1 //===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/DataEncoder.h" 11 #include "lldb/Core/Log.h" 12 #include "lldb/Core/ValueObjectConstResult.h" 13 #include "lldb/Expression/ClangExpressionDeclMap.h" 14 #include "lldb/Expression/IRForTarget.h" 15 #include "lldb/Expression/IRInterpreter.h" 16 17 #include "llvm/Constants.h" 18 #include "llvm/Function.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetData.h" 23 24 #include <map> 25 26 using namespace llvm; 27 28 IRInterpreter::IRInterpreter(lldb_private::ClangExpressionDeclMap &decl_map, 29 lldb_private::Stream *error_stream) : 30 m_decl_map(decl_map), 31 m_error_stream(error_stream) 32 { 33 34 } 35 36 IRInterpreter::~IRInterpreter() 37 { 38 39 } 40 41 static std::string 42 PrintValue(const Value *value, bool truncate = false) 43 { 44 std::string s; 45 raw_string_ostream rso(s); 46 value->print(rso); 47 rso.flush(); 48 if (truncate) 49 s.resize(s.length() - 1); 50 51 size_t offset; 52 while ((offset = s.find('\n')) != s.npos) 53 s.erase(offset, 1); 54 while (s[0] == ' ' || s[0] == '\t') 55 s.erase(0, 1); 56 57 return s; 58 } 59 60 static std::string 61 PrintType(const Type *type, bool truncate = false) 62 { 63 std::string s; 64 raw_string_ostream rso(s); 65 type->print(rso); 66 rso.flush(); 67 if (truncate) 68 s.resize(s.length() - 1); 69 return s; 70 } 71 72 typedef lldb::SharedPtr <lldb_private::DataEncoder>::Type DataEncoderSP; 73 typedef lldb::SharedPtr <lldb_private::DataExtractor>::Type DataExtractorSP; 74 75 class Memory 76 { 77 public: 78 typedef uint32_t index_t; 79 80 struct Allocation 81 { 82 // m_virtual_address is always the address of the variable in the virtual memory 83 // space provided by Memory. 84 // 85 // m_origin is always non-NULL and describes the source of the data (possibly 86 // m_data if this allocation is the authoritative source). 87 // 88 // Possible value configurations: 89 // 90 // Allocation type getValueType() getContextType() m_origin->GetScalar() m_data 91 // ========================================================================================================================= 92 // FileAddress eValueTypeFileAddress eContextTypeInvalid A location in a binary NULL 93 // image 94 // 95 // LoadAddress eValueTypeLoadAddress eContextTypeInvalid A location in the target's NULL 96 // virtual memory 97 // 98 // Alloca eValueTypeHostAddress eContextTypeInvalid == m_data->GetBytes() Deleted at end of 99 // execution 100 // 101 // PersistentVar eValueTypeHostAddress eContextTypeClangType A persistent variable's NULL 102 // location in LLDB's memory 103 // 104 // Register [ignored] eContextTypeRegister [ignored] Flushed to the register 105 // at the end of execution 106 107 lldb::addr_t m_virtual_address; 108 size_t m_extent; 109 lldb_private::Value m_origin; 110 lldb::DataBufferSP m_data; 111 112 Allocation (lldb::addr_t virtual_address, 113 size_t extent, 114 lldb::DataBufferSP data) : 115 m_virtual_address(virtual_address), 116 m_extent(extent), 117 m_data(data) 118 { 119 } 120 121 Allocation (const Allocation &allocation) : 122 m_virtual_address(allocation.m_virtual_address), 123 m_extent(allocation.m_extent), 124 m_origin(allocation.m_origin), 125 m_data(allocation.m_data) 126 { 127 } 128 }; 129 130 typedef lldb::SharedPtr <Allocation>::Type AllocationSP; 131 132 struct Region 133 { 134 AllocationSP m_allocation; 135 uint64_t m_base; 136 uint64_t m_extent; 137 138 Region () : 139 m_allocation(), 140 m_base(0), 141 m_extent(0) 142 { 143 } 144 145 Region (AllocationSP allocation, uint64_t base, uint64_t extent) : 146 m_allocation(allocation), 147 m_base(base), 148 m_extent(extent) 149 { 150 } 151 152 Region (const Region ®ion) : 153 m_allocation(region.m_allocation), 154 m_base(region.m_base), 155 m_extent(region.m_extent) 156 { 157 } 158 159 bool IsValid () 160 { 161 return m_allocation != NULL; 162 } 163 164 bool IsInvalid () 165 { 166 return m_allocation == NULL; 167 } 168 }; 169 170 typedef std::vector <AllocationSP> MemoryMap; 171 172 private: 173 lldb::addr_t m_addr_base; 174 lldb::addr_t m_addr_max; 175 MemoryMap m_memory; 176 lldb::ByteOrder m_byte_order; 177 lldb::addr_t m_addr_byte_size; 178 TargetData &m_target_data; 179 180 lldb_private::ClangExpressionDeclMap &m_decl_map; 181 182 MemoryMap::iterator LookupInternal (lldb::addr_t addr) 183 { 184 for (MemoryMap::iterator i = m_memory.begin(), e = m_memory.end(); 185 i != e; 186 ++i) 187 { 188 if ((*i)->m_virtual_address <= addr && 189 (*i)->m_virtual_address + (*i)->m_extent > addr) 190 return i; 191 } 192 193 return m_memory.end(); 194 } 195 196 public: 197 Memory (TargetData &target_data, 198 lldb_private::ClangExpressionDeclMap &decl_map, 199 lldb::addr_t alloc_start, 200 lldb::addr_t alloc_max) : 201 m_addr_base(alloc_start), 202 m_addr_max(alloc_max), 203 m_target_data(target_data), 204 m_decl_map(decl_map) 205 { 206 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 207 m_addr_byte_size = (target_data.getPointerSize()); 208 } 209 210 Region Malloc (size_t size, size_t align) 211 { 212 lldb::DataBufferSP data(new