1 //===-- IRMemoryMap.cpp -----------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/Expression/IRMemoryMap.h"
11 #include "lldb/Core/Scalar.h"
12 #include "lldb/Target/MemoryRegionInfo.h"
13 #include "lldb/Target/Process.h"
14 #include "lldb/Target/Target.h"
15 #include "lldb/Utility/DataBufferHeap.h"
16 #include "lldb/Utility/DataExtractor.h"
17 #include "lldb/Utility/LLDBAssert.h"
18 #include "lldb/Utility/Log.h"
19 #include "lldb/Utility/Status.h"
20 
21 using namespace lldb_private;
22 
23 IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) {
24   if (target_sp)
25     m_process_wp = target_sp->GetProcessSP();
26 }
27 
28 IRMemoryMap::~IRMemoryMap() {
29   lldb::ProcessSP process_sp = m_process_wp.lock();
30 
31   if (process_sp) {
32     AllocationMap::iterator iter;
33 
34     Status err;
35 
36     while ((iter = m_allocations.begin()) != m_allocations.end()) {
37       err.Clear();
38       if (iter->second.m_leak)
39         m_allocations.erase(iter);
40       else
41         Free(iter->first, err);
42     }
43   }
44 }
45 
46 lldb::addr_t IRMemoryMap::FindSpace(size_t size) {
47   // The FindSpace algorithm's job is to find a region of memory that the
48   // underlying process is unlikely to be using.
49   //
50   // The memory returned by this function will never be written to.  The only
51   // point is that it should not shadow process memory if possible, so that
52   // expressions processing real values from the process do not use the wrong
53   // data.
54   //
55   // If the process can in fact allocate memory (CanJIT() lets us know this)
56   // then this can be accomplished just be allocating memory in the inferior.
57   // Then no guessing is required.
58 
59   lldb::TargetSP target_sp = m_target_wp.lock();
60   lldb::ProcessSP process_sp = m_process_wp.lock();
61 
62   const bool process_is_alive = process_sp && process_sp->IsAlive();
63 
64   lldb::addr_t ret = LLDB_INVALID_ADDRESS;
65   if (size == 0)
66     return ret;
67 
68   if (process_is_alive && process_sp->CanJIT()) {
69     Status alloc_error;
70 
71     ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable |
72                                                lldb::ePermissionsWritable,
73                                      alloc_error);
74 
75     if (!alloc_error.Success())
76       return LLDB_INVALID_ADDRESS;
77     else
78       return ret;
79   }
80 
81   // At this point we know that we need to hunt.
82   //
83   // First, go to the end of the existing allocations we've made if there are
84   // any allocations.  Otherwise start at the beginning of memory.
85 
86   if (m_allocations.empty()) {
87     ret = 0x0;
88   } else {
89     auto back = m_allocations.rbegin();
90     lldb::addr_t addr = back->first;
91     size_t alloc_size = back->second.m_size;
92     ret = llvm::alignTo(addr + alloc_size, 4096);
93   }
94 
95   // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped
96   // regions, walk forward through memory until a region is found that has
97   // adequate space for our allocation.
98   if (process_is_alive) {
99     const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8
100                                        ? 0xffffffffffffffffull
101                                        : 0xffffffffull;
102 
103     lldbassert(process_sp->GetAddressByteSize() == 4 ||
104                end_of_memory != 0xffffffffull);
105 
106     MemoryRegionInfo region_info;
107     Status err = process_sp->GetMemoryRegionInfo(ret, region_info);
108     if (err.Success()) {
109       while (true) {
110         if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo ||
111             region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo ||
112             region_info.GetExecutable() !=
113                 MemoryRegionInfo::OptionalBool::eNo) {
114           if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) {
115             ret = LLDB_INVALID_ADDRESS;
116             break;
117           } else {
118             ret = region_info.GetRange().GetRangeEnd();
119           }
120         } else if (ret + size < region_info.GetRange().GetRangeEnd()) {
121           return ret;
122         } else {
123           // ret stays the same.  We just need to walk a bit further.
124         }
125 
126         err = process_sp->GetMemoryRegionInfo(
127             region_info.GetRange().GetRangeEnd(), region_info);
128         if (err.Fail()) {
129           lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed");
130           ret = LLDB_INVALID_ADDRESS;
131           break;
132         }
133       }
134     }
135   }
136 
137   // We've tried our algorithm, and it didn't work.  Now we have to reset back
138   // to the end of the allocations we've already reported, or use a 'sensible'
139   // default if this is our first allocation.
