1 //===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/DataEncoder.h" 11 #include "lldb/Core/Log.h" 12 #include "lldb/Core/ValueObjectConstResult.h" 13 #include "lldb/Expression/ClangExpressionDeclMap.h" 14 #include "lldb/Expression/ClangExpressionVariable.h" 15 #include "lldb/Expression/IRForTarget.h" 16 #include "lldb/Expression/IRInterpreter.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/Function.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/DataLayout.h" 24 25 #include <map> 26 27 using namespace llvm; 28 29 IRInterpreter::IRInterpreter(lldb_private::ClangExpressionDeclMap &decl_map, 30 lldb_private::Stream *error_stream) : 31 m_decl_map(decl_map), 32 m_error_stream(error_stream) 33 { 34 35 } 36 37 IRInterpreter::~IRInterpreter() 38 { 39 40 } 41 42 static std::string 43 PrintValue(const Value *value, bool truncate = false) 44 { 45 std::string s; 46 raw_string_ostream rso(s); 47 value->print(rso); 48 rso.flush(); 49 if (truncate) 50 s.resize(s.length() - 1); 51 52 size_t offset; 53 while ((offset = s.find('\n')) != s.npos) 54 s.erase(offset, 1); 55 while (s[0] == ' ' || s[0] == '\t') 56 s.erase(0, 1); 57 58 return s; 59 } 60 61 static std::string 62 PrintType(const Type *type, bool truncate = false) 63 { 64 std::string s; 65 raw_string_ostream rso(s); 66 type->print(rso); 67 rso.flush(); 68 if (truncate) 69 s.resize(s.length() - 1); 70 return s; 71 } 72 73 typedef STD_SHARED_PTR(lldb_private::DataEncoder) DataEncoderSP; 74 typedef STD_SHARED_PTR(lldb_private::DataExtractor) DataExtractorSP; 75 76 class Memory 77 { 78 public: 79 typedef uint32_t index_t; 80 81 struct Allocation 82 { 83 // m_virtual_address is always the address of the variable in the virtual memory 84 // space provided by Memory. 85 // 86 // m_origin is always non-NULL and describes the source of the data (possibly 87 // m_data if this allocation is the authoritative source). 88 // 89 // Possible value configurations: 90 // 91 // Allocation type getValueType() getContextType() m_origin->GetScalar() m_data 92 // ========================================================================================================================= 93 // FileAddress eValueTypeFileAddress eContextTypeInvalid A location in a binary NULL 94 // image 95 // 96 // LoadAddress eValueTypeLoadAddress eContextTypeInvalid A location in the target's NULL 97 // virtual memory 98 // 99 // Alloca eValueTypeHostAddress eContextTypeInvalid == m_data->GetBytes() Deleted at end of 100 // execution 101 // 102 // PersistentVar eValueTypeHostAddress eContextTypeClangType A persistent variable's NULL 103 // location in LLDB's memory 104 // 105 // Register [ignored] eContextTypeRegister [ignored] Flushed to the register 106 // at the end of execution 107 108 lldb::addr_t m_virtual_address; 109 size_t m_extent; 110 lldb_private::Value m_origin; 111 lldb::DataBufferSP m_data; 112 113 Allocation (lldb::addr_t virtual_address, 114 size_t extent, 115 lldb::DataBufferSP data) : 116 m_virtual_address(virtual_address), 117 m_extent(extent), 118 m_data(data) 119 { 120 } 121 122 Allocation (const Allocation &allocation) : 123 m_virtual_address(allocation.m_virtual_address), 124 m_extent(allocation.m_extent), 125 m_origin(allocation.m_origin), 126 m_data(allocation.m_data) 127 { 128 } 129 }; 130 131 typedef STD_SHARED_PTR(Allocation) AllocationSP; 132 133 struct Region 134 { 135 AllocationSP m_allocation; 136 uint64_t m_base; 137 uint64_t m_extent; 138 139 Region () : 140 m_allocation(), 141 m_base(0), 142 m_extent(0) 143 { 144 } 145 146 Region (AllocationSP allocation, uint64_t base, uint64_t extent) : 147 m_allocation(allocation), 148 m_base(base), 149 m_extent(extent) 150 { 151 } 152 153 Region (const Region ®ion) : 154 m_allocation(region.m_allocation), 155 m_base(region.m_base), 156 m_extent(region.m_extent) 157 { 158 } 159 160 bool IsValid () 161 { 162 return (bool) m_allocation; 163 } 164 165 bool IsInvalid () 166 { 167 return !m_allocation; 168 } 169 }; 170 171 typedef std::vector <AllocationSP> MemoryMap; 172 173 private: 174 lldb::addr_t m_addr_base; 175 lldb::addr_t m_addr_max; 176 MemoryMap m_memory; 177 lldb::ByteOrder m_byte_order; 178 lldb::addr_t m_addr_byte_size; 179 DataLayout &m_target_data; 180 181 lldb_private::ClangExpressionDeclMap &m_decl_map; 182 183 MemoryMap::iterator LookupInternal (lldb::addr_t addr) 184 { 185 for (MemoryMap::iterator i = m_memory.begin(), e = m_memory.end(); 186 i != e; 187 ++i) 188 { 189 if ((*i)->m_virtual_address <= addr && 190 (*i)->m_virtual_address + (*i)->m_extent > addr) 191 return i; 192 } 193 194 return m_memory.end(); 195 } 196 197 public: 198 Memory (DataLayout &target_data, 199 lldb_private::ClangExpressionDeclMap &decl_map, 200 lldb::addr_t alloc_start, 201 lldb::addr_t alloc_max) : 202 m_addr_base(alloc_start), 203 m_addr_max(alloc_max), 204 m_target_data(target_data), 205 m_decl_map(decl_map) 206 { 207 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 208 m_addr_byte_size = (target_data.getPointerSize(0)); 209 } 210 211 Region Malloc (size_t size, size_t align) 212 { 213 lldb::DataBufferSP data(new lldb_private::DataBufferHeap(size, 0)); 214 215 if (data) 216 { 217 index_t index = m_memory.size(); 218 219 const size_t mask = (align - 1); 220 221 m_addr_base += mask; 222 m_addr_base &= ~mask; 223 224 if (m_addr_base + size < m_addr_base || 225 m_addr_base + size > m_addr_max) 226 return Region(); 227 228 uint64_t base = m_addr_base; 229 230 m_memory.push_back(AllocationSP(new Allocation(base, size, data))); 231 232 m_addr_base += size; 233 234 AllocationSP alloc = m_memory[index]; 235 236 alloc->m_origin.GetScalar() = (unsigned long long)data->GetBytes(); 237 alloc->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 238 alloc->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 239 240 return Region(alloc, base, size); 241 } 242 243 return Region(); 244 } 245 246 Region Malloc (Type *type) 247 { 248 return Malloc (m_target_data.getTypeAllocSize(type), 249 m_target_data.getPrefTypeAlignment(type)); 