1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <cctype>
10 #include "clang/AST/ASTContext.h"
11 #include "clang/AST/ASTDiagnostic.h"
12 #include "clang/AST/ExternalASTSource.h"
13 #include "clang/AST/PrettyPrinter.h"
14 #include "clang/Basic/DiagnosticIDs.h"
15 #include "clang/Basic/FileManager.h"
16 #include "clang/Basic/SourceLocation.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Basic/Version.h"
19 #include "clang/CodeGen/CodeGenAction.h"
20 #include "clang/CodeGen/ModuleBuilder.h"
21 #include "clang/Edit/Commit.h"
22 #include "clang/Edit/EditedSource.h"
23 #include "clang/Edit/EditsReceiver.h"
24 #include "clang/Frontend/CompilerInstance.h"
25 #include "clang/Frontend/CompilerInvocation.h"
26 #include "clang/Frontend/FrontendActions.h"
27 #include "clang/Frontend/FrontendDiagnostic.h"
28 #include "clang/Frontend/FrontendPluginRegistry.h"
29 #include "clang/Frontend/TextDiagnosticBuffer.h"
30 #include "clang/Frontend/TextDiagnosticPrinter.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Parse/ParseAST.h"
33 #include "clang/Rewrite/Core/Rewriter.h"
34 #include "clang/Rewrite/Frontend/FrontendActions.h"
35 #include "clang/Sema/CodeCompleteConsumer.h"
36 #include "clang/Sema/Sema.h"
37 #include "clang/Sema/SemaConsumer.h"
38 
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/ExecutionEngine/ExecutionEngine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/TargetSelect.h"
44 
45 #pragma clang diagnostic push
46 #pragma clang diagnostic ignored "-Wglobal-constructors"
47 #include "llvm/ExecutionEngine/MCJIT.h"
48 #pragma clang diagnostic pop
49 
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/Support/DynamicLibrary.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/Host.h"
55 #include "llvm/Support/MemoryBuffer.h"
56 #include "llvm/Support/Signals.h"
57 
58 #include "ClangDiagnostic.h"
59 #include "ClangExpressionParser.h"
60 
61 #include "ClangASTSource.h"
62 #include "ClangExpressionDeclMap.h"
63 #include "ClangExpressionHelper.h"
64 #include "ClangModulesDeclVendor.h"
65 #include "ClangPersistentVariables.h"
66 #include "IRForTarget.h"
67 
68 #include "lldb/Core/Debugger.h"
69 #include "lldb/Core/Disassembler.h"
70 #include "lldb/Core/Module.h"
71 #include "lldb/Core/StreamFile.h"
72 #include "lldb/Expression/IRDynamicChecks.h"
73 #include "lldb/Expression/IRExecutionUnit.h"
74 #include "lldb/Expression/IRInterpreter.h"
75 #include "lldb/Host/File.h"
76 #include "lldb/Host/HostInfo.h"
77 #include "lldb/Symbol/ClangASTContext.h"
78 #include "lldb/Symbol/SymbolVendor.h"
79 #include "lldb/Target/ExecutionContext.h"
80 #include "lldb/Target/Language.h"
81 #include "lldb/Target/ObjCLanguageRuntime.h"
82 #include "lldb/Target/Process.h"
83 #include "lldb/Target/Target.h"
84 #include "lldb/Target/ThreadPlanCallFunction.h"
85 #include "lldb/Utility/DataBufferHeap.h"
86 #include "lldb/Utility/LLDBAssert.h"
87 #include "lldb/Utility/Log.h"
88 #include "lldb/Utility/Stream.h"
89 #include "lldb/Utility/StreamString.h"
90 #include "lldb/Utility/StringList.h"
91 
92 using namespace clang;
93 using namespace llvm;
94 using namespace lldb_private;
95 
96 //===----------------------------------------------------------------------===//
97 // Utility Methods for Clang
98 //===----------------------------------------------------------------------===//
99 
100 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
101   ClangModulesDeclVendor &m_decl_vendor;
102   ClangPersistentVariables &m_persistent_vars;
103   StreamString m_error_stream;
104   bool m_has_errors = false;
105 
106 public:
107   LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
108                             ClangPersistentVariables &persistent_vars)
109       : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {}
110 
111   void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
112                     const clang::Module * /*null*/) override {
113     std::vector<ConstString> string_path;
114 
115     for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) {
116       string_path.push_back(ConstString(component.first->getName()));
117     }
118 
119     StreamString error_stream;
120 
121     ClangModulesDeclVendor::ModuleVector exported_modules;
122 
123     if (!m_decl_vendor.AddModule(string_path, &exported_modules,
124                                  m_error_stream)) {
125       m_has_errors = true;
126     }
127 
128     for (ClangModulesDeclVendor::ModuleID module : exported_modules) {
129       m_persistent_vars.AddHandLoadedClangModule(module);
130     }
131   }
132 
133   bool hasErrors() { return m_has_errors; }
134 
135   llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
136 };
137 
138 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
139 public:
140   ClangDiagnosticManagerAdapter()
141       : m_passthrough(new clang::TextDiagnosticBuffer) {}
142 
143   ClangDiagnosticManagerAdapter(
144       const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
145       : m_passthrough(passthrough) {}
146 
147   void ResetManager(DiagnosticManager *manager = nullptr) {
148     m_manager = manager;
149   }
150 
151   void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
152                         const clang::Diagnostic &Info) {
153     if (m_manager) {
154       llvm::SmallVector<char, 32> diag_str;
155       Info.FormatDiagnostic(diag_str);
156       diag_str.push_back('\0');
157       const char *data = diag_str.data();
158 
159       lldb_private::DiagnosticSeverity severity;
160       bool make_new_diagnostic = true;
161 
162       switch (DiagLevel) {
163       case DiagnosticsEngine::Level::Fatal:
164       case DiagnosticsEngine::Level::Error:
165         severity = eDiagnosticSeverityError;
166         break;
167       case DiagnosticsEngine::Level::Warning:
168         severity = eDiagnosticSeverityWarning;
169         break;
170       case DiagnosticsEngine::Level::Remark:
171       case DiagnosticsEngine::Level::Ignored:
172         severity = eDiagnosticSeverityRemark;
173         break;
174       case DiagnosticsEngine::Level::Note:
175         m_manager->AppendMessageToDiagnostic(data);
176         make_new_diagnostic = false;
177       }
178       if (make_new_diagnostic) {
179         ClangDiagnostic *new_diagnostic =
180             new ClangDiagnostic(data, severity, Info.getID());
181         m_manager->AddDiagnostic(new_diagnostic);
182 
183         // Don't store away warning fixits, since the compiler doesn't have
184         // enough context in an expression for the warning to be useful.
