basic/SourceLocation.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "clang/Basic/Version.h" 17 #include "clang/CodeGen/CodeGenAction.h" 18 #include "clang/CodeGen/ModuleBuilder.h" 19 #include "clang/Edit/Commit.h" 20 #include "clang/Edit/EditedSource.h" 21 #include "clang/Edit/EditsReceiver.h" 22 #include "clang/Frontend/CompilerInstance.h" 23 #include "clang/Frontend/CompilerInvocation.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/FrontendPluginRegistry.h" 27 #include "clang/Frontend/TextDiagnosticBuffer.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Parse/ParseAST.h" 31 #include "clang/Rewrite/Core/Rewriter.h" 32 #include "clang/Rewrite/Frontend/FrontendActions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaConsumer.h" 36 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ExecutionEngine/ExecutionEngine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/FileSystem.h" 41 #include "llvm/Support/TargetSelect.h" 42 43 #pragma clang diagnostic push 44 #pragma clang diagnostic ignored "-Wglobal-constructors" 45 #include "llvm/ExecutionEngine/MCJIT.h" 46 #pragma clang diagnostic pop 47 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/DynamicLibrary.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/Host.h" 53 #include "llvm/Support/MemoryBuffer.h" 54 #include "llvm/Support/Signals.h" 55 56 #include "ClangASTSource.h" 57 #include "ClangDiagnostic.h" 58 #include "ClangExpressionDeclMap.h" 59 #include "ClangExpressionHelper.h" 60 #include "ClangExpressionParser.h" 61 #include "ClangModulesDeclVendor.h" 62 #include "ClangPersistentVariables.h" 63 #include "IRForTarget.h" 64 #include "ModuleDependencyCollector.h" 65 66 #include "lldb/Core/Debugger.h" 67 #include "lldb/Core/Disassembler.h" 68 #include "lldb/Core/Module.h" 69 #include "lldb/Core/StreamFile.h" 70 #include "lldb/Expression/IRDynamicChecks.h" 71 #include "lldb/Expression/IRExecutionUnit.h" 72 #include "lldb/Expression/IRInterpreter.h" 73 #include "lldb/Host/File.h" 74 #include "lldb/Host/HostInfo.h" 75 #include "lldb/Symbol/ClangASTContext.h" 76 #include "lldb/Symbol/SymbolVendor.h" 77 #include "lldb/Target/ExecutionContext.h" 78 #include "lldb/Target/Language.h" 79 #include "lldb/Target/ObjCLanguageRuntime.h" 80 #include "lldb/Target/Process.h" 81 #include "lldb/Target/Target.h" 82 #include "lldb/Target/ThreadPlanCallFunction.h" 83 #include "lldb/Utility/DataBufferHeap.h" 84 #include "lldb/Utility/LLDBAssert.h" 85 #include "lldb/Utility/Log.h" 86 #include "lldb/Utility/Reproducer.h" 87 #include "lldb/Utility/Stream.h" 88 #include "lldb/Utility/StreamString.h" 89 #include "lldb/Utility/StringList.h" 90 91 #include <cctype> 92 #include <memory> 93 94 using namespace clang; 95 using namespace llvm; 96 using namespace lldb_private; 97 98 //===----------------------------------------------------------------------===// 99 // Utility Methods for Clang 100 //===----------------------------------------------------------------------===// 101 102 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 103 ClangModulesDeclVendor &m_decl_vendor; 104 ClangPersistentVariables &m_persistent_vars; 105 StreamString m_error_stream; 106 bool m_has_errors = false; 107 108 public: 109 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 110 ClangPersistentVariables &persistent_vars) 111 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 112 113 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 114 const clang::Module * /*null*/) override { 115 SourceModule module; 116 117 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 118 module.path.push_back(ConstString(component.first->getName())); 119 120 StreamString error_stream; 121 122 ClangModulesDeclVendor::ModuleVector exported_modules; 123 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 124 m_has_errors = true; 125 126 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 127 m_persistent_vars.AddHandLoadedClangModule(module); 128 } 129 130 bool hasErrors() { return m_has_errors; } 131 132 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 133 }; 134 135 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 136 public: 137 ClangDiagnosticManagerAdapter() 138 : m_passthrough(new clang::TextDiagnosticBuffer) {} 139 140 ClangDiagnosticManagerAdapter( 141 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 142 : m_passthrough(passthrough) {} 143 144 void ResetManager(DiagnosticManager *manager = nullptr) { 145 m_manager = manager; 146 } 147 148 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 149 const clang::Diagnostic &Info) { 150 if (m_manager) { 151 llvm::SmallVector<char, 32> diag_str; 152 Info.FormatDiagnostic(diag_str); 153 diag_str.push_back('\0'); 154 const char *data = diag_str.data(); 155 156 lldb_private::DiagnosticSeverity severity; 157 bool make_new_diagnostic = true; 158 159 switch (DiagLevel) { 160 case DiagnosticsEngine::Level::Fatal: 161 case DiagnosticsEngine::Level::Error: 162 severity = eDiagnosticSeverityError; 163 break; 164 case DiagnosticsEngine::Level::Warning: 165 severity = eDiagnosticSeverityWarning; 166 break; 167 case DiagnosticsEngine::Level::Remark: 168 case DiagnosticsEngine::Level::Ignored: 169 severity = eDiagnosticSeverityRemark; 170 break; 171 case DiagnosticsEngine::Level::Note: 172 m_manager->AppendMessageToDiagnostic(data); 173 make_new_diagnostic = false; 174 } 175 if (make_new_diagnostic) { 176 ClangDiagnostic *new_diagnostic = 177 new ClangDiagnostic(data, severity, Info.getID()); 178 m_manager->AddDiagnostic(new_diagnostic); 179 180 // Don't store away warning fixits, since the compiler doesn't have 181 // enough context in an expression for the warning to be useful. 