1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/DiagnosticIDs.h" 14 #include "clang/Basic/SourceLocation.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "clang/Basic/Version.h" 17 #include "clang/CodeGen/CodeGenAction.h" 18 #include "clang/CodeGen/ModuleBuilder.h" 19 #include "clang/Edit/Commit.h" 20 #include "clang/Edit/EditedSource.h" 21 #include "clang/Edit/EditsReceiver.h" 22 #include "clang/Frontend/CompilerInstance.h" 23 #include "clang/Frontend/CompilerInvocation.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/FrontendPluginRegistry.h" 27 #include "clang/Frontend/TextDiagnosticBuffer.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Parse/ParseAST.h" 31 #include "clang/Rewrite/Core/Rewriter.h" 32 #include "clang/Rewrite/Frontend/FrontendActions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaConsumer.h" 36 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ExecutionEngine/ExecutionEngine.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/TargetSelect.h" 43 44 #pragma clang diagnostic push 45 #pragma clang diagnostic ignored "-Wglobal-constructors" 46 #include "llvm/ExecutionEngine/MCJIT.h" 47 #pragma clang diagnostic pop 48 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/Support/DynamicLibrary.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/Host.h" 54 #include "llvm/Support/MemoryBuffer.h" 55 #include "llvm/Support/Signals.h" 56 57 #include "ClangDiagnostic.h" 58 #include "ClangExpressionParser.h" 59 #include "ClangUserExpression.h" 60 61 #include "ASTUtils.h" 62 #include "ClangASTSource.h" 63 #include "ClangDiagnostic.h" 64 #include "ClangExpressionDeclMap.h" 65 #include "ClangExpressionHelper.h" 66 #include "ClangExpressionParser.h" 67 #include "ClangHost.h" 68 #include "ClangModulesDeclVendor.h" 69 #include "ClangPersistentVariables.h" 70 #include "IRForTarget.h" 71 #include "ModuleDependencyCollector.h" 72 73 #include "lldb/Core/Debugger.h" 74 #include "lldb/Core/Disassembler.h" 75 #include "lldb/Core/Module.h" 76 #include "lldb/Core/StreamFile.h" 77 #include "lldb/Expression/IRDynamicChecks.h" 78 #include "lldb/Expression/IRExecutionUnit.h" 79 #include "lldb/Expression/IRInterpreter.h" 80 #include "lldb/Host/File.h" 81 #include "lldb/Host/HostInfo.h" 82 #include "lldb/Symbol/ClangASTContext.h" 83 #include "lldb/Symbol/SymbolVendor.h" 84 #include "lldb/Target/ExecutionContext.h" 85 #include "lldb/Target/Language.h" 86 #include "lldb/Target/ObjCLanguageRuntime.h" 87 #include "lldb/Target/Process.h" 88 #include "lldb/Target/Target.h" 89 #include "lldb/Target/ThreadPlanCallFunction.h" 90 #include "lldb/Utility/DataBufferHeap.h" 91 #include "lldb/Utility/LLDBAssert.h" 92 #include "lldb/Utility/Log.h" 93 #include "lldb/Utility/Reproducer.h" 94 #include "lldb/Utility/Stream.h" 95 #include "lldb/Utility/StreamString.h" 96 #include "lldb/Utility/StringList.h" 97 98 #include <cctype> 99 #include <memory> 100 101 using namespace clang; 102 using namespace llvm; 103 using namespace lldb_private; 104 105 //===----------------------------------------------------------------------===// 106 // Utility Methods for Clang 107 //===----------------------------------------------------------------------===// 108 109 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 110 ClangModulesDeclVendor &m_decl_vendor; 111 ClangPersistentVariables &m_persistent_vars; 112 StreamString m_error_stream; 113 bool m_has_errors = false; 114 115 public: 116 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 117 ClangPersistentVariables &persistent_vars) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 119 120 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 121 const clang::Module * /*null*/) override { 122 SourceModule module; 123 124 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 125 module.path.push_back(ConstString(component.first->getName())); 126 127 StreamString error_stream; 128 129 ClangModulesDeclVendor::ModuleVector exported_modules; 130 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 131 m_has_errors = true; 132 133 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 134 m_persistent_vars.AddHandLoadedClangModule(module); 135 } 136 137 bool hasErrors() { return m_has_errors; } 138 139 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 140 }; 141 142 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 143 public: 144 ClangDiagnosticManagerAdapter() 145 : m_passthrough(new clang::TextDiagnosticBuffer) {} 146 147 ClangDiagnosticManagerAdapter( 148 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 149 : m_passthrough(passthrough) {} 150 151 void ResetManager(DiagnosticManager *manager = nullptr) { 152 m_manager = manager; 153 } 154 155 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 156 const clang::Diagnostic &Info) { 157 if (m_manager) { 158 llvm::SmallVector<char, 32> diag_str; 159 Info.FormatDiagnostic(diag_str); 160 diag_str.push_back('\0'); 161 const char *data = diag_str.data(); 162 163 lldb_private::DiagnosticSeverity severity; 164 bool make_new_diagnostic = true; 165 166 switch (DiagLevel) { 167 case DiagnosticsEngine::Level::Fatal: 168 case DiagnosticsEngine::Level::Error: 169 severity = eDiagnosticSeverityError; 170 break; 171 case DiagnosticsEngine::Level::Warning: 172 severity = eDiagnosticSeverityWarning; 173 break; 174 case DiagnosticsEngine::Level::Remark: 175 case DiagnosticsEngine::Level::Ignored: 176 severity = eDiagnosticSeverityRemark; 177 break; 178 case DiagnosticsEngine::Level::Note: 179 m_manager->AppendMessageToDiagnostic(data); 180 make_new_diagnostic = false; 181 } 182 if (make_new_diagnostic) { 183 ClangDiagnostic *new_diagnostic = 184 new ClangDiagnostic(data, severity, Info.getID()); 185 m_manager->AddDiagnostic(new_diagnostic); 186 187 // Don't store away warning fixits, since the compiler doesn't have 188 // enough context in an expression for the warning to be useful. 189 // FIXME: Should we try to filter out FixIts that apply to our generated 190 // code, and not the user's expression? 