1 //===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/DataEncoder.h" 11 #include "lldb/Core/Log.h" 12 #include "lldb/Core/ValueObjectConstResult.h" 13 #include "lldb/Expression/ClangExpressionDeclMap.h" 14 #include "lldb/Expression/ClangExpressionVariable.h" 15 #include "lldb/Expression/IRForTarget.h" 16 #include "lldb/Expression/IRInterpreter.h" 17 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/IR/DataLayout.h" 24 25 #include <map> 26 27 using namespace llvm; 28 29 IRInterpreter::IRInterpreter(lldb_private::ClangExpressionDeclMap &decl_map, 30 lldb_private::Stream *error_stream) : 31 m_decl_map(decl_map) 32 { 33 34 } 35 36 IRInterpreter::~IRInterpreter() 37 { 38 39 } 40 41 static std::string 42 PrintValue(const Value *value, bool truncate = false) 43 { 44 std::string s; 45 raw_string_ostream rso(s); 46 value->print(rso); 47 rso.flush(); 48 if (truncate) 49 s.resize(s.length() - 1); 50 51 size_t offset; 52 while ((offset = s.find('\n')) != s.npos) 53 s.erase(offset, 1); 54 while (s[0] == ' ' || s[0] == '\t') 55 s.erase(0, 1); 56 57 return s; 58 } 59 60 static std::string 61 PrintType(const Type *type, bool truncate = false) 62 { 63 std::string s; 64 raw_string_ostream rso(s); 65 type->print(rso); 66 rso.flush(); 67 if (truncate) 68 s.resize(s.length() - 1); 69 return s; 70 } 71 72 typedef STD_SHARED_PTR(lldb_private::DataEncoder) DataEncoderSP; 73 typedef STD_SHARED_PTR(lldb_private::DataExtractor) DataExtractorSP; 74 75 class Memory 76 { 77 public: 78 typedef uint32_t index_t; 79 80 struct Allocation 81 { 82 // m_virtual_address is always the address of the variable in the virtual memory 83 // space provided by Memory. 84 // 85 // m_origin is always non-NULL and describes the source of the data (possibly 86 // m_data if this allocation is the authoritative source). 87 // 88 // Possible value configurations: 89 // 90 // Allocation type getValueType() getContextType() m_origin->GetScalar() m_data 91 // ========================================================================================================================= 92 // FileAddress eValueTypeFileAddress eContextTypeInvalid A location in a binary NULL 93 // image 94 // 95 // LoadAddress eValueTypeLoadAddress eContextTypeInvalid A location in the target's NULL 96 // virtual memory 97 // 98 // Alloca eValueTypeHostAddress eContextTypeInvalid == m_data->GetBytes() Deleted at end of 99 // execution 100 // 101 // PersistentVar eValueTypeHostAddress eContextTypeClangType A persistent variable's NULL 102 // location in LLDB's memory 103 // 104 // Register [ignored] eContextTypeRegister [ignored] Flushed to the register 105 // at the end of execution 106 107 lldb::addr_t m_virtual_address; 108 size_t m_extent; 109 lldb_private::Value m_origin; 110 lldb::DataBufferSP m_data; 111 112 Allocation (lldb::addr_t virtual_address, 113 size_t extent, 114 lldb::DataBufferSP data) : 115 m_virtual_address(virtual_address), 116 m_extent(extent), 117 m_data(data) 118 { 119 } 120 121 Allocation (const Allocation &allocation) : 122 m_virtual_address(allocation.m_virtual_address), 123 m_extent(allocation.m_extent), 124 m_origin(allocation.m_origin), 125 m_data(allocation.m_data) 126 { 127 } 128 }; 129 130 typedef STD_SHARED_PTR(Allocation) AllocationSP; 131 132 struct Region 133 { 134 AllocationSP m_allocation; 135 uint64_t m_base; 136 uint64_t m_extent; 137 138 Region () : 139 m_allocation(), 140 m_base(0), 141 m_extent(0) 142 { 143 } 144 145 Region (AllocationSP allocation, uint64_t base, uint64_t extent) : 146 m_allocation(allocation), 147 m_base(base), 148 m_extent(extent) 149 { 150 } 151 152 Region (const Region ®ion) : 153 m_allocation(region.m_allocation), 154 m_base(region.m_base), 155 m_extent(region.m_extent) 156 { 157 } 158 159 bool IsValid () 160 { 161 return (bool) m_allocation; 162 } 163 164 bool IsInvalid () 165 { 166 return !m_allocation; 167 } 168 }; 169 170 typedef std::vector <AllocationSP> MemoryMap; 171 172 private: 173 lldb::addr_t m_addr_base; 174 lldb::addr_t m_addr_max; 175 MemoryMap m_memory; 176 lldb::ByteOrder m_byte_order; 177 lldb::addr_t m_addr_byte_size; 178 DataLayout &m_target_data; 179 180 lldb_private::ClangExpressionDeclMap &m_decl_map; 181 182 MemoryMap::iterator LookupInternal (lldb::addr_t addr) 183 { 184 for (MemoryMap::iterator i = m_memory.begin(), e = m_memory.end(); 185 i != e; 186 ++i) 187 { 188 if ((*i)->m_virtual_address <= addr && 189 (*i)->m_virtual_address + (*i)->m_extent > addr) 190 return i; 191 } 192 193 return m_memory.end(); 194 } 195 196 public: 197 Memory (DataLayout &target_data, 198 lldb_private::ClangExpressionDeclMap &decl_map, 199 lldb::addr_t alloc_start, 200 lldb::addr_t alloc_max) : 201 m_addr_base(alloc_start), 202 m_addr_max(alloc_max), 203 m_target_data(target_data), 204 m_decl_map(decl_map) 205 { 206 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 207 m_addr_byte_size = (target_data.getPointerSize(0)); 208 } 209 210 Region Malloc (size_t size, size_t align) 211 { 212 lldb::DataBufferSP data(new lldb_private::DataBufferHeap(size, 0)); 213 214 if (data) 215 { 216 index_t index = m_memory.size(); 217 218 const size_t mask = (align - 1); 219 220 m_addr_base += mask; 221 m_addr_base &= ~mask; 222 223 if (m_addr_base + size < m_addr_base || 224 m_addr_base + size > m_addr_max) 225 return Region(); 226 227 uint64_t base = m_addr_base; 228 229 m_memory.push_back(AllocationSP(new Allocation(base, size, data))); 230 231 m_addr_base += size; 232 233 AllocationSP alloc = m_memory[index]; 234 235 alloc->m_origin.GetScalar() = (unsigned long long)data->GetBytes(); 236 alloc->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 237 alloc->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 238 239 return Region(alloc, base, size); 240 } 241 242 return Region(); 243 } 244 245 Region Malloc (Type *type) 246 { 247 return Malloc (m_target_data.getTypeAllocSize(type), 248 m_target_data.getPrefTypeAlignment(type)); 249 } 250 251 Region Place (Type *type, lldb::addr_t base, lldb_private::Value &value) 252 { 253 index_t index = m_memory.size(); 254 size_t size = m_target_data.getTypeAllocSize(type); 255 256 m_memory.push_back(AllocationSP(new Allocation(base, size, lldb::DataBufferSP()))); 257 258 AllocationSP alloc = m_memory[index]; 259 260 alloc->m_origin = value; 261 262 return Region(alloc, base, size); 263 } 264 265 void Free (lldb::addr_t addr) 266 { 267 MemoryMap::iterator i = LookupInternal (addr); 268 269 if (i != m_memory.end()) 270 m_memory.erase(i); 271 } 272 273 Region Lookup (lldb::addr_t addr, Type *type) 274 { 275 MemoryMap::iterator i = LookupInternal(addr); 276 277 if (i == m_memory.end() || !type->isSized()) 278 return Region(); 279 280 size_t size = m_target_data.getTypeStoreSize(type); 281 282 return Region(*i, addr, size); 283 } 284 285 DataEncoderSP GetEncoder (Region region) 286 { 287 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 288 return DataEncoderSP(); 289 290 lldb::DataBufferSP buffer = region.m_allocation->m_data; 291 292 if (!buffer) 293 return DataEncoderSP(); 294 295 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 296 297 return DataEncoderSP(new lldb_private::DataEncoder(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 298 } 299 300 DataExtractorSP GetExtractor (Region region) 301 { 302 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 303 return DataExtractorSP(); 304 305 lldb::DataBufferSP buffer = region.m_allocation->m_data; 306 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 307 308 if (buffer) 309 return DataExtractorSP(new lldb_private::DataExtractor(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 310 else 311 return DataExtractorSP(new lldb_private::DataExtractor((uint8_t*)region.m_allocation->m_origin.GetScalar().ULongLong() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 312 } 313 314 lldb_private::Value GetAccessTarget(lldb::addr_t addr) 315 { 316 MemoryMap::iterator i = LookupInternal(addr); 317 318 if (i == m_memory.end()) 319 return lldb_private::Value(); 320 321 lldb_private::Value target = (*i)->m_origin; 322 323 if (target.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 324 { 325 target.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 326 target.SetValueType(lldb_private::Value::eValueTypeHostAddress); 327 target.GetScalar() = (unsigned long long)(*i)->m_data->GetBytes(); 328 } 329 330 target.GetScalar() += (addr - (*i)->m_virtual_address); 331 332 return target; 333 } 334 335 bool Write (lldb::addr_t addr, const uint8_t *data, size_t length) 336 { 337 lldb_private::Value target = GetAccessTarget(addr); 338 339 return m_decl_map.WriteTarget(target, data, length); 340 } 341 342 bool Read (uint8_t *data, lldb::addr_t addr, size_t length) 343 { 344 lldb_private::Value source = GetAccessTarget(addr); 345 346 return m_decl_map.ReadTarget(data, source, length); 347 } 348 349 bool WriteToRawPtr (lldb::addr_t addr, const uint8_t *data, size_t length) 350 { 351 lldb_private::Value target = m_decl_map.WrapBareAddress(addr); 352 353 return m_decl_map.WriteTarget(target, data, length); 354 } 355 356 bool ReadFromRawPtr (uint8_t *data, lldb::addr_t addr, size_t length) 357 { 358 lldb_private::Value source = m_decl_map.WrapBareAddress(addr); 359 360 return m_decl_map.ReadTarget(data, source, length); 361 } 362 363 std::string PrintData (lldb::addr_t addr, size_t length) 364 { 365 lldb_private::Value target = GetAccessTarget(addr); 366 367 lldb_private::DataBufferHeap buf(length, 0); 368 369 if (!m_decl_map.ReadTarget(buf.GetBytes(), target, length)) 370 return std::string("<couldn't read data>"); 371 372 lldb_private::StreamString ss; 373 374 for (size_t i = 0; i < length; i++) 375 { 376 if ((!(i & 0xf)) && i) 377 ss.Printf("%02hhx - ", buf.GetBytes()[i]); 378 else 379 ss.Printf("%02hhx ", buf.GetBytes()[i]); 380 } 381 382 return ss.GetString(); 383 } 384 385 std::string SummarizeRegion (Region ®ion) 386 { 387 lldb_private::StreamString ss; 388 389 lldb_private::Value base = GetAccessTarget(region.m_base); 390 391 ss.Printf("%" PRIx64 " [%s - %s %llx]", 392 region.m_base, 393 lldb_private::Value::GetValueTypeAsCString(base.GetValueType()), 394 lldb_private::Value::GetContextTypeAsCString(base.GetContextType()), 395 base.GetScalar().ULongLong()); 396 397 ss.Printf(" %s", PrintData(region.m_base, region.m_extent).c_str()); 398 399 return ss.GetString(); 400 } 401 }; 402 403 class InterpreterStackFrame 404 { 405 public: 406 typedef std::map <const Value*, Memory::Region> ValueMap; 407 408 ValueMap m_values; 409 Memory &m_memory; 410 DataLayout &m_target_data; 411 lldb_private::ClangExpressionDeclMap &m_decl_map; 412 const BasicBlock *m_bb; 413 BasicBlock::const_iterator m_ii; 414 BasicBlock::const_iterator m_ie; 415 416 lldb::ByteOrder m_byte_order; 417 size_t m_addr_byte_size; 418 419 InterpreterStackFrame (DataLayout &target_data, 420 Memory &memory, 421 lldb_private::ClangExpressionDeclMap &decl_map) : 422 m_memory (memory), 423 m_target_data (target_data), 424 m_decl_map (decl_map) 425 { 426 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 427 m_addr_byte_size = (target_data.getPointerSize(0)); 428 } 429 430 void Jump (const BasicBlock *bb) 431 { 432 m_bb = bb; 433 m_ii = m_bb->begin(); 434 m_ie = m_bb->end(); 435 } 436 437 bool Cache (Memory::AllocationSP allocation, Type *type) 438 { 439 if (allocation->m_origin.GetContextType() != lldb_private::Value::eContextTypeRegisterInfo) 440 return false; 441 442 return m_decl_map.ReadTarget(allocation->m_data->GetBytes(), allocation->m_origin, allocation->m_data->GetByteSize()); 443 } 444 445 std::string SummarizeValue (const Value *value) 446 { 447 lldb_private::StreamString ss; 448 449 ss.Printf("%s", PrintValue(value).c_str()); 450 451 ValueMap::iterator i = m_values.find(value); 452 453 if (i != m_values.end()) 454 { 455 Memory::Region region = i->second; 456 457 ss.Printf(" %s", m_memory.SummarizeRegion(region).c_str()); 458 } 459 460 return ss.GetString(); 461 } 462 463 bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type) 464 { 465 size_t type_size = m_target_data.getTypeStoreSize(type); 466 467 switch (type_size) 468 { 469 case 1: 470 scalar = (uint8_t)u64value; 471 break; 472 case 2: 473 scalar = (uint16_t)u64value; 474 break; 475 case 4: 476 scalar = (uint32_t)u64value; 477 break; 478 case 8: 479 scalar = (uint64_t)u64value; 480 break; 481 default: 482 return false; 483 } 484 485 return true; 486 } 487 488 bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module) 489 { 490 const Constant *constant = dyn_cast<Constant>(value); 491 492 if (constant) 493 { 494 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 495 { 496 return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType()); 497 } 498 } 499 else 500 { 501 Memory::Region region = ResolveValue(value, module); 502 DataExtractorSP value_extractor = m_memory.GetExtractor(region); 503 504 if (!value_extractor) 505 return false; 506 507 size_t value_size = m_target_data.getTypeStoreSize(value->getType()); 508 509 