1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/DiagnosticIDs.h"
14 #include "clang/Basic/SourceLocation.h"
15 #include "clang/Basic/TargetInfo.h"
16 #include "clang/Basic/Version.h"
17 #include "clang/CodeGen/CodeGenAction.h"
18 #include "clang/CodeGen/ModuleBuilder.h"
19 #include "clang/Edit/Commit.h"
20 #include "clang/Edit/EditedSource.h"
21 #include "clang/Edit/EditsReceiver.h"
22 #include "clang/Frontend/CompilerInstance.h"
23 #include "clang/Frontend/CompilerInvocation.h"
24 #include "clang/Frontend/FrontendActions.h"
25 #include "clang/Frontend/FrontendDiagnostic.h"
26 #include "clang/Frontend/FrontendPluginRegistry.h"
27 #include "clang/Frontend/TextDiagnosticBuffer.h"
28 #include "clang/Frontend/TextDiagnosticPrinter.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Parse/ParseAST.h"
31 #include "clang/Rewrite/Core/Rewriter.h"
32 #include "clang/Rewrite/Frontend/FrontendActions.h"
33 #include "clang/Sema/CodeCompleteConsumer.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaConsumer.h"
36 
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ExecutionEngine/ExecutionEngine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/FileSystem.h"
41 #include "llvm/Support/TargetSelect.h"
42 
43 #pragma clang diagnostic push
44 #pragma clang diagnostic ignored "-Wglobal-constructors"
45 #include "llvm/ExecutionEngine/MCJIT.h"
46 #pragma clang diagnostic pop
47 
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/Support/DynamicLibrary.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Host.h"
53 #include "llvm/Support/MemoryBuffer.h"
54 #include "llvm/Support/Signals.h"
55 
56 #include "ClangASTSource.h"
57 #include "ClangDiagnostic.h"
58 #include "ClangExpressionDeclMap.h"
59 #include "ClangExpressionHelper.h"
60 #include "ClangExpressionParser.h"
61 #include "ClangModulesDeclVendor.h"
62 #include "ClangPersistentVariables.h"
63 #include "IRForTarget.h"
64 #include "ModuleDependencyCollector.h"
65 
66 #include "lldb/Core/Debugger.h"
67 #include "lldb/Core/Disassembler.h"
68 #include "lldb/Core/Module.h"
69 #include "lldb/Core/StreamFile.h"
70 #include "lldb/Expression/IRDynamicChecks.h"
71 #include "lldb/Expression/IRExecutionUnit.h"
72 #include "lldb/Expression/IRInterpreter.h"
73 #include "lldb/Host/File.h"
74 #include "lldb/Host/HostInfo.h"
75 #include "lldb/Symbol/ClangASTContext.h"
76 #include "lldb/Symbol/SymbolVendor.h"
77 #include "lldb/Target/ExecutionContext.h"
78 #include "lldb/Target/Language.h"
79 #include "lldb/Target/ObjCLanguageRuntime.h"
80 #include "lldb/Target/Process.h"
81 #include "lldb/Target/Target.h"
82 #include "lldb/Target/ThreadPlanCallFunction.h"
83 #include "lldb/Utility/DataBufferHeap.h"
84 #include "lldb/Utility/LLDBAssert.h"
85 #include "lldb/Utility/Log.h"
86 #include "lldb/Utility/Reproducer.h"
87 #include "lldb/Utility/Stream.h"
88 #include "lldb/Utility/StreamString.h"
89 #include "lldb/Utility/StringList.h"
90 
91 #include <cctype>
92 #include <memory>
93 
94 using namespace clang;
95 using namespace llvm;
96 using namespace lldb_private;
97 
98 //===----------------------------------------------------------------------===//
99 // Utility Methods for Clang
100 //===----------------------------------------------------------------------===//
101 
102 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
103   ClangModulesDeclVendor &m_decl_vendor;
104   ClangPersistentVariables &m_persistent_vars;
105   StreamString m_error_stream;
106   bool m_has_errors = false;
107 
108 public:
109   LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
110                             ClangPersistentVariables &persistent_vars)
111       : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {}
112 
113   void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
114                     const clang::Module * /*null*/) override {
115     SourceModule module;
116 
117     for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
118       module.path.push_back(ConstString(component.first->getName()));
119 
120     StreamString error_stream;
121 
122     ClangModulesDeclVendor::ModuleVector exported_modules;
123     if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
124       m_has_errors = true;
125 
126     for (ClangModulesDeclVendor::ModuleID module : exported_modules)
127       m_persistent_vars.AddHandLoadedClangModule(module);
128   }
129 
130   bool hasErrors() { return m_has_errors; }
131 
132   llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
133 };
134 
135 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
136 public:
137   ClangDiagnosticManagerAdapter()
138       : m_passthrough(new clang::TextDiagnosticBuffer) {}
139 
140   ClangDiagnosticManagerAdapter(
141       const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
142       : m_passthrough(passthrough) {}
143 
144   void ResetManager(DiagnosticManager *manager = nullptr) {
145     m_manager = manager;
146   }
147 
148   void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
149                         const clang::Diagnostic &Info) {
150     if (m_manager) {
151       llvm::SmallVector<char, 32> diag_str;
152       Info.FormatDiagnostic(diag_str);
153       diag_str.push_back('\0');
154       const char *data = diag_str.data();
155 
156       lldb_private::DiagnosticSeverity severity;
157       bool make_new_diagnostic = true;
158 
159       switch (DiagLevel) {
160       case DiagnosticsEngine::Level::Fatal:
161       case DiagnosticsEngine::Level::Error:
162         severity = eDiagnosticSeverityError;
163         break;
164       case DiagnosticsEngine::Level::Warning:
165         severity = eDiagnosticSeverityWarning;
166         break;
167       case DiagnosticsEngine::Level::Remark:
168       case DiagnosticsEngine::Level::Ignored:
169         severity = eDiagnosticSeverityRemark;
170         break;
171       case DiagnosticsEngine::Level::Note:
172         m_manager->AppendMessageToDiagnostic(data);
173         make_new_diagnostic = false;
174       }
175       if (make_new_diagnostic) {
176         ClangDiagnostic *new_diagnostic =
177             new ClangDiagnostic(data, severity, Info.getID());
178         m_manager->AddDiagnostic(new_diagnostic);
179 
180         // Don't store away warning fixits, since the compiler doesn't have
181         // enough context in an expression for the warning to be useful.
