1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/DiagnosticIDs.h" 14 #include "clang/Basic/SourceLocation.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "clang/Basic/Version.h" 17 #include "clang/CodeGen/CodeGenAction.h" 18 #include "clang/CodeGen/ModuleBuilder.h" 19 #include "clang/Edit/Commit.h" 20 #include "clang/Edit/EditedSource.h" 21 #include "clang/Edit/EditsReceiver.h" 22 #include "clang/Frontend/CompilerInstance.h" 23 #include "clang/Frontend/CompilerInvocation.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/FrontendPluginRegistry.h" 27 #include "clang/Frontend/TextDiagnosticBuffer.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Parse/ParseAST.h" 31 #include "clang/Rewrite/Core/Rewriter.h" 32 #include "clang/Rewrite/Frontend/FrontendActions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaConsumer.h" 36 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ExecutionEngine/ExecutionEngine.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/TargetSelect.h" 43 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/DynamicLibrary.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Host.h" 49 #include "llvm/Support/MemoryBuffer.h" 50 #include "llvm/Support/Signals.h" 51 52 #include "ClangDiagnostic.h" 53 #include "ClangExpressionParser.h" 54 #include "ClangUserExpression.h" 55 56 #include "ASTUtils.h" 57 #include "ClangASTSource.h" 58 #include "ClangDiagnostic.h" 59 #include "ClangExpressionDeclMap.h" 60 #include "ClangExpressionHelper.h" 61 #include "ClangExpressionParser.h" 62 #include "ClangHost.h" 63 #include "ClangModulesDeclVendor.h" 64 #include "ClangPersistentVariables.h" 65 #include "IRDynamicChecks.h" 66 #include "IRForTarget.h" 67 #include "ModuleDependencyCollector.h" 68 69 #include "lldb/Core/Debugger.h" 70 #include "lldb/Core/Disassembler.h" 71 #include "lldb/Core/Module.h" 72 #include "lldb/Core/StreamFile.h" 73 #include "lldb/Expression/IRExecutionUnit.h" 74 #include "lldb/Expression/IRInterpreter.h" 75 #include "lldb/Host/File.h" 76 #include "lldb/Host/HostInfo.h" 77 #include "lldb/Symbol/ClangASTContext.h" 78 #include "lldb/Symbol/SymbolVendor.h" 79 #include "lldb/Target/ExecutionContext.h" 80 #include "lldb/Target/Language.h" 81 #include "lldb/Target/Process.h" 82 #include "lldb/Target/Target.h" 83 #include "lldb/Target/ThreadPlanCallFunction.h" 84 #include "lldb/Utility/DataBufferHeap.h" 85 #include "lldb/Utility/LLDBAssert.h" 86 #include "lldb/Utility/Log.h" 87 #include "lldb/Utility/Reproducer.h" 88 #include "lldb/Utility/Stream.h" 89 #include "lldb/Utility/StreamString.h" 90 #include "lldb/Utility/StringList.h" 91 92 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 93 94 #include <cctype> 95 #include <memory> 96 97 using namespace clang; 98 using namespace llvm; 99 using namespace lldb_private; 100 101 //===----------------------------------------------------------------------===// 102 // Utility Methods for Clang 103 //===----------------------------------------------------------------------===// 104 105 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 106 ClangModulesDeclVendor &m_decl_vendor; 107 ClangPersistentVariables &m_persistent_vars; 108 clang::SourceManager &m_source_mgr; 109 StreamString m_error_stream; 110 bool m_has_errors = false; 111 112 public: 113 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 114 ClangPersistentVariables &persistent_vars, 115 clang::SourceManager &source_mgr) 116 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 117 m_source_mgr(source_mgr) {} 118 119 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 120 const clang::Module * /*null*/) override { 121 // Ignore modules that are imported in the wrapper code as these are not 122 // loaded by the user. 123 llvm::StringRef filename = 124 m_source_mgr.getPresumedLoc(import_location).getFilename(); 125 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 126 return; 127 128 SourceModule module; 129 130 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 131 module.path.push_back(ConstString(component.first->getName())); 132 133 StreamString error_stream; 134 135 ClangModulesDeclVendor::ModuleVector exported_modules; 136 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 137 m_has_errors = true; 138 139 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 140 m_persistent_vars.AddHandLoadedClangModule(module); 141 } 142 143 bool hasErrors() { return m_has_errors; } 144 145 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 146 }; 147 148 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 149 public: 150 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 151 DiagnosticOptions *m_options = new DiagnosticOptions(opts); 152 m_options->ShowPresumedLoc = true; 153 m_options->ShowLevel = false; 154 m_os.reset(new llvm::raw_string_ostream(m_output)); 155 m_passthrough.reset( 156 new clang::TextDiagnosticPrinter(*m_os, m_options, false)); 157 } 158 159 void ResetManager(DiagnosticManager *manager = nullptr) { 160 m_manager = manager; 161 } 162 163 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 164 const clang::Diagnostic &Info) override { 165 // Render diagnostic message to m_output. 166 m_output.clear(); 167 m_passthrough->HandleDiagnostic(DiagLevel, Info); 168 m_os->flush(); 169 170 if (m_manager) { 171 lldb_private::DiagnosticSeverity severity; 172 bool make_new_diagnostic = true; 173 174 switch (DiagLevel) { 175 case DiagnosticsEngine::Level::Fatal: 176 case DiagnosticsEngine::Level::Error: 177 severity = eDiagnosticSeverityError; 178 break; 179 case DiagnosticsEngine::Level::Warning: 180 severity = eDiagnosticSeverityWarning; 181 break; 182 case DiagnosticsEngine::Level::Remark: 183 case DiagnosticsEngine::Level::Ignored: 184 severity = eDiagnosticSeverityRemark; 185 break; 186 case DiagnosticsEngine::Level::Note: 187 m_manager->AppendMessageToDiagnostic(m_output); 188 make_new_diagnostic = false; 189 } 190 if (make_new_diagnostic) { 191 // ClangDiagnostic messages are expected to have no whitespace/newlines 192 // around them. 193 std::string stripped_output = llvm::StringRef(m_output).trim(); 194 195 ClangDiagnostic *new_diagnostic = 196 new ClangDiagnostic(stripped_output, severity, Info.getID()); 197 m_manager->AddDiagnostic(new_diagnostic); 198 199 // Don't store away warning fixits, since the compiler doesn't have 200 // enough context in an expression for the warning to be useful. 