1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/DiagnosticIDs.h" 14 #include "clang/Basic/SourceLocation.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "clang/Basic/Version.h" 17 #include "clang/CodeGen/CodeGenAction.h" 18 #include "clang/CodeGen/ModuleBuilder.h" 19 #include "clang/Edit/Commit.h" 20 #include "clang/Edit/EditedSource.h" 21 #include "clang/Edit/EditsReceiver.h" 22 #include "clang/Frontend/CompilerInstance.h" 23 #include "clang/Frontend/CompilerInvocation.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/FrontendPluginRegistry.h" 27 #include "clang/Frontend/TextDiagnosticBuffer.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Parse/ParseAST.h" 31 #include "clang/Rewrite/Core/Rewriter.h" 32 #include "clang/Rewrite/Frontend/FrontendActions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaConsumer.h" 36 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ExecutionEngine/ExecutionEngine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/FileSystem.h" 41 #include "llvm/Support/TargetSelect.h" 42 43 #pragma clang diagnostic push 44 #pragma clang diagnostic ignored "-Wglobal-constructors" 45 #include "llvm/ExecutionEngine/MCJIT.h" 46 #pragma clang diagnostic pop 47 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/DynamicLibrary.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/Host.h" 53 #include "llvm/Support/MemoryBuffer.h" 54 #include "llvm/Support/Signals.h" 55 56 #include "ClangASTSource.h" 57 #include "ClangDiagnostic.h" 58 #include "ClangExpressionDeclMap.h" 59 #include "ClangExpressionHelper.h" 60 #include "ClangExpressionParser.h" 61 #include "ClangModulesDeclVendor.h" 62 #include "ClangPersistentVariables.h" 63 #include "IRForTarget.h" 64 #include "ModuleDependencyCollector.h" 65 66 #include "lldb/Core/Debugger.h" 67 #include "lldb/Core/Disassembler.h" 68 #include "lldb/Core/Module.h" 69 #include "lldb/Core/StreamFile.h" 70 #include "lldb/Expression/IRDynamicChecks.h" 71 #include "lldb/Expression/IRExecutionUnit.h" 72 #include "lldb/Expression/IRInterpreter.h" 73 #include "lldb/Host/File.h" 74 #include "lldb/Host/HostInfo.h" 75 #include "lldb/Symbol/ClangASTContext.h" 76 #include "lldb/Symbol/SymbolVendor.h" 77 #include "lldb/Target/ExecutionContext.h" 78 #include "lldb/Target/Language.h" 79 #include "lldb/Target/ObjCLanguageRuntime.h" 80 #include "lldb/Target/Process.h" 81 #include "lldb/Target/Target.h" 82 #include "lldb/Target/ThreadPlanCallFunction.h" 83 #include "lldb/Utility/DataBufferHeap.h" 84 #include "lldb/Utility/LLDBAssert.h" 85 #include "lldb/Utility/Log.h" 86 #include "lldb/Utility/Reproducer.h" 87 #include "lldb/Utility/Stream.h" 88 #include "lldb/Utility/StreamString.h" 89 #include "lldb/Utility/StringList.h" 90 91 #include <cctype> 92 #include <memory> 93 94 using namespace clang; 95 using namespace llvm; 96 using namespace lldb_private; 97 98 //===----------------------------------------------------------------------===// 99 // Utility Methods for Clang 100 //===----------------------------------------------------------------------===// 101 102 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 103 ClangModulesDeclVendor &m_decl_vendor; 104 ClangPersistentVariables &m_persistent_vars; 105 StreamString m_error_stream; 106 bool m_has_errors = false; 107 108 public: 109 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 110 ClangPersistentVariables &persistent_vars) 111 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 112 113 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 114 const clang::Module * /*null*/) override { 115 SourceModule module; 116 117 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 118 module.path.push_back(ConstString(component.first->getName())); 119 120 StreamString error_stream; 121 122 ClangModulesDeclVendor::ModuleVector exported_modules; 123 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 124 m_has_errors = true; 125 126 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 127 m_persistent_vars.AddHandLoadedClangModule(module); 128 } 129 130 bool hasErrors() { return m_has_errors; } 131 132 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 133 }; 134 135 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 136 public: 137 ClangDiagnosticManagerAdapter() 138 : m_passthrough(new clang::TextDiagnosticBuffer) {} 139 140 ClangDiagnosticManagerAdapter( 141 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 142 : m_passthrough(passthrough) {} 143 144 void ResetManager(DiagnosticManager *manager = nullptr) { 145 m_manager = manager; 146 } 147 148 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 149 const clang::Diagnostic &Info) { 150 if (m_manager) { 151 llvm::SmallVector<char, 32> diag_str; 152 Info.FormatDiagnostic(diag_str); 153 diag_str.push_back('\0'); 154 const char *data = diag_str.data(); 155 156 lldb_private::DiagnosticSeverity severity; 157 bool make_new_diagnostic = true; 158 159 switch (DiagLevel) { 160 case DiagnosticsEngine::Level::Fatal: 161 case DiagnosticsEngine::Level::Error: 162 severity = eDiagnosticSeverityError; 163 break; 164 case DiagnosticsEngine::Level::Warning: 165 severity = eDiagnosticSeverityWarning; 166 break; 167 case DiagnosticsEngine::Level::Remark: 168 case DiagnosticsEngine::Level::Ignored: 169 severity = eDiagnosticSeverityRemark; 170 break; 171 case DiagnosticsEngine::Level::Note: 172 m_manager->AppendMessageToDiagnostic(data); 173 make_new_diagnostic = false; 174 } 175 if (make_new_diagnostic) { 176 ClangDiagnostic *new_diagnostic = 177 new ClangDiagnostic(data, severity, Info.getID()); 178 m_manager->AddDiagnostic(new_diagnostic); 179 180 // Don't store away warning fixits, since the compiler doesn't have 181 // enough context in an expression for the warning to be useful. 