lldb::offset_t offset = 0; 510 uint64_t u64value = value_extractor->GetMaxU64(&offset, value_size); 511 512 return AssignToMatchType(scalar, u64value, value->getType()); 513 } 514 515 return false; 516 } 517 518 bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module) 519 { 520 Memory::Region region = ResolveValue (value, module); 521 522 lldb_private::Scalar cast_scalar; 523 524 if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType())) 525 return false; 526 527 lldb_private::DataBufferHeap buf(cast_scalar.GetByteSize(), 0); 528 529 lldb_private::Error err; 530 531 if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, err)) 532 return false; 533 534 DataEncoderSP region_encoder = m_memory.GetEncoder(region); 535 536 memcpy(region_encoder->GetDataStart(), buf.GetBytes(), buf.GetByteSize()); 537 538 return true; 539 } 540 541 bool ResolveConstantValue (APInt &value, const Constant *constant) 542 { 543 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 544 { 545 value = constant_int->getValue(); 546 return true; 547 } 548 else if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant)) 549 { 550 value = constant_fp->getValueAPF().bitcastToAPInt(); 551 return true; 552 } 553 else if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant)) 554 { 555 switch (constant_expr->getOpcode()) 556 { 557 default: 558 return false; 559 case Instruction::IntToPtr: 560 case Instruction::PtrToInt: 561 case Instruction::BitCast: 562 return ResolveConstantValue(value, constant_expr->getOperand(0)); 563 case Instruction::GetElementPtr: 564 { 565 ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin(); 566 ConstantExpr::const_op_iterator op_end = constant_expr->op_end(); 567 568 Constant *base = dyn_cast<Constant>(*op_cursor); 569 570 if (!base) 571 return false; 572 573 if (!ResolveConstantValue(value, base)) 574 return false; 575 576 op_cursor++; 577 578 if (op_cursor == op_end) 579 return true; // no offset to apply! 580 581 SmallVector <Value *, 8> indices (op_cursor, op_end); 582 583 uint64_t offset = m_target_data.getIndexedOffset(base->getType(), indices); 584 585 const bool is_signed = true; 586 value += APInt(value.getBitWidth(), offset, is_signed); 587 588 return true; 589 } 590 } 591 } 592 593 return false; 594 } 595 596 bool ResolveConstant (Memory::Region ®ion, const Constant *constant) 597 { 598 APInt resolved_value; 599 600 if (!ResolveConstantValue(resolved_value, constant)) 601 return false; 602 603 const uint64_t *raw_data = resolved_value.getRawData(); 604 605 size_t constant_size = m_target_data.getTypeStoreSize(constant->getType()); 606 return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size); 607 } 608 609 Memory::Region ResolveValue (const Value *value, Module &module) 610 { 611 ValueMap::iterator i = m_values.find(value); 612 613 if (i != m_values.end()) 614 return i->second; 615 616 const GlobalValue *global_value = dyn_cast<GlobalValue>(value); 617 618 // If the variable is indirected through the argument 619 // array then we need to build an extra level of indirection 620 // for it. This is the default; only magic arguments like 621 // "this", "self", and "_cmd" are direct. 622 bool variable_is_this = false; 623 624 // Attempt to resolve the value using the program's data. 625 // If it is, the values to be created are: 626 // 627 // data_region - a region of memory in which the variable's data resides. 628 // ref_region - a region of memory in which its address (i.e., &var) resides. 629 // In the JIT case, this region would be a member of the struct passed in. 630 // pointer_region - a region of memory in which the address of the pointer 631 // resides. This is an IR-level variable. 632 do 633 { 634 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 635 636 lldb_private::Value resolved_value; 637 lldb_private::ClangExpressionVariable::FlagType flags = 0; 638 639 if (global_value) 640 { 641 clang::NamedDecl *decl = IRForTarget::DeclForGlobal(global_value, &module); 642 643 if (!decl) 644 break; 645 646 if (isa<clang::FunctionDecl>(decl)) 647 { 648 if (log) 649 log->Printf("The interpreter does not handle function pointers at the moment"); 650 651 return Memory::Region(); 652 } 653 654 resolved_value = m_decl_map.LookupDecl(decl, flags); 655 } 656 else 657 { 658 // Special-case "this", "self", and "_cmd" 659 660 std::string name_str = value->getName().str(); 661 662 if (name_str == "this" || 663 name_str == "self" || 664 name_str == "_cmd") 665 resolved_value = m_decl_map.GetSpecialValue(lldb_private::ConstString(name_str.c_str())); 666 667 variable_is_this = true; 668 } 669 670 if (resolved_value.GetScalar().GetType() != lldb_private::Scalar::e_void) 671 { 672 if (resolved_value.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 673 { 674 if (variable_is_this) 675 { 676 Memory::Region data_region = m_memory.Place(value->getType(), resolved_value.GetScalar().ULongLong(), resolved_value); 677 678 lldb_private::Value origin; 679 680 origin.SetValueType(lldb_private::Value::eValueTypeLoadAddress); 681 origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 682 origin.GetScalar() = resolved_value.GetScalar(); 683 684 data_region.m_allocation->m_origin = origin; 685 686 Memory::Region ref_region = m_memory.Malloc(value->getType()); 687 688 if (ref_region.IsInvalid()) 689 return Memory::Region(); 690 691 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 692 693 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 694 return Memory::Region(); 695 696 if (log) 697 { 698 log->Printf("Made an allocation for \"this\" register variable %s", PrintValue(value).c_str()); 699 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 700 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 701 } 702 703 m_values[value] = ref_region; 704 return ref_region; 705 } 706 else if (flags & lldb_private::ClangExpressionVariable::EVBareRegister) 707 { 708 lldb_private::RegisterInfo *reg_info = resolved_value.GetRegisterInfo(); 709 Memory::Region data_region = (reg_info->encoding == lldb::eEncodingVector) ? 