185         // FIXME: Should we try to filter out FixIts that apply to our generated
186         // code, and not the user's expression?
187         if (severity == eDiagnosticSeverityError) {
188           size_t num_fixit_hints = Info.getNumFixItHints();
189           for (size_t i = 0; i < num_fixit_hints; i++) {
190             const clang::FixItHint &fixit = Info.getFixItHint(i);
191             if (!fixit.isNull())
192               new_diagnostic->AddFixitHint(fixit);
193           }
194         }
195       }
196     }
197 
198     m_passthrough->HandleDiagnostic(DiagLevel, Info);
199   }
200 
201   void FlushDiagnostics(DiagnosticsEngine &Diags) {
202     m_passthrough->FlushDiagnostics(Diags);
203   }
204 
205   DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
206     return new ClangDiagnosticManagerAdapter(m_passthrough);
207   }
208 
209   clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); }
210 
211 private:
212   DiagnosticManager *m_manager = nullptr;
213   std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
214 };
215 
216 //===----------------------------------------------------------------------===//
217 // Implementation of ClangExpressionParser
218 //===----------------------------------------------------------------------===//
219 
220 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope,
221                                              Expression &expr,
222                                              bool generate_debug_info)
223     : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
224       m_pp_callbacks(nullptr) {
225   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
226 
227   // We can't compile expressions without a target.  So if the exe_scope is
228   // null or doesn't have a target, then we just need to get out of here.  I'll
229   // lldb_assert and not make any of the compiler objects since
230   // I can't return errors directly from the constructor.  Further calls will
231   // check if the compiler was made and
232   // bag out if it wasn't.
233 
234   if (!exe_scope) {
235     lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
236                 __FUNCTION__, __FILE__, __LINE__);
237     return;
238   }
239 
240   lldb::TargetSP target_sp;
241   target_sp = exe_scope->CalculateTarget();
242   if (!target_sp) {
243     lldb_assert(target_sp.get(),
244                 "Can't make an expression parser with a null target.",
245                 __FUNCTION__, __FILE__, __LINE__);
246     return;
247   }
248 
249   // 1. Create a new compiler instance.
250   m_compiler.reset(new CompilerInstance());
251   lldb::LanguageType frame_lang =
252       expr.Language(); // defaults to lldb::eLanguageTypeUnknown
253   bool overridden_target_opts = false;
254   lldb_private::LanguageRuntime *lang_rt = nullptr;
255 
256   std::string abi;
257   ArchSpec target_arch;
258   target_arch = target_sp->GetArchitecture();
259 
260   const auto target_machine = target_arch.GetMachine();
261 
262   // If the expression is being evaluated in the context of an existing stack
263   // frame, we introspect to see if the language runtime is available.
264 
265   lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
266   lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
267 
268   // Make sure the user hasn't provided a preferred execution language with
269   // `expression --language X -- ...`
270   if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
271     frame_lang = frame_sp->GetLanguage();
272 
273   if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
274     lang_rt = process_sp->GetLanguageRuntime(frame_lang);
275     if (log)
276       log->Printf("Frame has language of type %s",
277                   Language::GetNameForLanguageType(frame_lang));
278   }
279 
280   // 2. Configure the compiler with a set of default options that are
281   // appropriate for most situations.
282   if (target_arch.IsValid()) {
283     std::string triple = target_arch.GetTriple().str();
284     m_compiler->getTargetOpts().Triple = triple;
285     if (log)
286       log->Printf("Using %s as the target triple",
287                   m_compiler->getTargetOpts().Triple.c_str());
288   } else {
289     // If we get here we don't have a valid target and just have to guess.
290     // Sometimes this will be ok to just use the host target triple (when we
291     // evaluate say "2+3", but other expressions like breakpoint conditions and
292     // other things that _are_ target specific really shouldn't just be using
293     // the host triple. In such a case the language runtime should expose an
294     // overridden options set (3), below.
295     m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
296     if (log)
297       log->Printf("Using default target triple of %s",
298                   m_compiler->getTargetOpts().Triple.c_str());
299   }
300   // Now add some special fixes for known architectures: Any arm32 iOS
301   // environment, but not on arm64
302   if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
303       m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
304       m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
305     m_compiler->getTargetOpts().ABI = "apcs-gnu";
306   }
307   // Supported subsets of x86
308   if (target_machine == llvm::Triple::x86 ||
309       target_machine == llvm::Triple::x86_64) {
310     m_compiler->getTargetOpts().Features.push_back("+sse");
311     m_compiler->getTargetOpts().Features.push_back("+sse2");
312   }
313 
314   // Set the target CPU to generate code for. This will be empty for any CPU
315   // that doesn't really need to make a special
316   // CPU string.
