1 //===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/DataEncoder.h" 11 #include "lldb/Core/Log.h" 12 #include "lldb/Core/ValueObjectConstResult.h" 13 #include "lldb/Expression/ClangExpressionDeclMap.h" 14 #include "lldb/Expression/ClangExpressionVariable.h" 15 #include "lldb/Expression/IRForTarget.h" 16 #include "lldb/Expression/IRInterpreter.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/Function.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetData.h" 24 25 #include <map> 26 27 using namespace llvm; 28 29 IRInterpreter::IRInterpreter(lldb_private::ClangExpressionDeclMap &decl_map, 30 lldb_private::Stream *error_stream) : 31 m_decl_map(decl_map), 32 m_error_stream(error_stream) 33 { 34 35 } 36 37 IRInterpreter::~IRInterpreter() 38 { 39 40 } 41 42 static std::string 43 PrintValue(const Value *value, bool truncate = false) 44 { 45 std::string s; 46 raw_string_ostream rso(s); 47 value->print(rso); 48 rso.flush(); 49 if (truncate) 50 s.resize(s.length() - 1); 51 52 size_t offset; 53 while ((offset = s.find('\n')) != s.npos) 54 s.erase(offset, 1); 55 while (s[0] == ' ' || s[0] == '\t') 56 s.erase(0, 1); 57 58 return s; 59 } 60 61 static std::string 62 PrintType(const Type *type, bool truncate = false) 63 { 64 std::string s; 65 raw_string_ostream rso(s); 66 type->print(rso); 67 rso.flush(); 68 if (truncate) 69 s.resize(s.length() - 1); 70 return s; 71 } 72 73 typedef STD_SHARED_PTR(lldb_private::DataEncoder) DataEncoderSP; 74 typedef STD_SHARED_PTR(lldb_private::DataExtractor) DataExtractorSP; 75 76 class Memory 77 { 78 public: 79 typedef uint32_t index_t; 80 81 struct Allocation 82 { 83 // m_virtual_address is always the address of the variable in the virtual memory 84 // space provided by Memory. 85 // 86 // m_origin is always non-NULL and describes the source of the data (possibly 87 // m_data if this allocation is the authoritative source). 88 // 89 // Possible value configurations: 90 // 91 // Allocation type getValueType() getContextType() m_origin->GetScalar() m_data 92 // ========================================================================================================================= 93 // FileAddress eValueTypeFileAddress eContextTypeInvalid A location in a binary NULL 94 // image 95 // 96 // LoadAddress eValueTypeLoadAddress eContextTypeInvalid A location in the target's NULL 97 // virtual memory 98 // 99 // Alloca eValueTypeHostAddress eContextTypeInvalid == m_data->GetBytes() Deleted at end of 100 // execution 101 // 102 // PersistentVar eValueTypeHostAddress eContextTypeClangType A persistent variable's NULL 103 // location in LLDB's memory 104 // 105 // Register [ignored] eContextTypeRegister [ignored] Flushed to the register 106 // at the end of execution 107 108 lldb::addr_t m_virtual_address; 109 size_t m_extent; 110 lldb_private::Value m_origin; 111 lldb::DataBufferSP m_data; 112 113 Allocation (lldb::addr_t virtual_address, 114 size_t extent, 115 lldb::DataBufferSP data) : 116 m_virtual_address(virtual_address), 117 m_extent(extent), 118 m_data(data) 119 { 120 } 121 122 Allocation (const Allocation &allocation) : 123 m_virtual_address(allocation.m_virtual_address), 124 m_extent(allocation.m_extent), 125 m_origin(allocation.m_origin), 126 m_data(allocation.m_data) 127 { 128 } 129 }; 130 131 typedef STD_SHARED_PTR(Allocation) AllocationSP; 132 133 struct Region 134 { 135 AllocationSP m_allocation; 136 uint64_t m_base; 137 uint64_t m_extent; 138 139 Region () : 140 m_allocation(), 141 m_base(0), 142 m_extent(0) 143 { 144 } 145 146 Region (AllocationSP allocation, uint64_t base, uint64_t extent) : 147 m_allocation(allocation), 148 m_base(base), 149 m_extent(extent) 150 { 151 } 152 153 Region (const Region ®ion) : 154 m_allocation(region.m_allocation), 155 m_base(region.m_base), 156 m_extent(region.m_extent) 157 { 158 } 159 160 bool IsValid () 161 { 162 return m_allocation != NULL; 163 } 164 165 bool IsInvalid () 166 { 167 return m_allocation == NULL; 168 } 169 }; 170 171 typedef std::vector <AllocationSP> MemoryMap; 172 173 private: 174 lldb::addr_t m_addr_base; 175 lldb::addr_t m_addr_max; 176 MemoryMap m_memory; 177 lldb::ByteOrder m_byte_order; 178 lldb::addr_t m_addr_byte_size; 179 TargetData &m_target_data; 180 181 lldb_private::ClangExpressionDeclMap &m_decl_map; 182 183 MemoryMap::iterator LookupInternal (lldb::addr_t addr) 184 { 185 for (MemoryMap::iterator i = m_memory.begin(), e = m_memory.end(); 186 i != e; 187 ++i) 188 { 189 if ((*i)->m_virtual_address <= addr && 190 (*i)->m_virtual_address + (*i)->m_extent > addr) 191 return i; 192 } 193 194 return m_memory.end(); 195 } 196 197 public: 198 Memory (TargetData &target_data, 199 lldb_private::ClangExpressionDeclMap &decl_map, 200 lldb::addr_t alloc_start, 201 lldb::addr_t alloc_max) : 202 m_addr_base(alloc_start), 203 m_addr_max(alloc_max), 204 m_target_data(target_data), 205 m_decl_map(decl_map) 206 { 207 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 208 m_addr_byte_size = (target_data.getPointerSize()); 209 } 210 211 Region Malloc (size_t size, size_t align) 212 { 213 lldb::DataBufferSP data(new lldb_private::DataBufferHeap(size, 0)); 214 215 if (data) 216 { 217 index_t index = m_memory.size(); 218 219 const size_t mask = (align - 1); 220 221 m_addr_base += mask; 222 m_addr_base &= ~mask; 223 224 if (m_addr_base + size < m_addr_base || 225 m_addr_base + size > m_addr_max) 226 return Region(); 227 228 uint64_t base = m_addr_base; 229 230 m_memory.push_back(AllocationSP(new Allocation(base, size, data))); 231 232 m_addr_base += size; 233 234 AllocationSP alloc = m_memory[index]; 235 236 alloc->m_origin.GetScalar() = (unsigned long long)data->GetBytes(); 237 alloc->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 238 alloc->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 239 240 return Region(alloc, base, size); 241 } 242 243 return Region(); 244 } 245 246 Region Malloc (Type *type) 247 { 248 return Malloc (m_target_data.getTypeAllocSize(type), 249 m_target_data.getPrefTypeAlignment(type)); 250 } 251 252 Region Place (Type *type, lldb::addr_t base, lldb_private::Value &value) 253 { 254 index_t index = m_memory.size(); 255 size_t size = m_target_data.getTypeAllocSize(type); 256 257 m_memory.push_back(AllocationSP(new Allocation(base, size, lldb::DataBufferSP()))); 258 259 AllocationSP alloc = m_memory[index]; 260 261 alloc->m_origin = value; 262 263 return Region(alloc, base, size); 264 } 265 266 void Free (lldb::addr_t addr) 267 { 268 MemoryMap::iterator i = LookupInternal (addr); 269 270 if (i != m_memory.end()) 271 m_memory.erase(i); 272 } 273 274 Region Lookup (lldb::addr_t addr, Type *type) 275 { 276 MemoryMap::iterator i = LookupInternal(addr); 277 278 if (i == m_memory.end() || !type->isSized()) 279 return Region(); 280 281 size_t size = m_target_data.getTypeStoreSize(type); 282 283 return Region(*i, addr, size); 284 } 285 286 DataEncoderSP GetEncoder (Region region) 287 { 288 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 289 return DataEncoderSP(); 290 291 lldb::DataBufferSP buffer = region.m_allocation->m_data; 292 293 if (!buffer) 294 return DataEncoderSP(); 295 296 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 297 298 return DataEncoderSP(new lldb_private::DataEncoder(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 299 } 300 301 DataExtractorSP GetExtractor (Region region) 302 { 303 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 304 return DataExtractorSP(); 305 306 lldb::DataBufferSP buffer = region.m_allocation->m_data; 307 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 308 309 if (buffer) 310 return DataExtractorSP(new lldb_private::DataExtractor(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 311 else 312 return DataExtractorSP(new lldb_private::DataExtractor((uint8_t*)region.m_allocation->m_origin.GetScalar().ULongLong() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 313 } 314 315 lldb_private::Value GetAccessTarget(lldb::addr_t addr) 316 { 317 MemoryMap::iterator i = LookupInternal(addr); 318 319 if (i == m_memory.end()) 320 return lldb_private::Value(); 321 322 lldb_private::Value target = (*i)->m_origin; 323 324 if (target.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 325 { 326 target.