201 // FIXME: Should we try to filter out FixIts that apply to our generated 202 // code, and not the user's expression? 203 if (severity == eDiagnosticSeverityError) { 204 size_t num_fixit_hints = Info.getNumFixItHints(); 205 for (size_t i = 0; i < num_fixit_hints; i++) { 206 const clang::FixItHint &fixit = Info.getFixItHint(i); 207 if (!fixit.isNull()) 208 new_diagnostic->AddFixitHint(fixit); 209 } 210 } 211 } 212 } 213 } 214 215 clang::TextDiagnosticPrinter *GetPassthrough() { return m_passthrough.get(); } 216 217 private: 218 DiagnosticManager *m_manager = nullptr; 219 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 220 /// Output stream of m_passthrough. 221 std::shared_ptr<llvm::raw_string_ostream> m_os; 222 /// Output string filled by m_os. 223 std::string m_output; 224 }; 225 226 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 227 std::vector<std::string> include_directories, 228 lldb::TargetSP target_sp) { 229 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 230 231 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 232 233 for (const std::string &dir : include_directories) { 234 search_opts.AddPath(dir, frontend::System, false, true); 235 LLDB_LOG(log, "Added user include dir: {0}", dir); 236 } 237 238 llvm::SmallString<128> module_cache; 239 auto props = ModuleList::GetGlobalModuleListProperties(); 240 props.GetClangModulesCachePath().GetPath(module_cache); 241 search_opts.ModuleCachePath = module_cache.str(); 242 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 243 244 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 245 246 search_opts.ImplicitModuleMaps = true; 247 } 248 249 //===----------------------------------------------------------------------===// 250 // Implementation of ClangExpressionParser 251 //===----------------------------------------------------------------------===// 252 253 ClangExpressionParser::ClangExpressionParser( 254 ExecutionContextScope *exe_scope, Expression &expr, 255 bool generate_debug_info, std::vector<std::string> include_directories, 256 std::string filename) 257 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 258 m_pp_callbacks(nullptr), 259 m_include_directories(std::move(include_directories)), 260 m_filename(std::move(filename)) { 261 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 262 263 // We can't compile expressions without a target. So if the exe_scope is 264 // null or doesn't have a target, then we just need to get out of here. I'll 265 // lldb_assert and not make any of the compiler objects since 266 // I can't return errors directly from the constructor. Further calls will 267 // check if the compiler was made and 268 // bag out if it wasn't. 269 270 if (!exe_scope) { 271 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 272 __FUNCTION__, __FILE__, __LINE__); 273 return; 274 } 275 276 lldb::TargetSP target_sp; 277 target_sp = exe_scope->CalculateTarget(); 278 if (!target_sp) { 279 lldb_assert(target_sp.get(), 280 "Can't make an expression parser with a null target.", 281 __FUNCTION__, __FILE__, __LINE__); 282 return; 283 } 284 285 // 1. Create a new compiler instance. 286 m_compiler.reset(new CompilerInstance()); 287 288 // When capturing a reproducer, hook up the file collector with clang to 289 // collector modules and headers. 290 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 291 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 292 m_compiler->setModuleDepCollector( 293 std::make_shared<ModuleDependencyCollectorAdaptor>( 294 fp.GetFileCollector())); 295 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 296 opts.IncludeSystemHeaders = true; 297 opts.IncludeModuleFiles = true; 298 } 299 300 // Make sure clang uses the same VFS as LLDB. 301 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 302 303 lldb::LanguageType frame_lang = 304 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 305 bool overridden_target_opts = false; 306 lldb_private::LanguageRuntime *lang_rt = nullptr; 307 308 std::string abi; 309 ArchSpec target_arch; 310 target_arch = target_sp->GetArchitecture(); 311 312 const auto target_machine = target_arch.GetMachine(); 313 314 // If the expression is being evaluated in the context of an existing stack 315 // frame, we introspect to see if the language runtime is available. 316 317 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 318 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 319 320 // Make sure the user hasn't provided a preferred execution language with 321 // `expression --language X -- ...` 322 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 323 frame_lang = frame_sp->GetLanguage(); 324 325 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 326 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 327 LLDB_LOGF(log, "Frame has language of type %s", 328 Language::GetNameForLanguageType(frame_lang)); 329 } 330 331 // 2. Configure the compiler with a set of default options that are 332 // appropriate for most situations. 333 if (target_arch.IsValid()) { 334 std::string triple = target_arch.GetTriple().str(); 335 m_compiler->getTargetOpts().Triple = triple; 336 LLDB_LOGF(log, "Using %s as the target triple", 337 m_compiler->getTargetOpts().Triple.c_str()); 338 } else { 339 // If we get here we don't have a valid target and just have to guess. 340 // Sometimes this will be ok to just use the host target triple (when we 341 // evaluate say "2+3", but other expressions like breakpoint conditions and 342 // other things that _are_ target specific really shouldn't just be using 343 // the host triple. In such a case the language runtime should expose an 344 // overridden options set (3), below. 