250 } 251 252 Region Place (Type *type, lldb::addr_t base, lldb_private::Value &value) 253 { 254 index_t index = m_memory.size(); 255 size_t size = m_target_data.getTypeAllocSize(type); 256 257 m_memory.push_back(AllocationSP(new Allocation(base, size, lldb::DataBufferSP()))); 258 259 AllocationSP alloc = m_memory[index]; 260 261 alloc->m_origin = value; 262 263 return Region(alloc, base, size); 264 } 265 266 void Free (lldb::addr_t addr) 267 { 268 MemoryMap::iterator i = LookupInternal (addr); 269 270 if (i != m_memory.end()) 271 m_memory.erase(i); 272 } 273 274 Region Lookup (lldb::addr_t addr, Type *type) 275 { 276 MemoryMap::iterator i = LookupInternal(addr); 277 278 if (i == m_memory.end() || !type->isSized()) 279 return Region(); 280 281 size_t size = m_target_data.getTypeStoreSize(type); 282 283 return Region(*i, addr, size); 284 } 285 286 DataEncoderSP GetEncoder (Region region) 287 { 288 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 289 return DataEncoderSP(); 290 291 lldb::DataBufferSP buffer = region.m_allocation->m_data; 292 293 if (!buffer) 294 return DataEncoderSP(); 295 296 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 297 298 return DataEncoderSP(new lldb_private::DataEncoder(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 299 } 300 301 DataExtractorSP GetExtractor (Region region) 302 { 303 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 304 return DataExtractorSP(); 305 306 lldb::DataBufferSP buffer = region.m_allocation->m_data; 307 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 308 309 if (buffer) 310 return DataExtractorSP(new lldb_private::DataExtractor(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 311 else 312 return DataExtractorSP(new lldb_private::DataExtractor((uint8_t*)region.m_allocation->m_origin.GetScalar().ULongLong() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 313 } 314 315 lldb_private::Value GetAccessTarget(lldb::addr_t addr) 316 { 317 MemoryMap::iterator i = LookupInternal(addr); 318 319 if (i == m_memory.end()) 320 return lldb_private::Value(); 321 322 lldb_private::Value target = (*i)->m_origin; 323 324 if (target.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 325 { 326 target.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 327 target.SetValueType(lldb_private::Value::eValueTypeHostAddress); 328 target.GetScalar() = (unsigned long long)(*i)->m_data->GetBytes(); 329 } 330 331 target.GetScalar() += (addr - (*i)->m_virtual_address); 332 333 return target; 334 } 335 336 bool Write (lldb::addr_t addr, const uint8_t *data, size_t length) 337 { 338 lldb_private::Value target = GetAccessTarget(addr); 339 340 return m_decl_map.WriteTarget(target, data, length); 341 } 342 343 bool Read (uint8_t *data, lldb::addr_t addr, size_t length) 344 { 345 lldb_private::Value source = GetAccessTarget(addr); 346 347 return m_decl_map.ReadTarget(data, source, length); 348 } 349 350 bool WriteToRawPtr (lldb::addr_t addr, const uint8_t *data, size_t length) 351 { 352 lldb_private::Value target = m_decl_map.WrapBareAddress(addr); 353 354 return m_decl_map.WriteTarget(target, data, length); 355 } 356 357 bool ReadFromRawPtr (uint8_t *data, lldb::addr_t addr, size_t length) 358 { 359 lldb_private::Value source = m_decl_map.WrapBareAddress(addr); 360 361 return m_decl_map.ReadTarget(data, source, length); 362 } 363 364 std::string PrintData (lldb::addr_t addr, size_t length) 365 { 366 lldb_private::Value target = GetAccessTarget(addr); 367 368 lldb_private::DataBufferHeap buf(length, 0); 369 370 if (!m_decl_map.ReadTarget(buf.GetBytes(), target, length)) 371 return std::string("<couldn't read data>"); 372 373 lldb_private::StreamString ss; 374 375 for (size_t i = 0; i < length; i++) 376 { 377 if ((!(i & 0xf)) && i) 378 ss.Printf("%02hhx - ", buf.GetBytes()[i]); 379 else 380 ss.Printf("%02hhx ", buf.GetBytes()[i]); 381 } 382 383 return ss.GetString(); 384 } 385 386 std::string SummarizeRegion (Region ®ion) 387 { 388 lldb_private::StreamString ss; 389 390 lldb_private::Value base = GetAccessTarget(region.m_base); 391 392 ss.Printf("%llx [%s - %s %llx]", 393 region.m_base, 394 lldb_private::Value::GetValueTypeAsCString(base.GetValueType()), 395 lldb_private::Value::GetContextTypeAsCString(base.GetContextType()), 396 base.GetScalar().ULongLong()); 397 398 ss.Printf(" %s", PrintData(region.m_base, region.m_extent).c_str()); 399 400 return ss.GetString(); 401 } 402 }; 403 404 class InterpreterStackFrame 405 { 406 public: 407 typedef std::map <const Value*, Memory::Region> ValueMap; 408 409 ValueMap m_values; 410 Memory &m_memory; 411 DataLayout &m_target_data; 412 lldb_private::ClangExpressionDeclMap &m_decl_map; 413 const BasicBlock *m_bb; 414 BasicBlock::const_iterator m_ii; 415 BasicBlock::const_iterator m_ie; 416 417 lldb::ByteOrder m_byte_order; 418 size_t m_addr_byte_size; 419 420 InterpreterStackFrame (DataLayout &target_data, 421 Memory &memory, 422 lldb_private::ClangExpressionDeclMap &decl_map) : 423 m_memory (memory), 424 m_target_data (target_data), 425 m_decl_map (decl_map) 426 { 427 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 428 m_addr_byte_size = (target_data.getPointerSize(0)); 429 } 430 431 void Jump (const BasicBlock *bb) 432 { 433 m_bb = bb; 434 m_ii = m_bb->begin(); 435 m_ie = m_bb->end(); 436 } 437 438 bool Cache (Memory::AllocationSP allocation, Type *type) 439 { 440 if (allocation->m_origin.GetContextType() != lldb_private::Value::eContextTypeRegisterInfo) 441 return false; 442 443 return m_decl_map.ReadTarget(allocation->m_data->GetBytes(), allocation->m_origin, allocation->m_data->GetByteSize()); 444 } 445 446 std::string SummarizeValue (const Value *value) 447 { 448 lldb_private::StreamString ss; 449 450 ss.Printf("%s", PrintValue(value).c_str()); 451 452 ValueMap::iterator i = m_values.find(value); 453 454 if (i != m_values.end()) 455 { 456 Memory::Region region = i->second; 457 458 ss.Printf(" %s", m_memory.SummarizeRegion(region).c_str()); 459 } 460 461 return