1 //===-- IRMemoryMap.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Expression/IRMemoryMap.h" 10 #include "lldb/Target/MemoryRegionInfo.h" 11 #include "lldb/Target/Process.h" 12 #include "lldb/Target/Target.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/DataExtractor.h" 15 #include "lldb/Utility/LLDBAssert.h" 16 #include "lldb/Utility/Log.h" 17 #include "lldb/Utility/Scalar.h" 18 #include "lldb/Utility/Status.h" 19 20 using namespace lldb_private; 21 22 IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) { 23 if (target_sp) 24 m_process_wp = target_sp->GetProcessSP(); 25 } 26 27 IRMemoryMap::~IRMemoryMap() { 28 lldb::ProcessSP process_sp = m_process_wp.lock(); 29 30 if (process_sp) { 31 AllocationMap::iterator iter; 32 33 Status err; 34 35 while ((iter = m_allocations.begin()) != m_allocations.end()) { 36 err.Clear(); 37 if (iter->second.m_leak) 38 m_allocations.erase(iter); 39 else 40 Free(iter->first, err); 41 } 42 } 43 } 44 45 lldb::addr_t IRMemoryMap::FindSpace(size_t size) { 46 // The FindSpace algorithm's job is to find a region of memory that the 47 // underlying process is unlikely to be using. 48 // 49 // The memory returned by this function will never be written to. The only 50 // point is that it should not shadow process memory if possible, so that 51 // expressions processing real values from the process do not use the wrong 52 // data. 53 // 54 // If the process can in fact allocate memory (CanJIT() lets us know this) 55 // then this can be accomplished just be allocating memory in the inferior. 56 // Then no guessing is required. 57 58 lldb::TargetSP target_sp = m_target_wp.lock(); 59 lldb::ProcessSP process_sp = m_process_wp.lock(); 60 61 const bool process_is_alive = process_sp && process_sp->IsAlive(); 62 63 lldb::addr_t ret = LLDB_INVALID_ADDRESS; 64 if (size == 0) 65 return ret; 66 67 if (process_is_alive && process_sp->CanJIT()) { 68 Status alloc_error; 69 70 ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable | 71 lldb::ePermissionsWritable, 72 alloc_error); 73 74 if (!alloc_error.Success()) 75 return LLDB_INVALID_ADDRESS; 76 else 77 return ret; 78 } 79 80 // At this point we know that we need to hunt. 81 // 82 // First, go to the end of the existing allocations we've made if there are 83 // any allocations. Otherwise start at the beginning of memory. 84 85 if (m_allocations.empty()) { 86 ret = 0x0; 87 } else { 88 auto back = m_allocations.rbegin(); 89 lldb::addr_t addr = back->first; 90 size_t alloc_size = back->second.m_size; 91 ret = llvm::alignTo(addr + alloc_size, 4096); 92 } 93 94 // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped 95 // regions, walk forward through memory until a region is found that has 96 // adequate space for our allocation. 97 if (process_is_alive) { 98 const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8 99 ? 0xffffffffffffffffull 100 : 0xffffffffull; 101 102 lldbassert(process_sp->GetAddressByteSize() == 4 || 103 end_of_memory != 0xffffffffull); 104 105 MemoryRegionInfo region_info; 106 Status err = process_sp->GetMemoryRegionInfo(ret, region_info); 107 if (err.Success()) { 108 while (true) { 109 if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo || 110 region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo || 111 region_info.GetExecutable() != 112 MemoryRegionInfo::OptionalBool::eNo) { 113 if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) { 114 ret = LLDB_INVALID_ADDRESS; 115 break; 116 } else { 117 ret = region_info.GetRange().GetRangeEnd(); 118 } 119 } else if (ret + size < region_info.GetRange().GetRangeEnd()) { 120 return ret; 121 } else { 122 // ret stays the same. We just need to walk a bit further. 123 } 124 125 err = process_sp->GetMemoryRegionInfo( 126 region_info.GetRange().GetRangeEnd(), region_info); 127 if (err.Fail()) { 128 lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed"); 129 ret = LLDB_INVALID_ADDRESS; 130 break; 131 } 132 } 133 } 134 } 135 136 // We've tried our algorithm, and it didn't work. Now we have to reset back 137 // to the end of the allocations we've already reported, or use a 'sensible' 138 // default if this is our first allocation. 