182 // FIXME: Should we try to filter out FixIts that apply to our generated 183 // code, and not the user's expression? 184 if (severity == eDiagnosticSeverityError) { 185 size_t num_fixit_hints = Info.getNumFixItHints(); 186 for (size_t i = 0; i < num_fixit_hints; i++) { 187 const clang::FixItHint &fixit = Info.getFixItHint(i); 188 if (!fixit.isNull()) 189 new_diagnostic->AddFixitHint(fixit); 190 } 191 } 192 } 193 } 194 195 m_passthrough->HandleDiagnostic(DiagLevel, Info); 196 } 197 198 void FlushDiagnostics(DiagnosticsEngine &Diags) { 199 m_passthrough->FlushDiagnostics(Diags); 200 } 201 202 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 203 return new ClangDiagnosticManagerAdapter(m_passthrough); 204 } 205 206 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 207 208 private: 209 DiagnosticManager *m_manager = nullptr; 210 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 211 }; 212 213 //===----------------------------------------------------------------------===// 214 // Implementation of ClangExpressionParser 215 //===----------------------------------------------------------------------===// 216 217 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope, 218 Expression &expr, 219 bool generate_debug_info) 220 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 221 m_pp_callbacks(nullptr) { 222 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 223 224 // We can't compile expressions without a target. So if the exe_scope is 225 // null or doesn't have a target, then we just need to get out of here. I'll 226 // lldb_assert and not make any of the compiler objects since 227 // I can't return errors directly from the constructor. Further calls will 228 // check if the compiler was made and 229 // bag out if it wasn't. 230 231 if (!exe_scope) { 232 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 233 __FUNCTION__, __FILE__, __LINE__); 234 return; 235 } 236 237 lldb::TargetSP target_sp; 238 target_sp = exe_scope->CalculateTarget(); 239 if (!target_sp) { 240 lldb_assert(target_sp.get(), 241 "Can't make an expression parser with a null target.", 242 __FUNCTION__, __FILE__, __LINE__); 243 return; 244 } 245 246 // 1. Create a new compiler instance. 247 m_compiler.reset(new CompilerInstance()); 248 249 // When capturing a reproducer, hook up the file collector with clang to 250 // collector modules and headers. 251 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 252 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 253 m_compiler->setModuleDepCollector( 254 std::make_shared<ModuleDependencyCollectorAdaptor>( 255 fp.GetFileCollector())); 256 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 257 opts.IncludeSystemHeaders = true; 258 opts.IncludeModuleFiles = true; 259 } 260 261 lldb::LanguageType frame_lang = 262 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 263 bool overridden_target_opts = false; 264 lldb_private::LanguageRuntime *lang_rt = nullptr; 265 266 std::string abi; 267 ArchSpec target_arch; 268 target_arch = target_sp->GetArchitecture(); 269 270 const auto target_machine = target_arch.GetMachine(); 271 272 // If the expression is being evaluated in the context of an existing stack 273 // frame, we introspect to see if the language runtime is available. 274 275 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 276 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 277 278 // Make sure the user hasn't provided a preferred execution language with 279 // `expression --language X -- ...` 280 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 281 frame_lang = frame_sp->GetLanguage(); 282 283 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 284 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 285 if (log) 286 log->Printf("Frame has language of type %s", 287 Language::GetNameForLanguageType(frame_lang)); 288 } 289 290 // 2. Configure the compiler with a set of default options that are 291 // appropriate for most situations. 292 if (target_arch.IsValid()) { 293 std::string triple = target_arch.GetTriple().str(); 294 m_compiler->getTargetOpts().Triple = triple; 295 if (log) 296 log->Printf("Using %s as the target triple", 297 m_compiler->getTargetOpts().Triple.c_str()); 298 } else { 299 // If we get here we don't have a valid target and just have to guess. 300 // Sometimes this will be ok to just use the host target triple (when we 301 // evaluate say "2+3", but other expressions like breakpoint conditions and 302 // other things that _are_ target specific really shouldn't just be using 303 // the host triple. In such a case the language runtime should expose an 304 // overridden options set (3), below. 305 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 306 if (log) 307 log->Printf("Using default target triple of %s", 308 m_compiler->getTargetOpts().Triple.c_str()); 309 } 310 // Now add some special fixes for known architectures: Any arm32 iOS 311 // environment, but not on arm64 312 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 313 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 314 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 315 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 316 } 317 // Supported subsets of x86 318 if (target_machine == llvm::Triple::x86 || 319 target_machine == llvm::Triple::x86_64) { 320 m_compiler->getTargetOpts().Features.push_back("+sse"); 321 m_compiler->getTargetOpts().Features.push_back("+sse2"); 322 } 323 324 // Set the target CPU to generate code for. This will be empty for any CPU 325 // that doesn't really need to make a special 326 // CPU string. 