140 
141   if (m_allocations.empty()) {
142     uint32_t address_byte_size = GetAddressByteSize();
143     if (address_byte_size != UINT32_MAX) {
144       switch (address_byte_size) {
145       case 8:
146         ret = 0xffffffff00000000ull;
147         break;
148       case 4:
149         ret = 0xee000000ull;
150         break;
151       default:
152         break;
153       }
154     }
155   } else {
156     auto back = m_allocations.rbegin();
157     lldb::addr_t addr = back->first;
158     size_t alloc_size = back->second.m_size;
159     ret = llvm::alignTo(addr + alloc_size, 4096);
160   }
161 
162   return ret;
163 }
164 
165 IRMemoryMap::AllocationMap::iterator
166 IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) {
167   if (addr == LLDB_INVALID_ADDRESS)
168     return m_allocations.end();
169 
170   AllocationMap::iterator iter = m_allocations.lower_bound(addr);
171 
172   if (iter == m_allocations.end() || iter->first > addr) {
173     if (iter == m_allocations.begin())
174       return m_allocations.end();
175     iter--;
176   }
177 
178   if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size)
179     return iter;
180 
181   return m_allocations.end();
182 }
183 
184 bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const {
185   if (addr == LLDB_INVALID_ADDRESS)
186     return false;
187 
188   AllocationMap::const_iterator iter = m_allocations.lower_bound(addr);
189 
190   // Since we only know that the returned interval begins at a location greater
191   // than or equal to where the given interval begins, it's possible that the
192   // given interval intersects either the returned interval or the previous
193   // interval.  Thus, we need to check both. Note that we only need to check
194   // these two intervals.  Since all intervals are disjoint it is not possible
195   // that an adjacent interval does not intersect, but a non-adjacent interval
196   // does intersect.
197   if (iter != m_allocations.end()) {
198     if (AllocationsIntersect(addr, size, iter->second.m_process_start,
199                              iter->second.m_size))
200       return true;
201   }
202 
203   if (iter != m_allocations.begin()) {
204     --iter;
205     if (AllocationsIntersect(addr, size, iter->second.m_process_start,
206                              iter->second.m_size))
207       return true;
208   }
209 
210   return false;
211 }
212 
213 bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1,
214                                        lldb::addr_t addr2, size_t size2) {
215   // Given two half open intervals [A, B) and [X, Y), the only 6 permutations
216   // that satisfy A<B and X<Y are the following:
217   // A B X Y
218   // A X B Y  (intersects)
219   // A X Y B  (intersects)
220   // X A B Y  (intersects)
221   // X A Y B  (intersects)
222   // X Y A B
223   // The first is B <= X, and the last is Y <= A. So the condition is !(B <= X
224   // || Y <= A)), or (X < B && A < Y)
225   return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2));
226 }
227 
228 lldb::ByteOrder IRMemoryMap::GetByteOrder() {
229   lldb::ProcessSP process_sp = m_process_wp.lock();
230 
231   if (process_sp)
232     return process_sp->GetByteOrder();
233 
234   lldb::TargetSP target_sp = m_target_wp.lock();
235 
236   if (target_sp)
237     return target_sp->GetArchitecture().GetByteOrder();
238 
239   return lldb::eByteOrderInvalid;
240 }
241 
242 uint32_t IRMemoryMap::GetAddressByteSize() {
243   lldb::ProcessSP process_sp = m_process_wp.lock();
244 
245   if (process_sp)
246     return process_sp->GetAddressByteSize();
247 
248   lldb::TargetSP target_sp = m_target_wp.lock();
249 
250   if (target_sp)
251     return target_sp->GetArchitecture().GetAddressByteSize();
252 
253   return UINT32_MAX;
254 }
255 
256 ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const {
257   lldb::ProcessSP process_sp = m_process_wp.lock();
258 
259   if (process_sp)
260     return process_sp.get();
261 
262   lldb::TargetSP target_sp = m_target_wp.lock();
263 
264   if (target_sp)
265     return target_sp.get();
266 
267   return NULL;
268 }
269 
270 IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc,
271                                     lldb::addr_t process_start, size_t size,
272                                     uint32_t permissions, uint8_t alignment,
273                                     AllocationPolicy policy)
274     : m_process_alloc(process_alloc), m_process_start(process_start),
275       m_size(size), m_permissions(permissions), m_alignment(alignment),
276       m_policy(policy), m_leak(false) {
277   switch (policy) {
278   default:
279     assert(0 && "We cannot reach this!");
280   case eAllocationPolicyHostOnly:
281     m_data.SetByteSize(size);
282     memset(m_data.GetBytes(), 0, size);
283     break;
284   case eAllocationPolicyProcessOnly:
285     break;
286   case eAllocationPolicyMirror:
287     m_data.SetByteSize(size);
288     memset(m_data.GetBytes(), 0, size);
289     break;
290   }
291 }
292 
293 lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment,
294                                  uint32_t permissions, AllocationPolicy policy,
295                                  bool zero_memory, Status &error) {
296   lldb_private::Log *log(
297       lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
298   error.Clear();
299 
300   lldb::ProcessSP process_sp;
301   lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS;
302   lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS;
303 
304   size_t allocation_size;
305 
306   if (size == 0) {
307     // FIXME: Malloc(0) should either return an invalid address or assert, in
308     // order to cut down on unnecessary allocations.