182 // FIXME: Should we try to filter out FixIts that apply to our generated 183 // code, and not the user's expression? 184 if (severity == eDiagnosticSeverityError) { 185 size_t num_fixit_hints = Info.getNumFixItHints(); 186 for (size_t i = 0; i < num_fixit_hints; i++) { 187 const clang::FixItHint &fixit = Info.getFixItHint(i); 188 if (!fixit.isNull()) 189 new_diagnostic->AddFixitHint(fixit); 190 } 191 } 192 } 193 } 194 195 m_passthrough->HandleDiagnostic(DiagLevel, Info); 196 } 197 198 void FlushDiagnostics(DiagnosticsEngine &Diags) { 199 m_passthrough->FlushDiagnostics(Diags); 200 } 201 202 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 203 return new ClangDiagnosticManagerAdapter(m_passthrough); 204 } 205 206 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 207 208 private: 209 DiagnosticManager *m_manager = nullptr; 210 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 211 }; 212 213 //===----------------------------------------------------------------------===// 214 // Implementation of ClangExpressionParser 215 //===----------------------------------------------------------------------===// 216 217 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope, 218 Expression &expr, 219 bool generate_debug_info) 220 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 221 m_pp_callbacks(nullptr) { 222 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 223 224 // We can't compile expressions without a target. So if the exe_scope is 225 // null or doesn't have a target, then we just need to get out of here. I'll 226 // lldb_assert and not make any of the compiler objects since 227 // I can't return errors directly from the constructor. Further calls will 228 // check if the compiler was made and 229 // bag out if it wasn't. 230 231 if (!exe_scope) { 232 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 233 __FUNCTION__, __FILE__, __LINE__); 234 return; 235 } 236 237 lldb::TargetSP target_sp; 238 target_sp = exe_scope->CalculateTarget(); 239 if (!target_sp) { 240 lldb_assert(target_sp.get(), 241 "Can't make an expression parser with a null target.", 242 __FUNCTION__, __FILE__, __LINE__); 243 return; 244 } 245 246 // 1. Create a new compiler instance. 247 m_compiler.reset(new CompilerInstance()); 248 249 // When capturing a reproducer, hook up the file collector with clang to 250 // collector modules and headers. 251 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 252 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 253 m_compiler->setModuleDepCollector( 254 std::make_shared<ModuleDependencyCollectorAdaptor>( 255 fp.GetFileCollector())); 256 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 257 opts.IncludeSystemHeaders = true; 258 opts.IncludeModuleFiles = true; 259 } 260 261 // Make sure clang uses the same VFS as LLDB. 262 m_compiler->setVirtualFileSystem( 263 FileSystem::Instance().GetVirtualFileSystem()); 264 265 lldb::LanguageType frame_lang = 266 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 267 bool overridden_target_opts = false; 268 lldb_private::LanguageRuntime *lang_rt = nullptr; 269 270 std::string abi; 271 ArchSpec target_arch; 272 target_arch = target_sp->GetArchitecture(); 273 274 const auto target_machine = target_arch.GetMachine(); 275 276 // If the expression is being evaluated in the context of an existing stack 277 // frame, we introspect to see if the language runtime is available. 278 279 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 280 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 281 282 // Make sure the user hasn't provided a preferred execution language with 283 // `expression --language X -- ...` 284 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 285 frame_lang = frame_sp->GetLanguage(); 286 287 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 288 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 289 if (log) 290 log->Printf("Frame has language of type %s", 291 Language::GetNameForLanguageType(frame_lang)); 292 } 293 294 // 2. Configure the compiler with a set of default options that are 295 // appropriate for most situations. 296 if (target_arch.IsValid()) { 297 std::string triple = target_arch.GetTriple().str(); 298 m_compiler->getTargetOpts().Triple = triple; 299 if (log) 300 log->Printf("Using %s as the target triple", 301 m_compiler->getTargetOpts().Triple.c_str()); 302 } else { 303 // If we get here we don't have a valid target and just have to guess. 304 // Sometimes this will be ok to just use the host target triple (when we 305 // evaluate say "2+3", but other expressions like breakpoint conditions and 306 // other things that _are_ target specific really shouldn't just be using 307 // the host triple. In such a case the language runtime should expose an 308 // overridden options set (3), below. 309 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 310 if (log) 311 log->Printf("Using default target triple of %s", 312 m_compiler->getTargetOpts().Triple.c_str()); 313 } 314 // Now add some special fixes for known architectures: Any arm32 iOS 315 // environment, but not on arm64 316 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 317 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 318 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 319 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 320 } 321 // Supported subsets of x86 322 if (target_machine == llvm::Triple::x86 || 323 target_machine == llvm::Triple::x86_64) { 324 m_compiler->getTargetOpts().Features.push_back("+sse"); 325 m_compiler->getTargetOpts().Features.push_back("+sse2"); 326 } 327 328 // Set the target CPU to generate code for. This will be empty for any CPU 329 // that doesn't really need to make a special 330 // CPU string. 