345 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 346 LLDB_LOGF(log, "Using default target triple of %s", 347 m_compiler->getTargetOpts().Triple.c_str()); 348 } 349 // Now add some special fixes for known architectures: Any arm32 iOS 350 // environment, but not on arm64 351 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 352 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 353 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 354 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 355 } 356 // Supported subsets of x86 357 if (target_machine == llvm::Triple::x86 || 358 target_machine == llvm::Triple::x86_64) { 359 m_compiler->getTargetOpts().Features.push_back("+sse"); 360 m_compiler->getTargetOpts().Features.push_back("+sse2"); 361 } 362 363 // Set the target CPU to generate code for. This will be empty for any CPU 364 // that doesn't really need to make a special 365 // CPU string. 366 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 367 368 // Set the target ABI 369 abi = GetClangTargetABI(target_arch); 370 if (!abi.empty()) 371 m_compiler->getTargetOpts().ABI = abi; 372 373 // 3. Now allow the runtime to provide custom configuration options for the 374 // target. In this case, a specialized language runtime is available and we 375 // can query it for extra options. For 99% of use cases, this will not be 376 // needed and should be provided when basic platform detection is not enough. 377 if (lang_rt) 378 overridden_target_opts = 379 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 380 381 if (overridden_target_opts) 382 if (log && log->GetVerbose()) { 383 LLDB_LOGV( 384 log, "Using overridden target options for the expression evaluation"); 385 386 auto opts = m_compiler->getTargetOpts(); 387 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 388 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 389 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 390 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 391 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 392 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 393 StringList::LogDump(log, opts.Features, "Features"); 394 } 395 396 // 4. Create and install the target on the compiler. 397 m_compiler->createDiagnostics(); 398 auto target_info = TargetInfo::CreateTargetInfo( 399 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 400 if (log) { 401 LLDB_LOGF(log, "Using SIMD alignment: %d", 402 target_info->getSimdDefaultAlign()); 403 LLDB_LOGF(log, "Target datalayout string: '%s'", 404 target_info->getDataLayout().getStringRepresentation().c_str()); 405 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 406 LLDB_LOGF(log, "Target vector alignment: %d", 407 target_info->getMaxVectorAlign()); 408 } 409 m_compiler->setTarget(target_info); 410 411 assert(m_compiler->hasTarget()); 412 413 // 5. Set language options. 414 lldb::LanguageType language = expr.Language(); 415 LangOptions &lang_opts = m_compiler->getLangOpts(); 416 417 switch (language) { 418 case lldb::eLanguageTypeC: 419 case lldb::eLanguageTypeC89: 420 case lldb::eLanguageTypeC99: 421 case lldb::eLanguageTypeC11: 422 // FIXME: the following language option is a temporary workaround, 423 // to "ask for C, get C++." 424 // For now, the expression parser must use C++ anytime the language is a C 425 // family language, because the expression parser uses features of C++ to 426 // capture values. 427 lang_opts.CPlusPlus = true; 428 break; 429 case lldb::eLanguageTypeObjC: 430 lang_opts.ObjC = true; 431 // FIXME: the following language option is a temporary workaround, 432 // to "ask for ObjC, get ObjC++" (see comment above). 433 lang_opts.CPlusPlus = true; 434 435 // Clang now sets as default C++14 as the default standard (with 436 // GNU extensions), so we do the same here to avoid mismatches that 437 // cause compiler error when evaluating expressions (e.g. nullptr not found 438 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 439 // two lines below) so we decide to be consistent with that, but this could 440 // be re-evaluated in the future. 441 lang_opts.CPlusPlus11 = true; 442 break; 443 case lldb::eLanguageTypeC_plus_plus: 444 case lldb::eLanguageTypeC_plus_plus_11: 445 case lldb::eLanguageTypeC_plus_plus_14: 446 lang_opts.CPlusPlus11 = true; 447 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 448 LLVM_FALLTHROUGH; 449 case lldb::eLanguageTypeC_plus_plus_03: 450 lang_opts.CPlusPlus = true; 451 if (process_sp) 452 lang_opts.ObjC = 453 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 454 break; 455 case lldb::eLanguageTypeObjC_plus_plus: 456 case lldb::eLanguageTypeUnknown: 457 default: 458 lang_opts.ObjC = true; 459 lang_opts.CPlusPlus = true; 460 lang_opts.CPlusPlus11 = true; 461 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 462 break; 463 } 464 465 lang_opts.Bool = true; 466 lang_opts.WChar = true; 467 lang_opts.Blocks = true; 468 lang_opts.DebuggerSupport = 469 true; // Features specifically for debugger clients 470 if (expr.DesiredResultType() == Expression::eResultTypeId) 471 lang_opts.DebuggerCastResultToId = true; 472 473 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 474 .CharIsSignedByDefault(); 475 476 // Spell checking is a nice feature, but it ends up completing a lot of types 477 // that we didn't strictly speaking need to complete. As a result, we spend a 478 // long time parsing and importing debug information. 479 lang_opts.SpellChecking = false; 480 481 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 482 if (clang_expr && clang_expr->DidImportCxxModules()) { 483 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 484 485 lang_opts.Modules = true; 486 // We want to implicitly build modules. 487 lang_opts.ImplicitModules = true; 488 // To automatically import all submodules when we import 'std'. 489 lang_opts.ModulesLocalVisibility = false; 490 491 // We use the @import statements, so we need this: 492 // FIXME: We could use the modules-ts, but that currently doesn't work. 493 lang_opts.ObjC = true; 494 495 // Options we need to parse libc++ code successfully. 496 // FIXME: We should ask the driver for the appropriate default flags. 