710 m_memory.Malloc(reg_info->byte_size, m_target_data.getPrefTypeAlignment(value->getType())) : 711 m_memory.Malloc(value->getType()); 712 713 data_region.m_allocation->m_origin = resolved_value; 714 Memory::Region ref_region = m_memory.Malloc(value->getType()); 715 716 if (!Cache(data_region.m_allocation, value->getType())) 717 return Memory::Region(); 718 719 if (ref_region.IsInvalid()) 720 return Memory::Region(); 721 722 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 723 724 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 725 return Memory::Region(); 726 727 if (log) 728 { 729 log->Printf("Made an allocation for bare register variable %s", PrintValue(value).c_str()); 730 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 731 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 732 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 733 } 734 735 m_values[value] = ref_region; 736 return ref_region; 737 } 738 else 739 { 740 lldb_private::RegisterInfo *reg_info = resolved_value.GetRegisterInfo(); 741 Memory::Region data_region = (reg_info->encoding == lldb::eEncodingVector) ? 742 m_memory.Malloc(reg_info->byte_size, m_target_data.getPrefTypeAlignment(value->getType())) : 743 m_memory.Malloc(value->getType()); 744 745 data_region.m_allocation->m_origin = resolved_value; 746 Memory::Region ref_region = m_memory.Malloc(value->getType()); 747 Memory::Region pointer_region; 748 749 pointer_region = m_memory.Malloc(value->getType()); 750 751 if (!Cache(data_region.m_allocation, value->getType())) 752 return Memory::Region(); 753 754 if (ref_region.IsInvalid()) 755 return Memory::Region(); 756 757 if (pointer_region.IsInvalid()) 758 return Memory::Region(); 759 760 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 761 762 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 763 return Memory::Region(); 764 765 if (log) 766 { 767 log->Printf("Made an allocation for ordinary register variable %s", PrintValue(value).c_str()); 768 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 769 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 770 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 771 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); 772 } 773 774 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 775 776 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 777 return Memory::Region(); 778 779 m_values[value] = pointer_region; 780 return pointer_region; 781 } 782 } 783 else 784 { 785 Memory::Region data_region = m_memory.Place(value->getType(), resolved_value.GetScalar().ULongLong(), resolved_value); 786 Memory::Region ref_region = m_memory.Malloc(value->getType()); 787 Memory::Region pointer_region; 788 789 if (!variable_is_this) 790 pointer_region = m_memory.Malloc(value->getType()); 791 792 if (ref_region.IsInvalid()) 793 return Memory::Region(); 794 795 if (pointer_region.IsInvalid() && !variable_is_this) 796 return Memory::Region(); 797 798 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 799 800 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 801 return Memory::Region(); 802 803 if (!variable_is_this) 804 { 805 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 806 807 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 808 return Memory::Region(); 809 810 m_values[value] = pointer_region; 811 } 812 813 if (log) 814 { 815 log->Printf("Made an allocation for %s", PrintValue(value).c_str()); 816 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 817 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 818 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 819 if (!variable_is_this) 820 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); 821 } 822 823 if (variable_is_this) 824 return ref_region; 825 else 826 return pointer_region; 827 } 828 } 829 } 830 while(0); 831 832 // Fall back and allocate space [allocation type Alloca] 833 834 Type *type = value->getType(); 835 836 lldb::ValueSP backing_value(new lldb_private::Value); 837 838 Memory::Region data_region = m_memory.Malloc(type); 839 data_region.m_allocation->m_origin.GetScalar() = (unsigned long long)data_region.m_allocation->m_data->GetBytes(); 840 data_region.m_allocation->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 841 data_region.m_allocation->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 842 843 const Constant *constant = dyn_cast<Constant>(value); 844 845 do 846 { 847 if (!constant) 848 break; 849 850 if (!ResolveConstant (data_region, constant)) 851 return Memory::Region(); 852 } 853 while(0); 854 855 m_values[value] = data_region; 856 return data_region; 857 } 858 859 bool ConstructResult (lldb::ClangExpressionVariableSP &result, 860 const GlobalValue *result_value, 861 const lldb_private::ConstString &result_name, 862 lldb_private::TypeFromParser result_type, 863 Module &module) 864 { 865 // The result_value resolves to P, a pointer to a region R containing the result data. 866 // If the result variable is a reference, the region R contains a pointer to the result R_final in the original process. 867 868 if (!result_value) 869 return true; // There was no slot for a result – the expression doesn't return one. 870 871 ValueMap::iterator i = m_values.find(result_value); 872 873 if (i == m_values.end()) 874 return false; // There was a slot for the result, but we didn't write into it. 875 876 Memory::Region P = i->second; 877 DataExtractorSP P_extractor = m_memory.GetExtractor(P); 878 879 if (!P_extractor) 880 return false; 881 882 Type *pointer_ty = result_value->getType(); 883 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 884 if (!pointer_ptr_ty) 885 return false; 886 Type *R_ty = pointer_ptr_ty->getElementType(); 887 888 lldb::offset_t offset = 0; 889 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 890 891 Memory::Region R = m_memory.Lookup(pointer, R_ty); 892 893 if (R.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress || 894 !R.m_allocation->m_data) 895 return false; 896 897 lldb_private::Value base; 898 899 bool transient = false; 900 bool maybe_make_load = false; 901 902 if (m_decl_map.ResultIsReference(result_name)) 903 { 904 PointerType *R_ptr_ty = dyn_cast<PointerType>(R_ty); 905 if (!R_ptr_ty) 906 return false; 907 Type *R_final_ty = R_ptr_ty->getElementType(); 908 909 DataExtractorSP R_extractor = m_memory.GetExtractor(R); 910 911 if (!R_extractor) 912 return false; 913 914 offset = 0; 915 lldb::addr_t R_pointer = R_extractor->GetAddress(&offset); 916 917 Memory::Region R_final = m_memory.Lookup(R_pointer, R_final_ty); 918 919 if (R_final.m_allocation) 920 { 921 if (R_final.m_allocation->m_data) 922 transient = true; // this is a stack allocation 923 924 base = R_final.m_allocation->m_origin; 925 base.GetScalar() += (R_final.m_base - R_final.m_allocation->m_virtual_address); 926 } 927 else 928 { 929 // We got a bare pointer. We are going to treat it as a load address 930 // or a file address, letting decl_map make the choice based on whether 931 // or not a process exists. 