317   m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
318 
319   // Set the target ABI
320   abi = GetClangTargetABI(target_arch);
321   if (!abi.empty())
322     m_compiler->getTargetOpts().ABI = abi;
323 
324   // 3. Now allow the runtime to provide custom configuration options for the
325   // target. In this case, a specialized language runtime is available and we
326   // can query it for extra options. For 99% of use cases, this will not be
327   // needed and should be provided when basic platform detection is not enough.
328   if (lang_rt)
329     overridden_target_opts =
330         lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
331 
332   if (overridden_target_opts)
333     if (log && log->GetVerbose()) {
334       LLDB_LOGV(
335           log, "Using overridden target options for the expression evaluation");
336 
337       auto opts = m_compiler->getTargetOpts();
338       LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
339       LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
340       LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
341       LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
342       LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
343       StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
344       StringList::LogDump(log, opts.Features, "Features");
345     }
346 
347   // 4. Create and install the target on the compiler.
348   m_compiler->createDiagnostics();
349   auto target_info = TargetInfo::CreateTargetInfo(
350       m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
351   if (log) {
352     log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign());
353     log->Printf("Target datalayout string: '%s'",
354                 target_info->getDataLayout().getStringRepresentation().c_str());
355     log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str());
356     log->Printf("Target vector alignment: %d",
357                 target_info->getMaxVectorAlign());
358   }
359   m_compiler->setTarget(target_info);
360 
361   assert(m_compiler->hasTarget());
362 
363   // 5. Set language options.
364   lldb::LanguageType language = expr.Language();
365 
366   switch (language) {
367   case lldb::eLanguageTypeC:
368   case lldb::eLanguageTypeC89:
369   case lldb::eLanguageTypeC99:
370   case lldb::eLanguageTypeC11:
371     // FIXME: the following language option is a temporary workaround,
372     // to "ask for C, get C++."
373     // For now, the expression parser must use C++ anytime the language is a C
374     // family language, because the expression parser uses features of C++ to
375     // capture values.
376     m_compiler->getLangOpts().CPlusPlus = true;
377     break;
378   case lldb::eLanguageTypeObjC:
379     m_compiler->getLangOpts().ObjC = true;
380     // FIXME: the following language option is a temporary workaround,
381     // to "ask for ObjC, get ObjC++" (see comment above).
382     m_compiler->getLangOpts().CPlusPlus = true;
383 
384     // Clang now sets as default C++14 as the default standard (with
385     // GNU extensions), so we do the same here to avoid mismatches that
386     // cause compiler error when evaluating expressions (e.g. nullptr not found
387     // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
388     // two lines below) so we decide to be consistent with that, but this could
389     // be re-evaluated in the future.
390     m_compiler->getLangOpts().CPlusPlus11 = true;
391     break;
392   case lldb::eLanguageTypeC_plus_plus:
393   case lldb::eLanguageTypeC_plus_plus_11:
394   case lldb::eLanguageTypeC_plus_plus_14:
395     m_compiler->getLangOpts().CPlusPlus11 = true;
396     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
397     LLVM_FALLTHROUGH;
398   case lldb::eLanguageTypeC_plus_plus_03:
399     m_compiler->getLangOpts().CPlusPlus = true;
400     if (process_sp)
401       m_compiler->getLangOpts().ObjC =
402           process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
403     break;
404   case lldb::eLanguageTypeObjC_plus_plus:
405   case lldb::eLanguageTypeUnknown:
406   default:
407     m_compiler->getLangOpts().ObjC = true;
408     m_compiler->getLangOpts().CPlusPlus = true;
409     m_compiler->getLangOpts().CPlusPlus11 = true;
410     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
411     break;
412   }
413 
414   m_compiler->getLangOpts().Bool = true;
415   m_compiler->getLangOpts().WChar = true;
416   m_compiler->getLangOpts().Blocks = true;
417   m_compiler->getLangOpts().DebuggerSupport =
418       true; // Features specifically for debugger clients
419   if (expr.DesiredResultType() == Expression::eResultTypeId)
420     m_compiler->getLangOpts().DebuggerCastResultToId = true;
421 
422   m_compiler->getLangOpts().CharIsSigned =
423       ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
424           .CharIsSignedByDefault();
425 
426   // Spell checking is a nice feature, but it ends up completing a lot of types
427   // that we didn't strictly speaking need to complete. As a result, we spend a
428   // long time parsing and importing debug information.
429   m_compiler->getLangOpts().SpellChecking = false;
430 
431   if (process_sp && m_compiler->getLangOpts().ObjC) {
432     if (process_sp->GetObjCLanguageRuntime()) {
433       if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() ==
434           ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
435         m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX,
436                                                   VersionTuple(10, 7));
437       else
438         m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
439                                                   VersionTuple(10, 7));
440 
441       if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing())
442         m_compiler->getLangOpts().DebuggerObjCLiteral = true;
443     }
444   }
445 
446   m_compiler->getLangOpts().ThreadsafeStatics = false;
447   m_compiler->getLangOpts().AccessControl =
448       false; // Debuggers get universal access
449   m_compiler->getLangOpts().DollarIdents =
450       true; // $ indicates a persistent variable name
451   // We enable all builtin functions beside the builtins from libc/libm (e.g.
452   // 'fopen'). Those libc functions are already correctly handled by LLDB, and
453   // additionally enabling them as expandable builtins is breaking Clang.