ss.GetString(); 462 } 463 464 bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type) 465 { 466 size_t type_size = m_target_data.getTypeStoreSize(type); 467 468 switch (type_size) 469 { 470 case 1: 471 scalar = (uint8_t)u64value; 472 break; 473 case 2: 474 scalar = (uint16_t)u64value; 475 break; 476 case 4: 477 scalar = (uint32_t)u64value; 478 break; 479 case 8: 480 scalar = (uint64_t)u64value; 481 break; 482 default: 483 return false; 484 } 485 486 return true; 487 } 488 489 bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module) 490 { 491 const Constant *constant = dyn_cast<Constant>(value); 492 493 if (constant) 494 { 495 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 496 { 497 return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType()); 498 } 499 } 500 else 501 { 502 Memory::Region region = ResolveValue(value, module); 503 DataExtractorSP value_extractor = m_memory.GetExtractor(region); 504 505 if (!value_extractor) 506 return false; 507 508 size_t value_size = m_target_data.getTypeStoreSize(value->getType()); 509 510 uint32_t offset = 0; 511 uint64_t u64value = value_extractor->GetMaxU64(&offset, value_size); 512 513 return AssignToMatchType(scalar, u64value, value->getType()); 514 } 515 516 return false; 517 } 518 519 bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module) 520 { 521 Memory::Region region = ResolveValue (value, module); 522 523 lldb_private::Scalar cast_scalar; 524 525 if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType())) 526 return false; 527 528 lldb_private::DataBufferHeap buf(cast_scalar.GetByteSize(), 0); 529 530 lldb_private::Error err; 531 532 if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, err)) 533 return false; 534 535 DataEncoderSP region_encoder = m_memory.GetEncoder(region); 536 537 memcpy(region_encoder->GetDataStart(), buf.GetBytes(), buf.GetByteSize()); 538 539 return true; 540 } 541 542 bool ResolveConstantValue (APInt &value, const Constant *constant) 543 { 544 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 545 { 546 value = constant_int->getValue(); 547 return true; 548 } 549 else if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant)) 550 { 551 value = constant_fp->getValueAPF().bitcastToAPInt(); 552 return true; 553 } 554 else if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant)) 555 { 556 switch (constant_expr->getOpcode()) 557 { 558 default: 559 return false; 560 case Instruction::IntToPtr: 561 case Instruction::BitCast: 562 return ResolveConstantValue(value, constant_expr->getOperand(0)); 563 case Instruction::GetElementPtr: 564 { 565 ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin(); 566 ConstantExpr::const_op_iterator op_end = constant_expr->op_end(); 567 568 Constant *base = dyn_cast<Constant>(*op_cursor); 569 570 if (!base) 571 return false; 572 573 if (!ResolveConstantValue(value, base)) 574 return false; 575 576 op_cursor++; 577 578 if (op_cursor == op_end) 579 return true; // no offset to apply! 580 581 SmallVector <Value *, 8> indices (op_cursor, op_end); 582 583 uint64_t offset = m_target_data.getIndexedOffset(base->getType(), indices); 584 585 const bool is_signed = true; 586 value += APInt(value.getBitWidth(), offset, is_signed); 587 588 return true; 589 } 590 } 591 } 592 593 return false; 594 } 595 596 bool ResolveConstant (Memory::Region ®ion, const Constant *constant) 597 { 598 APInt resolved_value; 599 600 if (!ResolveConstantValue(resolved_value, constant)) 601 return false; 602 603 const uint64_t *raw_data = resolved_value.getRawData(); 604 605 size_t constant_size = m_target_data.getTypeStoreSize(constant->getType()); 606 return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size); 607 } 608 609 Memory::Region ResolveValue (const Value *value, Module &module) 610 { 611 ValueMap::iterator i = m_values.find(value); 612 613 if (i != m_values.end()) 614 return i->second; 615 616 const GlobalValue *global_value = dyn_cast<GlobalValue>(value); 617 618 // If the variable is indirected through the argument 619 // array then we need to build an extra level of indirection 620 // for it. This is the default; only magic arguments like 621 // "this", "self", and "_cmd" are direct. 622 bool indirect_variable = true; 623 624 // Attempt to resolve the value using the program's data. 625 // If it is, the values to be created are: 626 // 627 // data_region - a region of memory in which the variable's data resides. 628 // ref_region - a region of memory in which its address (i.e., &var) resides. 629 // In the JIT case, this region would be a member of the struct passed in. 630 // pointer_region - a region of memory in which the address of the pointer 631 // resides. This is an IR-level variable. 632 do 633 { 634 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 635 636 lldb_private::Value resolved_value; 637 lldb_private::ClangExpressionVariable::FlagType flags = 0; 638 639 if (global_value) 640 { 641 clang::NamedDecl *decl = IRForTarget::DeclForGlobal(global_value, &module); 642 643 if (!decl) 644 break; 645 646 if (isa<clang::FunctionDecl>(decl)) 647 { 648 if (log) 649 log->Printf("The interpreter does not handle function pointers at the moment"); 650 651 return Memory::Region(); 652 } 653 654 resolved_value = m_decl_map.LookupDecl(decl, flags); 655 } 656 else 657 { 658 // Special-case "this", "self", and "_cmd" 659 660 std::string name_str = value->getName().str(); 661 662 if (name_str == "this" || 663 name_str == "self" || 664 name_str == "_cmd") 665 resolved_value = m_decl_map.GetSpecialValue(lldb_private::ConstString(name_str.c_str())); 666 667 indirect_variable = false; 668 } 669 670 if (resolved_value.GetScalar().GetType() != lldb_private::Scalar::e_void) 671 { 672 if (resolved_value.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 673 { 674 bool bare_register = (flags & lldb_private::ClangExpressionVariable::EVBareRegister); 675 676 if (bare_register) 677 indirect_variable = false; 678 679 lldb_private::RegisterInfo *reg_info = resolved_value.GetRegisterInfo(); 680 Memory::Region data_region = (reg_info->encoding == lldb::eEncodingVector) ? 