182         // FIXME: Should we try to filter out FixIts that apply to our generated
183         // code, and not the user's expression?
184         if (severity == eDiagnosticSeverityError) {
185           size_t num_fixit_hints = Info.getNumFixItHints();
186           for (size_t i = 0; i < num_fixit_hints; i++) {
187             const clang::FixItHint &fixit = Info.getFixItHint(i);
188             if (!fixit.isNull())
189               new_diagnostic->AddFixitHint(fixit);
190           }
191         }
192       }
193     }
194 
195     m_passthrough->HandleDiagnostic(DiagLevel, Info);
196   }
197 
198   void FlushDiagnostics(DiagnosticsEngine &Diags) {
199     m_passthrough->FlushDiagnostics(Diags);
200   }
201 
202   DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
203     return new ClangDiagnosticManagerAdapter(m_passthrough);
204   }
205 
206   clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); }
207 
208 private:
209   DiagnosticManager *m_manager = nullptr;
210   std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
211 };
212 
213 //===----------------------------------------------------------------------===//
214 // Implementation of ClangExpressionParser
215 //===----------------------------------------------------------------------===//
216 
217 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope,
218                                              Expression &expr,
219                                              bool generate_debug_info)
220     : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
221       m_pp_callbacks(nullptr) {
222   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
223 
224   // We can't compile expressions without a target.  So if the exe_scope is
225   // null or doesn't have a target, then we just need to get out of here.  I'll
226   // lldb_assert and not make any of the compiler objects since
227   // I can't return errors directly from the constructor.  Further calls will
228   // check if the compiler was made and
229   // bag out if it wasn't.
230 
231   if (!exe_scope) {
232     lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
233                 __FUNCTION__, __FILE__, __LINE__);
234     return;
235   }
236 
237   lldb::TargetSP target_sp;
238   target_sp = exe_scope->CalculateTarget();
239   if (!target_sp) {
240     lldb_assert(target_sp.get(),
241                 "Can't make an expression parser with a null target.",
242                 __FUNCTION__, __FILE__, __LINE__);
243     return;
244   }
245 
246   // 1. Create a new compiler instance.
247   m_compiler.reset(new CompilerInstance());
248 
249   // When capturing a reproducer, hook up the file collector with clang to
250   // collector modules and headers.
251   if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
252     repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
253     m_compiler->setModuleDepCollector(
254         std::make_shared<ModuleDependencyCollectorAdaptor>(
255             fp.GetFileCollector()));
256     DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts();
257     opts.IncludeSystemHeaders = true;
258     opts.IncludeModuleFiles = true;
259   }
260 
261   lldb::LanguageType frame_lang =
262       expr.Language(); // defaults to lldb::eLanguageTypeUnknown
263   bool overridden_target_opts = false;
264   lldb_private::LanguageRuntime *lang_rt = nullptr;
265 
266   std::string abi;
267   ArchSpec target_arch;
268   target_arch = target_sp->GetArchitecture();
269 
270   const auto target_machine = target_arch.GetMachine();
271 
272   // If the expression is being evaluated in the context of an existing stack
273   // frame, we introspect to see if the language runtime is available.
274 
275   lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
276   lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
277 
278   // Make sure the user hasn't provided a preferred execution language with
279   // `expression --language X -- ...`
280   if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
281     frame_lang = frame_sp->GetLanguage();
282 
283   if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
284     lang_rt = process_sp->GetLanguageRuntime(frame_lang);
285     if (log)
286       log->Printf("Frame has language of type %s",
287                   Language::GetNameForLanguageType(frame_lang));
288   }
289 
290   // 2. Configure the compiler with a set of default options that are
291   // appropriate for most situations.
292   if (target_arch.IsValid()) {
293     std::string triple = target_arch.GetTriple().str();
294     m_compiler->getTargetOpts().Triple = triple;
295     if (log)
296       log->Printf("Using %s as the target triple",
297                   m_compiler->getTargetOpts().Triple.c_str());
298   } else {
299     // If we get here we don't have a valid target and just have to guess.
300     // Sometimes this will be ok to just use the host target triple (when we
301     // evaluate say "2+3", but other expressions like breakpoint conditions and
302     // other things that _are_ target specific really shouldn't just be using
303     // the host triple. In such a case the language runtime should expose an
304     // overridden options set (3), below.