327 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 328 329 // Set the target ABI 330 abi = GetClangTargetABI(target_arch); 331 if (!abi.empty()) 332 m_compiler->getTargetOpts().ABI = abi; 333 334 // 3. Now allow the runtime to provide custom configuration options for the 335 // target. In this case, a specialized language runtime is available and we 336 // can query it for extra options. For 99% of use cases, this will not be 337 // needed and should be provided when basic platform detection is not enough. 338 if (lang_rt) 339 overridden_target_opts = 340 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 341 342 if (overridden_target_opts) 343 if (log && log->GetVerbose()) { 344 LLDB_LOGV( 345 log, "Using overridden target options for the expression evaluation"); 346 347 auto opts = m_compiler->getTargetOpts(); 348 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 349 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 350 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 351 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 352 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 353 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 354 StringList::LogDump(log, opts.Features, "Features"); 355 } 356 357 // 4. Create and install the target on the compiler. 358 m_compiler->createDiagnostics(); 359 auto target_info = TargetInfo::CreateTargetInfo( 360 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 361 if (log) { 362 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); 363 log->Printf("Target datalayout string: '%s'", 364 target_info->getDataLayout().getStringRepresentation().c_str()); 365 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); 366 log->Printf("Target vector alignment: %d", 367 target_info->getMaxVectorAlign()); 368 } 369 m_compiler->setTarget(target_info); 370 371 assert(m_compiler->hasTarget()); 372 373 // 5. Set language options. 374 lldb::LanguageType language = expr.Language(); 375 LangOptions &lang_opts = m_compiler->getLangOpts(); 376 377 switch (language) { 378 case lldb::eLanguageTypeC: 379 case lldb::eLanguageTypeC89: 380 case lldb::eLanguageTypeC99: 381 case lldb::eLanguageTypeC11: 382 // FIXME: the following language option is a temporary workaround, 383 // to "ask for C, get C++." 384 // For now, the expression parser must use C++ anytime the language is a C 385 // family language, because the expression parser uses features of C++ to 386 // capture values. 387 lang_opts.CPlusPlus = true; 388 break; 389 case lldb::eLanguageTypeObjC: 390 lang_opts.ObjC = true; 391 // FIXME: the following language option is a temporary workaround, 392 // to "ask for ObjC, get ObjC++" (see comment above). 393 lang_opts.CPlusPlus = true; 394 395 // Clang now sets as default C++14 as the default standard (with 396 // GNU extensions), so we do the same here to avoid mismatches that 397 // cause compiler error when evaluating expressions (e.g. nullptr not found 398 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 399 // two lines below) so we decide to be consistent with that, but this could 400 // be re-evaluated in the future. 401 lang_opts.CPlusPlus11 = true; 402 break; 403 case lldb::eLanguageTypeC_plus_plus: 404 case lldb::eLanguageTypeC_plus_plus_11: 405 case lldb::eLanguageTypeC_plus_plus_14: 406 lang_opts.CPlusPlus11 = true; 407 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 408 LLVM_FALLTHROUGH; 409 case lldb::eLanguageTypeC_plus_plus_03: 410 lang_opts.CPlusPlus = true; 411 if (process_sp) 412 lang_opts.ObjC = 413 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 414 break; 415 case lldb::eLanguageTypeObjC_plus_plus: 416 case lldb::eLanguageTypeUnknown: 417 default: 418 lang_opts.ObjC = true; 419 lang_opts.CPlusPlus = true; 420 lang_opts.CPlusPlus11 = true; 421 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 422 break; 423 } 424 425 lang_opts.Bool = true; 426 lang_opts.WChar = true; 427 lang_opts.Blocks = true; 428 lang_opts.DebuggerSupport = 429 true; // Features specifically for debugger clients 430 if (expr.DesiredResultType() == Expression::eResultTypeId) 431 lang_opts.DebuggerCastResultToId = true; 432 433 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 434 .CharIsSignedByDefault(); 435 436 // Spell checking is a nice feature, but it ends up completing a lot of types 437 // that we didn't strictly speaking need to complete. As a result, we spend a 438 // long time parsing and importing debug information. 439 lang_opts.SpellChecking = false; 440 441 if (process_sp && lang_opts.ObjC) { 442 if (process_sp->GetObjCLanguageRuntime()) { 443 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == 444 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 445 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 446 else 447 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 448 VersionTuple(10, 7)); 449 450 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) 451 lang_opts.DebuggerObjCLiteral = true; 452 } 453 } 454 455 lang_opts.ThreadsafeStatics = false; 456 lang_opts.AccessControl = false; // Debuggers get universal access 457 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 458 // We enable all builtin functions beside the builtins from libc/libm (e.g. 459 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 460 // additionally enabling them as expandable builtins is breaking Clang. 461 lang_opts.NoBuiltin = true; 462 463 // Set CodeGen options 464 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 465 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 466 m_compiler->getCodeGenOpts().DisableFPElim = true; 467 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; 468 if (generate_debug_info) 469 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 470 else 471 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 472 473 // Disable some warnings. 