497 lang_opts.GNUMode = true; 498 lang_opts.GNUKeywords = true; 499 lang_opts.DoubleSquareBracketAttributes = true; 500 lang_opts.CPlusPlus11 = true; 501 502 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 503 target_sp); 504 } 505 506 if (process_sp && lang_opts.ObjC) { 507 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 508 if (runtime->GetRuntimeVersion() == 509 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 510 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 511 else 512 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 513 VersionTuple(10, 7)); 514 515 if (runtime->HasNewLiteralsAndIndexing()) 516 lang_opts.DebuggerObjCLiteral = true; 517 } 518 } 519 520 lang_opts.ThreadsafeStatics = false; 521 lang_opts.AccessControl = false; // Debuggers get universal access 522 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 523 // We enable all builtin functions beside the builtins from libc/libm (e.g. 524 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 525 // additionally enabling them as expandable builtins is breaking Clang. 526 lang_opts.NoBuiltin = true; 527 528 // Set CodeGen options 529 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 530 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 531 m_compiler->getCodeGenOpts().setFramePointer( 532 CodeGenOptions::FramePointerKind::All); 533 if (generate_debug_info) 534 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 535 else 536 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 537 538 // Disable some warnings. 539 m_compiler->getDiagnostics().setSeverityForGroup( 540 clang::diag::Flavor::WarningOrError, "unused-value", 541 clang::diag::Severity::Ignored, SourceLocation()); 542 m_compiler->getDiagnostics().setSeverityForGroup( 543 clang::diag::Flavor::WarningOrError, "odr", 544 clang::diag::Severity::Ignored, SourceLocation()); 545 546 // Inform the target of the language options 547 // 548 // FIXME: We shouldn't need to do this, the target should be immutable once 549 // created. This complexity should be lifted elsewhere. 550 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 551 552 // 6. Set up the diagnostic buffer for reporting errors 553 554 auto diag_mgr = new ClangDiagnosticManagerAdapter( 555 m_compiler->getDiagnostics().getDiagnosticOptions()); 556 m_compiler->getDiagnostics().setClient(diag_mgr); 557 558 // 7. Set up the source management objects inside the compiler 559 m_compiler->createFileManager(); 560 if (!m_compiler->hasSourceManager()) 561 m_compiler->createSourceManager(m_compiler->getFileManager()); 562 m_compiler->createPreprocessor(TU_Complete); 563 564 if (ClangModulesDeclVendor *decl_vendor = 565 target_sp->GetClangModulesDeclVendor()) { 566 ClangPersistentVariables *clang_persistent_vars = 567 llvm::cast<ClangPersistentVariables>( 568 target_sp->GetPersistentExpressionStateForLanguage( 569 lldb::eLanguageTypeC)); 570 std::unique_ptr<PPCallbacks> pp_callbacks(new LLDBPreprocessorCallbacks( 571 *decl_vendor, *clang_persistent_vars, m_compiler->getSourceManager())); 572 m_pp_callbacks = 573 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 574 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 575 } 576 577 // 8. Most of this we get from the CompilerInstance, but we also want to give 578 // the context an ExternalASTSource. 579 580 auto &PP = m_compiler->getPreprocessor(); 581 auto &builtin_context = PP.getBuiltinInfo(); 582 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 583 m_compiler->getLangOpts()); 584 585 m_compiler->createASTContext(); 586 clang::ASTContext &ast_context = m_compiler->getASTContext(); 587 588 m_ast_context.reset( 589 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 590 m_ast_context->setASTContext(&ast_context); 591 592 std::string module_name("$__lldb_module"); 593 594 m_llvm_context.reset(new LLVMContext()); 595 m_code_generator.reset(CreateLLVMCodeGen( 596 m_compiler->getDiagnostics(), module_name, 597 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 598 m_compiler->getCodeGenOpts(), *m_llvm_context)); 599 } 600 601 ClangExpressionParser::~ClangExpressionParser() {} 602 603 namespace { 604 605 /// \class CodeComplete 606 /// 607 /// A code completion consumer for the clang Sema that is responsible for 608 /// creating the completion suggestions when a user requests completion 609 /// of an incomplete `expr` invocation. 610 class CodeComplete : public CodeCompleteConsumer { 611 CodeCompletionTUInfo m_info; 612 613 std::string m_expr; 614 unsigned m_position = 0; 615 CompletionRequest &m_request; 616 /// The printing policy we use when printing declarations for our completion 617 /// descriptions. 618 clang::PrintingPolicy m_desc_policy; 619 620 /// Returns true if the given character can be used in an identifier. 621 /// This also returns true for numbers because for completion we usually 622 /// just iterate backwards over iterators. 623 /// 624 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 625 static bool IsIdChar(char c) { 626 return c == '_' || std::isalnum(c) || c == '$'; 627 } 628 629 /// Returns true if the given character is used to separate arguments 630 /// in the command line of lldb. 631 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 632 633 /// Drops all tokens in front of the expression that are unrelated for 634 /// the completion of the cmd line. 'unrelated' means here that the token 635 /// is not interested for the lldb completion API result. 636 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 637 if (cmd.empty()) 638 return cmd; 639 640 // If we are at the start of a word, then all tokens are unrelated to 641 // the current completion logic. 642 if (IsTokenSeparator(cmd.back())) 643 return StringRef(); 644 645 // Remove all previous tokens from the string as they are unrelated 646 // to completing the current token. 647 StringRef to_remove = cmd; 648 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 649 to_remove = to_remove.drop_back(); 650 } 651 cmd = cmd.drop_front(to_remove.size()); 652 653 return cmd; 654 } 655 656 /// Removes the last identifier token from the given cmd line. 657 StringRef removeLastToken(StringRef cmd) { 658 while (!cmd.empty() && IsIdChar(cmd.back())) { 659 cmd = cmd.drop_back(); 660 } 661 return cmd; 662 } 663 664 /// Attemps to merge the given completion from the given position into the 665 /// existing command. Returns the completion string that can be returned to 666 /// the lldb completion API. 667 std::string mergeCompletion(StringRef existing, unsigned pos, 668 StringRef completion) { 669 StringRef existing_command = existing.substr(0, pos); 670 // We rewrite the last token with the completion, so let's drop that 671 // token from the command. 