139 140 if (m_allocations.empty()) { 141 uint32_t address_byte_size = GetAddressByteSize(); 142 if (address_byte_size != UINT32_MAX) { 143 switch (address_byte_size) { 144 case 8: 145 ret = 0xffffffff00000000ull; 146 break; 147 case 4: 148 ret = 0xee000000ull; 149 break; 150 default: 151 break; 152 } 153 } 154 } else { 155 auto back = m_allocations.rbegin(); 156 lldb::addr_t addr = back->first; 157 size_t alloc_size = back->second.m_size; 158 ret = llvm::alignTo(addr + alloc_size, 4096); 159 } 160 161 return ret; 162 } 163 164 IRMemoryMap::AllocationMap::iterator 165 IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) { 166 if (addr == LLDB_INVALID_ADDRESS) 167 return m_allocations.end(); 168 169 AllocationMap::iterator iter = m_allocations.lower_bound(addr); 170 171 if (iter == m_allocations.end() || iter->first > addr) { 172 if (iter == m_allocations.begin()) 173 return m_allocations.end(); 174 iter--; 175 } 176 177 if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size) 178 return iter; 179 180 return m_allocations.end(); 181 } 182 183 bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const { 184 if (addr == LLDB_INVALID_ADDRESS) 185 return false; 186 187 AllocationMap::const_iterator iter = m_allocations.lower_bound(addr); 188 189 // Since we only know that the returned interval begins at a location greater 190 // than or equal to where the given interval begins, it's possible that the 191 // given interval intersects either the returned interval or the previous 192 // interval. Thus, we need to check both. Note that we only need to check 193 // these two intervals. Since all intervals are disjoint it is not possible 194 // that an adjacent interval does not intersect, but a non-adjacent interval 195 // does intersect. 196 if (iter != m_allocations.end()) { 197 if (AllocationsIntersect(addr, size, iter->second.m_process_start, 198 iter->second.m_size)) 199 return true; 200 } 201 202 if (iter != m_allocations.begin()) { 203 --iter; 204 if (AllocationsIntersect(addr, size, iter->second.m_process_start, 205 iter->second.m_size)) 206 return true; 207 } 208 209 return false; 210 } 211 212 bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1, 213 lldb::addr_t addr2, size_t size2) { 214 // Given two half open intervals [A, B) and [X, Y), the only 6 permutations 215 // that satisfy A<B and X<Y are the following: 216 // A B X Y 217 // A X B Y (intersects) 218 // A X Y B (intersects) 219 // X A B Y (intersects) 220 // X A Y B (intersects) 221 // X Y A B 222 // The first is B <= X, and the last is Y <= A. So the condition is !(B <= X 223 // || Y <= A)), or (X < B && A < Y) 224 return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2)); 225 } 226 227 lldb::ByteOrder IRMemoryMap::GetByteOrder() { 228 lldb::ProcessSP process_sp = m_process_wp.lock(); 229 230 if (process_sp) 231 return process_sp->GetByteOrder(); 232 233 lldb::TargetSP target_sp = m_target_wp.lock(); 234 235 if (target_sp) 236 return target_sp->GetArchitecture().GetByteOrder(); 237 238 return lldb::eByteOrderInvalid; 239 } 240 241 uint32_t IRMemoryMap::GetAddressByteSize() { 242 lldb::ProcessSP process_sp = m_process_wp.lock(); 243 244 if (process_sp) 245 return process_sp->GetAddressByteSize(); 246 247 lldb::TargetSP target_sp = m_target_wp.lock(); 248 249 if (target_sp) 250 return target_sp->GetArchitecture().GetAddressByteSize(); 251 252 return UINT32_MAX; 253 } 254 255 ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const { 256 lldb::ProcessSP process_sp = m_process_wp.lock(); 257 258 if (process_sp) 259 return process_sp.get(); 260 261 lldb::TargetSP target_sp = m_target_wp.lock(); 262 263 if (target_sp) 264 return target_sp.get(); 265 266 return nullptr; 267 } 268 269 IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc, 270 lldb::addr_t process_start, size_t size, 271 uint32_t permissions, uint8_t alignment, 272 AllocationPolicy policy) 273 : m_process_alloc(process_alloc), m_process_start(process_start), 274 m_size(size), m_policy(policy), m_leak(false), m_permissions(permissions), 275 m_alignment(alignment) { 276 switch (policy) { 277 default: 278 llvm_unreachable("Invalid AllocationPolicy"); 279 case