305     m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
306     if (log)
307       log->Printf("Using default target triple of %s",
308                   m_compiler->getTargetOpts().Triple.c_str());
309   }
310   // Now add some special fixes for known architectures: Any arm32 iOS
311   // environment, but not on arm64
312   if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
313       m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
314       m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
315     m_compiler->getTargetOpts().ABI = "apcs-gnu";
316   }
317   // Supported subsets of x86
318   if (target_machine == llvm::Triple::x86 ||
319       target_machine == llvm::Triple::x86_64) {
320     m_compiler->getTargetOpts().Features.push_back("+sse");
321     m_compiler->getTargetOpts().Features.push_back("+sse2");
322   }
323 
324   // Set the target CPU to generate code for. This will be empty for any CPU
325   // that doesn't really need to make a special
326   // CPU string.
327   m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
328 
329   // Set the target ABI
330   abi = GetClangTargetABI(target_arch);
331   if (!abi.empty())
332     m_compiler->getTargetOpts().ABI = abi;
333 
334   // 3. Now allow the runtime to provide custom configuration options for the
335   // target. In this case, a specialized language runtime is available and we
336   // can query it for extra options. For 99% of use cases, this will not be
337   // needed and should be provided when basic platform detection is not enough.
338   if (lang_rt)
339     overridden_target_opts =
340         lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
341 
342   if (overridden_target_opts)
343     if (log && log->GetVerbose()) {
344       LLDB_LOGV(
345           log, "Using overridden target options for the expression evaluation");
346 
347       auto opts = m_compiler->getTargetOpts();
348       LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
349       LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
350       LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
351       LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
352       LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
353       StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
354       StringList::LogDump(log, opts.Features, "Features");
355     }
356 
357   // 4. Create and install the target on the compiler.
358   m_compiler->createDiagnostics();
359   auto target_info = TargetInfo::CreateTargetInfo(
360       m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
361   if (log) {
362     log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign());
363     log->Printf("Target datalayout string: '%s'",
364                 target_info->getDataLayout().getStringRepresentation().c_str());
365     log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str());
366     log->Printf("Target vector alignment: %d",
367                 target_info->getMaxVectorAlign());
368   }
369   m_compiler->setTarget(target_info);
370 
371   assert(m_compiler->hasTarget());
372 
373   // 5. Set language options.
374   lldb::LanguageType language = expr.Language();
375   LangOptions &lang_opts = m_compiler->getLangOpts();
376 
377   switch (language) {
378   case lldb::eLanguageTypeC:
379   case lldb::eLanguageTypeC89:
380   case lldb::eLanguageTypeC99:
381   case lldb::eLanguageTypeC11:
382     // FIXME: the following language option is a temporary workaround,
383     // to "ask for C, get C++."
384     // For now, the expression parser must use C++ anytime the language is a C
385     // family language, because the expression parser uses features of C++ to
386     // capture values.
387     lang_opts.CPlusPlus = true;
388     break;
389   case lldb::eLanguageTypeObjC:
390     lang_opts.ObjC = true;
391     // FIXME: the following language option is a temporary workaround,
392     // to "ask for ObjC, get ObjC++" (see comment above).
393     lang_opts.CPlusPlus = true;
394 
395     // Clang now sets as default C++14 as the default standard (with
396     // GNU extensions), so we do the same here to avoid mismatches that
397     // cause compiler error when evaluating expressions (e.g. nullptr not found
398     // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
399     // two lines below) so we decide to be consistent with that, but this could
400     // be re-evaluated in the future.
401     lang_opts.CPlusPlus11 = true;
402     break;
403   case lldb::eLanguageTypeC_plus_plus:
404   case lldb::eLanguageTypeC_plus_plus_11:
405   case lldb::eLanguageTypeC_plus_plus_14:
406     lang_opts.CPlusPlus11 = true;
407     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
408     LLVM_FALLTHROUGH;
409   case lldb::eLanguageTypeC_plus_plus_03:
410     lang_opts.CPlusPlus = true;
411     if (process_sp)
412       lang_opts.ObjC =
413           process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
414     break;
415   case lldb::eLanguageTypeObjC_plus_plus:
416   case lldb::eLanguageTypeUnknown:
417   default:
418     lang_opts.ObjC = true;
419     lang_opts.CPlusPlus = true;
420     lang_opts.CPlusPlus11 = true;
421     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
422     break;
423   }
424 
425   lang_opts.Bool = true;
426   lang_opts.WChar = true;
427   lang_opts.Blocks = true;
428   lang_opts.DebuggerSupport =
429       true; // Features specifically for debugger clients
430   if (expr.DesiredResultType() == Expression::eResultTypeId)
431     lang_opts.DebuggerCastResultToId = true;
432 
433   lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
434                                .CharIsSignedByDefault();
435 
436   // Spell checking is a nice feature, but it ends up completing a lot of types
437   // that we didn't strictly speaking need to complete. As a result, we spend a
438   // long time parsing and importing debug information.
439   lang_opts.SpellChecking = false;
440 
441   if (process_sp && lang_opts.ObjC) {
442     if (process_sp->GetObjCLanguageRuntime()) {
443       if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() ==
444           ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
445         lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
446       else
447         lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
448                                   VersionTuple(10, 7));
449 
450       if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing())
451         lang_opts.DebuggerObjCLiteral = true;
452     }
453   }
454 
455   lang_opts.ThreadsafeStatics = false;
456   lang_opts.AccessControl = false; // Debuggers get universal access
457   lang_opts.DollarIdents = true;   // $ indicates a persistent variable name
458   // We enable all builtin functions beside the builtins from libc/libm (e.g.
459   // 'fopen'). Those libc functions are already correctly handled by LLDB, and
460   // additionally enabling them as expandable builtins is breaking Clang.