lldb_private::DataBufferHeap(size, 0)); 213 214 if (data) 215 { 216 index_t index = m_memory.size(); 217 218 const size_t mask = (align - 1); 219 220 m_addr_base += mask; 221 m_addr_base &= ~mask; 222 223 if (m_addr_base + size < m_addr_base || 224 m_addr_base + size > m_addr_max) 225 return Region(); 226 227 uint64_t base = m_addr_base; 228 229 m_memory.push_back(AllocationSP(new Allocation(base, size, data))); 230 231 m_addr_base += size; 232 233 AllocationSP alloc = m_memory[index]; 234 235 alloc->m_origin.GetScalar() = (unsigned long long)data->GetBytes(); 236 alloc->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 237 alloc->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 238 239 return Region(alloc, base, size); 240 } 241 242 return Region(); 243 } 244 245 Region Malloc (Type *type) 246 { 247 return Malloc (m_target_data.getTypeAllocSize(type), 248 m_target_data.getPrefTypeAlignment(type)); 249 } 250 251 Region Place (Type *type, lldb::addr_t base, lldb_private::Value &value) 252 { 253 index_t index = m_memory.size(); 254 size_t size = m_target_data.getTypeAllocSize(type); 255 256 m_memory.push_back(AllocationSP(new Allocation(base, size, lldb::DataBufferSP()))); 257 258 AllocationSP alloc = m_memory[index]; 259 260 alloc->m_origin = value; 261 262 return Region(alloc, base, size); 263 } 264 265 void Free (lldb::addr_t addr) 266 { 267 MemoryMap::iterator i = LookupInternal (addr); 268 269 if (i != m_memory.end()) 270 m_memory.erase(i); 271 } 272 273 Region Lookup (lldb::addr_t addr, Type *type) 274 { 275 MemoryMap::iterator i = LookupInternal(addr); 276 277 if (i == m_memory.end()) 278 return Region(); 279 280 size_t size = m_target_data.getTypeStoreSize(type); 281 282 return Region(*i, addr, size); 283 } 284 285 DataEncoderSP GetEncoder (Region region) 286 { 287 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 288 return DataEncoderSP(); 289 290 lldb::DataBufferSP buffer = region.m_allocation->m_data; 291 292 if (!buffer) 293 return DataEncoderSP(); 294 295 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 296 297 return DataEncoderSP(new lldb_private::DataEncoder(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 298 } 299 300 DataExtractorSP GetExtractor (Region region) 301 { 302 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 303 return DataExtractorSP(); 304 305 lldb::DataBufferSP buffer = region.m_allocation->m_data; 306 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 307 308 if (buffer) 309 return DataExtractorSP(new lldb_private::DataExtractor(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 310 else 311 return DataExtractorSP(new lldb_private::DataExtractor((uint8_t*)region.m_allocation->m_origin.GetScalar().ULongLong() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 312 } 313 314 lldb_private::Value GetAccessTarget(lldb::addr_t addr) 315 { 316 MemoryMap::iterator i = LookupInternal(addr); 317 318 if (i == m_memory.end()) 319 return lldb_private::Value(); 320 321 lldb_private::Value target = (*i)->m_origin; 322 323 if (target.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 324 { 325 target.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 326 target.SetValueType(lldb_private::Value::eValueTypeHostAddress); 327 target.GetScalar() = (unsigned long long)(*i)->m_data->GetBytes(); 328 } 329 330 target.GetScalar() += (addr - (*i)->m_virtual_address); 331 332 return target; 333 } 334 335 bool Write (lldb::addr_t addr, const uint8_t *data, size_t length) 336 { 337 lldb_private::Value target = GetAccessTarget(addr); 338 339 return m_decl_map.WriteTarget(target, data, length); 340 } 341 342 bool Read (uint8_t *data, lldb::addr_t addr, size_t length) 343 { 344 lldb_private::Value source = GetAccessTarget(addr); 345 346 return m_decl_map.ReadTarget(data, source, length); 347 } 348 349 bool WriteToRawPtr (lldb::addr_t addr, const uint8_t *data, size_t length) 350 { 351 lldb_private::Value target = m_decl_map.WrapBareAddress(addr); 352 353 return m_decl_map.WriteTarget(target, data, length); 354 } 355 356 bool ReadFromRawPtr (uint8_t *data, lldb::addr_t addr, size_t length) 357 { 358 lldb_private::Value source = m_decl_map.WrapBareAddress(addr); 359 360 return m_decl_map.ReadTarget(data, source, length); 361 } 362 363 std::string PrintData (lldb::addr_t addr, size_t length) 364 { 365 lldb_private::Value target = GetAccessTarget(addr); 366 367 lldb_private::DataBufferHeap buf(length, 0); 368 369 if (!m_decl_map.ReadTarget(buf.GetBytes(), target, length)) 370 return std::string("<couldn't read data>"); 371 372 lldb_private::StreamString ss; 373 374 for (size_t i = 0; i < length; i++) 375 { 376 if ((!