474 m_compiler->getDiagnostics().setSeverityForGroup( 475 clang::diag::Flavor::WarningOrError, "unused-value", 476 clang::diag::Severity::Ignored, SourceLocation()); 477 m_compiler->getDiagnostics().setSeverityForGroup( 478 clang::diag::Flavor::WarningOrError, "odr", 479 clang::diag::Severity::Ignored, SourceLocation()); 480 481 // Inform the target of the language options 482 // 483 // FIXME: We shouldn't need to do this, the target should be immutable once 484 // created. This complexity should be lifted elsewhere. 485 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 486 487 // 6. Set up the diagnostic buffer for reporting errors 488 489 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 490 491 // 7. Set up the source management objects inside the compiler 492 m_compiler->createFileManager(); 493 if (!m_compiler->hasSourceManager()) 494 m_compiler->createSourceManager(m_compiler->getFileManager()); 495 m_compiler->createPreprocessor(TU_Complete); 496 497 if (ClangModulesDeclVendor *decl_vendor = 498 target_sp->GetClangModulesDeclVendor()) { 499 ClangPersistentVariables *clang_persistent_vars = 500 llvm::cast<ClangPersistentVariables>( 501 target_sp->GetPersistentExpressionStateForLanguage( 502 lldb::eLanguageTypeC)); 503 std::unique_ptr<PPCallbacks> pp_callbacks( 504 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 505 m_pp_callbacks = 506 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 507 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 508 } 509 510 // 8. Most of this we get from the CompilerInstance, but we also want to give 511 // the context an ExternalASTSource. 512 513 auto &PP = m_compiler->getPreprocessor(); 514 auto &builtin_context = PP.getBuiltinInfo(); 515 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 516 m_compiler->getLangOpts()); 517 518 m_compiler->createASTContext(); 519 clang::ASTContext &ast_context = m_compiler->getASTContext(); 520 521 ClangExpressionHelper *type_system_helper = 522 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 523 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 524 525 if (decl_map) { 526 llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source( 527 decl_map->CreateProxy()); 528 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 529 ast_context.setExternalSource(ast_source); 530 } 531 532 m_ast_context.reset( 533 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 534 m_ast_context->setASTContext(&ast_context); 535 536 std::string module_name("$__lldb_module"); 537 538 m_llvm_context.reset(new LLVMContext()); 539 m_code_generator.reset(CreateLLVMCodeGen( 540 m_compiler->getDiagnostics(), module_name, 541 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 542 m_compiler->getCodeGenOpts(), *m_llvm_context)); 543 } 544 545 ClangExpressionParser::~ClangExpressionParser() {} 546 547 namespace { 548 549 //---------------------------------------------------------------------- 550 /// @class CodeComplete 551 /// 552 /// A code completion consumer for the clang Sema that is responsible for 553 /// creating the completion suggestions when a user requests completion 554 /// of an incomplete `expr` invocation. 555 //---------------------------------------------------------------------- 556 class CodeComplete : public CodeCompleteConsumer { 557 CodeCompletionTUInfo m_info; 558 559 std::string m_expr; 560 unsigned m_position = 0; 561 CompletionRequest &m_request; 562 /// The printing policy we use when printing declarations for our completion 563 /// descriptions. 564 clang::PrintingPolicy m_desc_policy; 565 566 /// Returns true if the given character can be used in an identifier. 567 /// This also returns true for numbers because for completion we usually 568 /// just iterate backwards over iterators. 569 /// 570 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 571 static bool IsIdChar(char c) { 572 return c == '_' || std::isalnum(c) || c == '$'; 573 } 574 575 /// Returns true if the given character is used to separate arguments 576 /// in the command line of lldb. 577 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 578 579 /// Drops all tokens in front of the expression that are unrelated for 580 /// the completion of the cmd line. 'unrelated' means here that the token 581 /// is not interested for the lldb completion API result. 582 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 583 if (cmd.empty()) 584 return cmd; 585 586 // If we are at the start of a word, then all tokens are unrelated to 587 // the current completion logic. 588 if (IsTokenSeparator(cmd.back())) 589 return StringRef(); 590 591 // Remove all previous tokens from the string as they are unrelated 592 // to completing the current token. 593 StringRef to_remove = cmd; 594 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 595 to_remove = to_remove.drop_back(); 596 } 597 cmd = cmd.drop_front(to_remove.size()); 598 599 return cmd; 600 } 601 602 /// Removes the last identifier token from the given cmd line. 603 StringRef removeLastToken(StringRef cmd) { 604 while (!cmd.empty() && IsIdChar(cmd.back())) { 605 cmd = cmd.drop_back(); 606 } 607 return cmd; 608 } 609 610 /// Attemps to merge the given completion from the given position into the 611 /// existing command. Returns the completion string that can be returned to 612 /// the lldb completion API. 613 std::string mergeCompletion(StringRef existing, unsigned pos, 614 StringRef completion) { 615 StringRef existing_command = existing.substr(0, pos); 616 // We rewrite the last token with the completion, so let's drop that 617 // token from the command. 