331 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 332 333 // Set the target ABI 334 abi = GetClangTargetABI(target_arch); 335 if (!abi.empty()) 336 m_compiler->getTargetOpts().ABI = abi; 337 338 // 3. Now allow the runtime to provide custom configuration options for the 339 // target. In this case, a specialized language runtime is available and we 340 // can query it for extra options. For 99% of use cases, this will not be 341 // needed and should be provided when basic platform detection is not enough. 342 if (lang_rt) 343 overridden_target_opts = 344 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 345 346 if (overridden_target_opts) 347 if (log && log->GetVerbose()) { 348 LLDB_LOGV( 349 log, "Using overridden target options for the expression evaluation"); 350 351 auto opts = m_compiler->getTargetOpts(); 352 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 353 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 354 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 355 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 356 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 357 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 358 StringList::LogDump(log, opts.Features, "Features"); 359 } 360 361 // 4. Create and install the target on the compiler. 362 m_compiler->createDiagnostics(); 363 auto target_info = TargetInfo::CreateTargetInfo( 364 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 365 if (log) { 366 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); 367 log->Printf("Target datalayout string: '%s'", 368 target_info->getDataLayout().getStringRepresentation().c_str()); 369 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); 370 log->Printf("Target vector alignment: %d", 371 target_info->getMaxVectorAlign()); 372 } 373 m_compiler->setTarget(target_info); 374 375 assert(m_compiler->hasTarget()); 376 377 // 5. Set language options. 378 lldb::LanguageType language = expr.Language(); 379 LangOptions &lang_opts = m_compiler->getLangOpts(); 380 381 switch (language) { 382 case lldb::eLanguageTypeC: 383 case lldb::eLanguageTypeC89: 384 case lldb::eLanguageTypeC99: 385 case lldb::eLanguageTypeC11: 386 // FIXME: the following language option is a temporary workaround, 387 // to "ask for C, get C++." 388 // For now, the expression parser must use C++ anytime the language is a C 389 // family language, because the expression parser uses features of C++ to 390 // capture values. 391 lang_opts.CPlusPlus = true; 392 break; 393 case lldb::eLanguageTypeObjC: 394 lang_opts.ObjC = true; 395 // FIXME: the following language option is a temporary workaround, 396 // to "ask for ObjC, get ObjC++" (see comment above). 397 lang_opts.CPlusPlus = true; 398 399 // Clang now sets as default C++14 as the default standard (with 400 // GNU extensions), so we do the same here to avoid mismatches that 401 // cause compiler error when evaluating expressions (e.g. nullptr not found 402 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 403 // two lines below) so we decide to be consistent with that, but this could 404 // be re-evaluated in the future. 405 lang_opts.CPlusPlus11 = true; 406 break; 407 case lldb::eLanguageTypeC_plus_plus: 408 case lldb::eLanguageTypeC_plus_plus_11: 409 case lldb::eLanguageTypeC_plus_plus_14: 410 lang_opts.CPlusPlus11 = true; 411 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 412 LLVM_FALLTHROUGH; 413 case lldb::eLanguageTypeC_plus_plus_03: 414 lang_opts.CPlusPlus = true; 415 if (process_sp) 416 lang_opts.ObjC = 417 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 418 break; 419 case lldb::eLanguageTypeObjC_plus_plus: 420 case lldb::eLanguageTypeUnknown: 421 default: 422 lang_opts.ObjC = true; 423 lang_opts.CPlusPlus = true; 424 lang_opts.CPlusPlus11 = true; 425 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 426 break; 427 } 428 429 lang_opts.Bool = true; 430 lang_opts.WChar = true; 431 lang_opts.Blocks = true; 432 lang_opts.DebuggerSupport = 433 true; // Features specifically for debugger clients 434 if (expr.DesiredResultType() == Expression::eResultTypeId) 435 lang_opts.DebuggerCastResultToId = true; 436 437 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 438 .CharIsSignedByDefault(); 439 440 // Spell checking is a nice feature, but it ends up completing a lot of types 441 // that we didn't strictly speaking need to complete. As a result, we spend a 442 // long time parsing and importing debug information. 443 lang_opts.SpellChecking = false; 444 445 if (process_sp && lang_opts.ObjC) { 446 if (process_sp->GetObjCLanguageRuntime()) { 447 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == 448 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 449 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 450 else 451 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 452 VersionTuple(10, 7)); 453 454 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) 455 lang_opts.DebuggerObjCLiteral = true; 456 } 457 } 458 459 lang_opts.ThreadsafeStatics = false; 460 lang_opts.AccessControl = false; // Debuggers get universal access 461 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 462 // We enable all builtin functions beside the builtins from libc/libm (e.g. 463 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 464 // additionally enabling them as expandable builtins is breaking Clang. 465 lang_opts.NoBuiltin = true; 466 467 // Set CodeGen options 468 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 469 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 470 m_compiler->getCodeGenOpts().DisableFPElim = true; 471 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; 472 if (generate_debug_info) 473 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 474 else 475 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 476 477 // Disable some warnings. 