191 if (severity == eDiagnosticSeverityError) { 192 size_t num_fixit_hints = Info.getNumFixItHints(); 193 for (size_t i = 0; i < num_fixit_hints; i++) { 194 const clang::FixItHint &fixit = Info.getFixItHint(i); 195 if (!fixit.isNull()) 196 new_diagnostic->AddFixitHint(fixit); 197 } 198 } 199 } 200 } 201 202 m_passthrough->HandleDiagnostic(DiagLevel, Info); 203 } 204 205 void FlushDiagnostics(DiagnosticsEngine &Diags) { 206 m_passthrough->FlushDiagnostics(Diags); 207 } 208 209 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 210 return new ClangDiagnosticManagerAdapter(m_passthrough); 211 } 212 213 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 214 215 private: 216 DiagnosticManager *m_manager = nullptr; 217 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 218 }; 219 220 static void 221 SetupModuleHeaderPaths(CompilerInstance *compiler, 222 std::vector<ConstString> include_directories, 223 lldb::TargetSP target_sp) { 224 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 225 226 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 227 228 for (ConstString dir : include_directories) { 229 search_opts.AddPath(dir.AsCString(), frontend::System, false, true); 230 LLDB_LOG(log, "Added user include dir: {0}", dir); 231 } 232 233 llvm::SmallString<128> module_cache; 234 auto props = ModuleList::GetGlobalModuleListProperties(); 235 props.GetClangModulesCachePath().GetPath(module_cache); 236 search_opts.ModuleCachePath = module_cache.str(); 237 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 238 239 FileSpec clang_resource_dir = GetClangResourceDir(); 240 std::string resource_dir = clang_resource_dir.GetPath(); 241 if (FileSystem::Instance().IsDirectory(resource_dir)) { 242 search_opts.ResourceDir = resource_dir; 243 std::string resource_include = resource_dir + "/include"; 244 search_opts.AddPath(resource_include, frontend::System, false, true); 245 246 LLDB_LOG(log, "Added resource include dir: {0}", resource_include); 247 } 248 249 search_opts.ImplicitModuleMaps = true; 250 251 std::vector<std::string> system_include_directories = 252 target_sp->GetPlatform()->GetSystemIncludeDirectories( 253 lldb::eLanguageTypeC_plus_plus); 254 255 for (const std::string &include_dir : system_include_directories) { 256 search_opts.AddPath(include_dir, frontend::System, false, true); 257 258 LLDB_LOG(log, "Added system include dir: {0}", include_dir); 259 } 260 } 261 262 //===----------------------------------------------------------------------===// 263 // Implementation of ClangExpressionParser 264 //===----------------------------------------------------------------------===// 265 266 ClangExpressionParser::ClangExpressionParser( 267 ExecutionContextScope *exe_scope, Expression &expr, 268 bool generate_debug_info, std::vector<ConstString> include_directories) 269 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 270 m_pp_callbacks(nullptr), 271 m_include_directories(std::move(include_directories)) { 272 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 273 274 // We can't compile expressions without a target. So if the exe_scope is 275 // null or doesn't have a target, then we just need to get out of here. I'll 276 // lldb_assert and not make any of the compiler objects since 277 // I can't return errors directly from the constructor. Further calls will 278 // check if the compiler was made and 279 // bag out if it wasn't. 280 281 if (!exe_scope) { 282 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 283 __FUNCTION__, __FILE__, __LINE__); 284 return; 285 } 286 287 lldb::TargetSP target_sp; 288 target_sp = exe_scope->CalculateTarget(); 289 if (!target_sp) { 290 lldb_assert(target_sp.get(), 291 "Can't make an expression parser with a null target.", 292 __FUNCTION__, __FILE__, __LINE__); 293 return; 294 } 295 296 // 1. Create a new compiler instance. 297 m_compiler.reset(new CompilerInstance()); 298 299 // When capturing a reproducer, hook up the file collector with clang to 300 // collector modules and headers. 301 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 302 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 303 m_compiler->setModuleDepCollector( 304 std::make_shared<ModuleDependencyCollectorAdaptor>( 305 fp.GetFileCollector())); 306 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 307 opts.IncludeSystemHeaders = true; 308 opts.IncludeModuleFiles = true; 309 } 310 311 // Make sure clang uses the same VFS as LLDB. 312 m_compiler->setVirtualFileSystem( 313 FileSystem::Instance().GetVirtualFileSystem()); 314 315 lldb::LanguageType frame_lang = 316 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 317 bool overridden_target_opts = false; 318 lldb_private::LanguageRuntime *lang_rt = nullptr; 319 320 std::string abi; 321 ArchSpec target_arch; 322 target_arch = target_sp->GetArchitecture(); 323 324 const auto target_machine = target_arch.GetMachine(); 325 326 // If the expression is being evaluated in the context of an existing stack 327 // frame, we introspect to see if the language runtime is available. 328 329 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 330 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 331 332 // Make sure the user hasn't provided a preferred execution language with 333 // `expression --language X -- ...` 334 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 335 frame_lang = frame_sp->GetLanguage(); 336 337 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 338 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 339 if (log) 340 log->Printf("Frame has language of type %s", 341 Language::GetNameForLanguageType(frame_lang)); 342 } 343 344 // 2. Configure the compiler with a set of default options that are 345 // appropriate for most situations. 346 if (target_arch.IsValid()) { 347 std::string triple = target_arch.GetTriple().str(); 348 m_compiler->getTargetOpts().Triple = triple; 349 if (log) 350 log->Printf("Using %s as the target triple", 351 m_compiler->getTargetOpts().Triple.c_str()); 352 } else { 353 // If we get here we don't have a valid target and just have to guess. 354 // Sometimes this will be ok to just use the host target triple (when we 355 // evaluate say "2+3", but other expressions like breakpoint conditions and 356 // other things that _are_ target specific really shouldn't just be using 357 // the host triple. In such a case the language runtime should expose an 358 // overridden options set (3), below. 