(i & 0xf)) && i) 377 ss.Printf("%02hhx - ", buf.GetBytes()[i]); 378 else 379 ss.Printf("%02hhx ", buf.GetBytes()[i]); 380 } 381 382 return ss.GetString(); 383 } 384 385 std::string SummarizeRegion (Region ®ion) 386 { 387 lldb_private::StreamString ss; 388 389 lldb_private::Value base = GetAccessTarget(region.m_base); 390 391 ss.Printf("%llx [%s - %s %llx]", 392 region.m_base, 393 lldb_private::Value::GetValueTypeAsCString(base.GetValueType()), 394 lldb_private::Value::GetContextTypeAsCString(base.GetContextType()), 395 base.GetScalar().ULongLong()); 396 397 ss.Printf(" %s", PrintData(region.m_base, region.m_extent).c_str()); 398 399 return ss.GetString(); 400 } 401 }; 402 403 class InterpreterStackFrame 404 { 405 public: 406 typedef std::map <const Value*, Memory::Region> ValueMap; 407 408 ValueMap m_values; 409 Memory &m_memory; 410 TargetData &m_target_data; 411 lldb_private::ClangExpressionDeclMap &m_decl_map; 412 const BasicBlock *m_bb; 413 BasicBlock::const_iterator m_ii; 414 BasicBlock::const_iterator m_ie; 415 416 lldb::ByteOrder m_byte_order; 417 size_t m_addr_byte_size; 418 419 InterpreterStackFrame (TargetData &target_data, 420 Memory &memory, 421 lldb_private::ClangExpressionDeclMap &decl_map) : 422 m_memory (memory), 423 m_target_data (target_data), 424 m_decl_map (decl_map) 425 { 426 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 427 m_addr_byte_size = (target_data.getPointerSize()); 428 } 429 430 void Jump (const BasicBlock *bb) 431 { 432 m_bb = bb; 433 m_ii = m_bb->begin(); 434 m_ie = m_bb->end(); 435 } 436 437 bool Cache (Memory::AllocationSP allocation, Type *type) 438 { 439 if (allocation->m_origin.GetContextType() != lldb_private::Value::eContextTypeRegisterInfo) 440 return false; 441 442 return m_decl_map.ReadTarget(allocation->m_data->GetBytes(), allocation->m_origin, allocation->m_data->GetByteSize()); 443 } 444 445 std::string SummarizeValue (const Value *value) 446 { 447 lldb_private::StreamString ss; 448 449 ss.Printf("%s", PrintValue(value).c_str()); 450 451 ValueMap::iterator i = m_values.find(value); 452 453 if (i != m_values.end()) 454 { 455 Memory::Region region = i->second; 456 457 ss.Printf(" %s", m_memory.SummarizeRegion(region).c_str()); 458 } 459 460 return ss.GetString(); 461 } 462 463 bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type) 464 { 465 size_t type_size = m_target_data.getTypeStoreSize(type); 466 467 switch (type_size) 468 { 469 case 1: 470 scalar = (uint8_t)u64value; 471 break; 472 case 2: 473 scalar = (uint16_t)u64value; 474 break; 475 case 4: 476 scalar = (uint32_t)u64value; 477 break; 478 case 8: 479 scalar = (uint64_t)u64value; 480 break; 481 default: 482 return false; 483 } 484 485 return true; 486 } 487 488 bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module) 489 { 490 const Constant *constant = dyn_cast<Constant>(value); 491 492 if (constant) 493 { 494 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 495 { 496 return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType()); 497 } 498 } 499 else 500 { 501 Memory::Region region = ResolveValue(value, module); 502 DataExtractorSP value_extractor = m_memory.GetExtractor(region); 503 504 if (!value_extractor) 505 return false; 506 507 size_t value_size = m_target_data.getTypeStoreSize(value->getType()); 508 509 uint32_t offset = 0; 510 uint64_t u64value = value_extractor->GetMaxU64(&offset, value_size); 511 512 return AssignToMatchType(scalar, u64value, value->getType()); 513 } 514 515 return false; 516 } 517 518 bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module) 519 { 520 Memory::Region region = ResolveValue (value, module); 521 522 lldb_private::Scalar cast_scalar; 523 524 if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType())) 525 return false; 526 527 lldb_private::DataBufferHeap buf(cast_scalar.GetByteSize(), 0); 528 529 lldb_private::Error err; 530 531 if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, err)) 532 return false; 533 534 DataEncoderSP region_encoder = m_memory.GetEncoder(region); 535 536 memcpy(region_encoder->GetDataStart(), buf.GetBytes(), buf.GetByteSize()); 537 538 return true; 539 } 540 541 bool ResolveConstant (Memory::Region ®ion, const Constant *constant) 542 { 543 size_t constant_size = m_target_data.getTypeStoreSize(constant->getType()); 544 545 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 546 { 547 const uint64_t *raw_data = constant_int->getValue().getRawData(); 548 return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size); 549 } 550 else if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant)) 551 { 552 const uint64_t *raw_data = constant_fp->getValueAPF().bitcastToAPInt().getRawData(); 553 return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size); 554 } 555 else if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant)) 556 { 557 switch (constant_expr->getOpcode()) 558 { 559 default: 560 return false; 561 case Instruction::IntToPtr: 562 case Instruction::BitCast: 563 return ResolveConstant(region, constant_expr->getOperand(0)); 564 } 565 } 566 567 return false; 568 } 569 570 Memory::Region ResolveValue (const Value *value, Module &module) 571 { 572 ValueMap::iterator i = m_values.find(value); 573 574 if (i != m_values.end()) 575 return i->second; 576 577 const GlobalValue *global_value = dyn_cast<GlobalValue>(value); 578 579 // If the variable is indirected through the argument 580 // array then we need to build an extra level of indirection 581 // for it. This is the default; only magic arguments like 582 // "this", "self", and "_cmd" are direct. 