681 m_memory.Malloc(reg_info->byte_size, m_target_data.getPrefTypeAlignment(value->getType())) : 682 m_memory.Malloc(value->getType()); 683 684 data_region.m_allocation->m_origin = resolved_value; 685 Memory::Region ref_region = m_memory.Malloc(value->getType()); 686 Memory::Region pointer_region; 687 688 if (indirect_variable) 689 pointer_region = m_memory.Malloc(value->getType()); 690 691 if (!Cache(data_region.m_allocation, value->getType())) 692 return Memory::Region(); 693 694 if (ref_region.IsInvalid()) 695 return Memory::Region(); 696 697 if (pointer_region.IsInvalid() && indirect_variable) 698 return Memory::Region(); 699 700 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 701 702 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 703 return Memory::Region(); 704 705 if (log) 706 { 707 log->Printf("Made an allocation for register variable %s", PrintValue(value).c_str()); 708 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 709 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 710 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 711 if (indirect_variable) 712 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); 713 } 714 715 if (indirect_variable) 716 { 717 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 718 719 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 720 return Memory::Region(); 721 722 m_values[value] = pointer_region; 723 return pointer_region; 724 } 725 else 726 { 727 m_values[value] = ref_region; 728 return ref_region; 729 } 730 } 731 else 732 { 733 Memory::Region data_region = m_memory.Place(value->getType(), resolved_value.GetScalar().ULongLong(), resolved_value); 734 Memory::Region ref_region = m_memory.Malloc(value->getType()); 735 Memory::Region pointer_region; 736 737 if (indirect_variable) 738 pointer_region = m_memory.Malloc(value->getType()); 739 740 if (ref_region.IsInvalid()) 741 return Memory::Region(); 742 743 if (pointer_region.IsInvalid() && indirect_variable) 744 return Memory::Region(); 745 746 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 747 748 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 749 return Memory::Region(); 750 751 if (indirect_variable) 752 { 753 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 754 755 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 756 return Memory::Region(); 757 758 m_values[value] = pointer_region; 759 } 760 761 if (log) 762 { 763 log->Printf("Made an allocation for %s", PrintValue(value).c_str()); 764 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 765 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 766 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 767 if (indirect_variable) 768 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); 769 } 770 771 if (indirect_variable) 772 return pointer_region; 773 else 774 return ref_region; 775 } 776 } 777 } 778 while(0); 779 780 // Fall back and allocate space [allocation type Alloca] 781 782 Type *type = value->getType(); 783 784 lldb::ValueSP backing_value(new lldb_private::Value); 785 786 Memory::Region data_region = m_memory.Malloc(type); 787 data_region.m_allocation->m_origin.GetScalar() = (unsigned long long)data_region.m_allocation->m_data->GetBytes(); 788 data_region.m_allocation->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 789 data_region.m_allocation->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 790 791 const Constant *constant = dyn_cast<Constant>(value); 792 793 do 794 { 795 if (!constant) 796 break; 797 798 if (!ResolveConstant (data_region, constant)) 799 return Memory::Region(); 800 } 801 while(0); 802 803 m_values[value] = data_region; 804 return data_region; 805 } 806 807 bool ConstructResult (lldb::ClangExpressionVariableSP &result, 808 const GlobalValue *result_value, 809 const lldb_private::ConstString &result_name, 810 lldb_private::TypeFromParser result_type, 811 Module &module) 812 { 813 // The result_value resolves to P, a pointer to a region R containing the result data. 814 // If the result variable is a reference, the region R contains a pointer to the result R_final in the original process. 815 816 if (!result_value) 817 return true; // There was no slot for a result – the expression doesn't return one. 818 819 ValueMap::iterator i = m_values.find(result_value); 820 821 if (i == m_values.end()) 822 return false; // There was a slot for the result, but we didn't write into it. 823 824 Memory::Region P = i->second; 825 DataExtractorSP P_extractor = m_memory.GetExtractor(P); 826 827 if (!P_extractor) 828 return false; 829 830 Type *pointer_ty = result_value->getType(); 831 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 832 if (!pointer_ptr_ty) 833 return false; 834 Type *R_ty = pointer_ptr_ty->getElementType(); 835 836 uint32_t offset = 0; 837 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 838 839 Memory::Region R = m_memory.Lookup(pointer, R_ty); 840 841 if (R.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress || 842 !R.m_allocation->m_data) 843 return false; 844 845 lldb_private::Value base; 846 847 bool transient = false; 848 bool maybe_make_load = false; 849 850 if (m_decl_map.ResultIsReference(result_name)) 851 { 852 PointerType *R_ptr_ty = dyn_cast<PointerType>(R_ty); 853 if (!R_ptr_ty) 854 return false; 855 Type *R_final_ty = R_ptr_ty->getElementType(); 856 857 DataExtractorSP R_extractor = m_memory.GetExtractor(R); 858 859 if (!R_extractor) 860 return false; 861 862 offset = 0; 863 lldb::addr_t R_pointer = R_extractor->GetAddress(&offset); 864 865 Memory::Region R_final = m_memory.Lookup(R_pointer, R_final_ty); 866 867 if (R_final.m_allocation) 868 { 869 if (R_final.m_allocation->m_data) 870 transient = true; // this is a stack allocation 871 872 base = R_final.m_allocation->m_origin; 873 base.GetScalar() += (R_final.m_base - R_final.m_allocation->m_virtual_address); 874 } 875 else 876 { 877 // We got a bare pointer. We are going to treat it as a load address 878 // or a file address, letting decl_map make the choice based on whether 879 // or not a process exists. 