478 m_compiler->getDiagnostics().setSeverityForGroup( 479 clang::diag::Flavor::WarningOrError, "unused-value", 480 clang::diag::Severity::Ignored, SourceLocation()); 481 m_compiler->getDiagnostics().setSeverityForGroup( 482 clang::diag::Flavor::WarningOrError, "odr", 483 clang::diag::Severity::Ignored, SourceLocation()); 484 485 // Inform the target of the language options 486 // 487 // FIXME: We shouldn't need to do this, the target should be immutable once 488 // created. This complexity should be lifted elsewhere. 489 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 490 491 // 6. Set up the diagnostic buffer for reporting errors 492 493 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 494 495 // 7. Set up the source management objects inside the compiler 496 m_compiler->createFileManager(); 497 if (!m_compiler->hasSourceManager()) 498 m_compiler->createSourceManager(m_compiler->getFileManager()); 499 m_compiler->createPreprocessor(TU_Complete); 500 501 if (ClangModulesDeclVendor *decl_vendor = 502 target_sp->GetClangModulesDeclVendor()) { 503 ClangPersistentVariables *clang_persistent_vars = 504 llvm::cast<ClangPersistentVariables>( 505 target_sp->GetPersistentExpressionStateForLanguage( 506 lldb::eLanguageTypeC)); 507 std::unique_ptr<PPCallbacks> pp_callbacks( 508 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 509 m_pp_callbacks = 510 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 511 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 512 } 513 514 // 8. Most of this we get from the CompilerInstance, but we also want to give 515 // the context an ExternalASTSource. 516 517 auto &PP = m_compiler->getPreprocessor(); 518 auto &builtin_context = PP.getBuiltinInfo(); 519 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 520 m_compiler->getLangOpts()); 521 522 m_compiler->createASTContext(); 523 clang::ASTContext &ast_context = m_compiler->getASTContext(); 524 525 ClangExpressionHelper *type_system_helper = 526 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 527 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 528 529 if (decl_map) { 530 llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source( 531 decl_map->CreateProxy()); 532 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 533 ast_context.setExternalSource(ast_source); 534 } 535 536 m_ast_context.reset( 537 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 538 m_ast_context->setASTContext(&ast_context); 539 540 std::string module_name("$__lldb_module"); 541 542 m_llvm_context.reset(new LLVMContext()); 543 m_code_generator.reset(CreateLLVMCodeGen( 544 m_compiler->getDiagnostics(), module_name, 545 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 546 m_compiler->getCodeGenOpts(), *m_llvm_context)); 547 } 548 549 ClangExpressionParser::~ClangExpressionParser() {} 550 551 namespace { 552 553 //---------------------------------------------------------------------- 554 /// @class CodeComplete 555 /// 556 /// A code completion consumer for the clang Sema that is responsible for 557 /// creating the completion suggestions when a user requests completion 558 /// of an incomplete `expr` invocation. 559 //---------------------------------------------------------------------- 560 class CodeComplete : public CodeCompleteConsumer { 561 CodeCompletionTUInfo m_info; 562 563 std::string m_expr; 564 unsigned m_position = 0; 565 CompletionRequest &m_request; 566 /// The printing policy we use when printing declarations for our completion 567 /// descriptions. 568 clang::PrintingPolicy m_desc_policy; 569 570 /// Returns true if the given character can be used in an identifier. 571 /// This also returns true for numbers because for completion we usually 572 /// just iterate backwards over iterators. 573 /// 574 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 575 static bool IsIdChar(char c) { 576 return c == '_' || std::isalnum(c) || c == '$'; 577 } 578 579 /// Returns true if the given character is used to separate arguments 580 /// in the command line of lldb. 581 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 582 583 /// Drops all tokens in front of the expression that are unrelated for 584 /// the completion of the cmd line. 'unrelated' means here that the token 585 /// is not interested for the lldb completion API result. 586 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 587 if (cmd.empty()) 588 return cmd; 589 590 // If we are at the start of a word, then all tokens are unrelated to 591 // the current completion logic. 592 if (IsTokenSeparator(cmd.back())) 593 return StringRef(); 594 595 // Remove all previous tokens from the string as they are unrelated 596 // to completing the current token. 597 StringRef to_remove = cmd; 598 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 599 to_remove = to_remove.drop_back(); 600 } 601 cmd = cmd.drop_front(to_remove.size()); 602 603 return cmd; 604 } 605 606 /// Removes the last identifier token from the given cmd line. 607 StringRef removeLastToken(StringRef cmd) { 608 while (!cmd.empty() && IsIdChar(cmd.back())) { 609 cmd = cmd.drop_back(); 610 } 611 return cmd; 612 } 613 614 /// Attemps to merge the given completion from the given position into the 615 /// existing command. Returns the completion string that can be returned to 616 /// the lldb completion API. 617 std::string mergeCompletion(StringRef existing, unsigned pos, 618 StringRef completion) { 619 StringRef existing_command = existing.substr(0, pos); 620 // We rewrite the last token with the completion, so let's drop that 621 // token from the command. 