583 bool indirect_variable = true; 584 585 // Attempt to resolve the value using the program's data. 586 // If it is, the values to be created are: 587 // 588 // data_region - a region of memory in which the variable's data resides. 589 // ref_region - a region of memory in which its address (i.e., &var) resides. 590 // In the JIT case, this region would be a member of the struct passed in. 591 // pointer_region - a region of memory in which the address of the pointer 592 // resides. This is an IR-level variable. 593 do 594 { 595 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 596 597 lldb_private::Value resolved_value; 598 599 if (global_value) 600 { 601 clang::NamedDecl *decl = IRForTarget::DeclForGlobal(global_value, &module); 602 603 if (!decl) 604 break; 605 606 if (isa<clang::FunctionDecl>(decl)) 607 { 608 if (log) 609 log->Printf("The interpreter does not handle function pointers at the moment"); 610 611 return Memory::Region(); 612 } 613 614 resolved_value = m_decl_map.LookupDecl(decl); 615 } 616 else 617 { 618 // Special-case "this", "self", and "_cmd" 619 620 std::string name_str = value->getName().str(); 621 622 if (name_str == "this" || 623 name_str == "self" || 624 name_str == "_cmd") 625 resolved_value = m_decl_map.GetSpecialValue(lldb_private::ConstString(name_str.c_str())); 626 627 indirect_variable = false; 628 } 629 630 if (resolved_value.GetScalar().GetType() != lldb_private::Scalar::e_void) 631 { 632 if (resolved_value.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 633 { 634 Memory::Region data_region = m_memory.Malloc(value->getType()); 635 data_region.m_allocation->m_origin = resolved_value; 636 Memory::Region ref_region = m_memory.Malloc(value->getType()); 637 Memory::Region pointer_region; 638 639 if (indirect_variable) 640 pointer_region = m_memory.Malloc(value->getType()); 641 642 if (!Cache(data_region.m_allocation, value->getType())) 643 return Memory::Region(); 644 645 if (ref_region.IsInvalid()) 646 return Memory::Region(); 647 648 if (pointer_region.IsInvalid() && indirect_variable) 649 return Memory::Region(); 650 651 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 652 653 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 654 return Memory::Region(); 655 656 if (indirect_variable) 657 { 658 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 659 660 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 661 return Memory::Region(); 662 663 m_values[value] = pointer_region; 664 return pointer_region; 665 } 666 else 667 { 668 m_values[value] = ref_region; 669 return ref_region; 670 } 671 } 672 else 673 { 674 Memory::Region data_region = m_memory.Place(value->getType(), resolved_value.GetScalar().ULongLong(), resolved_value); 675 Memory::Region ref_region = m_memory.Malloc(value->getType()); 676 Memory::Region pointer_region; 677 678 if (indirect_variable) 679 pointer_region = m_memory.Malloc(value->getType()); 680 681 if (ref_region.IsInvalid()) 682 return Memory::Region(); 683 684 if (pointer_region.IsInvalid() && indirect_variable) 685 return Memory::Region(); 686 687 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 688 689 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 690 return Memory::Region(); 691 692 if (indirect_variable) 693 { 694 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 695 696 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 697 return Memory::Region(); 698 699 m_values[value] = pointer_region; 700 } 701 702 if (log) 703 { 704 log->Printf("Made an allocation for %s", PrintValue(value).c_str()); 705 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 706 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 707 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 708 if (indirect_variable) 709 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); 710 } 711 712 if (indirect_variable) 713 return pointer_region; 714 else 715 return ref_region; 716 } 717 } 718 } 719 while(0); 720 721 // Fall back and allocate space [allocation type Alloca] 722 723 Type *type = value->getType(); 724 725 lldb::ValueSP backing_value(new lldb_private::Value); 726 727 Memory::Region data_region = m_memory.Malloc(type); 728 data_region.m_allocation->m_origin.GetScalar() = (unsigned long long)data_region.m_allocation->m_data->GetBytes(); 729 data_region.m_allocation->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 730 data_region.m_allocation->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 731 732 const Constant *constant = dyn_cast<Constant>(value); 733 734 do 735 { 736 if (!constant) 737 break; 738 739 if (!ResolveConstant (data_region, constant)) 740 return Memory::Region(); 741 } 742 while(0); 743 744 m_values[value] = data_region; 745 return data_region; 746 } 747 748 bool ConstructResult (lldb::ClangExpressionVariableSP &result, 749 const GlobalValue *result_value, 750 const lldb_private::ConstString &result_name, 751 lldb_private::TypeFromParser result_type, 752 Module &module) 753 { 754 // The result_value resolves to P, a pointer to a region R containing the result data. 755 // If the result variable is a reference, the region R contains a pointer to the result R_final in the original process. 