880 881 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 882 base.SetValueType(lldb_private::Value::eValueTypeFileAddress); 883 base.GetScalar() = (unsigned long long)R_pointer; 884 maybe_make_load = true; 885 } 886 } 887 else 888 { 889 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 890 base.SetValueType(lldb_private::Value::eValueTypeHostAddress); 891 base.GetScalar() = (unsigned long long)R.m_allocation->m_data->GetBytes() + (R.m_base - R.m_allocation->m_virtual_address); 892 } 893 894 return m_decl_map.CompleteResultVariable (result, base, result_name, result_type, transient, maybe_make_load); 895 } 896 }; 897 898 bool 899 IRInterpreter::maybeRunOnFunction (lldb::ClangExpressionVariableSP &result, 900 const lldb_private::ConstString &result_name, 901 lldb_private::TypeFromParser result_type, 902 Function &llvm_function, 903 Module &llvm_module, 904 lldb_private::Error &err) 905 { 906 if (supportsFunction (llvm_function, err)) 907 return runOnFunction(result, 908 result_name, 909 result_type, 910 llvm_function, 911 llvm_module, 912 err); 913 else 914 return false; 915 } 916 917 static const char *unsupported_opcode_error = "Interpreter doesn't handle one of the expression's opcodes"; 918 static const char *interpreter_initialization_error = "Interpreter couldn't be initialized"; 919 static const char *interpreter_internal_error = "Interpreter encountered an internal error"; 920 static const char *bad_value_error = "Interpreter couldn't resolve a value during execution"; 921 static const char *memory_allocation_error = "Interpreter couldn't allocate memory"; 922 static const char *memory_write_error = "Interpreter couldn't write to memory"; 923 static const char *memory_read_error = "Interpreter couldn't read from memory"; 924 static const char *infinite_loop_error = "Interpreter ran for too many cycles"; 925 static const char *bad_result_error = "Result of expression is in bad memory"; 926 927 bool 928 IRInterpreter::supportsFunction (Function &llvm_function, 929 lldb_private::Error &err) 930 { 931 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 932 933 for (Function::iterator bbi = llvm_function.begin(), bbe = llvm_function.end(); 934 bbi != bbe; 935 ++bbi) 936 { 937 for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end(); 938 ii != ie; 939 ++ii) 940 { 941 switch (ii->getOpcode()) 942 { 943 default: 944 { 945 if (log) 946 log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str()); 947 err.SetErrorToGenericError(); 948 err.SetErrorString(unsupported_opcode_error); 949 return false; 950 } 951 case Instruction::Add: 952 case Instruction::Alloca: 953 case Instruction::BitCast: 954 case Instruction::Br: 955 case Instruction::GetElementPtr: 956 break; 957 case Instruction::ICmp: 958 { 959 ICmpInst *icmp_inst = dyn_cast<ICmpInst>(ii); 960 961 if (!icmp_inst) 962 { 963 err.SetErrorToGenericError(); 964 err.SetErrorString(interpreter_internal_error); 965 return false; 966 } 967 968 switch (icmp_inst->getPredicate()) 969 { 970 default: 971 { 972 if (log) 973 log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str()); 974 975 err.SetErrorToGenericError(); 976 err.SetErrorString(unsupported_opcode_error); 977 return false; 978 } 979 case CmpInst::ICMP_EQ: 980 case CmpInst::ICMP_NE: 981 case CmpInst::ICMP_UGT: 982 case CmpInst::ICMP_UGE: 983 case CmpInst::ICMP_ULT: 984 case CmpInst::ICMP_ULE: 985 case CmpInst::ICMP_SGT: 986 case CmpInst::ICMP_SGE: 987 case CmpInst::ICMP_SLT: 988 case CmpInst::ICMP_SLE: 989 break; 990 } 991 } 992 break; 993 case Instruction::IntToPtr: 994 case Instruction::Load: 995 case Instruction::Mul: 996 case Instruction::Ret: 997 case Instruction::SDiv: 998 case Instruction::Store: 999 case Instruction::Sub: 1000 case Instruction::UDiv: 1001 case Instruction::ZExt: 1002 break; 1003 } 1004 } 1005 } 1006 1007 return true; 1008 } 1009 1010 bool 1011 IRInterpreter::runOnFunction (lldb::ClangExpressionVariableSP &result, 1012 const lldb_private::ConstString &result_name, 1013 lldb_private::TypeFromParser result_type, 1014 Function &llvm_function, 1015 Module &llvm_module, 1016 lldb_private::Error &err) 1017 { 1018 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 1019 1020 lldb_private::ClangExpressionDeclMap::TargetInfo target_info = m_decl_map.GetTargetInfo(); 1021 1022 if (!target_info.IsValid()) 1023 { 1024 err.SetErrorToGenericError(); 1025 err.SetErrorString(interpreter_initialization_error); 1026 return false; 1027 } 1028 1029 lldb::addr_t alloc_min; 1030 lldb::addr_t alloc_max; 1031 1032 switch (target_info.address_byte_size) 1033 { 1034 default: 1035 err.SetErrorToGenericError(); 1036 err.SetErrorString(interpreter_initialization_error); 1037 return false; 1038 case 4: 1039 alloc_min = 0x00001000llu; 1040 alloc_max = 0x0000ffffllu; 1041 break; 1042 case 8: 1043 alloc_min = 0x0000000000001000llu; 1044 alloc_max = 0x000000000000ffffllu; 1045 break; 1046 } 1047 1048 DataLayout target_data(&llvm_module); 1049 if (target_data.getPointerSize(0) != target_info.address_byte_size) 1050 { 1051 err.SetErrorToGenericError(); 1052 err.SetErrorString(interpreter_initialization_error); 1053 return false; 1054 } 1055 if (target_data.isLittleEndian() != (target_info.byte_order == lldb::eByteOrderLittle)) 1056 { 1057 err.SetErrorToGenericError(); 1058 err.SetErrorString(interpreter_initialization_error); 1059 return false; 1060 } 1061 1062 Memory memory(target_data, m_decl_map, alloc_min, alloc_max); 1063 InterpreterStackFrame frame(target_data, memory, m_decl_map); 1064 1065 uint32_t num_insts = 0; 1066 1067 frame.Jump(llvm_function.begin()); 1068 1069 while (frame.m_ii != frame.m_ie && (++num_insts < 4096)) 1070 { 1071 const Instruction *inst = frame.m_ii; 1072 1073 if (log) 1074 log->Printf("Interpreting %s", PrintValue(inst).c_str()); 1075 1076 switch (inst->getOpcode()) 1077 { 1078 default: 1079 