622 existing_command = removeLastToken(existing_command); 623 // We also should remove all previous tokens from the command as they 624 // would otherwise be added to the completion that already has the 625 // completion. 626 existing_command = dropUnrelatedFrontTokens(existing_command); 627 return existing_command.str() + completion.str(); 628 } 629 630 public: 631 /// Constructs a CodeComplete consumer that can be attached to a Sema. 632 /// @param[out] matches 633 /// The list of matches that the lldb completion API expects as a result. 634 /// This may already contain matches, so it's only allowed to append 635 /// to this variable. 636 /// @param[out] expr 637 /// The whole expression string that we are currently parsing. This 638 /// string needs to be equal to the input the user typed, and NOT the 639 /// final code that Clang is parsing. 640 /// @param[out] position 641 /// The character position of the user cursor in the `expr` parameter. 642 /// 643 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 644 std::string expr, unsigned position) 645 : CodeCompleteConsumer(CodeCompleteOptions(), false), 646 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 647 m_position(position), m_request(request), m_desc_policy(ops) { 648 649 // Ensure that the printing policy is producing a description that is as 650 // short as possible. 651 m_desc_policy.SuppressScope = true; 652 m_desc_policy.SuppressTagKeyword = true; 653 m_desc_policy.FullyQualifiedName = false; 654 m_desc_policy.TerseOutput = true; 655 m_desc_policy.IncludeNewlines = false; 656 m_desc_policy.UseVoidForZeroParams = false; 657 m_desc_policy.Bool = true; 658 } 659 660 /// Deregisters and destroys this code-completion consumer. 661 virtual ~CodeComplete() {} 662 663 /// \name Code-completion filtering 664 /// Check if the result should be filtered out. 665 bool isResultFilteredOut(StringRef Filter, 666 CodeCompletionResult Result) override { 667 // This code is mostly copied from CodeCompleteConsumer. 668 switch (Result.Kind) { 669 case CodeCompletionResult::RK_Declaration: 670 return !( 671 Result.Declaration->getIdentifier() && 672 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 673 case CodeCompletionResult::RK_Keyword: 674 return !StringRef(Result.Keyword).startswith(Filter); 675 case CodeCompletionResult::RK_Macro: 676 return !Result.Macro->getName().startswith(Filter); 677 case CodeCompletionResult::RK_Pattern: 678 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 679 } 680 // If we trigger this assert or the above switch yields a warning, then 681 // CodeCompletionResult has been enhanced with more kinds of completion 682 // results. Expand the switch above in this case. 683 assert(false && "Unknown completion result type?"); 684 // If we reach this, then we should just ignore whatever kind of unknown 685 // result we got back. We probably can't turn it into any kind of useful 686 // completion suggestion with the existing code. 687 return true; 688 } 689 690 /// \name Code-completion callbacks 691 /// Process the finalized code-completion results. 692 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 693 CodeCompletionResult *Results, 694 unsigned NumResults) override { 695 696 // The Sema put the incomplete token we try to complete in here during 697 // lexing, so we need to retrieve it here to know what we are completing. 698 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 699 700 // Iterate over all the results. Filter out results we don't want and 701 // process the rest. 702 for (unsigned I = 0; I != NumResults; ++I) { 703 // Filter the results with the information from the Sema. 704 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 705 continue; 706 707 CodeCompletionResult &R = Results[I]; 708 std::string ToInsert; 709 std::string Description; 710 // Handle the different completion kinds that come from the Sema. 711 switch (R.Kind) { 712 case CodeCompletionResult::RK_Declaration: { 713 const NamedDecl *D = R.Declaration; 714 ToInsert = R.Declaration->getNameAsString(); 715 // If we have a function decl that has no arguments we want to 716 // complete the empty parantheses for the user. If the function has 717 // arguments, we at least complete the opening bracket. 718 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 719 if (F->getNumParams() == 0) 720 ToInsert += "()"; 721 else 722 ToInsert += "("; 723 raw_string_ostream OS(Description); 724 F->print(OS, m_desc_policy, false); 725 OS.flush(); 726 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 727 Description = V->getType().getAsString(m_desc_policy); 728 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 729 Description = F->getType().getAsString(m_desc_policy); 730 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 731 // If we try to complete a namespace, then we can directly append 732 // the '::'. 733 if (!N->isAnonymousNamespace()) 734 ToInsert += "::"; 735 } 736 break; 737 } 738 case CodeCompletionResult::RK_Keyword: 739 ToInsert = R.Keyword; 740 break; 741 case CodeCompletionResult::RK_Macro: 742 ToInsert = R.Macro->getName().str(); 743 break; 744 case CodeCompletionResult::RK_Pattern: 745 ToInsert = R.Pattern->getTypedText(); 746 break; 747 } 748 // At this point all information is in the ToInsert string. 749 750 // We also filter some internal lldb identifiers here. The user 751 // shouldn't see these. 752 if (StringRef(ToInsert).startswith("$__lldb_")) 753 continue; 754 if (!ToInsert.empty()) { 755 // Merge the suggested Token into the existing command line to comply 756 // with the kind of result the lldb API expects. 