672 existing_command = removeLastToken(existing_command); 673 // We also should remove all previous tokens from the command as they 674 // would otherwise be added to the completion that already has the 675 // completion. 676 existing_command = dropUnrelatedFrontTokens(existing_command); 677 return existing_command.str() + completion.str(); 678 } 679 680 public: 681 /// Constructs a CodeComplete consumer that can be attached to a Sema. 682 /// \param[out] matches 683 /// The list of matches that the lldb completion API expects as a result. 684 /// This may already contain matches, so it's only allowed to append 685 /// to this variable. 686 /// \param[out] expr 687 /// The whole expression string that we are currently parsing. This 688 /// string needs to be equal to the input the user typed, and NOT the 689 /// final code that Clang is parsing. 690 /// \param[out] position 691 /// The character position of the user cursor in the `expr` parameter. 692 /// 693 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 694 std::string expr, unsigned position) 695 : CodeCompleteConsumer(CodeCompleteOptions()), 696 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 697 m_position(position), m_request(request), m_desc_policy(ops) { 698 699 // Ensure that the printing policy is producing a description that is as 700 // short as possible. 701 m_desc_policy.SuppressScope = true; 702 m_desc_policy.SuppressTagKeyword = true; 703 m_desc_policy.FullyQualifiedName = false; 704 m_desc_policy.TerseOutput = true; 705 m_desc_policy.IncludeNewlines = false; 706 m_desc_policy.UseVoidForZeroParams = false; 707 m_desc_policy.Bool = true; 708 } 709 710 /// Deregisters and destroys this code-completion consumer. 711 ~CodeComplete() override {} 712 713 /// \name Code-completion filtering 714 /// Check if the result should be filtered out. 715 bool isResultFilteredOut(StringRef Filter, 716 CodeCompletionResult Result) override { 717 // This code is mostly copied from CodeCompleteConsumer. 718 switch (Result.Kind) { 719 case CodeCompletionResult::RK_Declaration: 720 return !( 721 Result.Declaration->getIdentifier() && 722 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 723 case CodeCompletionResult::RK_Keyword: 724 return !StringRef(Result.Keyword).startswith(Filter); 725 case CodeCompletionResult::RK_Macro: 726 return !Result.Macro->getName().startswith(Filter); 727 case CodeCompletionResult::RK_Pattern: 728 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 729 } 730 // If we trigger this assert or the above switch yields a warning, then 731 // CodeCompletionResult has been enhanced with more kinds of completion 732 // results. Expand the switch above in this case. 733 assert(false && "Unknown completion result type?"); 734 // If we reach this, then we should just ignore whatever kind of unknown 735 // result we got back. We probably can't turn it into any kind of useful 736 // completion suggestion with the existing code. 737 return true; 738 } 739 740 /// \name Code-completion callbacks 741 /// Process the finalized code-completion results. 742 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 743 CodeCompletionResult *Results, 744 unsigned NumResults) override { 745 746 // The Sema put the incomplete token we try to complete in here during 747 // lexing, so we need to retrieve it here to know what we are completing. 748 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 749 750 // Iterate over all the results. Filter out results we don't want and 751 // process the rest. 752 for (unsigned I = 0; I != NumResults; ++I) { 753 // Filter the results with the information from the Sema. 754 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 755 continue; 756 757 CodeCompletionResult &R = Results[I]; 758 std::string ToInsert; 759 std::string Description; 760 // Handle the different completion kinds that come from the Sema. 761 switch (R.Kind) { 762 case CodeCompletionResult::RK_Declaration: { 763 const NamedDecl *D = R.Declaration; 764 ToInsert = R.Declaration->getNameAsString(); 765 // If we have a function decl that has no arguments we want to 766 // complete the empty parantheses for the user. If the function has 767 // arguments, we at least complete the opening bracket. 768 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 769 if (F->getNumParams() == 0) 770 ToInsert += "()"; 771 else 772 ToInsert += "("; 773 raw_string_ostream OS(Description); 774 F->print(OS, m_desc_policy, false); 775 OS.flush(); 776 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 777 Description = V->getType().getAsString(m_desc_policy); 778 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 779 Description = F->getType().getAsString(m_desc_policy); 780 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 781 // If we try to complete a namespace, then we can directly append 782 // the '::'. 783 if (!N->isAnonymousNamespace()) 784 ToInsert += "::"; 785 } 786 break; 787 } 788 case CodeCompletionResult::RK_Keyword: 789 ToInsert = R.Keyword; 790 break; 791 case CodeCompletionResult::RK_Macro: 792 ToInsert = R.Macro->getName().str(); 793 break; 794 case CodeCompletionResult::RK_Pattern: 795 ToInsert = R.Pattern->getTypedText(); 796 break; 797 } 798 // At this point all information is in the ToInsert string. 799 800 // We also filter some internal lldb identifiers here. The user 801 // shouldn't see these. 802 if (StringRef(ToInsert).startswith("$__lldb_")) 803 continue; 804 if (!ToInsert.empty()) { 805 // Merge the suggested Token into the existing command line to comply 806 // with the kind of result the lldb API expects. 807 std::string CompletionSuggestion = 808 mergeCompletion(m_expr, m_position, ToInsert); 809 m_request.AddCompletion(CompletionSuggestion, Description); 810 } 811 } 812 } 813 814 /// \param S the semantic-analyzer object for which code-completion is being 815 /// done. 816 /// 817 /// \param CurrentArg the index of the current argument. 