break; 1080 case Instruction::Add: 1081 case Instruction::Sub: 1082 case Instruction::Mul: 1083 case Instruction::SDiv: 1084 case Instruction::UDiv: 1085 { 1086 const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst); 1087 1088 if (!bin_op) 1089 { 1090 if (log) 1091 log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName()); 1092 err.SetErrorToGenericError(); 1093 err.SetErrorString(interpreter_internal_error); 1094 return false; 1095 } 1096 1097 Value *lhs = inst->getOperand(0); 1098 Value *rhs = inst->getOperand(1); 1099 1100 lldb_private::Scalar L; 1101 lldb_private::Scalar R; 1102 1103 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1104 { 1105 if (log) 1106 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1107 err.SetErrorToGenericError(); 1108 err.SetErrorString(bad_value_error); 1109 return false; 1110 } 1111 1112 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1113 { 1114 if (log) 1115 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1116 err.SetErrorToGenericError(); 1117 err.SetErrorString(bad_value_error); 1118 return false; 1119 } 1120 1121 lldb_private::Scalar result; 1122 1123 switch (inst->getOpcode()) 1124 { 1125 default: 1126 break; 1127 case Instruction::Add: 1128 result = L + R; 1129 break; 1130 case Instruction::Mul: 1131 result = L * R; 1132 break; 1133 case Instruction::Sub: 1134 result = L - R; 1135 break; 1136 case Instruction::SDiv: 1137 result = L / R; 1138 break; 1139 case Instruction::UDiv: 1140 result = L.GetRawBits64(0) / R.GetRawBits64(1); 1141 break; 1142 } 1143 1144 frame.AssignValue(inst, result, llvm_module); 1145 1146 if (log) 1147 { 1148 log->Printf("Interpreted a %s", inst->getOpcodeName()); 1149 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1150 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1151 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1152 } 1153 } 1154 break; 1155 case Instruction::Alloca: 1156 { 1157 const AllocaInst *alloca_inst = dyn_cast<AllocaInst>(inst); 1158 1159 if (!alloca_inst) 1160 { 1161 if (log) 1162 log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst"); 1163 err.SetErrorToGenericError(); 1164 err.SetErrorString(interpreter_internal_error); 1165 return false; 1166 } 1167 1168 if (alloca_inst->isArrayAllocation()) 1169 { 1170 if (log) 1171 log->Printf("AllocaInsts are not handled if isArrayAllocation() is true"); 1172 err.SetErrorToGenericError(); 1173 err.SetErrorString(unsupported_opcode_error); 1174 return false; 1175 } 1176 1177 // The semantics of Alloca are: 1178 // Create a region R of virtual memory of type T, backed by a data buffer 1179 // Create a region P of virtual memory of type T*, backed by a data buffer 1180 // Write the virtual address of R into P 1181 1182 Type *T = alloca_inst->getAllocatedType(); 1183 Type *Tptr = alloca_inst->getType(); 1184 1185 Memory::Region R = memory.Malloc(T); 1186 1187 if (R.IsInvalid()) 1188 { 1189 if (log) 1190 log->Printf("Couldn't allocate memory for an AllocaInst"); 1191 err.SetErrorToGenericError(); 1192 err.SetErrorString(memory_allocation_error); 1193 return false; 1194 } 1195 1196 Memory::Region P = memory.Malloc(Tptr); 1197 1198 if (P.IsInvalid()) 1199 { 1200 if (log) 1201 log->Printf("Couldn't allocate the result pointer for an AllocaInst"); 1202 err.SetErrorToGenericError(); 1203 err.SetErrorString(memory_allocation_error); 1204 return false; 1205 } 1206 1207 DataEncoderSP P_encoder = memory.GetEncoder(P); 1208 1209 if (P_encoder->PutAddress(0, R.m_base) == UINT32_MAX) 1210 { 1211 if (log) 1212 log->Printf("Couldn't write the result pointer for an AllocaInst"); 1213 err.SetErrorToGenericError(); 1214 err.SetErrorString(memory_write_error); 1215 return false; 1216 } 1217 1218 frame.m_values[alloca_inst] = P; 1219 1220 if (log) 1221 { 1222 log->Printf("Interpreted an AllocaInst"); 1223 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1224 log->Printf(" P : %s", frame.SummarizeValue(alloca_inst).c_str()); 1225 } 1226 } 1227 break; 1228 case Instruction::BitCast: 1229 case Instruction::ZExt: 1230 { 1231 const CastInst *cast_inst = dyn_cast<CastInst>(inst); 1232 1233 if (!cast_inst) 1234 { 1235 if (log) 1236 log->Printf("getOpcode() returns %s, but instruction is not a BitCastInst", cast_inst->getOpcodeName()); 1237 err.SetErrorToGenericError(); 1238 err.SetErrorString(interpreter_internal_error); 1239 return false; 1240 } 1241 1242 Value *source = cast_inst->getOperand(0); 1243 1244 lldb_private::Scalar S; 1245 1246 if (!frame.EvaluateValue(S, source, llvm_module)) 1247 { 1248 if (log) 1249 log->Printf("Couldn't evaluate %s", PrintValue(source).c_str()); 1250 err.SetErrorToGenericError(); 1251 err.SetErrorString(bad_value_error); 1252 return false; 1253 } 1254 1255 frame.AssignValue(inst, S, llvm_module); 1256 } 1257 break; 1258 case Instruction::Br: 1259 { 1260 const BranchInst *br_inst = dyn_cast<BranchInst>(inst); 1261 1262 if (!br_inst) 1263 { 1264 if (log) 1265 log->Printf("getOpcode() returns Br, but instruction is not a BranchInst"); 1266 err.SetErrorToGenericError(); 1267 err.SetErrorString(interpreter_internal_error); 1268 return false; 1269 } 1270 1271 if (br_inst->isConditional()) 1272 { 1273 Value *condition = br_inst->getCondition(); 1274 1275 lldb_private::Scalar C; 1276 1277 if (!frame.EvaluateValue(C, condition, llvm_module)) 1278 { 1279 if (log) 1280 log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str()); 1281 err.SetErrorToGenericError(); 1282 err.SetErrorString(bad_value_error); 1283 return false; 1284 } 1285 1286 if (C.GetRawBits64(0)) 1287 frame.Jump(br_inst->getSuccessor(0)); 1288 else 1289 frame.Jump(br_inst->getSuccessor(1)); 1290 1291 if (log) 1292 { 1293 log->Printf("Interpreted a BrInst with a condition"); 1294 log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str()); 1295 } 1296 } 1297 else 1298 { 1299 frame.Jump(br_inst->getSuccessor(0)); 1300 1301 if (log) 1302 { 1303 log->Printf("Interpreted a BrInst with no condition"); 1304 } 1305 } 1306 } 1307 continue; 1308 case