757 std::string CompletionSuggestion = 758 mergeCompletion(m_expr, m_position, ToInsert); 759 m_request.AddCompletion(CompletionSuggestion, Description); 760 } 761 } 762 } 763 764 /// \param S the semantic-analyzer object for which code-completion is being 765 /// done. 766 /// 767 /// \param CurrentArg the index of the current argument. 768 /// 769 /// \param Candidates an array of overload candidates. 770 /// 771 /// \param NumCandidates the number of overload candidates 772 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 773 OverloadCandidate *Candidates, 774 unsigned NumCandidates, 775 SourceLocation OpenParLoc) override { 776 // At the moment we don't filter out any overloaded candidates. 777 } 778 779 CodeCompletionAllocator &getAllocator() override { 780 return m_info.getAllocator(); 781 } 782 783 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 784 }; 785 } // namespace 786 787 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 788 unsigned pos, unsigned typed_pos) { 789 DiagnosticManager mgr; 790 // We need the raw user expression here because that's what the CodeComplete 791 // class uses to provide completion suggestions. 792 // However, the `Text` method only gives us the transformed expression here. 793 // To actually get the raw user input here, we have to cast our expression to 794 // the LLVMUserExpression which exposes the right API. This should never fail 795 // as we always have a ClangUserExpression whenever we call this. 796 LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr); 797 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(), 798 typed_pos); 799 // We don't need a code generator for parsing. 800 m_code_generator.reset(); 801 // Start parsing the expression with our custom code completion consumer. 802 ParseInternal(mgr, &CC, line, pos); 803 return true; 804 } 805 806 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 807 return ParseInternal(diagnostic_manager); 808 } 809 810 unsigned 811 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 812 CodeCompleteConsumer *completion_consumer, 813 unsigned completion_line, 814 unsigned completion_column) { 815 ClangDiagnosticManagerAdapter *adapter = 816 static_cast<ClangDiagnosticManagerAdapter *>( 817 m_compiler->getDiagnostics().getClient()); 818 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 819 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 820 821 adapter->ResetManager(&diagnostic_manager); 822 823 const char *expr_text = m_expr.Text(); 824 825 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 826 bool created_main_file = false; 827 828 // Clang wants to do completion on a real file known by Clang's file manager, 829 // so we have to create one to make this work. 830 // TODO: We probably could also simulate to Clang's file manager that there 831 // is a real file that contains our code. 832 bool should_create_file = completion_consumer != nullptr; 833 834 // We also want a real file on disk if we generate full debug info. 835 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 836 codegenoptions::FullDebugInfo; 837 838 if (should_create_file) { 839 int temp_fd = -1; 840 llvm::SmallString<128> result_path; 841 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 842 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 843 std::string temp_source_path = tmpdir_file_spec.GetPath(); 844 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 845 } else { 846 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 847 } 848 849 if (temp_fd != -1) { 850 lldb_private::File file(temp_fd, true); 851 const size_t expr_text_len = strlen(expr_text); 852 size_t bytes_written = expr_text_len; 853 if (file.Write(expr_text, bytes_written).Success()) { 854 if (bytes_written == expr_text_len) { 855 file.Close(); 856 source_mgr.setMainFileID(source_mgr.createFileID( 857 m_compiler->getFileManager().getFile(result_path), 858 SourceLocation(), SrcMgr::C_User)); 859 created_main_file = true; 860 } 861 } 862 } 863 } 864 865 if (!created_main_file) { 866 std::unique_ptr<MemoryBuffer> memory_buffer = 867 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); 868 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 869 } 870 871 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 872 &m_compiler->getPreprocessor()); 873 874 ClangExpressionHelper *type_system_helper = 875 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 876 877 ASTConsumer *ast_transformer = 878 type_system_helper->ASTTransformer(m_code_generator.get()); 879 880 if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) 881 decl_map->InstallCodeGenerator(m_code_generator.get()); 882 883 // If we want to parse for code completion, we need to attach our code 884 // completion consumer to the Sema and specify a completion position. 885 // While parsing the Sema will call this consumer with the provided 886 // completion suggestions. 887 if (completion_consumer) { 888 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 889 auto &PP = m_compiler->getPreprocessor(); 890 // Lines and columns start at 1 in Clang, but code completion positions are 891 // indexed from 0, so we need to add 1 to the line and column here. 892 ++completion_line; 893 ++completion_column; 894 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 895 } 896 897 if (ast_transformer) { 898 ast_transformer->Initialize(m_compiler->getASTContext()); 899 ParseAST(m_compiler->getPreprocessor(), ast_transformer, 900 m_compiler->getASTContext(), false, TU_Complete, 901 completion_consumer); 902 } else { 903 m_code_generator->Initialize(m_compiler->getASTContext()); 904 ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), 905 m_compiler->getASTContext(), false, TU_Complete, 906 completion_consumer); 907 } 908 909 diag_buf->EndSourceFile(); 