359 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 360 if (log) 361 log->Printf("Using default target triple of %s", 362 m_compiler->getTargetOpts().Triple.c_str()); 363 } 364 // Now add some special fixes for known architectures: Any arm32 iOS 365 // environment, but not on arm64 366 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 367 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 368 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 369 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 370 } 371 // Supported subsets of x86 372 if (target_machine == llvm::Triple::x86 || 373 target_machine == llvm::Triple::x86_64) { 374 m_compiler->getTargetOpts().Features.push_back("+sse"); 375 m_compiler->getTargetOpts().Features.push_back("+sse2"); 376 } 377 378 // Set the target CPU to generate code for. This will be empty for any CPU 379 // that doesn't really need to make a special 380 // CPU string. 381 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 382 383 // Set the target ABI 384 abi = GetClangTargetABI(target_arch); 385 if (!abi.empty()) 386 m_compiler->getTargetOpts().ABI = abi; 387 388 // 3. Now allow the runtime to provide custom configuration options for the 389 // target. In this case, a specialized language runtime is available and we 390 // can query it for extra options. For 99% of use cases, this will not be 391 // needed and should be provided when basic platform detection is not enough. 392 if (lang_rt) 393 overridden_target_opts = 394 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 395 396 if (overridden_target_opts) 397 if (log && log->GetVerbose()) { 398 LLDB_LOGV( 399 log, "Using overridden target options for the expression evaluation"); 400 401 auto opts = m_compiler->getTargetOpts(); 402 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 403 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 404 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 405 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 406 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 407 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 408 StringList::LogDump(log, opts.Features, "Features"); 409 } 410 411 // 4. Create and install the target on the compiler. 412 m_compiler->createDiagnostics(); 413 auto target_info = TargetInfo::CreateTargetInfo( 414 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 415 if (log) { 416 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); 417 log->Printf("Target datalayout string: '%s'", 418 target_info->getDataLayout().getStringRepresentation().c_str()); 419 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); 420 log->Printf("Target vector alignment: %d", 421 target_info->getMaxVectorAlign()); 422 } 423 m_compiler->setTarget(target_info); 424 425 assert(m_compiler->hasTarget()); 426 427 // 5. Set language options. 428 lldb::LanguageType language = expr.Language(); 429 LangOptions &lang_opts = m_compiler->getLangOpts(); 430 431 switch (language) { 432 case lldb::eLanguageTypeC: 433 case lldb::eLanguageTypeC89: 434 case lldb::eLanguageTypeC99: 435 case lldb::eLanguageTypeC11: 436 // FIXME: the following language option is a temporary workaround, 437 // to "ask for C, get C++." 438 // For now, the expression parser must use C++ anytime the language is a C 439 // family language, because the expression parser uses features of C++ to 440 // capture values. 441 lang_opts.CPlusPlus = true; 442 break; 443 case lldb::eLanguageTypeObjC: 444 lang_opts.ObjC = true; 445 // FIXME: the following language option is a temporary workaround, 446 // to "ask for ObjC, get ObjC++" (see comment above). 447 lang_opts.CPlusPlus = true; 448 449 // Clang now sets as default C++14 as the default standard (with 450 // GNU extensions), so we do the same here to avoid mismatches that 451 // cause compiler error when evaluating expressions (e.g. nullptr not found 452 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 453 // two lines below) so we decide to be consistent with that, but this could 454 // be re-evaluated in the future. 455 lang_opts.CPlusPlus11 = true; 456 break; 457 case lldb::eLanguageTypeC_plus_plus: 458 case lldb::eLanguageTypeC_plus_plus_11: 459 case lldb::eLanguageTypeC_plus_plus_14: 460 lang_opts.CPlusPlus11 = true; 461 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 462 LLVM_FALLTHROUGH; 463 case lldb::eLanguageTypeC_plus_plus_03: 464 lang_opts.CPlusPlus = true; 465 if (process_sp) 466 lang_opts.ObjC = 467 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 468 break; 469 case lldb::eLanguageTypeObjC_plus_plus: 470 case lldb::eLanguageTypeUnknown: 471 default: 472 lang_opts.ObjC = true; 473 lang_opts.CPlusPlus = true; 474 lang_opts.CPlusPlus11 = true; 475 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 476 break; 477 } 478 479 lang_opts.Bool = true; 480 lang_opts.WChar = true; 481 lang_opts.Blocks = true; 482 lang_opts.DebuggerSupport = 483 true; // Features specifically for debugger clients 484 if (expr.DesiredResultType() == Expression::eResultTypeId) 485 lang_opts.DebuggerCastResultToId = true; 486 487 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 488 .CharIsSignedByDefault(); 489 490 // Spell checking is a nice feature, but it ends up completing a lot of types 491 // that we didn't strictly speaking need to complete. As a result, we spend a 492 // long time parsing and importing debug information. 493 lang_opts.SpellChecking = false; 494 495 auto &clang_expr = *static_cast<ClangUserExpression *>(&m_expr); 496 if (clang_expr.DidImportCxxModules()) { 497 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 498 499 lang_opts.Modules = true; 500 // We want to implicitly build modules. 501 lang_opts.ImplicitModules = true; 502 // To automatically import all submodules when we import 'std'. 503 lang_opts.ModulesLocalVisibility = false; 504 505 // We use the @import statements, so we need this: 506 // FIXME: We could use the modules-ts, but that currently doesn't work. 507 lang_opts.ObjC = true; 508 509 // Options we need to parse libc++ code successfully. 510 // FIXME: We should ask the driver for the appropriate default flags. 