932 933 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 934 base.SetValueType(lldb_private::Value::eValueTypeFileAddress); 935 base.GetScalar() = (unsigned long long)R_pointer; 936 maybe_make_load = true; 937 } 938 } 939 else 940 { 941 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 942 base.SetValueType(lldb_private::Value::eValueTypeHostAddress); 943 base.GetScalar() = (unsigned long long)R.m_allocation->m_data->GetBytes() + (R.m_base - R.m_allocation->m_virtual_address); 944 } 945 946 return m_decl_map.CompleteResultVariable (result, base, result_name, result_type, transient, maybe_make_load); 947 } 948 }; 949 950 bool 951 IRInterpreter::maybeRunOnFunction (lldb::ClangExpressionVariableSP &result, 952 const lldb_private::ConstString &result_name, 953 lldb_private::TypeFromParser result_type, 954 Function &llvm_function, 955 Module &llvm_module, 956 lldb_private::Error &err) 957 { 958 if (supportsFunction (llvm_function, err)) 959 return runOnFunction(result, 960 result_name, 961 result_type, 962 llvm_function, 963 llvm_module, 964 err); 965 else 966 return false; 967 } 968 969 static const char *unsupported_opcode_error = "Interpreter doesn't handle one of the expression's opcodes"; 970 static const char *interpreter_initialization_error = "Interpreter couldn't be initialized"; 971 static const char *interpreter_internal_error = "Interpreter encountered an internal error"; 972 static const char *bad_value_error = "Interpreter couldn't resolve a value during execution"; 973 static const char *memory_allocation_error = "Interpreter couldn't allocate memory"; 974 static const char *memory_write_error = "Interpreter couldn't write to memory"; 975 static const char *memory_read_error = "Interpreter couldn't read from memory"; 976 static const char *infinite_loop_error = "Interpreter ran for too many cycles"; 977 static const char *bad_result_error = "Result of expression is in bad memory"; 978 979 bool 980 IRInterpreter::supportsFunction (Function &llvm_function, 981 lldb_private::Error &err) 982 { 983 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 984 985 for (Function::iterator bbi = llvm_function.begin(), bbe = llvm_function.end(); 986 bbi != bbe; 987 ++bbi) 988 { 989 for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end(); 990 ii != ie; 991 ++ii) 992 { 993 switch (ii->getOpcode()) 994 { 995 default: 996 { 997 if (log) 998 log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str()); 999 err.SetErrorToGenericError(); 1000 err.SetErrorString(unsupported_opcode_error); 1001 return false; 1002 } 1003 case Instruction::Add: 1004 case Instruction::Alloca: 1005 case Instruction::BitCast: 1006 case Instruction::Br: 1007 case Instruction::GetElementPtr: 1008 break; 1009 case Instruction::ICmp: 1010 { 1011 ICmpInst *icmp_inst = dyn_cast<ICmpInst>(ii); 1012 1013 if (!icmp_inst) 1014 { 1015 err.SetErrorToGenericError(); 1016 err.SetErrorString(interpreter_internal_error); 1017 return false; 1018 } 1019 1020 switch (icmp_inst->getPredicate()) 1021 { 1022 default: 1023 { 1024 if (log) 1025 log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str()); 1026 1027 err.SetErrorToGenericError(); 1028 err.SetErrorString(unsupported_opcode_error); 1029 return false; 1030 } 1031 case CmpInst::ICMP_EQ: 1032 case CmpInst::ICMP_NE: 1033 case CmpInst::ICMP_UGT: 1034 case CmpInst::ICMP_UGE: 1035 case CmpInst::ICMP_ULT: 1036 case CmpInst::ICMP_ULE: 1037 case CmpInst::ICMP_SGT: 1038 case CmpInst::ICMP_SGE: 1039 case CmpInst::ICMP_SLT: 1040 case CmpInst::ICMP_SLE: 1041 break; 1042 } 1043 } 1044 break; 1045 case Instruction::And: 1046 case Instruction::AShr: 1047 case Instruction::IntToPtr: 1048 case Instruction::PtrToInt: 1049 case Instruction::Load: 1050 case Instruction::LShr: 1051 case Instruction::Mul: 1052 case Instruction::Or: 1053 case Instruction::Ret: 1054 case Instruction::SDiv: 1055 case Instruction::Shl: 1056 case Instruction::SRem: 1057 case Instruction::Store: 1058 case Instruction::Sub: 1059 case Instruction::UDiv: 1060 case Instruction::URem: 1061 case Instruction::Xor: 1062 case Instruction::ZExt: 1063 break; 1064 } 1065 } 1066 } 1067 1068 return true; 1069 } 1070 1071 bool 1072 IRInterpreter::runOnFunction (lldb::ClangExpressionVariableSP &result, 1073 const lldb_private::ConstString &result_name, 1074 lldb_private::TypeFromParser result_type, 1075 Function &llvm_function, 1076 Module &llvm_module, 1077 lldb_private::Error &err) 1078 { 1079 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 1080 1081 lldb_private::ClangExpressionDeclMap::TargetInfo target_info = m_decl_map.GetTargetInfo(); 1082 1083 if (!target_info.IsValid()) 1084 { 1085 err.SetErrorToGenericError(); 1086 err.SetErrorString(interpreter_initialization_error); 1087 return false; 1088 } 1089 1090 lldb::addr_t alloc_min; 1091 lldb::addr_t alloc_max; 1092 1093 switch (target_info.address_byte_size) 1094 { 1095 default: 1096 err.SetErrorToGenericError(); 1097 err.SetErrorString(interpreter_initialization_error); 1098 return false; 1099 case 4: 1100 alloc_min = 0x00001000llu; 1101 alloc_max = 0x0000ffffllu; 1102 break; 1103 case 8: 1104 alloc_min = 0x0000000000001000llu; 1105 alloc_max = 0x000000000000ffffllu; 1106 break; 1107 } 1108 1109 DataLayout target_data(&llvm_module); 1110 if (target_data.getPointerSize(0) != target_info.address_byte_size) 1111 { 1112 err.SetErrorToGenericError(); 1113 err.SetErrorString(interpreter_initialization_error); 1114 return false; 1115 } 1116 if (target_data.isLittleEndian() != (target_info.byte_order == lldb::eByteOrderLittle)) 1117 { 1118 err.SetErrorToGenericError(); 1119 err.SetErrorString(interpreter_initialization_error); 1120 return false; 1121 } 1122 1123 Memory memory(target_data, m_decl_map, alloc_min, alloc_max); 1124 InterpreterStackFrame frame(target_data, memory, m_decl_map); 1125 1126 uint32_t num_insts = 0; 1127 1128 frame.Jump(llvm_function.begin()); 1129 1130 while (frame.m_ii != frame.m_ie && (++num_insts < 4096)) 1131 { 1132 const Instruction *inst = frame.m_ii; 1133 1134 if (log) 1135 log->Printf("Interpreting %s", PrintValue(inst).c_str()); 1136 1137 switch (inst->getOpcode()) 1138 { 1139 default: 1140 break; 1141 case Instruction::Add: 1142 case Instruction::Sub: 1143 case Instruction::Mul: 1144 case Instruction::SDiv: 1145 case Instruction::UDiv: 1146 case Instruction::SRem: 1147 case Instruction::URem: 1148 case Instruction::Shl: 1149 case Instruction::LShr: 1150 case Instruction::AShr: 1151 case