818 /// 819 /// \param Candidates an array of overload candidates. 820 /// 821 /// \param NumCandidates the number of overload candidates 822 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 823 OverloadCandidate *Candidates, 824 unsigned NumCandidates, 825 SourceLocation OpenParLoc) override { 826 // At the moment we don't filter out any overloaded candidates. 827 } 828 829 CodeCompletionAllocator &getAllocator() override { 830 return m_info.getAllocator(); 831 } 832 833 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 834 }; 835 } // namespace 836 837 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 838 unsigned pos, unsigned typed_pos) { 839 DiagnosticManager mgr; 840 // We need the raw user expression here because that's what the CodeComplete 841 // class uses to provide completion suggestions. 842 // However, the `Text` method only gives us the transformed expression here. 843 // To actually get the raw user input here, we have to cast our expression to 844 // the LLVMUserExpression which exposes the right API. This should never fail 845 // as we always have a ClangUserExpression whenever we call this. 846 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 847 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(), 848 typed_pos); 849 // We don't need a code generator for parsing. 850 m_code_generator.reset(); 851 // Start parsing the expression with our custom code completion consumer. 852 ParseInternal(mgr, &CC, line, pos); 853 return true; 854 } 855 856 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 857 return ParseInternal(diagnostic_manager); 858 } 859 860 unsigned 861 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 862 CodeCompleteConsumer *completion_consumer, 863 unsigned completion_line, 864 unsigned completion_column) { 865 ClangDiagnosticManagerAdapter *adapter = 866 static_cast<ClangDiagnosticManagerAdapter *>( 867 m_compiler->getDiagnostics().getClient()); 868 auto diag_buf = adapter->GetPassthrough(); 869 870 adapter->ResetManager(&diagnostic_manager); 871 872 const char *expr_text = m_expr.Text(); 873 874 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 875 bool created_main_file = false; 876 877 // Clang wants to do completion on a real file known by Clang's file manager, 878 // so we have to create one to make this work. 879 // TODO: We probably could also simulate to Clang's file manager that there 880 // is a real file that contains our code. 881 bool should_create_file = completion_consumer != nullptr; 882 883 // We also want a real file on disk if we generate full debug info. 884 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 885 codegenoptions::FullDebugInfo; 886 887 if (should_create_file) { 888 int temp_fd = -1; 889 llvm::SmallString<128> result_path; 890 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 891 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 892 std::string temp_source_path = tmpdir_file_spec.GetPath(); 893 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 894 } else { 895 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 896 } 897 898 if (temp_fd != -1) { 899 lldb_private::File file(temp_fd, File::eOpenOptionWrite, true); 900 const size_t expr_text_len = strlen(expr_text); 901 size_t bytes_written = expr_text_len; 902 if (file.Write(expr_text, bytes_written).Success()) { 903 if (bytes_written == expr_text_len) { 904 file.Close(); 905 if (auto fileEntry = 906 m_compiler->getFileManager().getFile(result_path)) { 907 source_mgr.setMainFileID(source_mgr.createFileID( 908 *fileEntry, 909 SourceLocation(), SrcMgr::C_User)); 910 created_main_file = true; 911 } 912 } 913 } 914 } 915 } 916 917 if (!created_main_file) { 918 std::unique_ptr<MemoryBuffer> memory_buffer = 919 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 920 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 921 } 922 923 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 924 &m_compiler->getPreprocessor()); 925 926 ClangExpressionHelper *type_system_helper = 927 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 928 929 // If we want to parse for code completion, we need to attach our code 930 // completion consumer to the Sema and specify a completion position. 931 // While parsing the Sema will call this consumer with the provided 932 // completion suggestions. 933 if (completion_consumer) { 934 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 935 auto &PP = m_compiler->getPreprocessor(); 936 // Lines and columns start at 1 in Clang, but code completion positions are 937 // indexed from 0, so we need to add 1 to the line and column here. 938 ++completion_line; 939 ++completion_column; 940 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 941 } 942 943 ASTConsumer *ast_transformer = 944 type_system_helper->ASTTransformer(m_code_generator.get()); 945 946 std::unique_ptr<clang::ASTConsumer> Consumer; 947 if (ast_transformer) { 948 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 949 } else if (m_code_generator) { 950 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 951 } else { 952 Consumer.reset(new ASTConsumer()); 953 } 954 955 clang::ASTContext &ast_context = m_compiler->getASTContext(); 956 957 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 958 *Consumer, TU_Complete, completion_consumer)); 959 m_compiler->setASTConsumer(std::move(Consumer)); 960 961 if (ast_context.getLangOpts().Modules) { 962 m_compiler->createModuleManager(); 963 m_ast_context->setSema(&m_compiler->getSema()); 964 } 965 966 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 967 if (decl_map) { 968 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 969 970 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 971 972 if (ast_context.getExternalSource()) { 973 auto module_wrapper = 974 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 975 976 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 977 978 auto multiplexer = 979 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 980 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 981 ast_context.setExternalSource(Source); 982 } else { 983 ast_context.setExternalSource(ast_source); 984 } 985 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 986 } 987 988 // Check that the ASTReader is properly attached to ASTContext and Sema. 989 if (ast_context.getLangOpts().Modules) { 990 assert(m_compiler->getASTContext().getExternalSource() && 991 "ASTContext doesn't know about the ASTReader?"); 992 assert(m_compiler->getSema().getExternalSource() && 993 "Sema doesn't know about the ASTReader?"); 994 } 995 996 { 997 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 998 &m_compiler->getSema()); 999 ParseAST(m_compiler->getSema(), false, false); 1000 } 1001 1002 // Make sure we have no pointer to the Sema we are about to destroy. 