511 lang_opts.GNUMode = true; 512 lang_opts.GNUKeywords = true; 513 lang_opts.DoubleSquareBracketAttributes = true; 514 lang_opts.CPlusPlus11 = true; 515 516 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 517 target_sp); 518 } 519 520 if (process_sp && lang_opts.ObjC) { 521 if (process_sp->GetObjCLanguageRuntime()) { 522 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == 523 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 524 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 525 else 526 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 527 VersionTuple(10, 7)); 528 529 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) 530 lang_opts.DebuggerObjCLiteral = true; 531 } 532 } 533 534 lang_opts.ThreadsafeStatics = false; 535 lang_opts.AccessControl = false; // Debuggers get universal access 536 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 537 // We enable all builtin functions beside the builtins from libc/libm (e.g. 538 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 539 // additionally enabling them as expandable builtins is breaking Clang. 540 lang_opts.NoBuiltin = true; 541 542 // Set CodeGen options 543 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 544 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 545 m_compiler->getCodeGenOpts().DisableFPElim = true; 546 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; 547 if (generate_debug_info) 548 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 549 else 550 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 551 552 // Disable some warnings. 553 m_compiler->getDiagnostics().setSeverityForGroup( 554 clang::diag::Flavor::WarningOrError, "unused-value", 555 clang::diag::Severity::Ignored, SourceLocation()); 556 m_compiler->getDiagnostics().setSeverityForGroup( 557 clang::diag::Flavor::WarningOrError, "odr", 558 clang::diag::Severity::Ignored, SourceLocation()); 559 560 // Inform the target of the language options 561 // 562 // FIXME: We shouldn't need to do this, the target should be immutable once 563 // created. This complexity should be lifted elsewhere. 564 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 565 566 // 6. Set up the diagnostic buffer for reporting errors 567 568 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 569 570 // 7. Set up the source management objects inside the compiler 571 m_compiler->createFileManager(); 572 if (!m_compiler->hasSourceManager()) 573 m_compiler->createSourceManager(m_compiler->getFileManager()); 574 m_compiler->createPreprocessor(TU_Complete); 575 576 if (ClangModulesDeclVendor *decl_vendor = 577 target_sp->GetClangModulesDeclVendor()) { 578 ClangPersistentVariables *clang_persistent_vars = 579 llvm::cast<ClangPersistentVariables>( 580 target_sp->GetPersistentExpressionStateForLanguage( 581 lldb::eLanguageTypeC)); 582 std::unique_ptr<PPCallbacks> pp_callbacks( 583 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 584 m_pp_callbacks = 585 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 586 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 587 } 588 589 // 8. Most of this we get from the CompilerInstance, but we also want to give 590 // the context an ExternalASTSource. 591 592 auto &PP = m_compiler->getPreprocessor(); 593 auto &builtin_context = PP.getBuiltinInfo(); 594 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 595 m_compiler->getLangOpts()); 596 597 m_compiler->createASTContext(); 598 clang::ASTContext &ast_context = m_compiler->getASTContext(); 599 600 m_ast_context.reset( 601 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 602 m_ast_context->setASTContext(&ast_context); 603 604 std::string module_name("$__lldb_module"); 605 606 m_llvm_context.reset(new LLVMContext()); 607 m_code_generator.reset(CreateLLVMCodeGen( 608 m_compiler->getDiagnostics(), module_name, 609 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 610 m_compiler->getCodeGenOpts(), *m_llvm_context)); 611 } 612 613 ClangExpressionParser::~ClangExpressionParser() {} 614 615 namespace { 616 617 //---------------------------------------------------------------------- 618 /// \class CodeComplete 619 /// 620 /// A code completion consumer for the clang Sema that is responsible for 621 /// creating the completion suggestions when a user requests completion 622 /// of an incomplete `expr` invocation. 623 //---------------------------------------------------------------------- 624 class CodeComplete : public CodeCompleteConsumer { 625 CodeCompletionTUInfo m_info; 626 627 std::string m_expr; 628 unsigned m_position = 0; 629 CompletionRequest &m_request; 630 /// The printing policy we use when printing declarations for our completion 631 /// descriptions. 632 clang::PrintingPolicy m_desc_policy; 633 634 /// Returns true if the given character can be used in an identifier. 635 /// This also returns true for numbers because for completion we usually 636 /// just iterate backwards over iterators. 637 /// 638 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 639 static bool IsIdChar(char c) { 640 return c == '_' || std::isalnum(c) || c == '$'; 641 } 642 643 /// Returns true if the given character is used to separate arguments 644 /// in the command line of lldb. 645 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 646 647 /// Drops all tokens in front of the expression that are unrelated for 648 /// the completion of the cmd line. 'unrelated' means here that the token 649 /// is not interested for the lldb completion API result. 650 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 651 if (cmd.empty()) 652 return cmd; 653 654 // If we are at the start of a word, then all tokens are unrelated to 655 // the current completion logic. 656 if (IsTokenSeparator(cmd.back())) 657 return StringRef(); 658 659 // Remove all previous tokens from the string as they are unrelated 660 // to completing the current token. 