454   m_compiler->getLangOpts().NoBuiltin = true;
455 
456   // Set CodeGen options
457   m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
458   m_compiler->getCodeGenOpts().InstrumentFunctions = false;
459   m_compiler->getCodeGenOpts().DisableFPElim = true;
460   m_compiler->getCodeGenOpts().OmitLeafFramePointer = false;
461   if (generate_debug_info)
462     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
463   else
464     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
465 
466   // Disable some warnings.
467   m_compiler->getDiagnostics().setSeverityForGroup(
468       clang::diag::Flavor::WarningOrError, "unused-value",
469       clang::diag::Severity::Ignored, SourceLocation());
470   m_compiler->getDiagnostics().setSeverityForGroup(
471       clang::diag::Flavor::WarningOrError, "odr",
472       clang::diag::Severity::Ignored, SourceLocation());
473 
474   // Inform the target of the language options
475   //
476   // FIXME: We shouldn't need to do this, the target should be immutable once
477   // created. This complexity should be lifted elsewhere.
478   m_compiler->getTarget().adjust(m_compiler->getLangOpts());
479 
480   // 6. Set up the diagnostic buffer for reporting errors
481 
482   m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
483 
484   // 7. Set up the source management objects inside the compiler
485 
486   clang::FileSystemOptions file_system_options;
487   m_file_manager.reset(new clang::FileManager(file_system_options));
488 
489   if (!m_compiler->hasSourceManager())
490     m_compiler->createSourceManager(*m_file_manager.get());
491 
492   m_compiler->createFileManager();
493   m_compiler->createPreprocessor(TU_Complete);
494 
495   if (ClangModulesDeclVendor *decl_vendor =
496           target_sp->GetClangModulesDeclVendor()) {
497     ClangPersistentVariables *clang_persistent_vars =
498         llvm::cast<ClangPersistentVariables>(
499             target_sp->GetPersistentExpressionStateForLanguage(
500                 lldb::eLanguageTypeC));
501     std::unique_ptr<PPCallbacks> pp_callbacks(
502         new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
503     m_pp_callbacks =
504         static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
505     m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
506   }
507 
508   // 8. Most of this we get from the CompilerInstance, but we also want to give
509   // the context an ExternalASTSource.
510 
511   auto &PP = m_compiler->getPreprocessor();
512   auto &builtin_context = PP.getBuiltinInfo();
513   builtin_context.initializeBuiltins(PP.getIdentifierTable(),
514                                      m_compiler->getLangOpts());
515 
516   m_compiler->createASTContext();
517   clang::ASTContext &ast_context = m_compiler->getASTContext();
518 
519   ClangExpressionHelper *type_system_helper =
520       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
521   ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
522 
523   if (decl_map) {
524     llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source(
525         decl_map->CreateProxy());
526     decl_map->InstallASTContext(ast_context, m_compiler->getFileManager());
527     ast_context.setExternalSource(ast_source);
528   }
529 
530   m_ast_context.reset(
531       new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
532   m_ast_context->setASTContext(&ast_context);
533 
534   std::string module_name("$__lldb_module");
535 
536   m_llvm_context.reset(new LLVMContext());
537   m_code_generator.reset(CreateLLVMCodeGen(
538       m_compiler->getDiagnostics(), module_name,
539       m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
540       m_compiler->getCodeGenOpts(), *m_llvm_context));
541 }
542 
543 ClangExpressionParser::~ClangExpressionParser() {}
544 
545 namespace {
546 
547 //----------------------------------------------------------------------
548 /// @class CodeComplete
549 ///
550 /// A code completion consumer for the clang Sema that is responsible for
551 /// creating the completion suggestions when a user requests completion
552 /// of an incomplete `expr` invocation.
553 //----------------------------------------------------------------------
554 class CodeComplete : public CodeCompleteConsumer {
555   CodeCompletionTUInfo m_info;
556 
557   std::string m_expr;
558   unsigned m_position = 0;
559   CompletionRequest &m_request;
560   /// The printing policy we use when printing declarations for our completion
561   /// descriptions.
562   clang::PrintingPolicy m_desc_policy;
563 
564   /// Returns true if the given character can be used in an identifier.
565   /// This also returns true for numbers because for completion we usually
566   /// just iterate backwards over iterators.
567   ///
568   /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
569   static bool IsIdChar(char c) {
570     return c == '_' || std::isalnum(c) || c == '$';
571   }
572 
573   /// Returns true if the given character is used to separate arguments
574   /// in the command line of lldb.
575   static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
576 
577   /// Drops all tokens in front of the expression that are unrelated for
578   /// the completion of the cmd line. 'unrelated' means here that the token
579   /// is not interested for the lldb completion API result.
580   StringRef dropUnrelatedFrontTokens(StringRef cmd) {
581     if (cmd.empty())
582       return cmd;
583 
584     // If we are at the start of a word, then all tokens are unrelated to
585     // the current completion logic.
586     if (IsTokenSeparator(cmd.back()))
587       return StringRef();
588 
589     // Remove all previous tokens from the string as they are unrelated
590     // to completing the current token.
591     StringRef to_remove = cmd;
592     while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
593       to_remove = to_remove.drop_back();
594     }
595     cmd = cmd.drop_front(to_remove.size());
596 
597     return cmd;
598   }
599 
600   /// Removes the last identifier token from the given cmd line.
601   StringRef removeLastToken(StringRef cmd) {
602     while (!cmd.empty() && IsIdChar(cmd.back())) {
603       cmd = cmd.drop_back();
604     }
605     return cmd;
606   }
607 
608   /// Attemps to merge the given completion from the given position into the
609   /// existing command. Returns the completion string that can be returned to
610   /// the lldb completion API.