461   lang_opts.NoBuiltin = true;
462 
463   // Set CodeGen options
464   m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
465   m_compiler->getCodeGenOpts().InstrumentFunctions = false;
466   m_compiler->getCodeGenOpts().DisableFPElim = true;
467   m_compiler->getCodeGenOpts().OmitLeafFramePointer = false;
468   if (generate_debug_info)
469     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
470   else
471     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
472 
473   // Disable some warnings.
474   m_compiler->getDiagnostics().setSeverityForGroup(
475       clang::diag::Flavor::WarningOrError, "unused-value",
476       clang::diag::Severity::Ignored, SourceLocation());
477   m_compiler->getDiagnostics().setSeverityForGroup(
478       clang::diag::Flavor::WarningOrError, "odr",
479       clang::diag::Severity::Ignored, SourceLocation());
480 
481   // Inform the target of the language options
482   //
483   // FIXME: We shouldn't need to do this, the target should be immutable once
484   // created. This complexity should be lifted elsewhere.
485   m_compiler->getTarget().adjust(m_compiler->getLangOpts());
486 
487   // 6. Set up the diagnostic buffer for reporting errors
488 
489   m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
490 
491   // 7. Set up the source management objects inside the compiler
492   m_compiler->createFileManager();
493   if (!m_compiler->hasSourceManager())
494     m_compiler->createSourceManager(m_compiler->getFileManager());
495   m_compiler->createPreprocessor(TU_Complete);
496 
497   if (ClangModulesDeclVendor *decl_vendor =
498           target_sp->GetClangModulesDeclVendor()) {
499     ClangPersistentVariables *clang_persistent_vars =
500         llvm::cast<ClangPersistentVariables>(
501             target_sp->GetPersistentExpressionStateForLanguage(
502                 lldb::eLanguageTypeC));
503     std::unique_ptr<PPCallbacks> pp_callbacks(
504         new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
505     m_pp_callbacks =
506         static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
507     m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
508   }
509 
510   // 8. Most of this we get from the CompilerInstance, but we also want to give
511   // the context an ExternalASTSource.
512 
513   auto &PP = m_compiler->getPreprocessor();
514   auto &builtin_context = PP.getBuiltinInfo();
515   builtin_context.initializeBuiltins(PP.getIdentifierTable(),
516                                      m_compiler->getLangOpts());
517 
518   m_compiler->createASTContext();
519   clang::ASTContext &ast_context = m_compiler->getASTContext();
520 
521   ClangExpressionHelper *type_system_helper =
522       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
523   ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
524 
525   if (decl_map) {
526     llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source(
527         decl_map->CreateProxy());
528     decl_map->InstallASTContext(ast_context, m_compiler->getFileManager());
529     ast_context.setExternalSource(ast_source);
530   }
531 
532   m_ast_context.reset(
533       new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
534   m_ast_context->setASTContext(&ast_context);
535 
536   std::string module_name("$__lldb_module");
537 
538   m_llvm_context.reset(new LLVMContext());
539   m_code_generator.reset(CreateLLVMCodeGen(
540       m_compiler->getDiagnostics(), module_name,
541       m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
542       m_compiler->getCodeGenOpts(), *m_llvm_context));
543 }
544 
545 ClangExpressionParser::~ClangExpressionParser() {}
546 
547 namespace {
548 
549 //----------------------------------------------------------------------
550 /// @class CodeComplete
551 ///
552 /// A code completion consumer for the clang Sema that is responsible for
553 /// creating the completion suggestions when a user requests completion
554 /// of an incomplete `expr` invocation.
555 //----------------------------------------------------------------------
556 class CodeComplete : public CodeCompleteConsumer {
557   CodeCompletionTUInfo m_info;
558 
559   std::string m_expr;
560   unsigned m_position = 0;
561   CompletionRequest &m_request;
562   /// The printing policy we use when printing declarations for our completion
563   /// descriptions.
564   clang::PrintingPolicy m_desc_policy;
565 
566   /// Returns true if the given character can be used in an identifier.
567   /// This also returns true for numbers because for completion we usually
568   /// just iterate backwards over iterators.
569   ///
570   /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
571   static bool IsIdChar(char c) {
572     return c == '_' || std::isalnum(c) || c == '$';
573   }
574 
575   /// Returns true if the given character is used to separate arguments
576   /// in the command line of lldb.
577   static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
578 
579   /// Drops all tokens in front of the expression that are unrelated for
580   /// the completion of the cmd line. 'unrelated' means here that the token
581   /// is not interested for the lldb completion API result.
582   StringRef dropUnrelatedFrontTokens(StringRef cmd) {
583     if (cmd.empty())
584       return cmd;
585 
586     // If we are at the start of a word, then all tokens are unrelated to
587     // the current completion logic.
588     if (IsTokenSeparator(cmd.back()))
589       return StringRef();
590 
591     // Remove all previous tokens from the string as they are unrelated
592     // to completing the current token.
593     StringRef to_remove = cmd;
594     while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
595       to_remove = to_remove.drop_back();
596     }
597     cmd = cmd.drop_front(to_remove.size());
598 
599     return cmd;
600   }
601 
602   /// Removes the last identifier token from the given cmd line.
603   StringRef removeLastToken(StringRef cmd) {
604     while (!cmd.empty() && IsIdChar(cmd.back())) {
605       cmd = cmd.drop_back();
606     }
607     return cmd;
608   }
609 
610   /// Attemps to merge the given completion from the given position into the
611   /// existing command. Returns the completion string that can be returned to
612   /// the lldb completion API.
613   std::string mergeCompletion(StringRef existing, unsigned pos,
614                               StringRef completion) {
615     StringRef existing_command = existing.substr(0, pos);
616     // We rewrite the last token with the completion, so let's drop that
617     // token from the command.