756 757 if (!result_value) 758 return true; // There was no slot for a result – the expression doesn't return one. 759 760 ValueMap::iterator i = m_values.find(result_value); 761 762 if (i == m_values.end()) 763 return false; // There was a slot for the result, but we didn't write into it. 764 765 Memory::Region P = i->second; 766 DataExtractorSP P_extractor = m_memory.GetExtractor(P); 767 768 if (!P_extractor) 769 return false; 770 771 Type *pointer_ty = result_value->getType(); 772 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 773 if (!pointer_ptr_ty) 774 return false; 775 Type *R_ty = pointer_ptr_ty->getElementType(); 776 777 uint32_t offset = 0; 778 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 779 780 Memory::Region R = m_memory.Lookup(pointer, R_ty); 781 782 if (R.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress || 783 !R.m_allocation->m_data) 784 return false; 785 786 lldb_private::Value base; 787 788 bool transient = false; 789 bool maybe_make_load = false; 790 791 if (m_decl_map.ResultIsReference(result_name)) 792 { 793 PointerType *R_ptr_ty = dyn_cast<PointerType>(R_ty); 794 if (!R_ptr_ty) 795 return false; 796 Type *R_final_ty = R_ptr_ty->getElementType(); 797 798 DataExtractorSP R_extractor = m_memory.GetExtractor(R); 799 800 if (!R_extractor) 801 return false; 802 803 offset = 0; 804 lldb::addr_t R_pointer = R_extractor->GetAddress(&offset); 805 806 Memory::Region R_final = m_memory.Lookup(R_pointer, R_final_ty); 807 808 if (R_final.m_allocation) 809 { 810 if (R_final.m_allocation->m_data) 811 transient = true; // this is a stack allocation 812 813 base = R_final.m_allocation->m_origin; 814 base.GetScalar() += (R_final.m_base - R_final.m_allocation->m_virtual_address); 815 } 816 else 817 { 818 // We got a bare pointer. We are going to treat it as a load address 819 // or a file address, letting decl_map make the choice based on whether 820 // or not a process exists. 821 822 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 823 base.SetValueType(lldb_private::Value::eValueTypeFileAddress); 824 base.GetScalar() = (unsigned long long)R_pointer; 825 maybe_make_load = true; 826 } 827 } 828 else 829 { 830 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 831 base.SetValueType(lldb_private::Value::eValueTypeHostAddress); 832 base.GetScalar() = (unsigned long long)R.m_allocation->m_data->GetBytes() + (R.m_base - R.m_allocation->m_virtual_address); 833 } 834 835 return m_decl_map.CompleteResultVariable (result, base, result_name, result_type, transient, maybe_make_load); 836 } 837 }; 838 839 bool 840 IRInterpreter::maybeRunOnFunction (lldb::ClangExpressionVariableSP &result, 841 const lldb_private::ConstString &result_name, 842 lldb_private::TypeFromParser result_type, 843 Function &llvm_function, 844 Module &llvm_module) 845 { 846 if (supportsFunction (llvm_function)) 847 return runOnFunction(result, 848 result_name, 849 result_type, 850 llvm_function, 851 llvm_module); 852 else 853 return false; 854 } 855 856 bool 857 IRInterpreter::supportsFunction (Function &llvm_function) 858 { 859 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 860 861 for (Function::iterator bbi = llvm_function.begin(), bbe = llvm_function.end(); 862 bbi != bbe; 863 ++bbi) 864 { 865 for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end(); 866 ii != ie; 867 ++ii) 868 { 869 switch (ii->getOpcode()) 870 { 871 default: 872 { 873 if (log) 874 log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str()); 875 return false; 876 } 877 case Instruction::Add: 878 case Instruction::Alloca: 879 case Instruction::BitCast: 880 case Instruction::Br: 881 case Instruction::GetElementPtr: 882 break; 883 case Instruction::ICmp: 884 { 885 ICmpInst *icmp_inst = dyn_cast<ICmpInst>(ii); 886 887 if (!icmp_inst) 888 return false; 889 890 switch (icmp_inst->getPredicate()) 891 { 892 default: 893 { 894 if (log) 895 log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str()); 896 return false; 897 } 898 case CmpInst::ICMP_EQ: 899 case CmpInst::ICMP_NE: 900 case CmpInst::ICMP_UGT: 901 case CmpInst::ICMP_UGE: 902 case CmpInst::ICMP_ULT: 903 case CmpInst::ICMP_ULE: 904 case CmpInst::ICMP_SGT: 905 case CmpInst::ICMP_SGE: 906 case CmpInst::ICMP_SLT: 907 case CmpInst::ICMP_SLE: 908 break; 909 } 910 } 911 break; 912 case Instruction::IntToPtr: 913 case Instruction::Load: 914 case Instruction::Mul: 915 case Instruction::Ret: 916 case Instruction::SDiv: 917 case Instruction::Store: 918 case Instruction::Sub: 919 case Instruction::UDiv: 920 break; 921 } 922 } 923 } 924 925 return true; 926 } 927 928 bool 929 IRInterpreter::runOnFunction (lldb::ClangExpressionVariableSP &result, 930 const lldb_private::ConstString &result_name, 931 lldb_private::TypeFromParser result_type, 932 Function &llvm_function, 933 Module &llvm_module) 934 { 935 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 936 937 lldb_private::ClangExpressionDeclMap::TargetInfo