eAllocationPolicyHostOnly: 280 case eAllocationPolicyMirror: 281 m_data.SetByteSize(size); 282 break; 283 case eAllocationPolicyProcessOnly: 284 break; 285 } 286 } 287 288 lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment, 289 uint32_t permissions, AllocationPolicy policy, 290 bool zero_memory, Status &error) { 291 lldb_private::Log *log(GetLog(LLDBLog::Expressions)); 292 error.Clear(); 293 294 lldb::ProcessSP process_sp; 295 lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS; 296 lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS; 297 298 size_t allocation_size; 299 300 if (size == 0) { 301 // FIXME: Malloc(0) should either return an invalid address or assert, in 302 // order to cut down on unnecessary allocations. 303 allocation_size = alignment; 304 } else { 305 // Round up the requested size to an aligned value. 306 allocation_size = llvm::alignTo(size, alignment); 307 308 // The process page cache does not see the requested alignment. We can't 309 // assume its result will be any more than 1-byte aligned. To work around 310 // this, request `alignment - 1` additional bytes. 311 allocation_size += alignment - 1; 312 } 313 314 switch (policy) { 315 default: 316 error.SetErrorToGenericError(); 317 error.SetErrorString("Couldn't malloc: invalid allocation policy"); 318 return LLDB_INVALID_ADDRESS; 319 case eAllocationPolicyHostOnly: 320 allocation_address = FindSpace(allocation_size); 321 if (allocation_address == LLDB_INVALID_ADDRESS) { 322 error.SetErrorToGenericError(); 323 error.SetErrorString("Couldn't malloc: address space is full"); 324 return LLDB_INVALID_ADDRESS; 325 } 326 break; 327 case eAllocationPolicyMirror: 328 process_sp = m_process_wp.lock(); 329 LLDB_LOGF(log, 330 "IRMemoryMap::%s process_sp=0x%" PRIxPTR 331 ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s", 332 __FUNCTION__, reinterpret_cast<uintptr_t>(process_sp.get()), 333 process_sp && process_sp->CanJIT() ? "true" : "false", 334 process_sp && process_sp->IsAlive() ? "true" : "false"); 335 if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) { 336 if (!zero_memory) 337 allocation_address = 338 process_sp->AllocateMemory(allocation_size, permissions, error); 339 else 340 allocation_address = 341 process_sp->CallocateMemory(allocation_size, permissions, error); 342 343 if (!error.Success()) 344 return LLDB_INVALID_ADDRESS; 345 } else { 346 LLDB_LOGF(log, 347 "IRMemoryMap::%s switching to eAllocationPolicyHostOnly " 348 "due to failed condition (see previous expr log message)", 349 __FUNCTION__); 350 policy = eAllocationPolicyHostOnly; 351 allocation_address = FindSpace(allocation_size); 352 if (allocation_address == LLDB_INVALID_ADDRESS) { 353 error.SetErrorToGenericError(); 354 error.SetErrorString("Couldn't malloc: address space is full"); 355 return LLDB_INVALID_ADDRESS; 356 } 357 } 358 break; 359 case eAllocationPolicyProcessOnly: 360 process_sp = m_process_wp.lock(); 361 if (process_sp) { 362 if (process_sp->CanJIT() && process_sp->IsAlive()) { 363 if (!zero_memory) 364 allocation_address = 365 process_sp->AllocateMemory(allocation_size, permissions, error); 366 else 367 allocation_address = 368 process_sp->CallocateMemory(allocation_size, permissions, error); 369 370 if (!error.Success()) 371 return LLDB_INVALID_ADDRESS; 372 } else { 373 error.SetErrorToGenericError(); 374 error.SetErrorString( 375 "Couldn't malloc: process doesn't support allocating memory"); 376 return LLDB_INVALID_ADDRESS; 377 } 378 } else { 379 error.SetErrorToGenericError(); 380 error.SetErrorString("Couldn't malloc: process doesn't exist, and this " 381 "memory must be in the process"); 382 return LLDB_INVALID_ADDRESS; 383 } 384 break; 385 } 386 387 lldb::addr_t mask = alignment - 1; 388 aligned_address = (allocation_address + mask) & (~mask); 389 390 m_allocations.emplace( 391 std::piecewise_construct, std::forward_as_tuple(aligned_address), 392 std::forward_as_tuple(allocation_address, aligned_address, 393 allocation_size, permissions, alignment, policy)); 394 395 if (zero_memory) { 396 Status write_error; 397 std::vector<uint8_t> zero_buf(size, 0); 398 WriteMemory(aligned_address, zero_buf.data(), size, write_error); 399 } 