910 911 unsigned num_errors = diag_buf->getNumErrors(); 912 913 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 914 num_errors++; 915 diagnostic_manager.PutString(eDiagnosticSeverityError, 916 "while importing modules:"); 917 diagnostic_manager.AppendMessageToDiagnostic( 918 m_pp_callbacks->getErrorString()); 919 } 920 921 if (!num_errors) { 922 if (type_system_helper->DeclMap() && 923 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 924 diagnostic_manager.Printf(eDiagnosticSeverityError, 925 "Couldn't infer the type of a variable"); 926 num_errors++; 927 } 928 } 929 930 if (!num_errors) { 931 type_system_helper->CommitPersistentDecls(); 932 } 933 934 adapter->ResetManager(); 935 936 return num_errors; 937 } 938 939 std::string 940 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 941 std::string abi; 942 943 if (target_arch.IsMIPS()) { 944 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 945 case ArchSpec::eMIPSABI_N64: 946 abi = "n64"; 947 break; 948 case ArchSpec::eMIPSABI_N32: 949 abi = "n32"; 950 break; 951 case ArchSpec::eMIPSABI_O32: 952 abi = "o32"; 953 break; 954 default: 955 break; 956 } 957 } 958 return abi; 959 } 960 961 bool ClangExpressionParser::RewriteExpression( 962 DiagnosticManager &diagnostic_manager) { 963 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 964 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 965 nullptr); 966 clang::edit::Commit commit(editor); 967 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 968 969 class RewritesReceiver : public edit::EditsReceiver { 970 Rewriter &rewrite; 971 972 public: 973 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 974 975 void insert(SourceLocation loc, StringRef text) override { 976 rewrite.InsertText(loc, text); 977 } 978 void replace(CharSourceRange range, StringRef text) override { 979 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 980 } 981 }; 982 983 RewritesReceiver rewrites_receiver(rewriter); 984 985 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 986 size_t num_diags = diagnostics.size(); 987 if (num_diags == 0) 988 return false; 989 990 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 991 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 992 if (diagnostic && diagnostic->HasFixIts()) { 993 for (const FixItHint &fixit : diagnostic->FixIts()) { 994 // This is cobbed from clang::Rewrite::FixItRewriter. 995 if (fixit.CodeToInsert.empty()) { 996 if (fixit.InsertFromRange.isValid()) { 997 commit.insertFromRange(fixit.RemoveRange.getBegin(), 998 fixit.InsertFromRange, /*afterToken=*/false, 999 fixit.BeforePreviousInsertions); 1000 } else 1001 commit.remove(fixit.RemoveRange); 1002 } else { 1003 if (fixit.RemoveRange.isTokenRange() || 1004 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1005 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1006 else 1007 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1008 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1009 } 1010 } 1011 } 1012 } 1013 1014 // FIXME - do we want to try to propagate specific errors here? 1015 if (!commit.isCommitable()) 1016 return false; 1017 else if (!editor.commit(commit)) 1018 return false; 1019 1020 // Now play all the edits, and stash the result in the diagnostic manager. 1021 editor.applyRewrites(rewrites_receiver); 1022 RewriteBuffer &main_file_buffer = 1023 rewriter.getEditBuffer(source_manager.getMainFileID()); 1024 1025 std::string fixed_expression; 1026 llvm::raw_string_ostream out_stream(fixed_expression); 1027 1028 main_file_buffer.write(out_stream); 1029 out_stream.flush(); 1030 diagnostic_manager.SetFixedExpression(fixed_expression); 1031 1032 return true; 1033 } 1034 1035 static bool FindFunctionInModule(ConstString &mangled_name, 1036 llvm::Module *module, const char *orig_name) { 1037 for (const auto &func : module->getFunctionList()) { 1038 const StringRef &name = func.getName(); 1039 if (name.find(orig_name) != StringRef::npos) { 1040 mangled_name.SetString(name); 1041 return true; 1042 } 1043 } 1044 1045 return false; 1046 } 1047 1048 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1049 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1050 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1051 bool &can_interpret, ExecutionPolicy execution_policy) { 1052 func_addr = LLDB_INVALID_ADDRESS; 1053 func_end = LLDB_INVALID_ADDRESS; 1054 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1055 1056 lldb_private::Status err; 1057 1058 std::unique_ptr<llvm::Module> llvm_module_up( 1059 m_code_generator->ReleaseModule()); 1060 1061 if (!llvm_module_up) { 1062 err.SetErrorToGenericError(); 1063 err.SetErrorString("IR doesn't contain a module"); 1064 return err; 1065 } 1066 1067 ConstString function_name; 1068 1069 if (execution_policy != eExecutionPolicyTopLevel) { 1070 // Find the actual name of the function (it's often mangled somehow) 1071 1072 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1073 m_expr.FunctionName())) { 1074 err.SetErrorToGenericError(); 1075 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1076 m_expr.FunctionName()); 1077 return err; 1078 } else { 1079 if (log) 1080 log->Printf("Found function %s for %s", function_name.AsCString(), 1081 m_expr.FunctionName()); 1082 } 1083 } 1084 1085 SymbolContext sc; 1086 1087 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1088 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1089 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1090 sc.target_sp = target_sp; 1091 } 1092 1093 LLVMUserExpression::IRPasses custom_passes; 1094 { 1095 auto lang = m_expr.Language(); 1096 if (log) 1097 log->Printf("%s - Current expression language is %s\n", __FUNCTION__, 1098 