target_info = m_decl_map.GetTargetInfo(); 938 939 if (!target_info.IsValid()) 940 return false; 941 942 lldb::addr_t alloc_min; 943 lldb::addr_t alloc_max; 944 945 switch (target_info.address_byte_size) 946 { 947 default: 948 return false; 949 case 4: 950 alloc_min = 0x00001000llu; 951 alloc_max = 0x0000ffffllu; 952 break; 953 case 8: 954 alloc_min = 0x0000000000001000llu; 955 alloc_max = 0x000000000000ffffllu; 956 break; 957 } 958 959 TargetData target_data(&llvm_module); 960 if (target_data.getPointerSize() != target_info.address_byte_size) 961 return false; 962 if (target_data.isLittleEndian() != (target_info.byte_order == lldb::eByteOrderLittle)) 963 return false; 964 965 Memory memory(target_data, m_decl_map, alloc_min, alloc_max); 966 InterpreterStackFrame frame(target_data, memory, m_decl_map); 967 968 uint32_t num_insts = 0; 969 970 frame.Jump(llvm_function.begin()); 971 972 while (frame.m_ii != frame.m_ie && (++num_insts < 4096)) 973 { 974 const Instruction *inst = frame.m_ii; 975 976 if (log) 977 log->Printf("Interpreting %s", PrintValue(inst).c_str()); 978 979 switch (inst->getOpcode()) 980 { 981 default: 982 break; 983 case Instruction::Add: 984 case Instruction::Sub: 985 case Instruction::Mul: 986 case Instruction::SDiv: 987 case Instruction::UDiv: 988 { 989 const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst); 990 991 if (!bin_op) 992 { 993 if (log) 994 log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName()); 995 996 return false; 997 } 998 999 Value *lhs = inst->getOperand(0); 1000 Value *rhs = inst->getOperand(1); 1001 1002 lldb_private::Scalar L; 1003 lldb_private::Scalar R; 1004 1005 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1006 { 1007 if (log) 1008 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1009 1010 return false; 1011 } 1012 1013 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1014 { 1015 if (log) 1016 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1017 1018 return false; 1019 } 1020 1021 lldb_private::Scalar result; 1022 1023 switch (inst->getOpcode()) 1024 { 1025 default: 1026 break; 1027 case Instruction::Add: 1028 result = L + R; 1029 break; 1030 case Instruction::Mul: 1031 result = L * R; 1032 break; 1033 case Instruction::Sub: 1034 result = L - R; 1035 break; 1036 case Instruction::SDiv: 1037 result = L / R; 1038 break; 1039 case Instruction::UDiv: 1040 result = L.GetRawBits64(0) / R.GetRawBits64(1); 1041 break; 1042 } 1043 1044 frame.AssignValue(inst, result, llvm_module); 1045 1046 if (log) 1047 { 1048 log->Printf("Interpreted a %s", inst->getOpcodeName()); 1049 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1050 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1051 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1052 } 1053 } 1054 break; 1055 case Instruction::Alloca: 1056 { 1057 const AllocaInst *alloca_inst = dyn_cast<AllocaInst>(inst); 1058 1059 if (!alloca_inst) 1060 { 1061 if (log) 1062 log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst"); 1063 1064 return false; 1065 } 1066 1067 if (alloca_inst->isArrayAllocation()) 1068 { 1069 if (log) 1070 log->Printf("AllocaInsts are not handled if isArrayAllocation() is true"); 1071 1072 return false; 1073 } 1074 1075 // The semantics of Alloca are: 1076 // Create a region R of virtual memory of type T, backed by a data buffer 1077 // Create a region P of virtual memory of type T*, backed by a data buffer 1078 // Write the virtual address of R into P 1079 1080 Type *T = alloca_inst->getAllocatedType(); 1081 Type *Tptr = alloca_inst->getType(); 1082 1083 Memory::Region R = memory.Malloc(T); 1084 1085 if (R.IsInvalid()) 1086 { 1087 if (log) 1088 log->Printf("Couldn't allocate memory for an AllocaInst"); 1089 1090 return false; 1091 } 1092 1093 Memory::Region P = memory.Malloc(Tptr); 1094 1095 if (P.IsInvalid()) 1096 { 1097 if (log) 1098 log->Printf("Couldn't allocate the result pointer for an AllocaInst"); 1099 1100 return false; 1101 } 1102 1103 DataEncoderSP P_encoder = memory.GetEncoder(P); 1104 1105 if (P_encoder->PutAddress(0, R.m_base) == UINT32_MAX) 1106 { 1107 if (log) 1108 log->Printf("Couldn't write the reseult pointer for an AllocaInst"); 1109 1110 return false; 1111 } 1112 1113 frame.m_values[alloca_inst] = P; 1114 1115 if (log) 1116 { 1117 log->Printf("Interpreted an AllocaInst"); 1118 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1119 log->Printf(" P : %s", frame.SummarizeValue(alloca_inst).c_str()); 1120 } 1121 } 1122 break; 1123 case Instruction::BitCast: 1124 { 1125 const BitCastInst *bit_cast_inst = dyn_cast<BitCastInst>(inst); 1126 1127 if (!bit_cast_inst) 1128 { 1129 if (log) 1130 log->Printf("getOpcode() returns BitCast, but instruction is not a BitCastInst"); 1131 1132 return false; 1133 } 1134 1135 Value *source = bit_cast_inst->getOperand(0); 1136 1137 lldb_private::Scalar S; 1138 1139 if (!frame.EvaluateValue(S, source, llvm_module)) 1140 { 1141 if (log) 1142 log->Printf("Couldn't evaluate %s", PrintValue(source).c_str()); 1143 1144 return false; 1145 } 1146 1147 