661 StringRef to_remove = cmd; 662 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 663 to_remove = to_remove.drop_back(); 664 } 665 cmd = cmd.drop_front(to_remove.size()); 666 667 return cmd; 668 } 669 670 /// Removes the last identifier token from the given cmd line. 671 StringRef removeLastToken(StringRef cmd) { 672 while (!cmd.empty() && IsIdChar(cmd.back())) { 673 cmd = cmd.drop_back(); 674 } 675 return cmd; 676 } 677 678 /// Attemps to merge the given completion from the given position into the 679 /// existing command. Returns the completion string that can be returned to 680 /// the lldb completion API. 681 std::string mergeCompletion(StringRef existing, unsigned pos, 682 StringRef completion) { 683 StringRef existing_command = existing.substr(0, pos); 684 // We rewrite the last token with the completion, so let's drop that 685 // token from the command. 686 existing_command = removeLastToken(existing_command); 687 // We also should remove all previous tokens from the command as they 688 // would otherwise be added to the completion that already has the 689 // completion. 690 existing_command = dropUnrelatedFrontTokens(existing_command); 691 return existing_command.str() + completion.str(); 692 } 693 694 public: 695 /// Constructs a CodeComplete consumer that can be attached to a Sema. 696 /// \param[out] matches 697 /// The list of matches that the lldb completion API expects as a result. 698 /// This may already contain matches, so it's only allowed to append 699 /// to this variable. 700 /// \param[out] expr 701 /// The whole expression string that we are currently parsing. This 702 /// string needs to be equal to the input the user typed, and NOT the 703 /// final code that Clang is parsing. 704 /// \param[out] position 705 /// The character position of the user cursor in the `expr` parameter. 706 /// 707 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 708 std::string expr, unsigned position) 709 : CodeCompleteConsumer(CodeCompleteOptions(), false), 710 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 711 m_position(position), m_request(request), m_desc_policy(ops) { 712 713 // Ensure that the printing policy is producing a description that is as 714 // short as possible. 715 m_desc_policy.SuppressScope = true; 716 m_desc_policy.SuppressTagKeyword = true; 717 m_desc_policy.FullyQualifiedName = false; 718 m_desc_policy.TerseOutput = true; 719 m_desc_policy.IncludeNewlines = false; 720 m_desc_policy.UseVoidForZeroParams = false; 721 m_desc_policy.Bool = true; 722 } 723 724 /// Deregisters and destroys this code-completion consumer. 725 virtual ~CodeComplete() {} 726 727 /// \name Code-completion filtering 728 /// Check if the result should be filtered out. 729 bool isResultFilteredOut(StringRef Filter, 730 CodeCompletionResult Result) override { 731 // This code is mostly copied from CodeCompleteConsumer. 732 switch (Result.Kind) { 733 case CodeCompletionResult::RK_Declaration: 734 return !( 735 Result.Declaration->getIdentifier() && 736 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 737 case CodeCompletionResult::RK_Keyword: 738 return !StringRef(Result.Keyword).startswith(Filter); 739 case CodeCompletionResult::RK_Macro: 740 return !Result.Macro->getName().startswith(Filter); 741 case CodeCompletionResult::RK_Pattern: 742 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 743 } 744 // If we trigger this assert or the above switch yields a warning, then 745 // CodeCompletionResult has been enhanced with more kinds of completion 746 // results. Expand the switch above in this case. 747 assert(false && "Unknown completion result type?"); 748 // If we reach this, then we should just ignore whatever kind of unknown 749 // result we got back. We probably can't turn it into any kind of useful 750 // completion suggestion with the existing code. 751 return true; 752 } 753 754 /// \name Code-completion callbacks 755 /// Process the finalized code-completion results. 756 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 757 CodeCompletionResult *Results, 758 unsigned NumResults) override { 759 760 // The Sema put the incomplete token we try to complete in here during 761 // lexing, so we need to retrieve it here to know what we are completing. 762 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 763 764 // Iterate over all the results. Filter out results we don't want and 765 // process the rest. 766 for (unsigned I = 0; I != NumResults; ++I) { 767 // Filter the results with the information from the Sema. 768 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 769 continue; 770 771 CodeCompletionResult &R = Results[I]; 772 std::string ToInsert; 773 std::string Description; 774 // Handle the different completion kinds that come from the Sema. 775 switch (R.Kind) { 776 case CodeCompletionResult::RK_Declaration: { 777 const NamedDecl *D = R.Declaration; 778 ToInsert = R.Declaration->getNameAsString(); 779 // If we have a function decl that has no arguments we want to 780 // complete the empty parantheses for the user. If the function has 781 // arguments, we at least complete the opening bracket. 782 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 783 if (F->getNumParams() == 0) 784 ToInsert += "()"; 785 else 786 ToInsert += "("; 787 raw_string_ostream OS(Description); 788 F->print(OS, m_desc_policy, false); 789 OS.flush(); 790 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 791 Description = V->getType().getAsString(m_desc_policy); 792 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 793 Description = F->getType().getAsString(m_desc_policy); 794 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 795 // If we try to complete a namespace, then we can directly append 796 // the '::'. 797 if (!N->isAnonymousNamespace()) 798 ToInsert += "::"; 799 } 800 break; 801 } 802 case CodeCompletionResult::RK_Keyword: 803 ToInsert = R.Keyword; 804 break; 805 case CodeCompletionResult::RK_Macro: 806 ToInsert = R.Macro->getName().str(); 807 break; 808 case CodeCompletionResult::RK_Pattern: 809 ToInsert = R.Pattern->getTypedText(); 810 break; 811 } 812 // At this point all information is in the ToInsert string. 813 814 // We also filter some internal lldb identifiers here. The user 815 // shouldn't see these. 816 if (StringRef(ToInsert).startswith("$__lldb_")) 817 continue; 818 if (!ToInsert.empty()) { 819 // Merge the suggested Token into the existing command line to comply 820 // with the kind of result the lldb API expects. 