1 //===-- PipeWindows.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Host/windows/PipeWindows.h" 11 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/Support/Process.h" 14 #include "llvm/Support/raw_ostream.h" 15 16 #include <fcntl.h> 17 #include <io.h> 18 #include <rpc.h> 19 20 #include <atomic> 21 #include <string> 22 23 using namespace lldb; 24 using namespace lldb_private; 25 26 namespace { 27 std::atomic<uint32_t> g_pipe_serial(0); 28 } 29 30 PipeWindows::PipeWindows() { 31 m_read = INVALID_HANDLE_VALUE; 32 m_write = INVALID_HANDLE_VALUE; 33 34 m_read_fd = -1; 35 m_write_fd = -1; 36 ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); 37 ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped)); 38 } 39 40 PipeWindows::~PipeWindows() { Close(); } 41 42 Status PipeWindows::CreateNew(bool child_process_inherit) { 43 // Even for anonymous pipes, we open a named pipe. This is because you 44 // cannot get overlapped i/o on Windows without using a named pipe. So we 45 // synthesize a unique name. 46 uint32_t serial = g_pipe_serial.fetch_add(1); 47 std::string pipe_name; 48 llvm::raw_string_ostream pipe_name_stream(pipe_name); 49 pipe_name_stream << "lldb.pipe." << ::GetCurrentProcessId() << "." << serial; 50 pipe_name_stream.flush(); 51 52 return CreateNew(pipe_name.c_str(), child_process_inherit); 53 } 54 55 Status PipeWindows::CreateNew(llvm::StringRef name, 56 bool child_process_inherit) { 57 if (name.empty()) 58 return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32); 59 60 if (CanRead() || CanWrite()) 61 return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32); 62 63 std::string pipe_path = "\\\\.\\Pipe\\"; 64 pipe_path.append(name); 65 66 // Always open for overlapped i/o. We implement blocking manually in Read 67 // and Write. 68 DWORD read_mode = FILE_FLAG_OVERLAPPED; 69 m_read = ::CreateNamedPipeA( 70 pipe_path.c_str(), PIPE_ACCESS_INBOUND | read_mode, 71 PIPE_TYPE_BYTE | PIPE_WAIT, 1, 1024, 1024, 120 * 1000, NULL); 72 if (INVALID_HANDLE_VALUE == m_read) 73 return Status(::GetLastError(), eErrorTypeWin32); 74 m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY); 75 ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); 76 m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr); 77 78 // Open the write end of the pipe. 79 Status result = OpenNamedPipe(name, child_process_inherit, false); 80 if (!result.Success()) { 81 CloseReadFileDescriptor(); 82 return result; 83 } 84 85 return result; 86 } 87 88 Status PipeWindows::CreateWithUniqueName(llvm::StringRef prefix, 89 bool child_process_inherit, 90 llvm::SmallVectorImpl<char> &name) { 91 llvm::SmallString<128> pipe_name; 92 Status error; 93 ::UUID unique_id; 94 RPC_CSTR unique_string; 95 RPC_STATUS status = ::UuidCreate(&unique_id); 96 if (status == RPC_S_OK || status == RPC_S_UUID_LOCAL_ONLY) 97 status = ::UuidToStringA(&unique_id, &unique_string); 98 if (status == RPC_S_OK) { 99 pipe_name = prefix; 100 pipe_name += "-"; 101 pipe_name += reinterpret_cast<char *>(unique_string); 102 ::RpcStringFreeA(&unique_string); 103 error = CreateNew(pipe_name, child_process_inherit); 104 } else { 105 error.SetError(status, eErrorTypeWin32); 106 } 107 if (error.Success()) 108 name = pipe_name; 109 return error; 110 } 111 112 Status PipeWindows::OpenAsReader(llvm::StringRef name, 113 bool child_process_inherit) { 114 if (CanRead() || CanWrite()) 115 return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32); 116 117 return OpenNamedPipe(name, child_process_inherit, true); 118 } 119 120 Status 121 PipeWindows::OpenAsWriterWithTimeout(llvm::StringRef name, 122 bool child_process_inherit, 123 const std::chrono::microseconds &timeout) { 124 if (CanRead() || CanWrite()) 125 return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32); 126 127 return OpenNamedPipe(name, child_process_inherit, false); 128 } 129 130 Status PipeWindows::OpenNamedPipe(llvm::StringRef name, 131 bool child_process_inherit, bool is_read) { 132 if (name.empty()) 133 return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32); 134 135 assert(is_read ? !CanRead() : !CanWrite()); 136 137 SECURITY_ATTRIBUTES attributes = {}; 138 attributes.bInheritHandle = child_process_inherit; 139 140 std::string pipe_path = "\\\\.