611   std::string mergeCompletion(StringRef existing, unsigned pos,
612                               StringRef completion) {
613     StringRef existing_command = existing.substr(0, pos);
614     // We rewrite the last token with the completion, so let's drop that
615     // token from the command.
616     existing_command = removeLastToken(existing_command);
617     // We also should remove all previous tokens from the command as they
618     // would otherwise be added to the completion that already has the
619     // completion.
620     existing_command = dropUnrelatedFrontTokens(existing_command);
621     return existing_command.str() + completion.str();
622   }
623 
624 public:
625   /// Constructs a CodeComplete consumer that can be attached to a Sema.
626   /// @param[out] matches
627   ///    The list of matches that the lldb completion API expects as a result.
628   ///    This may already contain matches, so it's only allowed to append
629   ///    to this variable.
630   /// @param[out] expr
631   ///    The whole expression string that we are currently parsing. This
632   ///    string needs to be equal to the input the user typed, and NOT the
633   ///    final code that Clang is parsing.
634   /// @param[out] position
635   ///    The character position of the user cursor in the `expr` parameter.
636   ///
637   CodeComplete(CompletionRequest &request, clang::LangOptions ops,
638                std::string expr, unsigned position)
639       : CodeCompleteConsumer(CodeCompleteOptions(), false),
640         m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
641         m_position(position), m_request(request), m_desc_policy(ops) {
642 
643     // Ensure that the printing policy is producing a description that is as
644     // short as possible.
645     m_desc_policy.SuppressScope = true;
646     m_desc_policy.SuppressTagKeyword = true;
647     m_desc_policy.FullyQualifiedName = false;
648     m_desc_policy.TerseOutput = true;
649     m_desc_policy.IncludeNewlines = false;
650     m_desc_policy.UseVoidForZeroParams = false;
651     m_desc_policy.Bool = true;
652   }
653 
654   /// Deregisters and destroys this code-completion consumer.
655   virtual ~CodeComplete() {}
656 
657   /// \name Code-completion filtering
658   /// Check if the result should be filtered out.
659   bool isResultFilteredOut(StringRef Filter,
660                            CodeCompletionResult Result) override {
661     // This code is mostly copied from CodeCompleteConsumer.
662     switch (Result.Kind) {
663     case CodeCompletionResult::RK_Declaration:
664       return !(
665           Result.Declaration->getIdentifier() &&
666           Result.Declaration->getIdentifier()->getName().startswith(Filter));
667     case CodeCompletionResult::RK_Keyword:
668       return !StringRef(Result.Keyword).startswith(Filter);
669     case CodeCompletionResult::RK_Macro:
670       return !Result.Macro->getName().startswith(Filter);
671     case CodeCompletionResult::RK_Pattern:
672       return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
673     }
674     // If we trigger this assert or the above switch yields a warning, then
675     // CodeCompletionResult has been enhanced with more kinds of completion
676     // results. Expand the switch above in this case.
677     assert(false && "Unknown completion result type?");
678     // If we reach this, then we should just ignore whatever kind of unknown
679     // result we got back. We probably can't turn it into any kind of useful
680     // completion suggestion with the existing code.
681     return true;
682   }
683 
684   /// \name Code-completion callbacks
685   /// Process the finalized code-completion results.
686   void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
687                                   CodeCompletionResult *Results,
688                                   unsigned NumResults) override {
689 
690     // The Sema put the incomplete token we try to complete in here during
691     // lexing, so we need to retrieve it here to know what we are completing.
692     StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
693 
694     // Iterate over all the results. Filter out results we don't want and
695     // process the rest.
696     for (unsigned I = 0; I != NumResults; ++I) {
697       // Filter the results with the information from the Sema.
698       if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
699         continue;
700 
701       CodeCompletionResult &R = Results[I];
702       std::string ToInsert;
703       std::string Description;
704       // Handle the different completion kinds that come from the Sema.
705       switch (R.Kind) {
706       case CodeCompletionResult::RK_Declaration: {
707         const NamedDecl *D = R.Declaration;
708         ToInsert = R.Declaration->getNameAsString();
709         // If we have a function decl that has no arguments we want to
710         // complete the empty parantheses for the user. If the function has
711         // arguments, we at least complete the opening bracket.
712         if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
713           if (F->getNumParams() == 0)
714             ToInsert += "()";
715           else
716             ToInsert += "(";
717           raw_string_ostream OS(Description);
718           F->print(OS, m_desc_policy, false);
719           OS.flush();
720         } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
721           Description = V->getType().getAsString(m_desc_policy);
722         } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
723           Description = F->getType().getAsString(m_desc_policy);
724         } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
725           // If we try to complete a namespace, then we can directly append
726           // the '::'.
727           if (!N->isAnonymousNamespace())
728             ToInsert += "::";
729         }
730         break;
731       }
732       case CodeCompletionResult::RK_Keyword:
733         ToInsert = R.Keyword;
734         break;
735       case CodeCompletionResult::RK_Macro:
736         ToInsert = R.Macro->getName().str();
737         break;
738       case CodeCompletionResult::RK_Pattern:
739         ToInsert = R.Pattern->getTypedText();
740         break;
741       }
742       // At this point all information is in the ToInsert string.
743 
744       // We also filter some internal lldb identifiers here. The user
745       // shouldn't see these.
746       if (StringRef(ToInsert).startswith("$__lldb_"))
747         continue;
748       if (!ToInsert.empty()) {
749         // Merge the suggested Token into the existing command line to comply
750         // with the kind of result the lldb API expects.