821 std::string CompletionSuggestion = 822 mergeCompletion(m_expr, m_position, ToInsert); 823 m_request.AddCompletion(CompletionSuggestion, Description); 824 } 825 } 826 } 827 828 /// \param S the semantic-analyzer object for which code-completion is being 829 /// done. 830 /// 831 /// \param CurrentArg the index of the current argument. 832 /// 833 /// \param Candidates an array of overload candidates. 834 /// 835 /// \param NumCandidates the number of overload candidates 836 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 837 OverloadCandidate *Candidates, 838 unsigned NumCandidates, 839 SourceLocation OpenParLoc) override { 840 // At the moment we don't filter out any overloaded candidates. 841 } 842 843 CodeCompletionAllocator &getAllocator() override { 844 return m_info.getAllocator(); 845 } 846 847 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 848 }; 849 } // namespace 850 851 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 852 unsigned pos, unsigned typed_pos) { 853 DiagnosticManager mgr; 854 // We need the raw user expression here because that's what the CodeComplete 855 // class uses to provide completion suggestions. 856 // However, the `Text` method only gives us the transformed expression here. 857 // To actually get the raw user input here, we have to cast our expression to 858 // the LLVMUserExpression which exposes the right API. This should never fail 859 // as we always have a ClangUserExpression whenever we call this. 860 LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr); 861 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(), 862 typed_pos); 863 // We don't need a code generator for parsing. 864 m_code_generator.reset(); 865 // Start parsing the expression with our custom code completion consumer. 866 ParseInternal(mgr, &CC, line, pos); 867 return true; 868 } 869 870 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 871 return ParseInternal(diagnostic_manager); 872 } 873 874 unsigned 875 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 876 CodeCompleteConsumer *completion_consumer, 877 unsigned completion_line, 878 unsigned completion_column) { 879 ClangDiagnosticManagerAdapter *adapter = 880 static_cast<ClangDiagnosticManagerAdapter *>( 881 m_compiler->getDiagnostics().getClient()); 882 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 883 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 884 885 adapter->ResetManager(&diagnostic_manager); 886 887 const char *expr_text = m_expr.Text(); 888 889 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 890 bool created_main_file = false; 891 892 // Clang wants to do completion on a real file known by Clang's file manager, 893 // so we have to create one to make this work. 894 // TODO: We probably could also simulate to Clang's file manager that there 895 // is a real file that contains our code. 896 bool should_create_file = completion_consumer != nullptr; 897 898 // We also want a real file on disk if we generate full debug info. 899 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 900 codegenoptions::FullDebugInfo; 901 902 if (should_create_file) { 903 int temp_fd = -1; 904 llvm::SmallString<128> result_path; 905 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 906 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 907 std::string temp_source_path = tmpdir_file_spec.GetPath(); 908 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 909 } else { 910 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 911 } 912 913 if (temp_fd != -1) { 914 lldb_private::File file(temp_fd, true); 915 const size_t expr_text_len = strlen(expr_text); 916 size_t bytes_written = expr_text_len; 917 if (file.Write(expr_text, bytes_written).Success()) { 918 if (bytes_written == expr_text_len) { 919 file.Close(); 920 source_mgr.setMainFileID(source_mgr.createFileID( 921 m_compiler->getFileManager().getFile(result_path), 922 SourceLocation(), SrcMgr::C_User)); 923 created_main_file = true; 924 } 925 } 926 } 927 } 928 929 if (!created_main_file) { 930 std::unique_ptr<MemoryBuffer> memory_buffer = 931 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); 932 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 933 } 934 935 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 936 &m_compiler->getPreprocessor()); 937 938 ClangExpressionHelper *type_system_helper = 939 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 940 941 // If we want to parse for code completion, we need to attach our code 942 // completion consumer to the Sema and specify a completion position. 943 // While parsing the Sema will call this consumer with the provided 944 // completion suggestions. 945 if (completion_consumer) { 946 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 947 auto &PP = m_compiler->getPreprocessor(); 948 // Lines and columns start at 1 in Clang, but code completion positions are 949 // indexed from 0, so we need to add 1 to the line and column here. 950 ++completion_line; 951 ++completion_column; 952 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 953 } 954 955 ASTConsumer *ast_transformer = 956 type_system_helper->ASTTransformer(m_code_generator.get()); 957 958 std::unique_ptr<clang::ASTConsumer> Consumer; 959 if (ast_transformer) { 960 Consumer.reset(new ASTConsumerForwarder(ast_transformer)); 961 } else if (m_code_generator) { 962 Consumer.reset(new ASTConsumerForwarder(m_code_generator.get())); 963 } else { 964 Consumer.reset(new ASTConsumer()); 965 } 966 967 clang::ASTContext &ast_context = m_compiler->getASTContext(); 968 969 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 970 *Consumer, TU_Complete, completion_consumer)); 971 m_compiler->setASTConsumer(std::move(Consumer)); 972 973 if (ast_context.getLangOpts().Modules) 974 m_compiler->createModuleManager(); 975 976 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 977 if (decl_map) { 978 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 979 980 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 981 982 if (ast_context.getExternalSource()) { 983 auto module_wrapper = 984 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 985 986 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 987 988 auto multiplexer = 989 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 990 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 991 ast_context.setExternalSource(Source); 992 } else { 993 ast_context.setExternalSource(ast_source); 994 } 995 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 996 } 997 998 // Check that the ASTReader is properly attached to ASTContext and Sema. 999 if (ast_context.getLangOpts().Modules) { 1000 assert(m_compiler->getASTContext().getExternalSource() && 1001 "ASTContext doesn't know about the ASTReader?"); 1002 assert(m_compiler->getSema().getExternalSource() && 1003 "Sema doesn't know about the ASTReader?"); 1004 } 1005 1006 { 1007 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1008 &m_compiler->getSema()); 1009 ParseAST(m_compiler->getSema(), false, false); 1010 } 1011 // Destroy the Sema. This is necessary because we want to emulate the 1012 // original behavior of ParseAST (which also destroys the Sema after parsing). 