618     existing_command = removeLastToken(existing_command);
619     // We also should remove all previous tokens from the command as they
620     // would otherwise be added to the completion that already has the
621     // completion.
622     existing_command = dropUnrelatedFrontTokens(existing_command);
623     return existing_command.str() + completion.str();
624   }
625 
626 public:
627   /// Constructs a CodeComplete consumer that can be attached to a Sema.
628   /// @param[out] matches
629   ///    The list of matches that the lldb completion API expects as a result.
630   ///    This may already contain matches, so it's only allowed to append
631   ///    to this variable.
632   /// @param[out] expr
633   ///    The whole expression string that we are currently parsing. This
634   ///    string needs to be equal to the input the user typed, and NOT the
635   ///    final code that Clang is parsing.
636   /// @param[out] position
637   ///    The character position of the user cursor in the `expr` parameter.
638   ///
639   CodeComplete(CompletionRequest &request, clang::LangOptions ops,
640                std::string expr, unsigned position)
641       : CodeCompleteConsumer(CodeCompleteOptions(), false),
642         m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
643         m_position(position), m_request(request), m_desc_policy(ops) {
644 
645     // Ensure that the printing policy is producing a description that is as
646     // short as possible.
647     m_desc_policy.SuppressScope = true;
648     m_desc_policy.SuppressTagKeyword = true;
649     m_desc_policy.FullyQualifiedName = false;
650     m_desc_policy.TerseOutput = true;
651     m_desc_policy.IncludeNewlines = false;
652     m_desc_policy.UseVoidForZeroParams = false;
653     m_desc_policy.Bool = true;
654   }
655 
656   /// Deregisters and destroys this code-completion consumer.
657   virtual ~CodeComplete() {}
658 
659   /// \name Code-completion filtering
660   /// Check if the result should be filtered out.
661   bool isResultFilteredOut(StringRef Filter,
662                            CodeCompletionResult Result) override {
663     // This code is mostly copied from CodeCompleteConsumer.
664     switch (Result.Kind) {
665     case CodeCompletionResult::RK_Declaration:
666       return !(
667           Result.Declaration->getIdentifier() &&
668           Result.Declaration->getIdentifier()->getName().startswith(Filter));
669     case CodeCompletionResult::RK_Keyword:
670       return !StringRef(Result.Keyword).startswith(Filter);
671     case CodeCompletionResult::RK_Macro:
672       return !Result.Macro->getName().startswith(Filter);
673     case CodeCompletionResult::RK_Pattern:
674       return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
675     }
676     // If we trigger this assert or the above switch yields a warning, then
677     // CodeCompletionResult has been enhanced with more kinds of completion
678     // results. Expand the switch above in this case.
679     assert(false && "Unknown completion result type?");
680     // If we reach this, then we should just ignore whatever kind of unknown
681     // result we got back. We probably can't turn it into any kind of useful
682     // completion suggestion with the existing code.
683     return true;
684   }
685 
686   /// \name Code-completion callbacks
687   /// Process the finalized code-completion results.
688   void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
689                                   CodeCompletionResult *Results,
690                                   unsigned NumResults) override {
691 
692     // The Sema put the incomplete token we try to complete in here during
693     // lexing, so we need to retrieve it here to know what we are completing.
694     StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
695 
696     // Iterate over all the results. Filter out results we don't want and
697     // process the rest.
698     for (unsigned I = 0; I != NumResults; ++I) {
699       // Filter the results with the information from the Sema.
700       if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
701         continue;
702 
703       CodeCompletionResult &R = Results[I];
704       std::string ToInsert;
705       std::string Description;
706       // Handle the different completion kinds that come from the Sema.
707       switch (R.Kind) {
708       case CodeCompletionResult::RK_Declaration: {
709         const NamedDecl *D = R.Declaration;
710         ToInsert = R.Declaration->getNameAsString();
711         // If we have a function decl that has no arguments we want to
712         // complete the empty parantheses for the user. If the function has
713         // arguments, we at least complete the opening bracket.
714         if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
715           if (F->getNumParams() == 0)
716             ToInsert += "()";
717           else
718             ToInsert += "(";
719           raw_string_ostream OS(Description);
720           F->print(OS, m_desc_policy, false);
721           OS.flush();
722         } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
723           Description = V->getType().getAsString(m_desc_policy);
724         } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
725           Description = F->getType().getAsString(m_desc_policy);
726         } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
727           // If we try to complete a namespace, then we can directly append
728           // the '::'.
729           if (!N->isAnonymousNamespace())
730             ToInsert += "::";
731         }
732         break;
733       }
734       case CodeCompletionResult::RK_Keyword:
735         ToInsert = R.Keyword;
736         break;
737       case CodeCompletionResult::RK_Macro:
738         ToInsert = R.Macro->getName().str();
739         break;
740       case CodeCompletionResult::RK_Pattern:
741         ToInsert = R.Pattern->getTypedText();
742         break;
743       }
744       // At this point all information is in the ToInsert string.
745 
746       // We also filter some internal lldb identifiers here. The user
747       // shouldn't see these.
748       if (StringRef(ToInsert).startswith("$__lldb_"))
749         continue;
750       if (!ToInsert.empty()) {
751         // Merge the suggested Token into the existing command line to comply
752         // with the kind of result the lldb API expects.
753         std::string CompletionSuggestion =
754             mergeCompletion(m_expr, m_position, ToInsert);
755         m_request.AddCompletion(CompletionSuggestion, Description);
756       }
757     }
758   }
759 
760   /// \param S the semantic-analyzer object for which code-completion is being
761   /// done.