751         std::string CompletionSuggestion =
752             mergeCompletion(m_expr, m_position, ToInsert);
753         m_request.AddCompletion(CompletionSuggestion, Description);
754       }
755     }
756   }
757 
758   /// \param S the semantic-analyzer object for which code-completion is being
759   /// done.
760   ///
761   /// \param CurrentArg the index of the current argument.
762   ///
763   /// \param Candidates an array of overload candidates.
764   ///
765   /// \param NumCandidates the number of overload candidates
766   void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
767                                  OverloadCandidate *Candidates,
768                                  unsigned NumCandidates,
769                                  SourceLocation OpenParLoc) override {
770     // At the moment we don't filter out any overloaded candidates.
771   }
772 
773   CodeCompletionAllocator &getAllocator() override {
774     return m_info.getAllocator();
775   }
776 
777   CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
778 };
779 } // namespace
780 
781 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
782                                      unsigned pos, unsigned typed_pos) {
783   DiagnosticManager mgr;
784   // We need the raw user expression here because that's what the CodeComplete
785   // class uses to provide completion suggestions.
786   // However, the `Text` method only gives us the transformed expression here.
787   // To actually get the raw user input here, we have to cast our expression to
788   // the LLVMUserExpression which exposes the right API. This should never fail
789   // as we always have a ClangUserExpression whenever we call this.
790   LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr);
791   CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(),
792                   typed_pos);
793   // We don't need a code generator for parsing.
794   m_code_generator.reset();
795   // Start parsing the expression with our custom code completion consumer.
796   ParseInternal(mgr, &CC, line, pos);
797   return true;
798 }
799 
800 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
801   return ParseInternal(diagnostic_manager);
802 }
803 
804 unsigned
805 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
806                                      CodeCompleteConsumer *completion_consumer,
807                                      unsigned completion_line,
808                                      unsigned completion_column) {
809   ClangDiagnosticManagerAdapter *adapter =
810       static_cast<ClangDiagnosticManagerAdapter *>(
811           m_compiler->getDiagnostics().getClient());
812   clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
813   diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
814 
815   adapter->ResetManager(&diagnostic_manager);
816 
817   const char *expr_text = m_expr.Text();
818 
819   clang::SourceManager &source_mgr = m_compiler->getSourceManager();
820   bool created_main_file = false;
821 
822   // Clang wants to do completion on a real file known by Clang's file manager,
823   // so we have to create one to make this work.
824   // TODO: We probably could also simulate to Clang's file manager that there
825   // is a real file that contains our code.
826   bool should_create_file = completion_consumer != nullptr;
827 
828   // We also want a real file on disk if we generate full debug info.
829   should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
830                         codegenoptions::FullDebugInfo;
831 
832   if (should_create_file) {
833     int temp_fd = -1;
834     llvm::SmallString<128> result_path;
835     if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
836       tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
837       std::string temp_source_path = tmpdir_file_spec.GetPath();
838       llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
839     } else {
840       llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
841     }
842 
843     if (temp_fd != -1) {
844       lldb_private::File file(temp_fd, true);
845       const size_t expr_text_len = strlen(expr_text);
846       size_t bytes_written = expr_text_len;
847       if (file.Write(expr_text, bytes_written).Success()) {
848         if (bytes_written == expr_text_len) {
849           file.Close();
850           source_mgr.setMainFileID(
851               source_mgr.createFileID(m_file_manager->getFile(result_path),
852                                       SourceLocation(), SrcMgr::C_User));
853           created_main_file = true;
854         }
855       }
856     }
857   }
858 
859   if (!created_main_file) {
860     std::unique_ptr<MemoryBuffer> memory_buffer =
861         MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__);
862     source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
863   }
864 
865   diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
866                             &m_compiler->getPreprocessor());
867 
868   ClangExpressionHelper *type_system_helper =
869       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
870 
871   ASTConsumer *ast_transformer =
872       type_system_helper->ASTTransformer(m_code_generator.get());
873 
874   if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap())
875     decl_map->InstallCodeGenerator(m_code_generator.get());
876 
877   // If we want to parse for code completion, we need to attach our code
878   // completion consumer to the Sema and specify a completion position.
879   // While parsing the Sema will call this consumer with the provided
880   // completion suggestions.
881   if (completion_consumer) {
882     auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
883     auto &PP = m_compiler->getPreprocessor();
884     // Lines and columns start at 1 in Clang, but code completion positions are
885     // indexed from 0, so we need to add 1 to the line and column here.