309     allocation_size = alignment;
310   } else {
311     // Round up the requested size to an aligned value.
312     allocation_size = llvm::alignTo(size, alignment);
313 
314     // The process page cache does not see the requested alignment. We can't
315     // assume its result will be any more than 1-byte aligned. To work around
316     // this, request `alignment - 1` additional bytes.
317     allocation_size += alignment - 1;
318   }
319 
320   switch (policy) {
321   default:
322     error.SetErrorToGenericError();
323     error.SetErrorString("Couldn't malloc: invalid allocation policy");
324     return LLDB_INVALID_ADDRESS;
325   case eAllocationPolicyHostOnly:
326     allocation_address = FindSpace(allocation_size);
327     if (allocation_address == LLDB_INVALID_ADDRESS) {
328       error.SetErrorToGenericError();
329       error.SetErrorString("Couldn't malloc: address space is full");
330       return LLDB_INVALID_ADDRESS;
331     }
332     break;
333   case eAllocationPolicyMirror:
334     process_sp = m_process_wp.lock();
335     if (log)
336       log->Printf("IRMemoryMap::%s process_sp=0x%" PRIx64
337                   ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s",
338                   __FUNCTION__, (lldb::addr_t)process_sp.get(),
339                   process_sp && process_sp->CanJIT() ? "true" : "false",
340                   process_sp && process_sp->IsAlive() ? "true" : "false");
341     if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) {
342       if (!zero_memory)
343         allocation_address =
344             process_sp->AllocateMemory(allocation_size, permissions, error);
345       else
346         allocation_address =
347             process_sp->CallocateMemory(allocation_size, permissions, error);
348 
349       if (!error.Success())
350         return LLDB_INVALID_ADDRESS;
351     } else {
352       if (log)
353         log->Printf("IRMemoryMap::%s switching to eAllocationPolicyHostOnly "
354                     "due to failed condition (see previous expr log message)",
355                     __FUNCTION__);
356       policy = eAllocationPolicyHostOnly;
357       allocation_address = FindSpace(allocation_size);
358       if (allocation_address == LLDB_INVALID_ADDRESS) {
359         error.SetErrorToGenericError();
360         error.SetErrorString("Couldn't malloc: address space is full");
361         return LLDB_INVALID_ADDRESS;
362       }
363     }
364     break;
365   case eAllocationPolicyProcessOnly:
366     process_sp = m_process_wp.lock();
367     if (process_sp) {
368       if (process_sp->CanJIT() && process_sp->IsAlive()) {
369         if (!zero_memory)
370           allocation_address =
371               process_sp->AllocateMemory(allocation_size, permissions, error);
372         else
373           allocation_address =
374               process_sp->CallocateMemory(allocation_size, permissions, error);
375 
376         if (!error.Success())
377           return LLDB_INVALID_ADDRESS;
378       } else {
379         error.SetErrorToGenericError();
380         error.SetErrorString(
381             "Couldn't malloc: process doesn't support allocating memory");
382         return LLDB_INVALID_ADDRESS;
383       }
384     } else {
385       error.SetErrorToGenericError();
386       error.SetErrorString("Couldn't malloc: process doesn't exist, and this "
387                            "memory must be in the process");
388       return LLDB_INVALID_ADDRESS;
389     }
390     break;
391   }
392 
393   lldb::addr_t mask = alignment - 1;
394   aligned_address = (allocation_address + mask) & (~mask);
395 
396   m_allocations[aligned_address] =
397       Allocation(allocation_address, aligned_address, allocation_size,
398                  permissions, alignment, policy);
399 
400   if (zero_memory) {
401     Status write_error;
402     std::vector<uint8_t> zero_buf(size, 0);
403     WriteMemory(aligned_address, zero_buf.data(), size, write_error);
404   }
405 
406   if (log) {
407     const char *policy_string;
408 
409     switch (policy) {
410     default:
411       policy_string = "<invalid policy>";
412       break;
413     case eAllocationPolicyHostOnly:
414       policy_string = "eAllocationPolicyHostOnly";
415       break;
416     case eAllocationPolicyProcessOnly:
417       policy_string = "eAllocationPolicyProcessOnly";
418       break;
419     case eAllocationPolicyMirror:
420       policy_string = "eAllocationPolicyMirror";
421       break;
422     }
423 
424     log->Printf("IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64
425                 ", %s) -> 0x%" PRIx64,
426                 (uint64_t)allocation_size, (uint64_t)alignment,
427                 (uint64_t)permissions, policy_string, aligned_address);