1003 if (ast_context.getLangOpts().Modules) 1004 m_ast_context->setSema(nullptr); 1005 // Destroy the Sema. This is necessary because we want to emulate the 1006 // original behavior of ParseAST (which also destroys the Sema after parsing). 1007 m_compiler->setSema(nullptr); 1008 1009 diag_buf->EndSourceFile(); 1010 1011 unsigned num_errors = diag_buf->getNumErrors(); 1012 1013 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1014 num_errors++; 1015 diagnostic_manager.PutString(eDiagnosticSeverityError, 1016 "while importing modules:"); 1017 diagnostic_manager.AppendMessageToDiagnostic( 1018 m_pp_callbacks->getErrorString()); 1019 } 1020 1021 if (!num_errors) { 1022 if (type_system_helper->DeclMap() && 1023 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 1024 diagnostic_manager.Printf(eDiagnosticSeverityError, 1025 "Couldn't infer the type of a variable"); 1026 num_errors++; 1027 } 1028 } 1029 1030 if (!num_errors) { 1031 type_system_helper->CommitPersistentDecls(); 1032 } 1033 1034 adapter->ResetManager(); 1035 1036 return num_errors; 1037 } 1038 1039 std::string 1040 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1041 std::string abi; 1042 1043 if (target_arch.IsMIPS()) { 1044 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1045 case ArchSpec::eMIPSABI_N64: 1046 abi = "n64"; 1047 break; 1048 case ArchSpec::eMIPSABI_N32: 1049 abi = "n32"; 1050 break; 1051 case ArchSpec::eMIPSABI_O32: 1052 abi = "o32"; 1053 break; 1054 default: 1055 break; 1056 } 1057 } 1058 return abi; 1059 } 1060 1061 bool ClangExpressionParser::RewriteExpression( 1062 DiagnosticManager &diagnostic_manager) { 1063 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1064 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1065 nullptr); 1066 clang::edit::Commit commit(editor); 1067 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1068 1069 class RewritesReceiver : public edit::EditsReceiver { 1070 Rewriter &rewrite; 1071 1072 public: 1073 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1074 1075 void insert(SourceLocation loc, StringRef text) override { 1076 rewrite.InsertText(loc, text); 1077 } 1078 void replace(CharSourceRange range, StringRef text) override { 1079 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1080 } 1081 }; 1082 1083 RewritesReceiver rewrites_receiver(rewriter); 1084 1085 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1086 size_t num_diags = diagnostics.size(); 1087 if (num_diags == 0) 1088 return false; 1089 1090 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 1091 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 1092 if (diagnostic && diagnostic->HasFixIts()) { 1093 for (const FixItHint &fixit : diagnostic->FixIts()) { 1094 // This is cobbed from clang::Rewrite::FixItRewriter. 1095 if (fixit.CodeToInsert.empty()) { 1096 if (fixit.InsertFromRange.isValid()) { 1097 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1098 fixit.InsertFromRange, /*afterToken=*/false, 1099 fixit.BeforePreviousInsertions); 1100 } else 1101 commit.remove(fixit.RemoveRange); 1102 } else { 1103 if (fixit.RemoveRange.isTokenRange() || 1104 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1105 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1106 else 1107 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1108 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1109 } 1110 } 1111 } 1112 } 1113 1114 // FIXME - do we want to try to propagate specific errors here? 1115 if (!commit.isCommitable()) 1116 return false; 1117 else if (!editor.commit(commit)) 1118 return false; 1119 1120 // Now play all the edits, and stash the result in the diagnostic manager. 1121 editor.applyRewrites(rewrites_receiver); 1122 RewriteBuffer &main_file_buffer = 1123 rewriter.getEditBuffer(source_manager.getMainFileID()); 1124 1125 std::string fixed_expression; 1126 llvm::raw_string_ostream out_stream(fixed_expression); 1127 1128 main_file_buffer.write(out_stream); 1129 out_stream.flush(); 1130 diagnostic_manager.SetFixedExpression(fixed_expression); 1131 1132 return true; 1133 } 1134 1135 static bool FindFunctionInModule(ConstString &mangled_name, 1136 llvm::Module *module, const char *orig_name) { 1137 for (const auto &func : module->getFunctionList()) { 1138 const StringRef &name = func.getName(); 1139 if (name.find(orig_name) != StringRef::npos) { 1140 mangled_name.SetString(name); 1141 return true; 1142 } 1143 } 1144 1145 return false; 1146 } 1147 1148 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1149 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1150 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1151 bool &can_interpret, ExecutionPolicy execution_policy) { 1152 func_addr = LLDB_INVALID_ADDRESS; 1153 func_end = LLDB_INVALID_ADDRESS; 1154 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1155 1156 lldb_private::Status err; 1157 1158 std::unique_ptr<llvm::Module> llvm_module_up( 1159 m_code_generator->ReleaseModule()); 1160 1161 if (!llvm_module_up) { 1162 err.SetErrorToGenericError(); 1163 err.SetErrorString("IR doesn't contain a module"); 1164 return err; 1165 } 1166 1167 ConstString function_name; 1168 1169 if (execution_policy != eExecutionPolicyTopLevel) { 1170 // Find the actual name of the function (it's often mangled somehow) 1171 1172 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1173 m_expr.FunctionName())) { 1174 err.SetErrorToGenericError(); 1175 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1176 m_expr.FunctionName()); 1177 return err; 1178 } else { 1179 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1180 