frame.AssignValue(inst, S, llvm_module); 1148 } 1149 break; 1150 case Instruction::Br: 1151 { 1152 const BranchInst *br_inst = dyn_cast<BranchInst>(inst); 1153 1154 if (!br_inst) 1155 { 1156 if (log) 1157 log->Printf("getOpcode() returns Br, but instruction is not a BranchInst"); 1158 1159 return false; 1160 } 1161 1162 if (br_inst->isConditional()) 1163 { 1164 Value *condition = br_inst->getCondition(); 1165 1166 lldb_private::Scalar C; 1167 1168 if (!frame.EvaluateValue(C, condition, llvm_module)) 1169 { 1170 if (log) 1171 log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str()); 1172 1173 return false; 1174 } 1175 1176 if (C.GetRawBits64(0)) 1177 frame.Jump(br_inst->getSuccessor(0)); 1178 else 1179 frame.Jump(br_inst->getSuccessor(1)); 1180 1181 if (log) 1182 { 1183 log->Printf("Interpreted a BrInst with a condition"); 1184 log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str()); 1185 } 1186 } 1187 else 1188 { 1189 frame.Jump(br_inst->getSuccessor(0)); 1190 1191 if (log) 1192 { 1193 log->Printf("Interpreted a BrInst with no condition"); 1194 } 1195 } 1196 } 1197 continue; 1198 case Instruction::GetElementPtr: 1199 { 1200 const GetElementPtrInst *gep_inst = dyn_cast<GetElementPtrInst>(inst); 1201 1202 if (!gep_inst) 1203 { 1204 if (log) 1205 log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst"); 1206 1207 return false; 1208 } 1209 1210 const Value *pointer_operand = gep_inst->getPointerOperand(); 1211 Type *pointer_type = pointer_operand->getType(); 1212 1213 lldb_private::Scalar P; 1214 1215 if (!frame.EvaluateValue(P, pointer_operand, llvm_module)) 1216 return false; 1217 1218 SmallVector <Value *, 8> indices (gep_inst->idx_begin(), 1219 gep_inst->idx_end()); 1220 1221 uint64_t offset = target_data.getIndexedOffset(pointer_type, indices); 1222 1223 lldb_private::Scalar Poffset = P + offset; 1224 1225 frame.AssignValue(inst, Poffset, llvm_module); 1226 1227 if (log) 1228 { 1229 log->Printf("Interpreted a GetElementPtrInst"); 1230 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1231 log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str()); 1232 } 1233 } 1234 break; 1235 case Instruction::ICmp: 1236 { 1237 const ICmpInst *icmp_inst = dyn_cast<ICmpInst>(inst); 1238 1239 if (!icmp_inst) 1240 { 1241 if (log) 1242 log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst"); 1243 1244 return false; 1245 } 1246 1247 CmpInst::Predicate predicate = icmp_inst->getPredicate(); 1248 1249 Value *lhs = inst->getOperand(0); 1250 Value *rhs = inst->getOperand(1); 1251 1252 lldb_private::Scalar L; 1253 lldb_private::Scalar R; 1254 1255 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1256 { 1257 if (log) 1258 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1259 1260 return false; 1261 } 1262 1263 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1264 { 1265 if (log) 1266 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1267 1268 return false; 1269 } 1270 1271 lldb_private::Scalar result; 1272 1273 switch (predicate) 1274 { 1275 default: 1276 return false; 1277 case CmpInst::ICMP_EQ: 1278 result = (L == R); 1279 break; 1280 case CmpInst::ICMP_NE: 1281 result = (L != R); 1282 break; 1283 case CmpInst::ICMP_UGT: 1284 result = (L.GetRawBits64(0) > R.GetRawBits64(0)); 1285 break; 1286 case CmpInst::ICMP_UGE: 1287 result = (L.GetRawBits64(0) >= R.GetRawBits64(0)); 1288 break; 1289 case CmpInst::ICMP_ULT: 1290 result = (L.GetRawBits64(0) < R.GetRawBits64(0)); 1291 break; 1292 case CmpInst::ICMP_ULE: 1293 result = (L.GetRawBits64(0) <= R.GetRawBits64(0)); 1294 break; 1295 case CmpInst::ICMP_SGT: 1296 result = (L > R); 1297 break; 1298 case CmpInst::ICMP_SGE: 1299 result = (L >= R); 1300 break; 1301 case CmpInst::ICMP_SLT: 1302 result = (L < R); 1303 break; 1304 case CmpInst::ICMP_SLE: 1305 result = (L <= R); 1306 break; 1307 } 1308 1309 frame.AssignValue(inst, result, llvm_module); 1310 1311 if (log) 1312 { 1313 log->Printf("Interpreted an ICmpInst"); 1314 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1315 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1316 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1317 } 1318 } 1319 break; 1320 case Instruction::IntToPtr: 1321 { 1322 const IntToPtrInst *int_to_ptr_inst = dyn_cast<IntToPtrInst>(inst); 1323 1324 if (!int_to_ptr_inst) 1325 { 1326 if (log) 1327 log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst"); 1328 1329 return false; 1330 } 1331 1332 Value *src_operand = int_to_ptr_inst->getOperand(0); 1333 1334 lldb_private::Scalar I; 1335 1336 if (!frame.EvaluateValue(I, src_operand, llvm_module)) 1337 return false; 1338 1339 frame.AssignValue(inst, I, llvm_module); 1340 1341 if (log) 1342 { 1343 log->Printf("Interpreted an IntToPtr"); 1344 log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); 1345 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1346 } 1347 } 1348 break; 1349 case Instruction::Load: 1350 { 1351 const LoadInst *load_inst = dyn_cast<LoadInst>(inst); 1352 1353 if (!load_inst) 1354 { 1355 if (log) 1356 log->Printf("getOpcode() returns Load, but instruction is not a LoadInst"); 1357 