Language::GetNameForLanguageType(lang)); 1099 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1100 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1101 auto runtime = process_sp->GetLanguageRuntime(lang); 1102 if (runtime) 1103 runtime->GetIRPasses(custom_passes); 1104 } 1105 } 1106 1107 if (custom_passes.EarlyPasses) { 1108 if (log) 1109 log->Printf("%s - Running Early IR Passes from LanguageRuntime on " 1110 "expression module '%s'", 1111 __FUNCTION__, m_expr.FunctionName()); 1112 1113 custom_passes.EarlyPasses->run(*llvm_module_up); 1114 } 1115 1116 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1117 m_llvm_context, // handed off here 1118 llvm_module_up, // handed off here 1119 function_name, exe_ctx.GetTargetSP(), sc, 1120 m_compiler->getTargetOpts().Features); 1121 1122 ClangExpressionHelper *type_system_helper = 1123 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1124 ClangExpressionDeclMap *decl_map = 1125 type_system_helper->DeclMap(); // result can be NULL 1126 1127 if (decl_map) { 1128 Stream *error_stream = NULL; 1129 Target *target = exe_ctx.GetTargetPtr(); 1130 error_stream = target->GetDebugger().GetErrorFile().get(); 1131 1132 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1133 *execution_unit_sp, *error_stream, 1134 function_name.AsCString()); 1135 1136 bool ir_can_run = 1137 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1138 1139 if (!ir_can_run) { 1140 err.SetErrorString( 1141 "The expression could not be prepared to run in the target"); 1142 return err; 1143 } 1144 1145 Process *process = exe_ctx.GetProcessPtr(); 1146 1147 if (execution_policy != eExecutionPolicyAlways && 1148 execution_policy != eExecutionPolicyTopLevel) { 1149 lldb_private::Status interpret_error; 1150 1151 bool interpret_function_calls = 1152 !process ? false : process->CanInterpretFunctionCalls(); 1153 can_interpret = IRInterpreter::CanInterpret( 1154 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1155 interpret_error, interpret_function_calls); 1156 1157 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1158 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1159 interpret_error.AsCString()); 1160 return err; 1161 } 1162 } 1163 1164 if (!process && execution_policy == eExecutionPolicyAlways) { 1165 err.SetErrorString("Expression needed to run in the target, but the " 1166 "target can't be run"); 1167 return err; 1168 } 1169 1170 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1171 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1172 "target, but the target can't be run"); 1173 return err; 1174 } 1175 1176 if (execution_policy == eExecutionPolicyAlways || 1177 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1178 if (m_expr.NeedsValidation() && process) { 1179 if (!process->GetDynamicCheckers()) { 1180 DynamicCheckerFunctions *dynamic_checkers = 1181 new DynamicCheckerFunctions(); 1182 1183 DiagnosticManager install_diagnostics; 1184 1185 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1186 if (install_diagnostics.Diagnostics().size()) 1187 err.SetErrorString(install_diagnostics.GetString().c_str()); 1188 else 1189 err.SetErrorString("couldn't install checkers, unknown error"); 1190 1191 return err; 1192 } 1193 1194 process->SetDynamicCheckers(dynamic_checkers); 1195 1196 if (log) 1197 log->Printf("== [ClangExpressionParser::PrepareForExecution] " 1198 "Finished installing dynamic checkers =="); 1199 } 1200 1201 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), 1202 function_name.AsCString()); 1203 1204 llvm::Module *module = execution_unit_sp->GetModule(); 1205 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1206 err.SetErrorToGenericError(); 1207 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1208 return err; 1209 } 1210 1211 if (custom_passes.LatePasses) { 1212 if (log) 1213 log->Printf("%s - Running Late IR Passes from LanguageRuntime on " 1214 "expression module '%s'", 1215 __FUNCTION__, m_expr.FunctionName()); 1216 1217 custom_passes.LatePasses->run(*module); 1218 } 1219 } 1220 } 1221 1222 if (execution_policy == eExecutionPolicyAlways || 1223 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1224 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1225 } 1226 } else { 1227 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1228 } 1229 1230 return err; 1231 } 1232 1233 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1234 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1235 lldb_private::Status err; 1236 1237 lldbassert(execution_unit_sp.get()); 1238 lldbassert(exe_ctx.HasThreadScope()); 1239 1240 if (!execution_unit_sp.get()) { 1241 err.SetErrorString( 1242 "can't run static initializers for a NULL execution unit"); 1243 return err; 1244 } 1245 1246 if (!exe_ctx.HasThreadScope()) { 1247 err.SetErrorString("can't run static initializers without a thread"); 1248 return err; 1249 } 1250 1251 std::vector<lldb::addr_t> static_initializers; 1252 1253 execution_unit_sp->GetStaticInitializers(static_initializers); 1254 1255 for (lldb::addr_t static_initializer : static_initializers) { 1256 EvaluateExpressionOptions options; 1257 1258 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1259 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1260 llvm::ArrayRef<lldb::addr_t>(), options)); 1261 1262 DiagnosticManager execution_errors; 1263 lldb::ExpressionResults results = 1264 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1265 exe_ctx, call_static_initializer, options, execution_errors); 1266 1267 if (results != lldb::eExpressionCompleted) { 1268 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1269 execution_errors.GetString().c_str()); 1270 return err; 1271 } 1272 } 1273 1274 return err; 1275 } 1276