618 existing_command = removeLastToken(existing_command); 619 // We also should remove all previous tokens from the command as they 620 // would otherwise be added to the completion that already has the 621 // completion. 622 existing_command = dropUnrelatedFrontTokens(existing_command); 623 return existing_command.str() + completion.str(); 624 } 625 626 public: 627 /// Constructs a CodeComplete consumer that can be attached to a Sema. 628 /// @param[out] matches 629 /// The list of matches that the lldb completion API expects as a result. 630 /// This may already contain matches, so it's only allowed to append 631 /// to this variable. 632 /// @param[out] expr 633 /// The whole expression string that we are currently parsing. This 634 /// string needs to be equal to the input the user typed, and NOT the 635 /// final code that Clang is parsing. 636 /// @param[out] position 637 /// The character position of the user cursor in the `expr` parameter. 638 /// 639 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 640 std::string expr, unsigned position) 641 : CodeCompleteConsumer(CodeCompleteOptions(), false), 642 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 643 m_position(position), m_request(request), m_desc_policy(ops) { 644 645 // Ensure that the printing policy is producing a description that is as 646 // short as possible. 647 m_desc_policy.SuppressScope = true; 648 m_desc_policy.SuppressTagKeyword = true; 649 m_desc_policy.FullyQualifiedName = false; 650 m_desc_policy.TerseOutput = true; 651 m_desc_policy.IncludeNewlines = false; 652 m_desc_policy.UseVoidForZeroParams = false; 653 m_desc_policy.Bool = true; 654 } 655 656 /// Deregisters and destroys this code-completion consumer. 657 virtual ~CodeComplete() {} 658 659 /// \name Code-completion filtering 660 /// Check if the result should be filtered out. 661 bool isResultFilteredOut(StringRef Filter, 662 CodeCompletionResult Result) override { 663 // This code is mostly copied from CodeCompleteConsumer. 664 switch (Result.Kind) { 665 case CodeCompletionResult::RK_Declaration: 666 return !( 667 Result.Declaration->getIdentifier() && 668 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 669 case CodeCompletionResult::RK_Keyword: 670 return !StringRef(Result.Keyword).startswith(Filter); 671 case CodeCompletionResult::RK_Macro: 672 return !Result.Macro->getName().startswith(Filter); 673 case CodeCompletionResult::RK_Pattern: 674 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 675 } 676 // If we trigger this assert or the above switch yields a warning, then 677 // CodeCompletionResult has been enhanced with more kinds of completion 678 // results. Expand the switch above in this case. 679 assert(false && "Unknown completion result type?"); 680 // If we reach this, then we should just ignore whatever kind of unknown 681 // result we got back. We probably can't turn it into any kind of useful 682 // completion suggestion with the existing code. 683 return true; 684 } 685 686 /// \name Code-completion callbacks 687 /// Process the finalized code-completion results. 688 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 689 CodeCompletionResult *Results, 690 unsigned NumResults) override { 691 692 // The Sema put the incomplete token we try to complete in here during 693 // lexing, so we need to retrieve it here to know what we are completing. 694 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 695 696 // Iterate over all the results. Filter out results we don't want and 697 // process the rest. 698 for (unsigned I = 0; I != NumResults; ++I) { 699 // Filter the results with the information from the Sema. 700 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 701 continue; 702 703 CodeCompletionResult &R = Results[I]; 704 std::string ToInsert; 705 std::string Description; 706 // Handle the different completion kinds that come from the Sema. 707 switch (R.Kind) { 708 case CodeCompletionResult::RK_Declaration: { 709 const NamedDecl *D = R.Declaration; 710 ToInsert = R.Declaration->getNameAsString(); 711 // If we have a function decl that has no arguments we want to 712 // complete the empty parantheses for the user. If the function has 713 // arguments, we at least complete the opening bracket. 714 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 715 if (F->getNumParams() == 0) 716 ToInsert += "()"; 717 else 718 ToInsert += "("; 719 raw_string_ostream OS(Description); 720 F->print(OS, m_desc_policy, false); 721 OS.flush(); 722 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 723 Description = V->getType().getAsString(m_desc_policy); 724 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 725 Description = F->getType().getAsString(m_desc_policy); 726 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 727 // If we try to complete a namespace, then we can directly append 728 // the '::'. 729 if (!N->isAnonymousNamespace()) 730 ToInsert += "::"; 731 } 732 break; 733 } 734 case CodeCompletionResult::RK_Keyword: 735 ToInsert = R.Keyword; 736 break; 737 case CodeCompletionResult::RK_Macro: 738 ToInsert = R.Macro->getName().str(); 739 break; 740 case CodeCompletionResult::RK_Pattern: 741 ToInsert = R.Pattern->getTypedText(); 742 break; 743 } 744 // At this point all information is in the ToInsert string. 745 746 // We also filter some internal lldb identifiers here. The user 747 // shouldn't see these. 748 if (StringRef(ToInsert).startswith("$__lldb_")) 749 continue; 750 if (!ToInsert.empty()) { 751 // Merge the suggested Token into the existing command line to comply 752 // with the kind of result the lldb API expects. 