762   ///
763   /// \param CurrentArg the index of the current argument.
764   ///
765   /// \param Candidates an array of overload candidates.
766   ///
767   /// \param NumCandidates the number of overload candidates
768   void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
769                                  OverloadCandidate *Candidates,
770                                  unsigned NumCandidates,
771                                  SourceLocation OpenParLoc) override {
772     // At the moment we don't filter out any overloaded candidates.
773   }
774 
775   CodeCompletionAllocator &getAllocator() override {
776     return m_info.getAllocator();
777   }
778 
779   CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
780 };
781 } // namespace
782 
783 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
784                                      unsigned pos, unsigned typed_pos) {
785   DiagnosticManager mgr;
786   // We need the raw user expression here because that's what the CodeComplete
787   // class uses to provide completion suggestions.
788   // However, the `Text` method only gives us the transformed expression here.
789   // To actually get the raw user input here, we have to cast our expression to
790   // the LLVMUserExpression which exposes the right API. This should never fail
791   // as we always have a ClangUserExpression whenever we call this.
792   LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr);
793   CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(),
794                   typed_pos);
795   // We don't need a code generator for parsing.
796   m_code_generator.reset();
797   // Start parsing the expression with our custom code completion consumer.
798   ParseInternal(mgr, &CC, line, pos);
799   return true;
800 }
801 
802 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
803   return ParseInternal(diagnostic_manager);
804 }
805 
806 unsigned
807 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
808                                      CodeCompleteConsumer *completion_consumer,
809                                      unsigned completion_line,
810                                      unsigned completion_column) {
811   ClangDiagnosticManagerAdapter *adapter =
812       static_cast<ClangDiagnosticManagerAdapter *>(
813           m_compiler->getDiagnostics().getClient());
814   clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
815   diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
816 
817   adapter->ResetManager(&diagnostic_manager);
818 
819   const char *expr_text = m_expr.Text();
820 
821   clang::SourceManager &source_mgr = m_compiler->getSourceManager();
822   bool created_main_file = false;
823 
824   // Clang wants to do completion on a real file known by Clang's file manager,
825   // so we have to create one to make this work.
826   // TODO: We probably could also simulate to Clang's file manager that there
827   // is a real file that contains our code.
828   bool should_create_file = completion_consumer != nullptr;
829 
830   // We also want a real file on disk if we generate full debug info.
831   should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
832                         codegenoptions::FullDebugInfo;
833 
834   if (should_create_file) {
835     int temp_fd = -1;
836     llvm::SmallString<128> result_path;
837     if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
838       tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
839       std::string temp_source_path = tmpdir_file_spec.GetPath();
840       llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
841     } else {
842       llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
843     }
844 
845     if (temp_fd != -1) {
846       lldb_private::File file(temp_fd, true);
847       const size_t expr_text_len = strlen(expr_text);
848       size_t bytes_written = expr_text_len;
849       if (file.Write(expr_text, bytes_written).Success()) {
850         if (bytes_written == expr_text_len) {
851           file.Close();
852           source_mgr.setMainFileID(source_mgr.createFileID(
853               m_compiler->getFileManager().getFile(result_path),
854               SourceLocation(), SrcMgr::C_User));
855           created_main_file = true;
856         }
857       }
858     }
859   }
860 
861   if (!created_main_file) {
862     std::unique_ptr<MemoryBuffer> memory_buffer =
863         MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__);
864     source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
865   }
866 
867   diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
868                             &m_compiler->getPreprocessor());
869 
870   ClangExpressionHelper *type_system_helper =
871       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
872 
873   ASTConsumer *ast_transformer =
874       type_system_helper->ASTTransformer(m_code_generator.get());
875 
876   if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap())
877     decl_map->InstallCodeGenerator(m_code_generator.get());
878 
879   // If we want to parse for code completion, we need to attach our code
880   // completion consumer to the Sema and specify a completion position.
881   // While parsing the Sema will call this consumer with the provided
882   // completion suggestions.
883   if (completion_consumer) {
884     auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
885     auto &PP = m_compiler->getPreprocessor();
886     // Lines and columns start at 1 in Clang, but code completion positions are
887     // indexed from 0, so we need to add 1 to the line and column here.