400 401 if (log) { 402 const char *policy_string; 403 404 switch (policy) { 405 default: 406 policy_string = "<invalid policy>"; 407 break; 408 case eAllocationPolicyHostOnly: 409 policy_string = "eAllocationPolicyHostOnly"; 410 break; 411 case eAllocationPolicyProcessOnly: 412 policy_string = "eAllocationPolicyProcessOnly"; 413 break; 414 case eAllocationPolicyMirror: 415 policy_string = "eAllocationPolicyMirror"; 416 break; 417 } 418 419 LLDB_LOGF(log, 420 "IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64 421 ", %s) -> 0x%" PRIx64, 422 (uint64_t)allocation_size, (uint64_t)alignment, 423 (uint64_t)permissions, policy_string, aligned_address); 424 } 425 426 return aligned_address; 427 } 428 429 void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) { 430 error.Clear(); 431 432 AllocationMap::iterator iter = m_allocations.find(process_address); 433 434 if (iter == m_allocations.end()) { 435 error.SetErrorToGenericError(); 436 error.SetErrorString("Couldn't leak: allocation doesn't exist"); 437 return; 438 } 439 440 Allocation &allocation = iter->second; 441 442 allocation.m_leak = true; 443 } 444 445 void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) { 446 error.Clear(); 447 448 AllocationMap::iterator iter = m_allocations.find(process_address); 449 450 if (iter == m_allocations.end()) { 451 error.SetErrorToGenericError(); 452 error.SetErrorString("Couldn't free: allocation doesn't exist"); 453 return; 454 } 455 456 Allocation &allocation = iter->second; 457 458 switch (allocation.m_policy) { 459 default: 460 case eAllocationPolicyHostOnly: { 461 lldb::ProcessSP process_sp = m_process_wp.lock(); 462 if (process_sp) { 463 if (process_sp->CanJIT() && process_sp->IsAlive()) 464 process_sp->DeallocateMemory( 465 allocation.m_process_alloc); // FindSpace allocated this for real 466 } 467 468 break; 469 } 470 case eAllocationPolicyMirror: 471 case eAllocationPolicyProcessOnly: { 472 lldb::ProcessSP process_sp = m_process_wp.lock(); 473 if (process_sp) 474 process_sp->DeallocateMemory(allocation.m_process_alloc); 475 } 476 } 477 478 if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) { 479 LLDB_LOGF(log, 480 "IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64 481 "..0x%" PRIx64 ")", 482 (uint64_t)process_address, iter->second.m_process_start, 483 iter->second.m_process_start + iter->second.m_size); 484 } 485 486 m_allocations.erase(iter); 487 } 488 489 bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) { 490 AllocationMap::iterator iter = FindAllocation(address, size); 491 if (iter == m_allocations.end()) 492 return false; 493 494 Allocation &al = iter->second; 495 496 if (address > (al.m_process_start + al.m_size)) { 497 size = 0; 498 return false; 499 } 500 501 if (address > al.m_process_start) { 502 int dif = address - al.m_process_start; 503 size = al.m_size - dif; 504 return true; 505 } 506 507 size = al.m_size; 508 return true; 509 } 510 511 void IRMemoryMap::WriteMemory(lldb::addr_t process_address, 512 const uint8_t *bytes, size_t size, 513 Status &error) { 514 error.Clear(); 515 516 AllocationMap::iterator iter = FindAllocation(process_address, size); 517 518 if (iter == m_allocations.end()) { 519 lldb::ProcessSP process_sp = m_process_wp.lock(); 520 521 if (process_sp) { 522 process_sp->WriteMemory(process_address, bytes, size, error); 523 return; 524 } 525 526 error.SetErrorToGenericError(); 527 error.SetErrorString("Couldn't write: no allocation contains the target " 528 "range and the process doesn't exist"); 529 return; 530 } 531 532 Allocation &allocation = iter->second; 533 534 uint64_t offset = process_address - allocation.m_process_start; 535 536 lldb::ProcessSP process_sp; 537 538 switch (allocation.m_policy) { 539 default: 540 error.SetErrorToGenericError(); 541 error.SetErrorString("Couldn't write: invalid allocation policy"); 542 return; 543 case eAllocationPolicyHostOnly: 544 if (!allocation.m_data.GetByteSize()) { 545 error.SetErrorToGenericError(); 546 error.SetErrorString("Couldn't write: data buffer is empty"); 547 return; 548 } 549 ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); 550 break; 551 case eAllocationPolicyMirror: 552 if (!allocation.m_data.GetByteSize()) { 553 error.SetErrorToGenericError(); 554 error.SetErrorString("Couldn't write: data buffer is empty"); 555 return; 556 } 557 ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); 558 process_sp = m_process_wp.lock(); 559 if (process_sp) { 560 process_sp->WriteMemory(process_address, bytes, size, error); 561 if (!error.Success()) 562 return; 563 } 564 break; 565 case eAllocationPolicyProcessOnly: 566 process_sp = m_process_wp.lock(); 567 if (process_sp) { 568 process_sp->WriteMemory(process_address, bytes, size, error); 569 if (!error.Success()) 570 return; 571 } 572 break; 573 } 574 575 if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) { 576 LLDB_LOGF(log, 577 "IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIxPTR 578 ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")", 579 (uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size, 580 (uint64_t)allocation.m_process_start, 581 (uint64_t)allocation.m_process_start + 582 (uint64_t)allocation.m_size); 583 } 584 } 585 586 void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address, 587 Scalar &scalar, size_t size, 588 Status &error) { 589 error.Clear(); 590 591 if (size == UINT32_MAX) 592 size = scalar.GetByteSize(); 593 594 if (size > 0) { 595 uint8_t buf[32]; 596 const size_t mem_size = 597 scalar.GetAsMemoryData(buf, size, GetByteOrder(), error); 598 if (mem_size > 0) { 599 return WriteMemory(process_address, buf, mem_size, error); 600 } else { 601 error.SetErrorToGenericError(); 602 error.SetErrorString( 603 "Couldn't write scalar: failed to get scalar as memory data"); 604 } 605 } else { 606 error.SetErrorToGenericError(); 607 error.SetErrorString("Couldn't write scalar: its size was zero"); 608 } 609 } 610 611 void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address, 612 lldb::addr_t address, Status &error) { 613 error.Clear(); 614 615 Scalar scalar(address); 616 617 WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error); 618 } 619 620 void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address, 621 size_t size, Status &error) { 622 error.Clear(); 623 624 AllocationMap::iterator iter = FindAllocation(process_address, size); 625 626 if (iter == m_allocations.end()) { 627 lldb::ProcessSP process_sp = m_process_wp.lock(); 628 629 if (process_sp) { 630 process_sp->ReadMemory(process_address, bytes, size, error); 631 return; 632 } 633 634 lldb::TargetSP target_sp = m_target_wp.lock(); 635 636 if (target_sp) { 637 Address absolute_address(process_address); 638 target_sp->ReadMemory(absolute_address, bytes, size, error, true); 639 return; 640 } 641 642 error.SetErrorToGenericError(); 643 error.SetErrorString("Couldn't read: no allocation contains the target " 644 "range, and neither the process nor the target exist"); 645 return; 646 } 647 648 Allocation &allocation = iter->second; 649 650 uint64_t offset = process_address - allocation.m_process_start; 651 652 if (offset > allocation.m_size) { 653 error.SetErrorToGenericError(); 654 error.SetErrorString("Couldn't read: data is not in the allocation"); 655 return; 656 } 657 658 lldb::ProcessSP process_sp; 659 660 switch (allocation.m_policy) { 661 default: 662 error.SetErrorToGenericError(); 663 error.SetErrorString("Couldn't read: invalid allocation policy"); 664 return; 665 case eAllocationPolicyHostOnly: 666 if (!allocation.m_data.GetByteSize()) { 667 error.SetErrorToGenericError(); 668 error.SetErrorString("Couldn't read: data buffer is empty"); 669 return; 670 } 671 if (allocation.m_data.GetByteSize() < offset + size) { 672 error.SetErrorToGenericError(); 673 error.SetErrorString("Couldn't read: not enough underlying data"); 674 return; 675 } 676 677 ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); 678 break; 679 case eAllocationPolicyMirror: 680 process_sp = m_process_wp.lock(); 681 if (process_sp) { 682 process_sp->ReadMemory(process_address, bytes, size, error); 683 if (!error.Success()) 684 return; 685 } else { 686 if (!allocation.m_data.GetByteSize()) { 687 error.SetErrorToGenericError(); 688 error.SetErrorString("Couldn't read: data buffer is empty"); 689 return; 690 } 691 ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); 692 } 693 break; 694 case eAllocationPolicyProcessOnly: 695 process_sp = m_process_wp.lock(); 696 if (process_sp) { 697 process_sp->ReadMemory(process_address, bytes, size, error); 698 if (!error.Success()) 699 return; 700 } 701 break; 702 } 703 704 if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) { 705 LLDB_LOGF(log, 706 "IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIxPTR 707 ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")", 708 (uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size, 709 (uint64_t)allocation.m_process_start, 710 (uint64_t)allocation.m_process_start + 711 (uint64_t)allocation.m_size); 712 } 713 } 714 715 void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar, 716 lldb::addr_t process_address, 717 size_t size, Status &error) { 718 error.Clear(); 719 720 if (size > 0) { 721 DataBufferHeap buf(size, 0); 722 ReadMemory(buf.GetBytes(), process_address, size, error); 723 724 if (!error.Success()) 725 return; 726 727 DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(), 728 GetAddressByteSize()); 729 730 lldb::offset_t offset = 0; 731 732 switch (size) { 733 default: 734 error.SetErrorToGenericError(); 735 error.SetErrorStringWithFormat( 736 "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size); 737 return; 738 case 1: 739 scalar = extractor.GetU8(&offset); 740 break; 741 case 2: 742 scalar = extractor.GetU16(&offset); 743 break; 744 case 4: 745 scalar = extractor.GetU32(&offset); 746 break; 747 case 8: 748 scalar = extractor.GetU64(&offset); 749 break; 750 } 751 } else { 752 error.SetErrorToGenericError(); 753 error.SetErrorString("Couldn't read scalar: its size was zero"); 754 } 755 } 756 757 void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address, 758 lldb::addr_t process_address, 759 Status &error) { 760 error.Clear(); 761 762 Scalar pointer_scalar; 763 ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(), 764 error); 765 766 if (!error.Success()) 767 return; 768 769 *address = pointer_scalar.ULongLong(); 770 } 771 772 void IRMemoryMap::GetMemoryData(DataExtractor &extractor, 773 lldb::addr_t process_address, size_t size, 774 Status &error) { 775 error.Clear(); 776 777 if (size > 0) { 778 AllocationMap::iterator iter = FindAllocation(process_address, size); 779 780 if (iter == m_allocations.end()) { 781 error.SetErrorToGenericError(); 782 error.SetErrorStringWithFormat( 783 "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64 784 ")", 785 process_address, process_address + size); 786 return; 787 } 788 789 Allocation &allocation = iter->second; 790 791 switch (allocation.m_policy) { 792 default: 793 error.SetErrorToGenericError(); 794 error.SetErrorString( 795 "Couldn't get memory data: invalid allocation policy"); 796 return; 797 case eAllocationPolicyProcessOnly: 798 error.SetErrorToGenericError(); 799 error.SetErrorString( 800 "Couldn't get memory data: memory is only in the target"); 801 return; 802 case eAllocationPolicyMirror: { 803 lldb::ProcessSP process_sp = m_process_wp.lock(); 804 805 if (!allocation.m_data.GetByteSize()) { 806 error.SetErrorToGenericError(); 807 error.SetErrorString("Couldn't get memory data: data buffer is empty"); 808 return; 809 } 810 if (process_sp) { 811 process_sp->ReadMemory(allocation.m_process_start, 812 allocation.m_data.GetBytes(), 813 allocation.m_data.GetByteSize(), error); 814 if (!error.Success()) 815 return; 816 uint64_t offset = process_address - allocation.m_process_start; 817 extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, 818 GetByteOrder(), GetAddressByteSize()); 819 return; 820 } 821 } break; 822 case eAllocationPolicyHostOnly: 823 if (!allocation.m_data.GetByteSize()) { 824 error.SetErrorToGenericError(); 825 error.SetErrorString("Couldn't get memory data: data buffer is empty"); 826 return; 827 } 828 uint64_t offset = process_address - allocation.m_process_start; 829 extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, 830 GetByteOrder(), GetAddressByteSize()); 831 return; 832 } 833 } else { 834 error.SetErrorToGenericError(); 835 error.SetErrorString("Couldn't get memory data: its size was zero"); 836 return; 837 } 838 } 839