Instruction::And: 1152 case Instruction::Or: 1153 case Instruction::Xor: 1154 { 1155 const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst); 1156 1157 if (!bin_op) 1158 { 1159 if (log) 1160 log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName()); 1161 err.SetErrorToGenericError(); 1162 err.SetErrorString(interpreter_internal_error); 1163 return false; 1164 } 1165 1166 Value *lhs = inst->getOperand(0); 1167 Value *rhs = inst->getOperand(1); 1168 1169 lldb_private::Scalar L; 1170 lldb_private::Scalar R; 1171 1172 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1173 { 1174 if (log) 1175 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1176 err.SetErrorToGenericError(); 1177 err.SetErrorString(bad_value_error); 1178 return false; 1179 } 1180 1181 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1182 { 1183 if (log) 1184 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1185 err.SetErrorToGenericError(); 1186 err.SetErrorString(bad_value_error); 1187 return false; 1188 } 1189 1190 lldb_private::Scalar result; 1191 1192 switch (inst->getOpcode()) 1193 { 1194 default: 1195 break; 1196 case Instruction::Add: 1197 result = L + R; 1198 break; 1199 case Instruction::Mul: 1200 result = L * R; 1201 break; 1202 case Instruction::Sub: 1203 result = L - R; 1204 break; 1205 case Instruction::SDiv: 1206 result = L / R; 1207 break; 1208 case Instruction::UDiv: 1209 result = L.GetRawBits64(0) / R.GetRawBits64(1); 1210 break; 1211 case Instruction::SRem: 1212 result = L % R; 1213 break; 1214 case Instruction::URem: 1215 result = L.GetRawBits64(0) % R.GetRawBits64(1); 1216 break; 1217 case Instruction::Shl: 1218 result = L << R; 1219 break; 1220 case Instruction::AShr: 1221 result = L >> R; 1222 break; 1223 case Instruction::LShr: 1224 result = L; 1225 result.ShiftRightLogical(R); 1226 break; 1227 case Instruction::And: 1228 result = L & R; 1229 break; 1230 case Instruction::Or: 1231 result = L | R; 1232 break; 1233 case Instruction::Xor: 1234 result = L ^ R; 1235 break; 1236 } 1237 1238 frame.AssignValue(inst, result, llvm_module); 1239 1240 if (log) 1241 { 1242 log->Printf("Interpreted a %s", inst->getOpcodeName()); 1243 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1244 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1245 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1246 } 1247 } 1248 break; 1249 case Instruction::Alloca: 1250 { 1251 const AllocaInst *alloca_inst = dyn_cast<AllocaInst>(inst); 1252 1253 if (!alloca_inst) 1254 { 1255 if (log) 1256 log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst"); 1257 err.SetErrorToGenericError(); 1258 err.SetErrorString(interpreter_internal_error); 1259 return false; 1260 } 1261 1262 if (alloca_inst->isArrayAllocation()) 1263 { 1264 if (log) 1265 log->Printf("AllocaInsts are not handled if isArrayAllocation() is true"); 1266 err.SetErrorToGenericError(); 1267 err.SetErrorString(unsupported_opcode_error); 1268 return false; 1269 } 1270 1271 // The semantics of Alloca are: 1272 // Create a region R of virtual memory of type T, backed by a data buffer 1273 // Create a region P of virtual memory of type T*, backed by a data buffer 1274 // Write the virtual address of R into P 1275 1276 Type *T = alloca_inst->getAllocatedType(); 1277 Type *Tptr = alloca_inst->getType(); 1278 1279 Memory::Region R = memory.Malloc(T); 1280 1281 if (R.IsInvalid()) 1282 { 1283 if (log) 1284 log->Printf("Couldn't allocate memory for an AllocaInst"); 1285 err.SetErrorToGenericError(); 1286 err.SetErrorString(memory_allocation_error); 1287 return false; 1288 } 1289 1290 Memory::Region P = memory.Malloc(Tptr); 1291 1292 if (P.IsInvalid()) 1293 { 1294 if (log) 1295 log->Printf("Couldn't allocate the result pointer for an AllocaInst"); 1296 err.SetErrorToGenericError(); 1297 err.SetErrorString(memory_allocation_error); 1298 return false; 1299 } 1300 1301 DataEncoderSP P_encoder = memory.GetEncoder(P); 1302 1303 if (P_encoder->PutAddress(0, R.m_base) == UINT32_MAX) 1304 { 1305 if (log) 1306 log->Printf("Couldn't write the result pointer for an AllocaInst"); 1307 err.SetErrorToGenericError(); 1308 err.SetErrorString(memory_write_error); 1309 return false; 1310 } 1311 1312 frame.m_values[alloca_inst] = P; 1313 1314 if (log) 1315 { 1316 log->Printf("Interpreted an AllocaInst"); 1317 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1318 log->Printf(" P : %s", frame.SummarizeValue(alloca_inst).c_str()); 1319 } 1320 } 1321 break; 1322 case Instruction::BitCast: 1323 case Instruction::ZExt: 1324 { 1325 const CastInst *cast_inst = dyn_cast<CastInst>(inst); 1326 1327 if (!cast_inst) 1328 { 1329 if (log) 1330 log->Printf("getOpcode() returns %s, but instruction is not a BitCastInst", cast_inst->getOpcodeName()); 1331 err.SetErrorToGenericError(); 1332 err.SetErrorString(interpreter_internal_error); 1333 return false; 1334 } 1335 1336 Value *source = cast_inst->getOperand(0); 1337 1338 lldb_private::Scalar S; 1339 1340 if (!frame.EvaluateValue(S, source, llvm_module)) 1341 { 1342 if (log) 1343 log->Printf("Couldn't evaluate %s", PrintValue(source).c_str()); 1344 err.SetErrorToGenericError(); 1345 err.SetErrorString(bad_value_error); 1346 return false; 1347 } 1348 1349 frame.AssignValue(inst, S, llvm_module); 1350 } 1351 break; 1352 case Instruction::Br: 1353 { 1354 const BranchInst *br_inst = dyn_cast<BranchInst>(inst); 1355 1356 if (!br_inst) 1357 { 1358 if (log) 1359 log->Printf("getOpcode() returns Br, but instruction is not a BranchInst"); 1360 err.SetErrorToGenericError(); 1361 err.SetErrorString(interpreter_internal_error); 1362 return false; 1363 } 1364 1365 if (br_inst->isConditional()) 1366 { 1367 Value *condition = br_inst->getCondition(); 1368 1369 lldb_private::Scalar C; 1370 1371 if (!frame.EvaluateValue(C, condition, llvm_module)) 1372 { 1373 if (log) 1374 log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str()); 1375 err.SetErrorToGenericError(); 1376 err.SetErrorString(bad_value_error); 1377 return false; 1378 } 1379 1380 if (C.GetRawBits64(0)) 1381 frame.Jump(br_inst->getSuccessor(0)); 1382 else 1383 frame.Jump(br_inst->getSuccessor(1)); 1384 1385 if (log) 1386 { 1387 log->Printf("Interpreted a BrInst with a condition"); 1388 log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str()); 1389 } 1390 } 1391 else 1392 { 1393 frame.Jump(br_inst->getSuccessor(0)); 1394 1395 if (log) 1396 { 1397 log->Printf("Interpreted a BrInst with no condition"); 1398 } 1399 } 1400 } 1401 continue; 1402 case Instruction::GetElementPtr: 