886     ++completion_line;
887     ++completion_column;
888     PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
889   }
890 
891   if (ast_transformer) {
892     ast_transformer->Initialize(m_compiler->getASTContext());
893     ParseAST(m_compiler->getPreprocessor(), ast_transformer,
894              m_compiler->getASTContext(), false, TU_Complete,
895              completion_consumer);
896   } else {
897     m_code_generator->Initialize(m_compiler->getASTContext());
898     ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(),
899              m_compiler->getASTContext(), false, TU_Complete,
900              completion_consumer);
901   }
902 
903   diag_buf->EndSourceFile();
904 
905   unsigned num_errors = diag_buf->getNumErrors();
906 
907   if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
908     num_errors++;
909     diagnostic_manager.PutString(eDiagnosticSeverityError,
910                                  "while importing modules:");
911     diagnostic_manager.AppendMessageToDiagnostic(
912         m_pp_callbacks->getErrorString());
913   }
914 
915   if (!num_errors) {
916     if (type_system_helper->DeclMap() &&
917         !type_system_helper->DeclMap()->ResolveUnknownTypes()) {
918       diagnostic_manager.Printf(eDiagnosticSeverityError,
919                                 "Couldn't infer the type of a variable");
920       num_errors++;
921     }
922   }
923 
924   if (!num_errors) {
925     type_system_helper->CommitPersistentDecls();
926   }
927 
928   adapter->ResetManager();
929 
930   return num_errors;
931 }
932 
933 std::string
934 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
935   std::string abi;
936 
937   if (target_arch.IsMIPS()) {
938     switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
939     case ArchSpec::eMIPSABI_N64:
940       abi = "n64";
941       break;
942     case ArchSpec::eMIPSABI_N32:
943       abi = "n32";
944       break;
945     case ArchSpec::eMIPSABI_O32:
946       abi = "o32";
947       break;
948     default:
949       break;
950     }
951   }
952   return abi;
953 }
954 
955 bool ClangExpressionParser::RewriteExpression(
956     DiagnosticManager &diagnostic_manager) {
957   clang::SourceManager &source_manager = m_compiler->getSourceManager();
958   clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
959                                    nullptr);
960   clang::edit::Commit commit(editor);
961   clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
962 
963   class RewritesReceiver : public edit::EditsReceiver {
964     Rewriter &rewrite;
965 
966   public:
967     RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
968 
969     void insert(SourceLocation loc, StringRef text) override {
970       rewrite.InsertText(loc, text);
971     }
972     void replace(CharSourceRange range, StringRef text) override {
973       rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
974     }
975   };
976 
977   RewritesReceiver rewrites_receiver(rewriter);
978 
979   const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
980   size_t num_diags = diagnostics.size();
981   if (num_diags == 0)
982     return false;
983 
984   for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) {
985     const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
986     if (diagnostic && diagnostic->HasFixIts()) {
987       for (const FixItHint &fixit : diagnostic->FixIts()) {
988         // This is cobbed from clang::Rewrite::FixItRewriter.
989         if (fixit.CodeToInsert.empty()) {
990           if (fixit.InsertFromRange.isValid()) {
991             commit.insertFromRange(fixit.RemoveRange.getBegin(),
992                                    fixit.InsertFromRange, /*afterToken=*/false,
993                                    fixit.BeforePreviousInsertions);
994           } else
995             commit.remove(fixit.RemoveRange);
996         } else {
997           if (fixit.RemoveRange.isTokenRange() ||
998               fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
999             commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1000           else
1001             commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1002                           /*afterToken=*/false, fixit.BeforePreviousInsertions);
1003         }
1004       }
1005     }
1006   }
1007 
1008   // FIXME - do we want to try to propagate specific errors here?
1009   if (!commit.isCommitable())
1010     return false;
1011   else if (!editor.commit(commit))
1012     return false;
1013 
1014   // Now play all the edits, and stash the result in the diagnostic manager.
1015   editor.applyRewrites(rewrites_receiver);
1016   RewriteBuffer &main_file_buffer =
1017       rewriter.getEditBuffer(source_manager.getMainFileID());
1018 
1019   std::string fixed_expression;
1020   llvm::raw_string_ostream out_stream(fixed_expression);
1021 
1022   main_file_buffer.write(out_stream);
1023   out_stream.flush();
1024   diagnostic_manager.SetFixedExpression(fixed_expression);
1025 
1026   return true;
1027 }
1028 
1029 static bool FindFunctionInModule(ConstString &mangled_name,
1030                                  llvm::Module *module, const char *orig_name) {
1031   for (const auto &func : module->getFunctionList()) {
1032     const StringRef &name = func.getName();
1033     if (name.find(orig_name) != StringRef::npos) {
1034       mangled_name.SetString(name);
1035       return true;
1036     }
1037   }
1038 
1039   return false;
1040 }
1041 
1042 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1043     lldb::addr_t &func_addr, lldb::addr_t &func_end,
1044     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1045     bool &can_interpret, ExecutionPolicy execution_policy) {
1046   func_addr = LLDB_INVALID_ADDRESS;
1047   func_end = LLDB_INVALID_ADDRESS;
1048   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1049 
1050   lldb_private::Status err;
1051 
1052   std::unique_ptr<llvm::Module> llvm_module_ap(
1053       m_code_generator->ReleaseModule());
1054 
1055   if (!llvm_module_ap.get()) {
1056     err.SetErrorToGenericError();
1057     err.SetErrorString("IR doesn't contain a module");
1058     return err;
1059   }
1060 
1061   ConstString function_name;
1062 
1063   if (execution_policy != eExecutionPolicyTopLevel) {
1064     // Find the actual name of the function (it's often mangled somehow)
1065 
1066     if (!FindFunctionInModule(function_name, llvm_module_ap.get(),
1067                               m_expr.FunctionName())) {
1068       err.SetErrorToGenericError();
1069       err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1070                                    m_expr.FunctionName());
1071       return err;
1072     } else {
1073       if (log)
1074         log->Printf("Found function %s for %s", function_name.AsCString(),
1075                     m_expr.FunctionName());
1076     }
1077   }
1078 
1079   SymbolContext sc;
1080 
1081   if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1082     sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1083   } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1084     sc.target_sp = target_sp;
1085   }
1086 