Instruction::GetElementPtr: 1309 { 1310 const GetElementPtrInst *gep_inst = dyn_cast<GetElementPtrInst>(inst); 1311 1312 if (!gep_inst) 1313 { 1314 if (log) 1315 log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst"); 1316 err.SetErrorToGenericError(); 1317 err.SetErrorString(interpreter_internal_error); 1318 return false; 1319 } 1320 1321 const Value *pointer_operand = gep_inst->getPointerOperand(); 1322 Type *pointer_type = pointer_operand->getType(); 1323 1324 lldb_private::Scalar P; 1325 1326 if (!frame.EvaluateValue(P, pointer_operand, llvm_module)) 1327 { 1328 if (log) 1329 log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str()); 1330 err.SetErrorToGenericError(); 1331 err.SetErrorString(bad_value_error); 1332 return false; 1333 } 1334 1335 typedef SmallVector <Value *, 8> IndexVector; 1336 typedef IndexVector::iterator IndexIterator; 1337 1338 SmallVector <Value *, 8> indices (gep_inst->idx_begin(), 1339 gep_inst->idx_end()); 1340 1341 SmallVector <Value *, 8> const_indices; 1342 1343 for (IndexIterator ii = indices.begin(), ie = indices.end(); 1344 ii != ie; 1345 ++ii) 1346 { 1347 ConstantInt *constant_index = dyn_cast<ConstantInt>(*ii); 1348 1349 if (!constant_index) 1350 { 1351 lldb_private::Scalar I; 1352 1353 if (!frame.EvaluateValue(I, *ii, llvm_module)) 1354 { 1355 if (log) 1356 log->Printf("Couldn't evaluate %s", PrintValue(*ii).c_str()); 1357 err.SetErrorToGenericError(); 1358 err.SetErrorString(bad_value_error); 1359 return false; 1360 } 1361 1362 if (log) 1363 log->Printf("Evaluated constant index %s as %llu", PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS)); 1364 1365 constant_index = cast<ConstantInt>(ConstantInt::get((*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS))); 1366 } 1367 1368 const_indices.push_back(constant_index); 1369 } 1370 1371 uint64_t offset = target_data.getIndexedOffset(pointer_type, const_indices); 1372 1373 lldb_private::Scalar Poffset = P + offset; 1374 1375 frame.AssignValue(inst, Poffset, llvm_module); 1376 1377 if (log) 1378 { 1379 log->Printf("Interpreted a GetElementPtrInst"); 1380 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1381 log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str()); 1382 } 1383 } 1384 break; 1385 case Instruction::ICmp: 1386 { 1387 const ICmpInst *icmp_inst = dyn_cast<ICmpInst>(inst); 1388 1389 if (!icmp_inst) 1390 { 1391 if (log) 1392 log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst"); 1393 err.SetErrorToGenericError(); 1394 err.SetErrorString(interpreter_internal_error); 1395 return false; 1396 } 1397 1398 CmpInst::Predicate predicate = icmp_inst->getPredicate(); 1399 1400 Value *lhs = inst->getOperand(0); 1401 Value *rhs = inst->getOperand(1); 1402 1403 lldb_private::Scalar L; 1404 lldb_private::Scalar R; 1405 1406 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1407 { 1408 if (log) 1409 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1410 err.SetErrorToGenericError(); 1411 err.SetErrorString(bad_value_error); 1412 return false; 1413 } 1414 1415 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1416 { 1417 if (log) 1418 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1419 err.SetErrorToGenericError(); 1420 err.SetErrorString(bad_value_error); 1421 return false; 1422 } 1423 1424 lldb_private::Scalar result; 1425 1426 switch (predicate) 1427 { 1428 default: 1429 return false; 1430 case CmpInst::ICMP_EQ: 1431 result = (L == R); 1432 break; 1433 case CmpInst::ICMP_NE: 1434 result = (L != R); 1435 break; 1436 case CmpInst::ICMP_UGT: 1437 result = (L.GetRawBits64(0) > R.GetRawBits64(0)); 1438 break; 1439 case CmpInst::ICMP_UGE: 1440 result = (L.GetRawBits64(0) >= R.GetRawBits64(0)); 1441 break; 1442 case CmpInst::ICMP_ULT: 1443 result = (L.GetRawBits64(0) < R.GetRawBits64(0)); 1444 break; 1445 case CmpInst::ICMP_ULE: 1446 result = (L.GetRawBits64(0) <= R.GetRawBits64(0)); 1447 break; 1448 case CmpInst::ICMP_SGT: 1449 result = (L > R); 1450 break; 1451 case CmpInst::ICMP_SGE: 1452 result = (L >= R); 1453 break; 1454 case CmpInst::ICMP_SLT: 1455 result = (L < R); 1456 break; 1457 case CmpInst::ICMP_SLE: 1458 result = (L <= R); 1459 break; 1460 } 1461 1462 frame.AssignValue(inst, result, llvm_module); 1463 1464 if (log) 1465 { 1466 log->Printf("Interpreted an ICmpInst"); 1467 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1468 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1469 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1470 } 1471 } 1472 break; 1473 case Instruction::IntToPtr: 1474 { 1475 const IntToPtrInst *int_to_ptr_inst = dyn_cast<IntToPtrInst>(inst); 1476 1477 if (!int_to_ptr_inst) 1478 { 1479 if (log) 1480 log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst"); 1481 err.SetErrorToGenericError(); 1482 err.SetErrorString(interpreter_internal_error); 1483 return false; 1484 } 1485 1486 Value *src_operand = int_to_ptr_inst->getOperand(0); 1487 1488 lldb_private::Scalar I; 1489 1490 if (!frame.EvaluateValue(I, src_operand, llvm_module)) 1491 { 1492 if (log) 1493 log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); 1494 err.SetErrorToGenericError(); 1495 err.SetErrorString(bad_value_error); 1496 return false; 1497 } 1498 1499 frame.AssignValue(inst, I, llvm_module); 1500 1501 if (log) 1502 { 1503 log->Printf("Interpreted an IntToPtr"); 1504 log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); 1505 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1506 } 1507 } 1508 break; 1509 case Instruction::Load: 1510 { 1511 const LoadInst *load_inst = dyn_cast<LoadInst>(inst); 1512 1513 if (!load_inst) 1514 { 1515 if (log) 1516 log->Printf("getOpcode() returns Load, but instruction is not a LoadInst"); 1517 err.SetErrorToGenericError(); 1518 err.SetErrorString(interpreter_internal_error); 1519 return false; 1520 } 1521 1522 // The semantics of Load are: 1523 // Create a region D that will contain the loaded data 1524 // Resolve the region P containing a pointer 1525 // Dereference P to get the region R that the data should