753 std::string CompletionSuggestion = 754 mergeCompletion(m_expr, m_position, ToInsert); 755 m_request.AddCompletion(CompletionSuggestion, Description); 756 } 757 } 758 } 759 760 /// \param S the semantic-analyzer object for which code-completion is being 761 /// done. 762 /// 763 /// \param CurrentArg the index of the current argument. 764 /// 765 /// \param Candidates an array of overload candidates. 766 /// 767 /// \param NumCandidates the number of overload candidates 768 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 769 OverloadCandidate *Candidates, 770 unsigned NumCandidates, 771 SourceLocation OpenParLoc) override { 772 // At the moment we don't filter out any overloaded candidates. 773 } 774 775 CodeCompletionAllocator &getAllocator() override { 776 return m_info.getAllocator(); 777 } 778 779 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 780 }; 781 } // namespace 782 783 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 784 unsigned pos, unsigned typed_pos) { 785 DiagnosticManager mgr; 786 // We need the raw user expression here because that's what the CodeComplete 787 // class uses to provide completion suggestions. 788 // However, the `Text` method only gives us the transformed expression here. 789 // To actually get the raw user input here, we have to cast our expression to 790 // the LLVMUserExpression which exposes the right API. This should never fail 791 // as we always have a ClangUserExpression whenever we call this. 792 LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr); 793 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(), 794 typed_pos); 795 // We don't need a code generator for parsing. 796 m_code_generator.reset(); 797 // Start parsing the expression with our custom code completion consumer. 798 ParseInternal(mgr, &CC, line, pos); 799 return true; 800 } 801 802 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 803 return ParseInternal(diagnostic_manager); 804 } 805 806 unsigned 807 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 808 CodeCompleteConsumer *completion_consumer, 809 unsigned completion_line, 810 unsigned completion_column) { 811 ClangDiagnosticManagerAdapter *adapter = 812 static_cast<ClangDiagnosticManagerAdapter *>( 813 m_compiler->getDiagnostics().getClient()); 814 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 815 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 816 817 adapter->ResetManager(&diagnostic_manager); 818 819 const char *expr_text = m_expr.Text(); 820 821 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 822 bool created_main_file = false; 823 824 // Clang wants to do completion on a real file known by Clang's file manager, 825 // so we have to create one to make this work. 826 // TODO: We probably could also simulate to Clang's file manager that there 827 // is a real file that contains our code. 828 bool should_create_file = completion_consumer != nullptr; 829 830 // We also want a real file on disk if we generate full debug info. 831 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 832 codegenoptions::FullDebugInfo; 833 834 if (should_create_file) { 835 int temp_fd = -1; 836 llvm::SmallString<128> result_path; 837 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 838 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 839 std::string temp_source_path = tmpdir_file_spec.GetPath(); 840 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 841 } else { 842 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 843 } 844 845 if (temp_fd != -1) { 846 lldb_private::File file(temp_fd, true); 847 const size_t expr_text_len = strlen(expr_text); 848 size_t bytes_written = expr_text_len; 849 if (file.Write(expr_text, bytes_written).Success()) { 850 if (bytes_written == expr_text_len) { 851 file.Close(); 852 source_mgr.setMainFileID(source_mgr.createFileID( 853 m_compiler->getFileManager().getFile(result_path), 854 SourceLocation(), SrcMgr::C_User)); 855 created_main_file = true; 856 } 857 } 858 } 859 } 860 861 if (!created_main_file) { 862 std::unique_ptr<MemoryBuffer> memory_buffer = 863 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); 864 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 865 } 866 867 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 868 &m_compiler->getPreprocessor()); 869 870 ClangExpressionHelper *type_system_helper = 871 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 872 873 ASTConsumer *ast_transformer = 874 type_system_helper->ASTTransformer(m_code_generator.get()); 875 876 if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) 877 decl_map->InstallCodeGenerator(m_code_generator.get()); 878 879 // If we want to parse for code completion, we need to attach our code 880 // completion consumer to the Sema and specify a completion position. 881 // While parsing the Sema will call this consumer with the provided 882 // completion suggestions. 883 if (completion_consumer) { 884 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 885 auto &PP = m_compiler->getPreprocessor(); 886 // Lines and columns start at 1 in Clang, but code completion positions are 887 // indexed from 0, so we need to add 1 to the line and column here. 888 ++completion_line; 889 ++completion_column; 890 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 891 } 892 893 if (ast_transformer) { 894 ast_transformer->Initialize(m_compiler->getASTContext()); 895 ParseAST(m_compiler->getPreprocessor(), ast_transformer, 896 m_compiler->getASTContext(), false, TU_Complete, 897 completion_consumer); 898 } else { 899 m_code_generator->Initialize(m_compiler->getASTContext()); 900 ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), 901 m_compiler->getASTContext(), false, TU_Complete, 902 completion_consumer); 903 } 904 905 diag_buf->EndSourceFile(); 