428   }
429 
430   return aligned_address;
431 }
432 
433 void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) {
434   error.Clear();
435 
436   AllocationMap::iterator iter = m_allocations.find(process_address);
437 
438   if (iter == m_allocations.end()) {
439     error.SetErrorToGenericError();
440     error.SetErrorString("Couldn't leak: allocation doesn't exist");
441     return;
442   }
443 
444   Allocation &allocation = iter->second;
445 
446   allocation.m_leak = true;
447 }
448 
449 void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) {
450   error.Clear();
451 
452   AllocationMap::iterator iter = m_allocations.find(process_address);
453 
454   if (iter == m_allocations.end()) {
455     error.SetErrorToGenericError();
456     error.SetErrorString("Couldn't free: allocation doesn't exist");
457     return;
458   }
459 
460   Allocation &allocation = iter->second;
461 
462   switch (allocation.m_policy) {
463   default:
464   case eAllocationPolicyHostOnly: {
465     lldb::ProcessSP process_sp = m_process_wp.lock();
466     if (process_sp) {
467       if (process_sp->CanJIT() && process_sp->IsAlive())
468         process_sp->DeallocateMemory(
469             allocation.m_process_alloc); // FindSpace allocated this for real
470     }
471 
472     break;
473   }
474   case eAllocationPolicyMirror:
475   case eAllocationPolicyProcessOnly: {
476     lldb::ProcessSP process_sp = m_process_wp.lock();
477     if (process_sp)
478       process_sp->DeallocateMemory(allocation.m_process_alloc);
479   }
480   }
481 
482   if (lldb_private::Log *log =
483           lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
484     log->Printf("IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64
485                 "..0x%" PRIx64 ")",
486                 (uint64_t)process_address, iter->second.m_process_start,
487                 iter->second.m_process_start + iter->second.m_size);
488   }
489 
490   m_allocations.erase(iter);
491 }
492 
493 bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) {
494   AllocationMap::iterator iter = FindAllocation(address, size);
495   if (iter == m_allocations.end())
496     return false;
497 
498   Allocation &al = iter->second;
499 
500   if (address > (al.m_process_start + al.m_size)) {
501     size = 0;
502     return false;
503   }
504 
505   if (address > al.m_process_start) {
506     int dif = address - al.m_process_start;
507     size = al.m_size - dif;
508     return true;
509   }
510 
511   size = al.m_size;
512   return true;
513 }
514 
515 void IRMemoryMap::WriteMemory(lldb::addr_t process_address,
516                               const uint8_t *bytes, size_t size,
517                               Status &error) {
518   error.Clear();
519 
520   AllocationMap::iterator iter = FindAllocation(process_address, size);
521 
522   if (iter == m_allocations.end()) {
523     lldb::ProcessSP process_sp = m_process_wp.lock();
524 
525     if (process_sp) {
526       process_sp->WriteMemory(process_address, bytes, size, error);
527       return;
528     }
529 
530     error.SetErrorToGenericError();
531     error.SetErrorString("Couldn't write: no allocation contains the target "
532                          "range and the process doesn't exist");
533     return;
534   }
535 
536   Allocation &allocation = iter->second;
537 
538   uint64_t offset = process_address - allocation.m_process_start;
539 
540   lldb::ProcessSP process_sp;
541 
542   switch (allocation.m_policy) {
543   default:
544     error.SetErrorToGenericError();
545     error.SetErrorString("Couldn't write: invalid allocation policy");
546     return;
547   case eAllocationPolicyHostOnly:
548     if (!allocation.m_data.GetByteSize()) {
549       error.SetErrorToGenericError();
550       error.SetErrorString("Couldn't write: data buffer is empty");
551       return;
552     }
553     ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
554     break;
555   case eAllocationPolicyMirror:
556     if (!allocation.m_data.GetByteSize()) {
557       error.SetErrorToGenericError();
558       error.SetErrorString("Couldn't write: data buffer is empty");
559       return;
560     }
561     ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
562     process_sp = m_process_wp.lock();
563     if (process_sp) {
564       process_sp->WriteMemory(process_address, bytes, size, error);
565       if (!error.Success())
566         return;
567     }
568     break;
569   case eAllocationPolicyProcessOnly:
570     process_sp = m_process_wp.lock();
571     if (process_sp) {
572       process_sp->WriteMemory(process_address, bytes, size, error);
573       if (!error.Success())
574         return;
575     }
576     break;
577   }
578 