\\Pipe\\"; 141 pipe_path.append(name); 142 143 if (is_read) { 144 m_read = ::CreateFileA(pipe_path.c_str(), GENERIC_READ, 0, &attributes, 145 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL); 146 if (INVALID_HANDLE_VALUE == m_read) 147 return Status(::GetLastError(), eErrorTypeWin32); 148 149 m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY); 150 151 ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); 152 m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr); 153 } else { 154 m_write = ::CreateFileA(pipe_path.c_str(), GENERIC_WRITE, 0, &attributes, 155 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL); 156 if (INVALID_HANDLE_VALUE == m_write) 157 return Status(::GetLastError(), eErrorTypeWin32); 158 159 m_write_fd = _open_osfhandle((intptr_t)m_write, _O_WRONLY); 160 161 ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped)); 162 } 163 164 return Status(); 165 } 166 167 int PipeWindows::GetReadFileDescriptor() const { return m_read_fd; } 168 169 int PipeWindows::GetWriteFileDescriptor() const { return m_write_fd; } 170 171 int PipeWindows::ReleaseReadFileDescriptor() { 172 if (!CanRead()) 173 return -1; 174 int result = m_read_fd; 175 m_read_fd = -1; 176 if (m_read_overlapped.hEvent) 177 ::CloseHandle(m_read_overlapped.hEvent); 178 m_read = INVALID_HANDLE_VALUE; 179 ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); 180 return result; 181 } 182 183 int PipeWindows::ReleaseWriteFileDescriptor() { 184 if (!CanWrite()) 185 return -1; 186 int result = m_write_fd; 187 m_write_fd = -1; 188 m_write = INVALID_HANDLE_VALUE; 189 ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped)); 190 return result; 191 } 192 193 void PipeWindows::CloseReadFileDescriptor() { 194 if (!CanRead()) 195 return; 196 197 if (m_read_overlapped.hEvent) 198 ::CloseHandle(m_read_overlapped.hEvent); 199 _close(m_read_fd); 200 m_read = INVALID_HANDLE_VALUE; 201 m_read_fd = -1; 202 ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); 203 } 204 205 void PipeWindows::CloseWriteFileDescriptor() { 206 if (!CanWrite()) 207 return; 208 209 _close(m_write_fd); 210 m_write = INVALID_HANDLE_VALUE; 211 m_write_fd = -1; 212 ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped)); 213 } 214 215 void PipeWindows::Close() { 216 CloseReadFileDescriptor(); 217 CloseWriteFileDescriptor(); 218 } 219 220 Status PipeWindows::Delete(llvm::StringRef name) { return Status(); } 221 222 bool PipeWindows::CanRead() const { return (m_read != INVALID_HANDLE_VALUE); } 223 224 bool PipeWindows::CanWrite() const { return (m_write != INVALID_HANDLE_VALUE); } 225 226 HANDLE 227 PipeWindows::GetReadNativeHandle() { return m_read; } 228 229 HANDLE 230 PipeWindows::GetWriteNativeHandle() { return m_write; } 231 232 Status PipeWindows::ReadWithTimeout(void *buf, size_t size, 233 const std::chrono::microseconds &duration, 234 size_t &bytes_read) { 235 if (!CanRead()) 236 return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32); 237 238 bytes_read = 0; 239 DWORD sys_bytes_read = size; 240 BOOL result = ::ReadFile(m_read, buf, sys_bytes_read, &sys_bytes_read, 241 &m_read_overlapped); 242 if (!result && GetLastError() != ERROR_IO_PENDING) 243 return Status(::GetLastError(), eErrorTypeWin32); 244 245 DWORD timeout = (duration == std::chrono::microseconds::zero()) 246 ? INFINITE 247 : duration.count() * 1000; 248 DWORD wait_result = ::WaitForSingleObject(m_read_overlapped.hEvent, timeout); 249 if (wait_result != WAIT_OBJECT_0) { 250 // The operation probably failed. However, if it timed out, we need to 251 // cancel the I/O. Between the time we returned from WaitForSingleObject 252 // and the time we call CancelIoEx, the operation may complete. If that 253 // hapens, CancelIoEx will fail and return ERROR_NOT_FOUND. If that 254 // happens, the original operation should be considered to have been 255 // successful. 256 bool failed = true; 257 DWORD failure_error = ::GetLastError(); 258 if (wait_result == WAIT_TIMEOUT) { 259 BOOL cancel_result = CancelIoEx(m_read, &m_read_overlapped); 260 if (!cancel_result && GetLastError() == ERROR_NOT_FOUND) 261 failed = false; 262 } 263 if (failed) 264 return Status(failure_error, eErrorTypeWin32); 265 } 266 267 // Now we call GetOverlappedResult setting bWait to false, since we've 268 // already waited as long as we're willing to. 269 if (!GetOverlappedResult(m_read, &m_read_overlapped, &sys_bytes_read, FALSE)) 270 return Status(::GetLastError(), eErrorTypeWin32); 271 272 bytes_read = sys_bytes_read; 273 return Status(); 274 } 275 276 Status PipeWindows::Write(const void *buf, size_t num_bytes, 277 size_t &bytes_written) { 278 if (!CanWrite()) 279 return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32); 280 281 DWORD sys_bytes_written = 0; 282 BOOL write_result = ::WriteFile(m_write, buf, num_bytes, &sys_bytes_written, 283 &m_write_overlapped); 284 if (!write_result && GetLastError() != ERROR_IO_PENDING) 285 return Status(::GetLastError(), eErrorTypeWin32); 286 287 BOOL result = GetOverlappedResult(m_write, &m_write_overlapped, 288 &sys_bytes_written, TRUE); 289 if (!result) 290 return Status(::GetLastError(), eErrorTypeWin32); 291 return Status(); 292 } 293