888     ++completion_line;
889     ++completion_column;
890     PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
891   }
892 
893   if (ast_transformer) {
894     ast_transformer->Initialize(m_compiler->getASTContext());
895     ParseAST(m_compiler->getPreprocessor(), ast_transformer,
896              m_compiler->getASTContext(), false, TU_Complete,
897              completion_consumer);
898   } else {
899     m_code_generator->Initialize(m_compiler->getASTContext());
900     ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(),
901              m_compiler->getASTContext(), false, TU_Complete,
902              completion_consumer);
903   }
904 
905   diag_buf->EndSourceFile();
906 
907   unsigned num_errors = diag_buf->getNumErrors();
908 
909   if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
910     num_errors++;
911     diagnostic_manager.PutString(eDiagnosticSeverityError,
912                                  "while importing modules:");
913     diagnostic_manager.AppendMessageToDiagnostic(
914         m_pp_callbacks->getErrorString());
915   }
916 
917   if (!num_errors) {
918     if (type_system_helper->DeclMap() &&
919         !type_system_helper->DeclMap()->ResolveUnknownTypes()) {
920       diagnostic_manager.Printf(eDiagnosticSeverityError,
921                                 "Couldn't infer the type of a variable");
922       num_errors++;
923     }
924   }
925 
926   if (!num_errors) {
927     type_system_helper->CommitPersistentDecls();
928   }
929 
930   adapter->ResetManager();
931 
932   return num_errors;
933 }
934 
935 std::string
936 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
937   std::string abi;
938 
939   if (target_arch.IsMIPS()) {
940     switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
941     case ArchSpec::eMIPSABI_N64:
942       abi = "n64";
943       break;
944     case ArchSpec::eMIPSABI_N32:
945       abi = "n32";
946       break;
947     case ArchSpec::eMIPSABI_O32:
948       abi = "o32";
949       break;
950     default:
951       break;
952     }
953   }
954   return abi;
955 }
956 
957 bool ClangExpressionParser::RewriteExpression(
958     DiagnosticManager &diagnostic_manager) {
959   clang::SourceManager &source_manager = m_compiler->getSourceManager();
960   clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
961                                    nullptr);
962   clang::edit::Commit commit(editor);
963   clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
964 
965   class RewritesReceiver : public edit::EditsReceiver {
966     Rewriter &rewrite;
967 
968   public:
969     RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
970 
971     void insert(SourceLocation loc, StringRef text) override {
972       rewrite.InsertText(loc, text);
973     }
974     void replace(CharSourceRange range, StringRef text) override {
975       rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
976     }
977   };
978 
979   RewritesReceiver rewrites_receiver(rewriter);
980 
981   const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
982   size_t num_diags = diagnostics.size();
983   if (num_diags == 0)
984     return false;
985 
986   for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) {
987     const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
988     if (diagnostic && diagnostic->HasFixIts()) {
989       for (const FixItHint &fixit : diagnostic->FixIts()) {
990         // This is cobbed from clang::Rewrite::FixItRewriter.
991         if (fixit.CodeToInsert.empty()) {
992           if (fixit.InsertFromRange.isValid()) {
993             commit.insertFromRange(fixit.RemoveRange.getBegin(),
994                                    fixit.InsertFromRange, /*afterToken=*/false,
995                                    fixit.BeforePreviousInsertions);
996           } else
997             commit.remove(fixit.RemoveRange);
998         } else {
999           if (fixit.RemoveRange.isTokenRange() ||
1000               fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
1001             commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1002           else
1003             commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1004                           /*afterToken=*/false, fixit.BeforePreviousInsertions);
1005         }
1006       }
1007     }
1008   }
1009 
1010   // FIXME - do we want to try to propagate specific errors here?
1011   if (!commit.isCommitable())
1012     return false;
1013   else if (!editor.commit(commit))
1014     return false;
1015 
1016   // Now play all the edits, and stash the result in the diagnostic manager.
1017   editor.applyRewrites(rewrites_receiver);
1018   RewriteBuffer &main_file_buffer =
1019       rewriter.getEditBuffer(source_manager.getMainFileID());
1020 
1021   std::string fixed_expression;
1022   llvm::raw_string_ostream out_stream(fixed_expression);
1023 
1024   main_file_buffer.write(out_stream);
1025   out_stream.flush();
1026   diagnostic_manager.SetFixedExpression(fixed_expression);
1027 
1028   return true;
1029 }
1030 
1031 static bool FindFunctionInModule(ConstString &mangled_name,
1032                                  llvm::Module *module, const char *orig_name) {
1033   for (const auto &func : module->getFunctionList()) {
1034     const StringRef &name = func.getName();
1035     if (name.find(orig_name) != StringRef::npos) {
1036       mangled_name.SetString(name);
1037       return true;
1038     }
1039   }
1040 
1041   return false;
1042 }
1043 
1044 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1045     lldb::addr_t &func_addr, lldb::addr_t &func_end,
1046     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1047     bool &can_interpret, ExecutionPolicy execution_policy) {
1048   func_addr = LLDB_INVALID_ADDRESS;
1049   func_end = LLDB_INVALID_ADDRESS;
1050   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1051 
1052   lldb_private::Status err;
1053 
1054   std::unique_ptr<llvm::Module> llvm_module_up(
1055       m_code_generator->ReleaseModule());
1056 
1057   if (!llvm_module_up) {
1058     err.SetErrorToGenericError();
1059     err.SetErrorString("IR doesn't contain a module");
1060     return err;
1061   }
1062 
1063   ConstString function_name;
1064 
1065   if (execution_policy != eExecutionPolicyTopLevel) {
1066     // Find the actual name of the function (it's often mangled somehow)
1067 
1068     if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1069                               m_expr.FunctionName())) {
1070       err.SetErrorToGenericError();
1071       err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1072                                    m_expr.FunctionName());
1073       return err;
1074     } else {
1075       if (log)
1076         log->Printf("Found function %s for %s", function_name.AsCString(),
1077                     m_expr.FunctionName());
1078     }
1079   }
1080 
1081   SymbolContext sc;
1082 
1083   if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1084     sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1085   } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1086     sc.target_sp = target_sp;
1087   }
1088 