579   if (lldb_private::Log *log =
580           lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
581     log->Printf("IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIx64
582                 ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")",
583                 (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size,
584                 (uint64_t)allocation.m_process_start,
585                 (uint64_t)allocation.m_process_start +
586                     (uint64_t)allocation.m_size);
587   }
588 }
589 
590 void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address,
591                                       Scalar &scalar, size_t size,
592                                       Status &error) {
593   error.Clear();
594 
595   if (size == UINT32_MAX)
596     size = scalar.GetByteSize();
597 
598   if (size > 0) {
599     uint8_t buf[32];
600     const size_t mem_size =
601         scalar.GetAsMemoryData(buf, size, GetByteOrder(), error);
602     if (mem_size > 0) {
603       return WriteMemory(process_address, buf, mem_size, error);
604     } else {
605       error.SetErrorToGenericError();
606       error.SetErrorString(
607           "Couldn't write scalar: failed to get scalar as memory data");
608     }
609   } else {
610     error.SetErrorToGenericError();
611     error.SetErrorString("Couldn't write scalar: its size was zero");
612   }
613   return;
614 }
615 
616 void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address,
617                                        lldb::addr_t address, Status &error) {
618   error.Clear();
619 
620   Scalar scalar(address);
621 
622   WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error);
623 }
624 
625 void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address,
626                              size_t size, Status &error) {
627   error.Clear();
628 
629   AllocationMap::iterator iter = FindAllocation(process_address, size);
630 
631   if (iter == m_allocations.end()) {
632     lldb::ProcessSP process_sp = m_process_wp.lock();
633 
634     if (process_sp) {
635       process_sp->ReadMemory(process_address, bytes, size, error);
636       return;
637     }
638 
639     lldb::TargetSP target_sp = m_target_wp.lock();
640 
641     if (target_sp) {
642       Address absolute_address(process_address);
643       target_sp->ReadMemory(absolute_address, false, bytes, size, error);
644       return;
645     }
646 
647     error.SetErrorToGenericError();
648     error.SetErrorString("Couldn't read: no allocation contains the target "
649                          "range, and neither the process nor the target exist");
650     return;
651   }
652 
653   Allocation &allocation = iter->second;
654 
655   uint64_t offset = process_address - allocation.m_process_start;
656 
657   if (offset > allocation.m_size) {
658     error.SetErrorToGenericError();
659     error.SetErrorString("Couldn't read: data is not in the allocation");
660     return;
661   }
662 
663   lldb::ProcessSP process_sp;
664 
665   switch (allocation.m_policy) {
666   default:
667     error.SetErrorToGenericError();
668     error.SetErrorString("Couldn't read: invalid allocation policy");
669     return;
670   case eAllocationPolicyHostOnly:
671     if (!allocation.m_data.GetByteSize()) {
672       error.SetErrorToGenericError();
673       error.SetErrorString("Couldn't read: data buffer is empty");
674       return;
675     }
676     if (allocation.m_data.GetByteSize() < offset + size) {
677       error.SetErrorToGenericError();
678       error.SetErrorString("Couldn't read: not enough underlying data");
679       return;
680     }
681 
682     ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
683     break;
684   case eAllocationPolicyMirror:
685     process_sp = m_process_wp.lock();
686     if (process_sp) {
687       process_sp->ReadMemory(process_address, bytes, size, error);
688       if (!error.Success())
689         return;
690     } else {
691       if (!allocation.m_data.GetByteSize()) {
692         error.SetErrorToGenericError();
693         error.SetErrorString("Couldn't read: data buffer is empty");
694         return;
695       }
696       ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
697     }
698     break;
699   case eAllocationPolicyProcessOnly:
700     process_sp = m_process_wp.lock();
701     if (process_sp) {
702       process_sp->ReadMemory(process_address, bytes, size, error);
703       if (!error.Success())
704         return;
705     }
706     break;
707   }
708 
709   if (lldb_private::Log *log =
710           lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
711     log->Printf("IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIx64