m_expr.FunctionName()); 1181 } 1182 } 1183 1184 SymbolContext sc; 1185 1186 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1187 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1188 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1189 sc.target_sp = target_sp; 1190 } 1191 1192 LLVMUserExpression::IRPasses custom_passes; 1193 { 1194 auto lang = m_expr.Language(); 1195 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1196 Language::GetNameForLanguageType(lang)); 1197 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1198 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1199 auto runtime = process_sp->GetLanguageRuntime(lang); 1200 if (runtime) 1201 runtime->GetIRPasses(custom_passes); 1202 } 1203 } 1204 1205 if (custom_passes.EarlyPasses) { 1206 LLDB_LOGF(log, 1207 "%s - Running Early IR Passes from LanguageRuntime on " 1208 "expression module '%s'", 1209 __FUNCTION__, m_expr.FunctionName()); 1210 1211 custom_passes.EarlyPasses->run(*llvm_module_up); 1212 } 1213 1214 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1215 m_llvm_context, // handed off here 1216 llvm_module_up, // handed off here 1217 function_name, exe_ctx.GetTargetSP(), sc, 1218 m_compiler->getTargetOpts().Features); 1219 1220 ClangExpressionHelper *type_system_helper = 1221 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1222 ClangExpressionDeclMap *decl_map = 1223 type_system_helper->DeclMap(); // result can be NULL 1224 1225 if (decl_map) { 1226 Target *target = exe_ctx.GetTargetPtr(); 1227 auto &error_stream = target->GetDebugger().GetErrorStream(); 1228 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1229 *execution_unit_sp, error_stream, 1230 function_name.AsCString()); 1231 1232 bool ir_can_run = 1233 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1234 1235 if (!ir_can_run) { 1236 err.SetErrorString( 1237 "The expression could not be prepared to run in the target"); 1238 return err; 1239 } 1240 1241 Process *process = exe_ctx.GetProcessPtr(); 1242 1243 if (execution_policy != eExecutionPolicyAlways && 1244 execution_policy != eExecutionPolicyTopLevel) { 1245 lldb_private::Status interpret_error; 1246 1247 bool interpret_function_calls = 1248 !process ? false : process->CanInterpretFunctionCalls(); 1249 can_interpret = IRInterpreter::CanInterpret( 1250 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1251 interpret_error, interpret_function_calls); 1252 1253 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1254 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1255 interpret_error.AsCString()); 1256 return err; 1257 } 1258 } 1259 1260 if (!process && execution_policy == eExecutionPolicyAlways) { 1261 err.SetErrorString("Expression needed to run in the target, but the " 1262 "target can't be run"); 1263 return err; 1264 } 1265 1266 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1267 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1268 "target, but the target can't be run"); 1269 return err; 1270 } 1271 1272 if (execution_policy == eExecutionPolicyAlways || 1273 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1274 if (m_expr.NeedsValidation() && process) { 1275 if (!process->GetDynamicCheckers()) { 1276 ClangDynamicCheckerFunctions *dynamic_checkers = 1277 new ClangDynamicCheckerFunctions(); 1278 1279 DiagnosticManager install_diagnostics; 1280 1281 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1282 if (install_diagnostics.Diagnostics().size()) 1283 err.SetErrorString(install_diagnostics.GetString().c_str()); 1284 else 1285 err.SetErrorString("couldn't install checkers, unknown error"); 1286 1287 return err; 1288 } 1289 1290 process->SetDynamicCheckers(dynamic_checkers); 1291 1292 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1293 "Finished installing dynamic checkers =="); 1294 } 1295 1296 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1297 process->GetDynamicCheckers())) { 1298 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1299 function_name.AsCString()); 1300 1301 llvm::Module *module = execution_unit_sp->GetModule(); 1302 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1303 err.SetErrorToGenericError(); 1304 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1305 return err; 1306 } 1307 1308 if (custom_passes.LatePasses) { 1309 LLDB_LOGF(log, 1310 "%s - Running Late IR Passes from LanguageRuntime on " 1311 "expression module '%s'", 1312 __FUNCTION__, m_expr.FunctionName()); 1313 1314 custom_passes.LatePasses->run(*module); 1315 } 1316 } 1317 } 1318 } 1319 1320 if (execution_policy == eExecutionPolicyAlways || 1321 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1322 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1323 } 1324 } else { 1325 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1326 } 1327 1328 return err; 1329 } 1330 1331 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1332 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1333 lldb_private::Status err; 1334 1335 lldbassert(execution_unit_sp.get()); 1336 lldbassert(exe_ctx.HasThreadScope()); 1337 1338 if (!execution_unit_sp.get()) { 1339 err.SetErrorString( 1340 "can't run static initializers for a NULL execution unit"); 1341 return err; 1342 } 1343 1344 if (!exe_ctx.HasThreadScope()) { 1345 err.SetErrorString("can't run static initializers without a thread"); 1346 return err; 1347 } 1348 1349 std::vector<lldb::addr_t> static_initializers; 1350 1351 execution_unit_sp->GetStaticInitializers(static_initializers); 1352 1353 for (lldb::addr_t static_initializer : static_initializers) { 1354 EvaluateExpressionOptions options; 1355 1356 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1357 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1358 llvm::ArrayRef<lldb::addr_t>(), options)); 1359 1360 DiagnosticManager execution_errors; 1361 lldb::ExpressionResults results = 1362 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1363 exe_ctx, call_static_initializer, options, execution_errors); 1364 1365 if (results != lldb::eExpressionCompleted) { 1366 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1367 execution_errors.GetString().c_str()); 1368 return err; 1369 } 1370 } 1371 1372 return err; 1373 } 1374