be loaded from 1526 // Transfer a unit of type type(D) from R to D 1527 1528 const Value *pointer_operand = load_inst->getPointerOperand(); 1529 1530 Type *pointer_ty = pointer_operand->getType(); 1531 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1532 if (!pointer_ptr_ty) 1533 { 1534 if (log) 1535 log->Printf("getPointerOperand()->getType() is not a PointerType"); 1536 err.SetErrorToGenericError(); 1537 err.SetErrorString(interpreter_internal_error); 1538 return false; 1539 } 1540 Type *target_ty = pointer_ptr_ty->getElementType(); 1541 1542 Memory::Region D = frame.ResolveValue(load_inst, llvm_module); 1543 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1544 1545 if (D.IsInvalid()) 1546 { 1547 if (log) 1548 log->Printf("LoadInst's value doesn't resolve to anything"); 1549 err.SetErrorToGenericError(); 1550 err.SetErrorString(bad_value_error); 1551 return false; 1552 } 1553 1554 if (P.IsInvalid()) 1555 { 1556 if (log) 1557 log->Printf("LoadInst's pointer doesn't resolve to anything"); 1558 err.SetErrorToGenericError(); 1559 err.SetErrorString(bad_value_error); 1560 return false; 1561 } 1562 1563 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1564 DataEncoderSP D_encoder(memory.GetEncoder(D)); 1565 1566 uint32_t offset = 0; 1567 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1568 1569 Memory::Region R = memory.Lookup(pointer, target_ty); 1570 1571 if (R.IsValid()) 1572 { 1573 if (!memory.Read(D_encoder->GetDataStart(), R.m_base, target_data.getTypeStoreSize(target_ty))) 1574 { 1575 if (log) 1576 log->Printf("Couldn't read from a region on behalf of a LoadInst"); 1577 err.SetErrorToGenericError(); 1578 err.SetErrorString(memory_read_error); 1579 return false; 1580 } 1581 } 1582 else 1583 { 1584 if (!memory.ReadFromRawPtr(D_encoder->GetDataStart(), pointer, target_data.getTypeStoreSize(target_ty))) 1585 { 1586 if (log) 1587 log->Printf("Couldn't read from a raw pointer on behalf of a LoadInst"); 1588 err.SetErrorToGenericError(); 1589 err.SetErrorString(memory_read_error); 1590 return false; 1591 } 1592 } 1593 1594 if (log) 1595 { 1596 log->Printf("Interpreted a LoadInst"); 1597 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1598 if (R.IsValid()) 1599 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1600 else 1601 log->Printf(" R : raw pointer 0x%llx", (unsigned long long)pointer); 1602 log->Printf(" D : %s", frame.SummarizeValue(load_inst).c_str()); 1603 } 1604 } 1605 break; 1606 case Instruction::Ret: 1607 { 1608 if (result_name.IsEmpty()) 1609 return true; 1610 1611 GlobalValue *result_value = llvm_module.getNamedValue(result_name.GetCString()); 1612 1613 if (!frame.ConstructResult(result, result_value, result_name, result_type, llvm_module)) 1614 { 1615 if (log) 1616 log->Printf("Couldn't construct the expression's result"); 1617 err.SetErrorToGenericError(); 1618 err.SetErrorString(bad_result_error); 1619 return false; 1620 } 1621 1622 return true; 1623 } 1624 case Instruction::Store: 1625 { 1626 const StoreInst *store_inst = dyn_cast<StoreInst>(inst); 1627 1628 if (!store_inst) 1629 { 1630 if (log) 1631 log->Printf("getOpcode() returns Store, but instruction is not a StoreInst"); 1632 err.SetErrorToGenericError(); 1633 err.SetErrorString(interpreter_internal_error); 1634 return false; 1635 } 1636 1637 // The semantics of Store are: 1638 // Resolve the region D containing the data to be stored 1639 // Resolve the region P containing a pointer 1640 // Dereference P to get the region R that the data should be stored in 1641 // Transfer a unit of type type(D) from D to R 1642 1643 const Value *value_operand = store_inst->getValueOperand(); 1644 const Value *pointer_operand = store_inst->getPointerOperand(); 1645 1646 Type *pointer_ty = pointer_operand->getType(); 1647 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1648 if (!pointer_ptr_ty) 1649 return false; 1650 Type *target_ty = pointer_ptr_ty->getElementType(); 1651 1652 Memory::Region D = frame.ResolveValue(value_operand, llvm_module); 1653 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1654 1655 if (D.IsInvalid()) 1656 { 1657 if (log) 1658 log->Printf("StoreInst's value doesn't resolve to anything"); 1659 err.SetErrorToGenericError(); 1660 err.SetErrorString(bad_value_error); 1661 return false; 1662 } 1663 1664 if (P.IsInvalid()) 1665 { 1666 if (log) 1667 log->Printf("StoreInst's pointer doesn't resolve to anything"); 1668 err.SetErrorToGenericError(); 1669 err.SetErrorString(bad_value_error); 1670 return false; 1671 } 1672 1673 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1674 DataExtractorSP D_extractor(memory.GetExtractor(D)); 1675 1676 if (!P_extractor || !D_extractor) 1677 return false; 1678 1679 uint32_t offset = 0; 1680 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1681 1682 Memory::Region R = memory.Lookup(pointer, target_ty); 1683 1684 if (R.IsValid()) 1685 { 1686 if (!memory.Write(R.m_base, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1687 { 1688 if (log) 1689 log->Printf("Couldn't write to a region on behalf of a LoadInst"); 1690 err.SetErrorToGenericError(); 1691 err.SetErrorString(memory_write_error); 1692 return false; 1693 } 1694 } 1695 else 1696 { 1697 if (!memory.WriteToRawPtr(pointer, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1698 { 1699 if (log) 1700 log->Printf("Couldn't write to a raw pointer on behalf of a LoadInst"); 1701 err.SetErrorToGenericError(); 1702 err.SetErrorString(memory_write_error); 1703 return false; 1704 } 1705 } 1706 1707 1708 if (log) 1709 { 1710 log->Printf("Interpreted a StoreInst"); 1711 log->Printf(" D : %s", frame.SummarizeValue(value_operand).c_str()); 1712 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1713 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1714 } 1715 } 1716 break; 1717 } 1718 1719 ++frame.m_ii; 1720 } 1721 1722 if (num_insts >= 4096) 1723 { 1724 err.SetErrorToGenericError(); 1725 err.SetErrorString(infinite_loop_error); 1726 return false; 1727 } 1728 1729 return false; 1730 } 1731