1403 { 1404 const GetElementPtrInst *gep_inst = dyn_cast<GetElementPtrInst>(inst); 1405 1406 if (!gep_inst) 1407 { 1408 if (log) 1409 log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst"); 1410 err.SetErrorToGenericError(); 1411 err.SetErrorString(interpreter_internal_error); 1412 return false; 1413 } 1414 1415 const Value *pointer_operand = gep_inst->getPointerOperand(); 1416 Type *pointer_type = pointer_operand->getType(); 1417 1418 lldb_private::Scalar P; 1419 1420 if (!frame.EvaluateValue(P, pointer_operand, llvm_module)) 1421 { 1422 if (log) 1423 log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str()); 1424 err.SetErrorToGenericError(); 1425 err.SetErrorString(bad_value_error); 1426 return false; 1427 } 1428 1429 typedef SmallVector <Value *, 8> IndexVector; 1430 typedef IndexVector::iterator IndexIterator; 1431 1432 SmallVector <Value *, 8> indices (gep_inst->idx_begin(), 1433 gep_inst->idx_end()); 1434 1435 SmallVector <Value *, 8> const_indices; 1436 1437 for (IndexIterator ii = indices.begin(), ie = indices.end(); 1438 ii != ie; 1439 ++ii) 1440 { 1441 ConstantInt *constant_index = dyn_cast<ConstantInt>(*ii); 1442 1443 if (!constant_index) 1444 { 1445 lldb_private::Scalar I; 1446 1447 if (!frame.EvaluateValue(I, *ii, llvm_module)) 1448 { 1449 if (log) 1450 log->Printf("Couldn't evaluate %s", PrintValue(*ii).c_str()); 1451 err.SetErrorToGenericError(); 1452 err.SetErrorString(bad_value_error); 1453 return false; 1454 } 1455 1456 if (log) 1457 log->Printf("Evaluated constant index %s as %llu", PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS)); 1458 1459 constant_index = cast<ConstantInt>(ConstantInt::get((*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS))); 1460 } 1461 1462 const_indices.push_back(constant_index); 1463 } 1464 1465 uint64_t offset = target_data.getIndexedOffset(pointer_type, const_indices); 1466 1467 lldb_private::Scalar Poffset = P + offset; 1468 1469 frame.AssignValue(inst, Poffset, llvm_module); 1470 1471 if (log) 1472 { 1473 log->Printf("Interpreted a GetElementPtrInst"); 1474 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1475 log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str()); 1476 } 1477 } 1478 break; 1479 case Instruction::ICmp: 1480 { 1481 const ICmpInst *icmp_inst = dyn_cast<ICmpInst>(inst); 1482 1483 if (!icmp_inst) 1484 { 1485 if (log) 1486 log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst"); 1487 err.SetErrorToGenericError(); 1488 err.SetErrorString(interpreter_internal_error); 1489 return false; 1490 } 1491 1492 CmpInst::Predicate predicate = icmp_inst->getPredicate(); 1493 1494 Value *lhs = inst->getOperand(0); 1495 Value *rhs = inst->getOperand(1); 1496 1497 lldb_private::Scalar L; 1498 lldb_private::Scalar R; 1499 1500 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1501 { 1502 if (log) 1503 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1504 err.SetErrorToGenericError(); 1505 err.SetErrorString(bad_value_error); 1506 return false; 1507 } 1508 1509 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1510 { 1511 if (log) 1512 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1513 err.SetErrorToGenericError(); 1514 err.SetErrorString(bad_value_error); 1515 return false; 1516 } 1517 1518 lldb_private::Scalar result; 1519 1520 switch (predicate) 1521 { 1522 default: 1523 return false; 1524 case CmpInst::ICMP_EQ: 1525 result = (L == R); 1526 break; 1527 case CmpInst::ICMP_NE: 1528 result = (L != R); 1529 break; 1530 case CmpInst::ICMP_UGT: 1531 result = (L.GetRawBits64(0) > R.GetRawBits64(0)); 1532 break; 1533 case CmpInst::ICMP_UGE: 1534 result = (L.GetRawBits64(0) >= R.GetRawBits64(0)); 1535 break; 1536 case CmpInst::ICMP_ULT: 1537 result = (L.GetRawBits64(0) < R.GetRawBits64(0)); 1538 break; 1539 case CmpInst::ICMP_ULE: 1540 result = (L.GetRawBits64(0) <= R.GetRawBits64(0)); 1541 break; 1542 case CmpInst::ICMP_SGT: 1543 result = (L > R); 1544 break; 1545 case CmpInst::ICMP_SGE: 1546 result = (L >= R); 1547 break; 1548 case CmpInst::ICMP_SLT: 1549 result = (L < R); 1550 break; 1551 case CmpInst::ICMP_SLE: 1552 result = (L <= R); 1553 break; 1554 } 1555 1556 frame.AssignValue(inst, result, llvm_module); 1557 1558 if (log) 1559 { 1560 log->Printf("Interpreted an ICmpInst"); 1561 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1562 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1563 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1564 } 1565 } 1566 break; 1567 case Instruction::IntToPtr: 1568 { 1569 const IntToPtrInst *int_to_ptr_inst = dyn_cast<IntToPtrInst>(inst); 1570 1571 if (!int_to_ptr_inst) 1572 { 1573 if (log) 1574 log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst"); 1575 err.SetErrorToGenericError(); 1576 err.SetErrorString(interpreter_internal_error); 1577 return false; 1578 } 1579 1580 Value *src_operand = int_to_ptr_inst->getOperand(0); 1581 1582 lldb_private::Scalar I; 1583 1584 if (!frame.EvaluateValue(I, src_operand, llvm_module)) 1585 { 1586 if (log) 1587 log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); 1588 err.SetErrorToGenericError(); 1589 err.SetErrorString(bad_value_error); 1590 return false; 1591 } 1592 1593 frame.AssignValue(inst, I, llvm_module); 1594 1595 if (log) 1596 { 1597 log->Printf("Interpreted an IntToPtr"); 1598 log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); 1599 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1600 } 1601 } 1602 break; 1603 case Instruction::PtrToInt: 1604 { 1605 const PtrToIntInst *ptr_to_int_inst = dyn_cast<PtrToIntInst>(inst); 1606 1607 if (!ptr_to_int_inst) 1608 { 1609 if (log) 1610 log->Printf("getOpcode() returns PtrToInt, but instruction is not an PtrToIntInst"); 1611 err.SetErrorToGenericError(); 1612 err.SetErrorString(interpreter_internal_error); 1613 return false; 1614 } 1615 1616 Value *src_operand = ptr_to_int_inst->getOperand(0); 1617 1618 lldb_private::Scalar I; 1619 1620 if (!frame.EvaluateValue(I, src_operand, llvm_module)) 1621 { 1622 if (log) 1623 log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); 1624 err.SetErrorToGenericError(); 1625 err.SetErrorString(bad_value_error); 1626 return false; 1627 } 1628 1629 frame.AssignValue(inst, I, llvm_module); 1630 1631 if (log) 1632 { 1633 log->Printf("Interpreted a PtrToInt"); 1634 log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); 1635 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1636 } 1637 } 1638 break; 1639 case Instruction::Load: 1640 { 1641 const LoadInst *load_inst = dyn_cast<LoadInst>(inst); 1642 1643 if (!load_inst) 1644 { 1645 if (log) 1646 log->Printf("getOpcode() returns Load, but instruction is not a LoadInst"); 1647 err.SetErrorToGenericError(); 1648 err.SetErrorString(interpreter_internal_error); 1649 return false; 1650 } 1651 1652 // The semantics of Load are: 1653 // Create a region D that will contain the loaded data 1654 // Resolve the region P containing a pointer 1655 // Dereference P to get the region R that the data should be loaded from 1656 // Transfer a unit of type type(D) from R to D 1657 1658 const Value *pointer_operand = load_inst->getPointerOperand(); 1659 1660 Type *pointer_ty = pointer_operand->getType(); 1661 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1662 if (!pointer_ptr_ty) 1663 { 1664 if (log) 1665 log->Printf("getPointerOperand()->getType() is not a PointerType"); 1666 err.SetErrorToGenericError(); 1667 err.SetErrorString(interpreter_internal_error); 1668 return false; 1669 } 1670 Type *target_ty = pointer_ptr_ty->getElementType(); 1671 1672 Memory::Region D = frame.ResolveValue(load_inst, llvm_module); 1673 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1674 1675 if (D.IsInvalid()) 1676 { 1677 if (log) 1678 log->Printf("LoadInst's value doesn't resolve to anything"); 1679 err.SetErrorToGenericError(); 1680 err.SetErrorString(bad_value_error); 1681 return false; 1682 } 1683 1684 if (P.IsInvalid()) 1685 { 1686 if (log) 1687 log->Printf("LoadInst's pointer doesn't resolve to anything"); 1688 err.SetErrorToGenericError(); 1689 err.SetErrorString(bad_value_error); 1690 return false; 1691 } 1692 1693 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1694 DataEncoderSP D_encoder(memory.GetEncoder(D)); 1695 1696 lldb::offset_t offset = 0; 1697 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1698 1699 Memory::Region R = memory.Lookup(pointer, target_ty); 1700 1701 if (R.IsValid()) 1702 { 1703 if (!memory.Read(D_encoder->GetDataStart(), R.m_base, target_data.getTypeStoreSize(target_ty))) 1704 { 1705 if (log) 1706 log->Printf("Couldn't read from a region on behalf of a LoadInst"); 1707 err.SetErrorToGenericError(); 1708 err.SetErrorString(memory_read_error); 1709 return false; 1710 } 1711 } 1712 else 1713 { 1714 if (!memory.ReadFromRawPtr(D_encoder->GetDataStart(), pointer, target_data.getTypeStoreSize(target_ty))) 1715 { 1716 if (log) 1717 log->Printf("Couldn't read from a raw pointer on behalf of a LoadInst"); 1718 err.SetErrorToGenericError(); 1719 err.SetErrorString(memory_read_error); 1720 return false; 1721 } 1722 } 1723 1724 if (log) 1725 { 1726 log->Printf("Interpreted a LoadInst"); 1727 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1728 if (R.IsValid()) 1729 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1730 else 1731 log->Printf(" R : raw pointer 0x%llx", (unsigned long long)pointer); 1732 log->Printf(" D : %s", frame.SummarizeValue(load_inst).c_str()); 1733 } 1734 } 1735 break; 1736 case Instruction::Ret: 1737 { 1738 if (result_name.IsEmpty()) 1739 return true; 1740 1741 GlobalValue *result_value = llvm_module.getNamedValue(result_name.GetCString()); 1742 1743 if (!frame.ConstructResult(result, result_value, result_name, result_type, llvm_module)) 1744 { 1745 if (log) 1746 log->Printf("Couldn't construct the expression's result"); 1747 err.SetErrorToGenericError(); 1748 err.SetErrorString(bad_result_error); 1749 return false; 1750 } 1751 1752 return true; 1753 } 1754 case Instruction::Store: 1755 { 1756 const StoreInst *store_inst = dyn_cast<StoreInst>(inst); 1757 1758 if (!store_inst) 1759 { 1760 if (log) 1761 log->Printf("getOpcode() returns Store, but instruction is not a StoreInst"); 1762 err.SetErrorToGenericError(); 1763 err.SetErrorString(interpreter_internal_error); 1764 return false; 1765 } 1766 1767 // The semantics of Store are: 1768 // Resolve the region D containing the data to be stored 1769 // Resolve the region P containing a pointer 1770 // Dereference P to get the region R that the data should be stored in 1771 // Transfer a unit of type type(D) from D to R 1772 1773 const Value *value_operand = store_inst->getValueOperand(); 1774 const Value *pointer_operand = store_inst->getPointerOperand(); 1775 1776 Type *pointer_ty = pointer_operand->getType(); 1777 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1778 if (!pointer_ptr_ty) 1779 return false; 1780 Type *target_ty = pointer_ptr_ty->getElementType(); 1781 1782 Memory::Region D = frame.ResolveValue(value_operand, llvm_module); 1783 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1784 1785 if (D.IsInvalid()) 1786 { 1787 if (log) 1788 log->Printf("StoreInst's value doesn't resolve to anything"); 1789 err.SetErrorToGenericError(); 1790 err.SetErrorString(bad_value_error); 1791 return false; 1792 } 1793 1794 if (P.IsInvalid()) 1795 { 1796 if (log) 1797 log->Printf("StoreInst's pointer doesn't resolve to anything"); 1798 err.SetErrorToGenericError(); 1799 err.SetErrorString(bad_value_error); 1800 return false; 1801 } 1802 1803 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1804 DataExtractorSP D_extractor(memory.GetExtractor(D)); 1805 1806 if (!P_extractor || !D_extractor) 1807 return false; 1808 1809 lldb::offset_t offset = 0; 1810 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1811 1812 Memory::Region R = memory.Lookup(pointer, target_ty); 1813 1814 if (R.IsValid()) 1815 { 1816 if (!memory.Write(R.m_base, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1817 { 1818 if (log) 1819 log->Printf("Couldn't write to a region on behalf of a LoadInst"); 1820 err.SetErrorToGenericError(); 1821 err.SetErrorString(memory_write_error); 1822 return false; 1823 } 1824 } 1825 else 1826 { 1827 if (!memory.WriteToRawPtr(pointer, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1828 { 1829 if (log) 1830 log->Printf("Couldn't write to a raw pointer on behalf of a LoadInst"); 1831 err.SetErrorToGenericError(); 1832 err.SetErrorString(memory_write_error); 1833 return false; 1834 } 1835 } 1836 1837 1838 if (log) 1839 { 1840 log->Printf("Interpreted a StoreInst"); 1841 log->Printf(" D : %s", frame.SummarizeValue(value_operand).c_str()); 1842 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1843 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1844 } 1845 } 1846 break; 1847 } 1848 1849 ++frame.m_ii; 1850 } 1851 1852 if (num_insts >= 4096) 1853 { 1854 err.SetErrorToGenericError(); 1855 err.SetErrorString(infinite_loop_error); 1856 return false; 1857 } 1858 1859 return false; 1860 } 1861