1358 return false; 1359 } 1360 1361 // The semantics of Load are: 1362 // Create a region D that will contain the loaded data 1363 // Resolve the region P containing a pointer 1364 // Dereference P to get the region R that the data should be loaded from 1365 // Transfer a unit of type type(D) from R to D 1366 1367 const Value *pointer_operand = load_inst->getPointerOperand(); 1368 1369 Type *pointer_ty = pointer_operand->getType(); 1370 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1371 if (!pointer_ptr_ty) 1372 return false; 1373 Type *target_ty = pointer_ptr_ty->getElementType(); 1374 1375 Memory::Region D = frame.ResolveValue(load_inst, llvm_module); 1376 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1377 1378 if (D.IsInvalid()) 1379 { 1380 if (log) 1381 log->Printf("LoadInst's value doesn't resolve to anything"); 1382 1383 return false; 1384 } 1385 1386 if (P.IsInvalid()) 1387 { 1388 if (log) 1389 log->Printf("LoadInst's pointer doesn't resolve to anything"); 1390 1391 return false; 1392 } 1393 1394 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1395 DataEncoderSP D_encoder(memory.GetEncoder(D)); 1396 1397 uint32_t offset = 0; 1398 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1399 1400 Memory::Region R = memory.Lookup(pointer, target_ty); 1401 1402 if (R.IsValid()) 1403 { 1404 if (!memory.Read(D_encoder->GetDataStart(), R.m_base, target_data.getTypeStoreSize(target_ty))) 1405 { 1406 if (log) 1407 log->Printf("Couldn't read from a region on behalf of a LoadInst"); 1408 1409 return false; 1410 } 1411 } 1412 else 1413 { 1414 if (!memory.ReadFromRawPtr(D_encoder->GetDataStart(), pointer, target_data.getTypeStoreSize(target_ty))) 1415 { 1416 if (log) 1417 log->Printf("Couldn't read from a raw pointer on behalf of a LoadInst"); 1418 1419 return false; 1420 } 1421 } 1422 1423 if (log) 1424 { 1425 log->Printf("Interpreted a LoadInst"); 1426 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1427 if (R.IsValid()) 1428 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1429 else 1430 log->Printf(" R : raw pointer 0x%llx", (unsigned long long)pointer); 1431 log->Printf(" D : %s", frame.SummarizeValue(load_inst).c_str()); 1432 } 1433 } 1434 break; 1435 case Instruction::Ret: 1436 { 1437 if (result_name.IsEmpty()) 1438 return true; 1439 1440 GlobalValue *result_value = llvm_module.getNamedValue(result_name.GetCString()); 1441 return frame.ConstructResult(result, result_value, result_name, result_type, llvm_module); 1442 } 1443 case Instruction::Store: 1444 { 1445 const StoreInst *store_inst = dyn_cast<StoreInst>(inst); 1446 1447 if (!store_inst) 1448 { 1449 if (log) 1450 log->Printf("getOpcode() returns Store, but instruction is not a StoreInst"); 1451 1452 return false; 1453 } 1454 1455 // The semantics of Store are: 1456 // Resolve the region D containing the data to be stored 1457 // Resolve the region P containing a pointer 1458 // Dereference P to get the region R that the data should be stored in 1459 // Transfer a unit of type type(D) from D to R 1460 1461 const Value *value_operand = store_inst->getValueOperand(); 1462 const Value *pointer_operand = store_inst->getPointerOperand(); 1463 1464 Type *pointer_ty = pointer_operand->getType(); 1465 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1466 if (!pointer_ptr_ty) 1467 return false; 1468 Type *target_ty = pointer_ptr_ty->getElementType(); 1469 1470 Memory::Region D = frame.ResolveValue(value_operand, llvm_module); 1471 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1472 1473 if (D.IsInvalid()) 1474 { 1475 if (log) 1476 log->Printf("StoreInst's value doesn't resolve to anything"); 1477 1478 return false; 1479 } 1480 1481 if (P.IsInvalid()) 1482 { 1483 if (log) 1484 log->Printf("StoreInst's pointer doesn't resolve to anything"); 1485 1486 return false; 1487 } 1488 1489 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1490 DataExtractorSP D_extractor(memory.GetExtractor(D)); 1491 1492 if (!P_extractor || !D_extractor) 1493 return false; 1494 1495 uint32_t offset = 0; 1496 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1497 1498 Memory::Region R = memory.Lookup(pointer, target_ty); 1499 1500 if (R.IsValid()) 1501 { 1502 if (!memory.Write(R.m_base, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1503 { 1504 if (log) 1505 log->Printf("Couldn't write to a region on behalf of a LoadInst"); 1506 1507 return false; 1508 } 1509 } 1510 else 1511 { 1512 if (!memory.WriteToRawPtr(pointer, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1513 { 1514 if (log) 1515 log->Printf("Couldn't write to a raw pointer on behalf of a LoadInst"); 1516 1517 return false; 1518 } 1519 } 1520 1521 1522 if (log) 1523 { 1524 log->Printf("Interpreted a StoreInst"); 1525 log->Printf(" D : %s", frame.SummarizeValue(value_operand).c_str()); 1526 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1527 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1528 } 1529 } 1530 break; 1531 } 1532 1533 ++frame.m_ii; 1534 } 1535 1536 if (num_insts >= 4096) 1537 return false; 1538 1539 return false; 1540 } 1541