906 907 unsigned num_errors = diag_buf->getNumErrors(); 908 909 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 910 num_errors++; 911 diagnostic_manager.PutString(eDiagnosticSeverityError, 912 "while importing modules:"); 913 diagnostic_manager.AppendMessageToDiagnostic( 914 m_pp_callbacks->getErrorString()); 915 } 916 917 if (!num_errors) { 918 if (type_system_helper->DeclMap() && 919 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 920 diagnostic_manager.Printf(eDiagnosticSeverityError, 921 "Couldn't infer the type of a variable"); 922 num_errors++; 923 } 924 } 925 926 if (!num_errors) { 927 type_system_helper->CommitPersistentDecls(); 928 } 929 930 adapter->ResetManager(); 931 932 return num_errors; 933 } 934 935 std::string 936 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 937 std::string abi; 938 939 if (target_arch.IsMIPS()) { 940 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 941 case ArchSpec::eMIPSABI_N64: 942 abi = "n64"; 943 break; 944 case ArchSpec::eMIPSABI_N32: 945 abi = "n32"; 946 break; 947 case ArchSpec::eMIPSABI_O32: 948 abi = "o32"; 949 break; 950 default: 951 break; 952 } 953 } 954 return abi; 955 } 956 957 bool ClangExpressionParser::RewriteExpression( 958 DiagnosticManager &diagnostic_manager) { 959 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 960 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 961 nullptr); 962 clang::edit::Commit commit(editor); 963 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 964 965 class RewritesReceiver : public edit::EditsReceiver { 966 Rewriter &rewrite; 967 968 public: 969 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 970 971 void insert(SourceLocation loc, StringRef text) override { 972 rewrite.InsertText(loc, text); 973 } 974 void replace(CharSourceRange range, StringRef text) override { 975 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 976 } 977 }; 978 979 RewritesReceiver rewrites_receiver(rewriter); 980 981 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 982 size_t num_diags = diagnostics.size(); 983 if (num_diags == 0) 984 return false; 985 986 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 987 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 988 if (diagnostic && diagnostic->HasFixIts()) { 989 for (const FixItHint &fixit : diagnostic->FixIts()) { 990 // This is cobbed from clang::Rewrite::FixItRewriter. 991 if (fixit.CodeToInsert.empty()) { 992 if (fixit.InsertFromRange.isValid()) { 993 commit.insertFromRange(fixit.RemoveRange.getBegin(), 994 fixit.InsertFromRange, /*afterToken=*/false, 995 fixit.BeforePreviousInsertions); 996 } else 997 commit.remove(fixit.RemoveRange); 998 } else { 999 if (fixit.RemoveRange.isTokenRange() || 1000 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1001 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1002 else 1003 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1004 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1005 } 1006 } 1007 } 1008 } 1009 1010 // FIXME - do we want to try to propagate specific errors here? 1011 if (!commit.isCommitable()) 1012 return false; 1013 else if (!editor.commit(commit)) 1014 return false; 1015 1016 // Now play all the edits, and stash the result in the diagnostic manager. 1017 editor.applyRewrites(rewrites_receiver); 1018 RewriteBuffer &main_file_buffer = 1019 rewriter.getEditBuffer(source_manager.getMainFileID()); 1020 1021 std::string fixed_expression; 1022 llvm::raw_string_ostream out_stream(fixed_expression); 1023 1024 main_file_buffer.write(out_stream); 1025 out_stream.flush(); 1026 diagnostic_manager.SetFixedExpression(fixed_expression); 1027 1028 return true; 1029 } 1030 1031 static bool FindFunctionInModule(ConstString &mangled_name, 1032 llvm::Module *module, const char *orig_name) { 1033 for (const auto &func : module->getFunctionList()) { 1034 const StringRef &name = func.getName(); 1035 if (name.find(orig_name) != StringRef::npos) { 1036 mangled_name.SetString(name); 1037 return true; 1038 } 1039 } 1040 1041 return false; 1042 } 1043 1044 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1045 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1046 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1047 bool &can_interpret, ExecutionPolicy execution_policy) { 1048 func_addr = LLDB_INVALID_ADDRESS; 1049 func_end = LLDB_INVALID_ADDRESS; 1050 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1051 1052 lldb_private::Status err; 1053 1054 std::unique_ptr<llvm::Module> llvm_module_up( 1055 m_code_generator->ReleaseModule()); 1056 1057 if (!llvm_module_up) { 1058 err.SetErrorToGenericError(); 1059 err.SetErrorString("IR doesn't contain a module"); 1060 return err; 1061 } 1062 1063 ConstString function_name; 1064 1065 if (execution_policy != eExecutionPolicyTopLevel) { 1066 // Find the actual name of the function (it's often mangled somehow) 1067 1068 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1069 m_expr.FunctionName())) { 1070 err.SetErrorToGenericError(); 1071 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1072 m_expr.FunctionName()); 1073 return err; 1074 } else { 1075 if (log) 1076 log->Printf("Found function %s for %s", function_name.AsCString(), 1077 m_expr.FunctionName()); 1078 } 1079 } 1080 1081 SymbolContext sc; 1082 1083 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1084 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1085 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1086 sc.target_sp = target_sp; 1087 } 1088 1089 LLVMUserExpression::IRPasses custom_passes; 1090 { 1091 auto lang = m_expr.Language(); 1092 if (log) 1093 log->Printf("%s - Current expression language is %s\n", __FUNCTION__, 1094 