1089   LLVMUserExpression::IRPasses custom_passes;
1090   {
1091     auto lang = m_expr.Language();
1092     if (log)
1093       log->Printf("%s - Current expression language is %s\n", __FUNCTION__,
1094                   Language::GetNameForLanguageType(lang));
1095     lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1096     if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1097       auto runtime = process_sp->GetLanguageRuntime(lang);
1098       if (runtime)
1099         runtime->GetIRPasses(custom_passes);
1100     }
1101   }
1102 
1103   if (custom_passes.EarlyPasses) {
1104     if (log)
1105       log->Printf("%s - Running Early IR Passes from LanguageRuntime on "
1106                   "expression module '%s'",
1107                   __FUNCTION__, m_expr.FunctionName());
1108 
1109     custom_passes.EarlyPasses->run(*llvm_module_up);
1110   }
1111 
1112   execution_unit_sp = std::make_shared<IRExecutionUnit>(
1113       m_llvm_context, // handed off here
1114       llvm_module_up, // handed off here
1115       function_name, exe_ctx.GetTargetSP(), sc,
1116       m_compiler->getTargetOpts().Features);
1117 
1118   ClangExpressionHelper *type_system_helper =
1119       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1120   ClangExpressionDeclMap *decl_map =
1121       type_system_helper->DeclMap(); // result can be NULL
1122 
1123   if (decl_map) {
1124     Stream *error_stream = NULL;
1125     Target *target = exe_ctx.GetTargetPtr();
1126     error_stream = target->GetDebugger().GetErrorFile().get();
1127 
1128     IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1129                               *execution_unit_sp, *error_stream,
1130                               function_name.AsCString());
1131 
1132     bool ir_can_run =
1133         ir_for_target.runOnModule(*execution_unit_sp->GetModule());
1134 
1135     if (!ir_can_run) {
1136       err.SetErrorString(
1137           "The expression could not be prepared to run in the target");
1138       return err;
1139     }
1140 
1141     Process *process = exe_ctx.GetProcessPtr();
1142 
1143     if (execution_policy != eExecutionPolicyAlways &&
1144         execution_policy != eExecutionPolicyTopLevel) {
1145       lldb_private::Status interpret_error;
1146 
1147       bool interpret_function_calls =
1148           !process ? false : process->CanInterpretFunctionCalls();
1149       can_interpret = IRInterpreter::CanInterpret(
1150           *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1151           interpret_error, interpret_function_calls);
1152 
1153       if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1154         err.SetErrorStringWithFormat("Can't run the expression locally: %s",
1155                                      interpret_error.AsCString());
1156         return err;
1157       }
1158     }
1159 
1160     if (!process && execution_policy == eExecutionPolicyAlways) {
1161       err.SetErrorString("Expression needed to run in the target, but the "
1162                          "target can't be run");
1163       return err;
1164     }
1165 
1166     if (!process && execution_policy == eExecutionPolicyTopLevel) {
1167       err.SetErrorString("Top-level code needs to be inserted into a runnable "
1168                          "target, but the target can't be run");
1169       return err;
1170     }
1171 
1172     if (execution_policy == eExecutionPolicyAlways ||
1173         (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1174       if (m_expr.NeedsValidation() && process) {
1175         if (!process->GetDynamicCheckers()) {
1176           DynamicCheckerFunctions *dynamic_checkers =
1177               new DynamicCheckerFunctions();
1178 
1179           DiagnosticManager install_diagnostics;
1180 
1181           if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1182             if (install_diagnostics.Diagnostics().size())
1183               err.SetErrorString(install_diagnostics.GetString().c_str());
1184             else
1185               err.SetErrorString("couldn't install checkers, unknown error");
1186 
1187             return err;
1188           }
1189 
1190           process->SetDynamicCheckers(dynamic_checkers);
1191 
1192           if (log)
1193             log->Printf("== [ClangExpressionParser::PrepareForExecution] "
1194                         "Finished installing dynamic checkers ==");
1195         }
1196 
1197         IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(),
1198                                           function_name.AsCString());
1199 
1200         llvm::Module *module = execution_unit_sp->GetModule();
1201         if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1202           err.SetErrorToGenericError();
1203           err.SetErrorString("Couldn't add dynamic checks to the expression");
1204           return err;
1205         }
1206 
1207         if (custom_passes.LatePasses) {
1208           if (log)
1209             log->Printf("%s - Running Late IR Passes from LanguageRuntime on "
1210                         "expression module '%s'",
1211                         __FUNCTION__, m_expr.FunctionName());
1212 
1213           custom_passes.LatePasses->run(*module);
1214         }
1215       }
1216     }
1217 
1218     if (execution_policy == eExecutionPolicyAlways ||
1219         execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1220       execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1221     }
1222   } else {
1223     execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1224   }
1225 
1226   return err;
1227 }
1228 
1229 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1230     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1231   lldb_private::Status err;
1232 
1233   lldbassert(execution_unit_sp.get());
1234   lldbassert(exe_ctx.HasThreadScope());
1235 
1236   if (!execution_unit_sp.get()) {
1237     err.SetErrorString(
1238         "can't run static initializers for a NULL execution unit");
1239     return err;
1240   }
1241 
1242   if (!exe_ctx.HasThreadScope()) {
1243     err.SetErrorString("can't run static initializers without a thread");
1244     return err;
1245   }
1246 
1247   std::vector<lldb::addr_t> static_initializers;
1248 
1249   execution_unit_sp->GetStaticInitializers(static_initializers);
1250 
1251   for (lldb::addr_t static_initializer : static_initializers) {
1252     EvaluateExpressionOptions options;
1253 
1254     lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1255         exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1256         llvm::ArrayRef<lldb::addr_t>(), options));
1257 
1258     DiagnosticManager execution_errors;
1259     lldb::ExpressionResults results =
1260         exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1261             exe_ctx, call_static_initializer, options, execution_errors);
1262 
1263     if (results != lldb::eExpressionCompleted) {
1264       err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1265                                    execution_errors.GetString().c_str());
1266       return err;
1267     }
1268   }
1269 
1270   return err;
1271 }
1272