712                 ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")",
713                 (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size,
714                 (uint64_t)allocation.m_process_start,
715                 (uint64_t)allocation.m_process_start +
716                     (uint64_t)allocation.m_size);
717   }
718 }
719 
720 void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar,
721                                        lldb::addr_t process_address,
722                                        size_t size, Status &error) {
723   error.Clear();
724 
725   if (size > 0) {
726     DataBufferHeap buf(size, 0);
727     ReadMemory(buf.GetBytes(), process_address, size, error);
728 
729     if (!error.Success())
730       return;
731 
732     DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(),
733                             GetAddressByteSize());
734 
735     lldb::offset_t offset = 0;
736 
737     switch (size) {
738     default:
739       error.SetErrorToGenericError();
740       error.SetErrorStringWithFormat(
741           "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size);
742       return;
743     case 1:
744       scalar = extractor.GetU8(&offset);
745       break;
746     case 2:
747       scalar = extractor.GetU16(&offset);
748       break;
749     case 4:
750       scalar = extractor.GetU32(&offset);
751       break;
752     case 8:
753       scalar = extractor.GetU64(&offset);
754       break;
755     }
756   } else {
757     error.SetErrorToGenericError();
758     error.SetErrorString("Couldn't read scalar: its size was zero");
759   }
760   return;
761 }
762 
763 void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address,
764                                         lldb::addr_t process_address,
765                                         Status &error) {
766   error.Clear();
767 
768   Scalar pointer_scalar;
769   ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(),
770                        error);
771 
772   if (!error.Success())
773     return;
774 
775   *address = pointer_scalar.ULongLong();
776 
777   return;
778 }
779 
780 void IRMemoryMap::GetMemoryData(DataExtractor &extractor,
781                                 lldb::addr_t process_address, size_t size,
782                                 Status &error) {
783   error.Clear();
784 
785   if (size > 0) {
786     AllocationMap::iterator iter = FindAllocation(process_address, size);
787 
788     if (iter == m_allocations.end()) {
789       error.SetErrorToGenericError();
790       error.SetErrorStringWithFormat(
791           "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64
792           ")",
793           process_address, process_address + size);
794       return;
795     }
796 
797     Allocation &allocation = iter->second;
798 
799     switch (allocation.m_policy) {
800     default:
801       error.SetErrorToGenericError();
802       error.SetErrorString(
803           "Couldn't get memory data: invalid allocation policy");
804       return;
805     case eAllocationPolicyProcessOnly:
806       error.SetErrorToGenericError();
807       error.SetErrorString(
808           "Couldn't get memory data: memory is only in the target");
809       return;
810     case eAllocationPolicyMirror: {
811       lldb::ProcessSP process_sp = m_process_wp.lock();
812 
813       if (!allocation.m_data.GetByteSize()) {
814         error.SetErrorToGenericError();
815         error.SetErrorString("Couldn't get memory data: data buffer is empty");
816         return;
817       }
818       if (process_sp) {
819         process_sp->ReadMemory(allocation.m_process_start,
820                                allocation.m_data.GetBytes(),
821                                allocation.m_data.GetByteSize(), error);
822         if (!error.Success())
823           return;
824         uint64_t offset = process_address - allocation.m_process_start;
825         extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
826                                   GetByteOrder(), GetAddressByteSize());
827         return;
828       }
829     } break;
830     case eAllocationPolicyHostOnly:
831       if (!allocation.m_data.GetByteSize()) {
832         error.SetErrorToGenericError();
833         error.SetErrorString("Couldn't get memory data: data buffer is empty");
834         return;
835       }
836       uint64_t offset = process_address - allocation.m_process_start;
837       extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
838                                 GetByteOrder(), GetAddressByteSize());
839       return;
840     }
841   } else {
842     error.SetErrorToGenericError();
843     error.SetErrorString("Couldn't get memory data: its size was zero");
844     return;
845   }
846 }
847