Language::GetNameForLanguageType(lang)); 1095 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1096 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1097 auto runtime = process_sp->GetLanguageRuntime(lang); 1098 if (runtime) 1099 runtime->GetIRPasses(custom_passes); 1100 } 1101 } 1102 1103 if (custom_passes.EarlyPasses) { 1104 if (log) 1105 log->Printf("%s - Running Early IR Passes from LanguageRuntime on " 1106 "expression module '%s'", 1107 __FUNCTION__, m_expr.FunctionName()); 1108 1109 custom_passes.EarlyPasses->run(*llvm_module_up); 1110 } 1111 1112 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1113 m_llvm_context, // handed off here 1114 llvm_module_up, // handed off here 1115 function_name, exe_ctx.GetTargetSP(), sc, 1116 m_compiler->getTargetOpts().Features); 1117 1118 ClangExpressionHelper *type_system_helper = 1119 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1120 ClangExpressionDeclMap *decl_map = 1121 type_system_helper->DeclMap(); // result can be NULL 1122 1123 if (decl_map) { 1124 Stream *error_stream = NULL; 1125 Target *target = exe_ctx.GetTargetPtr(); 1126 error_stream = target->GetDebugger().GetErrorFile().get(); 1127 1128 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1129 *execution_unit_sp, *error_stream, 1130 function_name.AsCString()); 1131 1132 bool ir_can_run = 1133 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1134 1135 if (!ir_can_run) { 1136 err.SetErrorString( 1137 "The expression could not be prepared to run in the target"); 1138 return err; 1139 } 1140 1141 Process *process = exe_ctx.GetProcessPtr(); 1142 1143 if (execution_policy != eExecutionPolicyAlways && 1144 execution_policy != eExecutionPolicyTopLevel) { 1145 lldb_private::Status interpret_error; 1146 1147 bool interpret_function_calls = 1148 !process ? false : process->CanInterpretFunctionCalls(); 1149 can_interpret = IRInterpreter::CanInterpret( 1150 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1151 interpret_error, interpret_function_calls); 1152 1153 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1154 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1155 interpret_error.AsCString()); 1156 return err; 1157 } 1158 } 1159 1160 if (!process && execution_policy == eExecutionPolicyAlways) { 1161 err.SetErrorString("Expression needed to run in the target, but the " 1162 "target can't be run"); 1163 return err; 1164 } 1165 1166 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1167 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1168 "target, but the target can't be run"); 1169 return err; 1170 } 1171 1172 if (execution_policy == eExecutionPolicyAlways || 1173 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1174 if (m_expr.NeedsValidation() && process) { 1175 if (!process->GetDynamicCheckers()) { 1176 DynamicCheckerFunctions *dynamic_checkers = 1177 new DynamicCheckerFunctions(); 1178 1179 DiagnosticManager install_diagnostics; 1180 1181 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1182 if (install_diagnostics.Diagnostics().size()) 1183 err.SetErrorString(install_diagnostics.GetString().c_str()); 1184 else 1185 err.SetErrorString("couldn't install checkers, unknown error"); 1186 1187 return err; 1188 } 1189 1190 process->SetDynamicCheckers(dynamic_checkers); 1191 1192 if (log) 1193 log->Printf("== [ClangExpressionParser::PrepareForExecution] " 1194 "Finished installing dynamic checkers =="); 1195 } 1196 1197 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), 1198 function_name.AsCString()); 1199 1200 llvm::Module *module = execution_unit_sp->GetModule(); 1201 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1202 err.SetErrorToGenericError(); 1203 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1204 return err; 1205 } 1206 1207 if (custom_passes.LatePasses) { 1208 if (log) 1209 log->Printf("%s - Running Late IR Passes from LanguageRuntime on " 1210 "expression module '%s'", 1211 __FUNCTION__, m_expr.FunctionName()); 1212 1213 custom_passes.LatePasses->run(*module); 1214 } 1215 } 1216 } 1217 1218 if (execution_policy == eExecutionPolicyAlways || 1219 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1220 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1221 } 1222 } else { 1223 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1224 } 1225 1226 return err; 1227 } 1228 1229 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1230 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1231 lldb_private::Status err; 1232 1233 lldbassert(execution_unit_sp.get()); 1234 lldbassert(exe_ctx.HasThreadScope()); 1235 1236 if (!execution_unit_sp.get()) { 1237 err.SetErrorString( 1238 "can't run static initializers for a NULL execution unit"); 1239 return err; 1240 } 1241 1242 if (!exe_ctx.HasThreadScope()) { 1243 err.SetErrorString("can't run static initializers without a thread"); 1244 return err; 1245 } 1246 1247 std::vector<lldb::addr_t> static_initializers; 1248 1249 execution_unit_sp->GetStaticInitializers(static_initializers); 1250 1251 for (lldb::addr_t static_initializer : static_initializers) { 1252 EvaluateExpressionOptions options; 1253 1254 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1255 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1256 llvm::ArrayRef<lldb::addr_t>(), options)); 1257 1258 DiagnosticManager execution_errors; 1259 lldb::ExpressionResults results = 1260 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1261 exe_ctx, call_static_initializer, options, execution_errors); 1262 1263 if (results != lldb::eExpressionCompleted) { 1264 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1265 execution_errors.GetString().c_str()); 1266 return err; 1267 } 1268 } 1269 1270 return err; 1271 } 1272