1013 m_compiler->setSema(nullptr); 1014 1015 diag_buf->EndSourceFile(); 1016 1017 unsigned num_errors = diag_buf->getNumErrors(); 1018 1019 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1020 num_errors++; 1021 diagnostic_manager.PutString(eDiagnosticSeverityError, 1022 "while importing modules:"); 1023 diagnostic_manager.AppendMessageToDiagnostic( 1024 m_pp_callbacks->getErrorString()); 1025 } 1026 1027 if (!num_errors) { 1028 if (type_system_helper->DeclMap() && 1029 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 1030 diagnostic_manager.Printf(eDiagnosticSeverityError, 1031 "Couldn't infer the type of a variable"); 1032 num_errors++; 1033 } 1034 } 1035 1036 if (!num_errors) { 1037 type_system_helper->CommitPersistentDecls(); 1038 } 1039 1040 adapter->ResetManager(); 1041 1042 return num_errors; 1043 } 1044 1045 std::string 1046 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1047 std::string abi; 1048 1049 if (target_arch.IsMIPS()) { 1050 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1051 case ArchSpec::eMIPSABI_N64: 1052 abi = "n64"; 1053 break; 1054 case ArchSpec::eMIPSABI_N32: 1055 abi = "n32"; 1056 break; 1057 case ArchSpec::eMIPSABI_O32: 1058 abi = "o32"; 1059 break; 1060 default: 1061 break; 1062 } 1063 } 1064 return abi; 1065 } 1066 1067 bool ClangExpressionParser::RewriteExpression( 1068 DiagnosticManager &diagnostic_manager) { 1069 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1070 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1071 nullptr); 1072 clang::edit::Commit commit(editor); 1073 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1074 1075 class RewritesReceiver : public edit::EditsReceiver { 1076 Rewriter &rewrite; 1077 1078 public: 1079 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1080 1081 void insert(SourceLocation loc, StringRef text) override { 1082 rewrite.InsertText(loc, text); 1083 } 1084 void replace(CharSourceRange range, StringRef text) override { 1085 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1086 } 1087 }; 1088 1089 RewritesReceiver rewrites_receiver(rewriter); 1090 1091 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1092 size_t num_diags = diagnostics.size(); 1093 if (num_diags == 0) 1094 return false; 1095 1096 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 1097 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 1098 if (diagnostic && diagnostic->HasFixIts()) { 1099 for (const FixItHint &fixit : diagnostic->FixIts()) { 1100 // This is cobbed from clang::Rewrite::FixItRewriter. 1101 if (fixit.CodeToInsert.empty()) { 1102 if (fixit.InsertFromRange.isValid()) { 1103 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1104 fixit.InsertFromRange, /*afterToken=*/false, 1105 fixit.BeforePreviousInsertions); 1106 } else 1107 commit.remove(fixit.RemoveRange); 1108 } else { 1109 if (fixit.RemoveRange.isTokenRange() || 1110 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1111 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1112 else 1113 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1114 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1115 } 1116 } 1117 } 1118 } 1119 1120 // FIXME - do we want to try to propagate specific errors here? 1121 if (!commit.isCommitable()) 1122 return false; 1123 else if (!editor.commit(commit)) 1124 return false; 1125 1126 // Now play all the edits, and stash the result in the diagnostic manager. 1127 editor.applyRewrites(rewrites_receiver); 1128 RewriteBuffer &main_file_buffer = 1129 rewriter.getEditBuffer(source_manager.getMainFileID()); 1130 1131 std::string fixed_expression; 1132 llvm::raw_string_ostream out_stream(fixed_expression); 1133 1134 main_file_buffer.write(out_stream); 1135 out_stream.flush(); 1136 diagnostic_manager.SetFixedExpression(fixed_expression); 1137 1138 return true; 1139 } 1140 1141 static bool FindFunctionInModule(ConstString &mangled_name, 1142 llvm::Module *module, const char *orig_name) { 1143 for (const auto &func : module->getFunctionList()) { 1144 const StringRef &name = func.getName(); 1145 if (name.find(orig_name) != StringRef::npos) { 1146 mangled_name.SetString(name); 1147 return true; 1148 } 1149 } 1150 1151 return false; 1152 } 1153 1154 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1155 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1156 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1157 bool &can_interpret, ExecutionPolicy execution_policy) { 1158 func_addr = LLDB_INVALID_ADDRESS; 1159 func_end = LLDB_INVALID_ADDRESS; 1160 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1161 1162 lldb_private::Status err; 1163 1164 std::unique_ptr<llvm::Module> llvm_module_up( 1165 m_code_generator->ReleaseModule()); 1166 1167 if (!llvm_module_up) { 1168 err.SetErrorToGenericError(); 1169 err.SetErrorString("IR doesn't contain a module"); 1170 return err; 1171 } 1172 1173 ConstString function_name; 1174 1175 if (execution_policy != eExecutionPolicyTopLevel) { 1176 // Find the actual name of the function (it's often mangled somehow) 1177 1178 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1179 m_expr.FunctionName())) { 1180 err.SetErrorToGenericError(); 1181 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1182 m_expr.FunctionName()); 1183 return err; 1184 } else { 1185 if (log) 1186 log->Printf("Found function %s for %s", function_name.AsCString(), 1187 m_expr.FunctionName()); 1188 } 1189 } 1190 1191 SymbolContext sc; 1192 1193 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1194 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1195 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1196 sc.target_sp = target_sp; 1197 } 1198 1199 LLVMUserExpression::IRPasses custom_passes; 1200 { 1201 auto lang = m_expr.Language(); 1202 if (log) 1203 log->Printf("%s - Current expression language is %s\n", __FUNCTION__, 1204 Language::GetNameForLanguageType(lang)); 1205 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1206 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1207 auto runtime = process_sp->GetLanguageRuntime(lang); 1208 if (runtime) 1209 runtime->GetIRPasses(custom_passes); 1210 } 1211 } 1212 1213 if (custom_passes.EarlyPasses) { 1214 if (log) 1215 log->Printf("%s - Running Early IR Passes from LanguageRuntime on " 1216 "expression module '%s'", 1217 __FUNCTION__, m_expr.FunctionName()); 1218 1219 custom_passes.EarlyPasses->run(*llvm_module_up); 1220 } 1221 1222 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1223 m_llvm_context, // handed off here 1224 llvm_module_up, // handed off here 1225 function_name, exe_ctx.GetTargetSP(), sc, 1226 m_compiler->getTargetOpts().Features); 1227 1228 ClangExpressionHelper *type_system_helper = 1229 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1230 ClangExpressionDeclMap *decl_map = 1231 type_system_helper->DeclMap(); // result can be NULL 1232 1233 if (decl_map) { 1234 Stream *error_stream = NULL; 1235 Target *target = exe_ctx.GetTargetPtr(); 1236 error_stream = target->GetDebugger().GetErrorFile().get(); 1237 1238 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1239 *execution_unit_sp, *error_stream, 1240 function_name.AsCString()); 1241 1242 bool ir_can_run = 1243 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1244 1245 if (!ir_can_run) { 1246 err.SetErrorString( 1247 "The expression could not be prepared to run in the target"); 1248 return err; 1249 } 1250 1251 Process *process = exe_ctx.GetProcessPtr(); 1252 1253 if (execution_policy != eExecutionPolicyAlways && 1254 execution_policy != eExecutionPolicyTopLevel) { 1255 lldb_private::Status interpret_error; 1256 1257 bool interpret_function_calls = 1258 !process ? false : process->CanInterpretFunctionCalls(); 1259 can_interpret = IRInterpreter::CanInterpret( 1260 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1261 interpret_error, interpret_function_calls); 1262 1263 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1264 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1265 interpret_error.AsCString()); 1266 return err; 1267 } 1268 } 1269 1270 if (!process && execution_policy == eExecutionPolicyAlways) { 1271 err.SetErrorString("Expression needed to run in the target, but the " 1272 "target can't be run"); 1273 return err; 1274 } 1275 1276 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1277 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1278 "target, but the target can't be run"); 1279 return err; 1280 } 1281 1282 if (execution_policy == eExecutionPolicyAlways || 1283 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1284 if (m_expr.NeedsValidation() && process) { 1285 if (!process->GetDynamicCheckers()) { 1286 DynamicCheckerFunctions *dynamic_checkers = 1287 new DynamicCheckerFunctions(); 1288 1289 DiagnosticManager install_diagnostics; 1290 1291 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1292 if (install_diagnostics.Diagnostics().size()) 1293 err.SetErrorString(install_diagnostics.GetString().c_str()); 1294 else 1295 err.SetErrorString("couldn't install checkers, unknown error"); 1296 1297 return err; 1298 } 1299 1300 process->SetDynamicCheckers(dynamic_checkers); 1301 1302 if (log) 1303 log->Printf("== [ClangExpressionParser::PrepareForExecution] " 1304 "Finished installing dynamic checkers =="); 1305 } 1306 1307 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), 1308 function_name.AsCString()); 1309 1310 llvm::Module *module = execution_unit_sp->GetModule(); 1311 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1312 err.SetErrorToGenericError(); 1313 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1314 return err; 1315 } 1316 1317 if (custom_passes.LatePasses) { 1318 if (log) 1319 log->Printf("%s - Running Late IR Passes from LanguageRuntime on " 1320 "expression module '%s'", 1321 __FUNCTION__, m_expr.FunctionName()); 1322 1323 custom_passes.LatePasses->run(*module); 1324 } 1325 } 1326 } 1327 1328 if (execution_policy == eExecutionPolicyAlways || 1329 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1330 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1331 } 1332 } else { 1333 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1334 } 1335 1336 return err; 1337 } 1338 1339 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1340 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1341 lldb_private::Status err; 1342 1343 lldbassert(execution_unit_sp.get()); 1344 lldbassert(exe_ctx.HasThreadScope()); 1345 1346 if (!execution_unit_sp.get()) { 1347 err.SetErrorString( 1348 "can't run static initializers for a NULL execution unit"); 1349 return err; 1350 } 1351 1352 if (!exe_ctx.HasThreadScope()) { 1353 err.SetErrorString("can't run static initializers without a thread"); 1354 return err; 1355 } 1356 1357 std::vector<lldb::addr_t> static_initializers; 1358 1359 execution_unit_sp->GetStaticInitializers(static_initializers); 1360 1361 for (lldb::addr_t static_initializer : static_initializers) { 1362 EvaluateExpressionOptions options; 1363 1364 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1365 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1366 llvm::ArrayRef<lldb::addr_t>(), options)); 1367 1368 DiagnosticManager execution_errors; 1369 lldb::ExpressionResults results = 1370 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1371 exe_ctx, call_static_initializer, options, execution_errors); 1372 1373 if (results != lldb::eExpressionCompleted) { 1374 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1375 execution_errors.GetString().c_str()); 1376 return err; 1377 } 1378 } 1379 1380 return err; 1381 } 1382