1087   LLVMUserExpression::IRPasses custom_passes;
1088   {
1089     auto lang = m_expr.Language();
1090     if (log)
1091       log->Printf("%s - Current expression language is %s\n", __FUNCTION__,
1092                   Language::GetNameForLanguageType(lang));
1093     lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1094     if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1095       auto runtime = process_sp->GetLanguageRuntime(lang);
1096       if (runtime)
1097         runtime->GetIRPasses(custom_passes);
1098     }
1099   }
1100 
1101   if (custom_passes.EarlyPasses) {
1102     if (log)
1103       log->Printf("%s - Running Early IR Passes from LanguageRuntime on "
1104                   "expression module '%s'",
1105                   __FUNCTION__, m_expr.FunctionName());
1106 
1107     custom_passes.EarlyPasses->run(*llvm_module_ap);
1108   }
1109 
1110   execution_unit_sp.reset(
1111       new IRExecutionUnit(m_llvm_context, // handed off here
1112                           llvm_module_ap, // handed off here
1113                           function_name, exe_ctx.GetTargetSP(), sc,
1114                           m_compiler->getTargetOpts().Features));
1115 
1116   ClangExpressionHelper *type_system_helper =
1117       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1118   ClangExpressionDeclMap *decl_map =
1119       type_system_helper->DeclMap(); // result can be NULL
1120 
1121   if (decl_map) {
1122     Stream *error_stream = NULL;
1123     Target *target = exe_ctx.GetTargetPtr();
1124     error_stream = target->GetDebugger().GetErrorFile().get();
1125 
1126     IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1127                               *execution_unit_sp, *error_stream,
1128                               function_name.AsCString());
1129 
1130     bool ir_can_run =
1131         ir_for_target.runOnModule(*execution_unit_sp->GetModule());
1132 
1133     if (!ir_can_run) {
1134       err.SetErrorString(
1135           "The expression could not be prepared to run in the target");
1136       return err;
1137     }
1138 
1139     Process *process = exe_ctx.GetProcessPtr();
1140 
1141     if (execution_policy != eExecutionPolicyAlways &&
1142         execution_policy != eExecutionPolicyTopLevel) {
1143       lldb_private::Status interpret_error;
1144 
1145       bool interpret_function_calls =
1146           !process ? false : process->CanInterpretFunctionCalls();
1147       can_interpret = IRInterpreter::CanInterpret(
1148           *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1149           interpret_error, interpret_function_calls);
1150 
1151       if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1152         err.SetErrorStringWithFormat("Can't run the expression locally: %s",
1153                                      interpret_error.AsCString());
1154         return err;
1155       }
1156     }
1157 
1158     if (!process && execution_policy == eExecutionPolicyAlways) {
1159       err.SetErrorString("Expression needed to run in the target, but the "
1160                          "target can't be run");
1161       return err;
1162     }
1163 
1164     if (!process && execution_policy == eExecutionPolicyTopLevel) {
1165       err.SetErrorString("Top-level code needs to be inserted into a runnable "
1166                          "target, but the target can't be run");
1167       return err;
1168     }
1169 
1170     if (execution_policy == eExecutionPolicyAlways ||
1171         (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1172       if (m_expr.NeedsValidation() && process) {
1173         if (!process->GetDynamicCheckers()) {
1174           DynamicCheckerFunctions *dynamic_checkers =
1175               new DynamicCheckerFunctions();
1176 
1177           DiagnosticManager install_diagnostics;
1178 
1179           if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1180             if (install_diagnostics.Diagnostics().size())
1181               err.SetErrorString(install_diagnostics.GetString().c_str());
1182             else
1183               err.SetErrorString("couldn't install checkers, unknown error");
1184 
1185             return err;
1186           }
1187 
1188           process->SetDynamicCheckers(dynamic_checkers);
1189 
1190           if (log)
1191             log->Printf("== [ClangUserExpression::Evaluate] Finished "
1192                         "installing dynamic checkers ==");
1193         }
1194 
1195         IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(),
1196                                           function_name.AsCString());
1197 
1198         llvm::Module *module = execution_unit_sp->GetModule();
1199         if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1200           err.SetErrorToGenericError();
1201           err.SetErrorString("Couldn't add dynamic checks to the expression");
1202           return err;
1203         }
1204 
1205         if (custom_passes.LatePasses) {
1206           if (log)
1207             log->Printf("%s - Running Late IR Passes from LanguageRuntime on "
1208                         "expression module '%s'",
1209                         __FUNCTION__, m_expr.FunctionName());
1210 
1211           custom_passes.LatePasses->run(*module);
1212         }
1213       }
1214     }
1215 
1216     if (execution_policy == eExecutionPolicyAlways ||
1217         execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1218       execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1219     }
1220   } else {
1221     execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1222   }
1223 
1224   return err;
1225 }
1226 
1227 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1228     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1229   lldb_private::Status err;
1230 
1231   lldbassert(execution_unit_sp.get());
1232   lldbassert(exe_ctx.HasThreadScope());
1233 
1234   if (!execution_unit_sp.get()) {
1235     err.SetErrorString(
1236         "can't run static initializers for a NULL execution unit");
1237     return err;
1238   }
1239 
1240   if (!exe_ctx.HasThreadScope()) {
1241     err.SetErrorString("can't run static initializers without a thread");
1242     return err;
1243   }
1244 
1245   std::vector<lldb::addr_t> static_initializers;
1246 
1247   execution_unit_sp->GetStaticInitializers(static_initializers);
1248 
1249   for (lldb::addr_t static_initializer : static_initializers) {
1250     EvaluateExpressionOptions options;
1251 
1252     lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1253         exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1254         llvm::ArrayRef<lldb::addr_t>(), options));
1255 
1256     DiagnosticManager execution_errors;
1257     lldb::ExpressionResults results =
1258         exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1259             exe_ctx, call_static_initializer, options, execution_errors);
1260 
1261     if (results != lldb::eExpressionCompleted) {
1262       err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1263                                    execution_errors.GetString().c_str());
1264       return err;
1265     }
1266   }
1267 
1268   return err;
1269 }
1270