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 327 target.SetValueType(lldb_private::Value::eValueTypeHostAddress); 328 target.GetScalar() = (unsigned long long)(*i)->m_data->GetBytes(); 329 } 330 331 target.GetScalar() += (addr - (*i)->m_virtual_address); 332 333 return target; 334 } 335 336 bool Write (lldb::addr_t addr, const uint8_t *data, size_t length) 337 { 338 lldb_private::Value target = GetAccessTarget(addr); 339 340 return m_decl_map.WriteTarget(target, data, length); 341 } 342 343 bool Read (uint8_t *data, lldb::addr_t addr, size_t length) 344 { 345 lldb_private::Value source = GetAccessTarget(addr); 346 347 return m_decl_map.ReadTarget(data, source, length); 348 } 349 350 bool WriteToRawPtr (lldb::addr_t addr, const uint8_t *data, size_t length) 351 { 352 lldb_private::Value target = m_decl_map.WrapBareAddress(addr); 353 354 return m_decl_map.WriteTarget(target, data, length); 355 } 356 357 bool ReadFromRawPtr (uint8_t *data, lldb::addr_t addr, size_t length) 358 { 359 lldb_private::Value source = m_decl_map.WrapBareAddress(addr); 360 361 return m_decl_map.ReadTarget(data, source, length); 362 } 363 364 std::string PrintData (lldb::addr_t addr, size_t length) 365 { 366 lldb_private::Value target = GetAccessTarget(addr); 367 368 lldb_private::DataBufferHeap buf(length, 0); 369 370 if (!m_decl_map.ReadTarget(buf.GetBytes(), target, length)) 371 return std::string("<couldn't read data>"); 372 373 lldb_private::StreamString ss; 374 375 for (size_t i = 0; i < length; i++) 376 { 377 if ((!(i & 0xf)) && i) 378 ss.Printf("%02hhx - ", buf.GetBytes()[i]); 379 else 380 ss.Printf("%02hhx ", buf.GetBytes()[i]); 381 } 382 383 return ss.GetString(); 384 } 385 386 std::string SummarizeRegion (Region ®ion) 387 { 388 lldb_private::StreamString ss; 389 390 lldb_private::Value base = GetAccessTarget(region.m_base); 391 392 ss.Printf("%llx [%s - %s %llx]", 393 region.m_base, 394 lldb_private::Value::GetValueTypeAsCString(base.GetValueType()), 395 lldb_private::Value::GetContextTypeAsCString(base.GetContextType()), 396 base.GetScalar().ULongLong()); 397 398 ss.Printf(" %s", PrintData(region.m_base, region.m_extent).c_str()); 399 400 return ss.GetString(); 401 } 402 }; 403 404 class InterpreterStackFrame 405 { 406 public: 407 typedef std::map <const Value*, Memory::Region> ValueMap; 408 409 ValueMap m_values; 410 Memory &m_memory; 411 TargetData &m_target_data; 412 lldb_private::ClangExpressionDeclMap &m_decl_map; 413 const BasicBlock *m_bb; 414 BasicBlock::const_iterator m_ii; 415 BasicBlock::const_iterator m_ie; 416 417 lldb::ByteOrder m_byte_order; 418 size_t m_addr_byte_size; 419 420 InterpreterStackFrame (TargetData &target_data, 421 Memory &memory, 422 lldb_private::ClangExpressionDeclMap &decl_map) : 423 m_memory (memory), 424 m_target_data (target_data), 425 m_decl_map (decl_map) 426 { 427 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 428 m_addr_byte_size = (target_data.getPointerSize()); 429 } 430 431 void Jump (const BasicBlock *bb) 432 { 433 m_bb = bb; 434 m_ii = m_bb->begin(); 435 m_ie = m_bb->end(); 436 } 437 438 bool Cache (Memory::AllocationSP allocation, Type *type) 439 { 440 if (allocation->m_origin.GetContextType() != lldb_private::Value::eContextTypeRegisterInfo) 441 return false; 442 443 return m_decl_map.ReadTarget(allocation->m_data->GetBytes(), allocation->m_origin, allocation->m_data->GetByteSize()); 444 } 445 446 std::string SummarizeValue (const Value *value) 447 { 448 lldb_private::StreamString ss; 449 450 ss.Printf("%s", PrintValue(value).c_str()); 451 452 ValueMap::iterator i = m_values.find(value); 453 454 if (i != m_values.end()) 455 { 456 Memory::Region region = i->second; 457 458 ss.Printf(" %s", m_memory.SummarizeRegion(region).c_str()); 459 } 460 461 return ss.GetString(); 462 } 463 464 bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type) 465 { 466 size_t type_size = m_target_data.getTypeStoreSize(type); 467 468 switch (type_size) 469 { 470 case 1: 471 scalar = (uint8_t)u64value; 472 break; 473 case 2: 474 scalar = (uint16_t)u64value; 475 break; 476 case 4: 477 scalar = (uint32_t)u64value; 478 break; 479 case 8: 480 scalar = (uint64_t)u64value; 481 break; 482 default: 483 return false; 484 } 485 486 return true; 487 } 488 489 bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module) 490 { 491 const Constant *constant = dyn_cast<Constant>(value); 492 493 if (constant) 494 { 495 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 496 { 497 return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType()); 498 } 499 } 500 else 501 { 502 Memory::Region region = ResolveValue(value, module); 503 DataExtractorSP value_extractor = m_memory.GetExtractor(region); 504 505 if (!value_extractor) 506 return false; 507 508 size_t value_size = m_target_data.getTypeStoreSize(value->getType()); 509 510 uint32_t offset = 0; 511 uint64_t u64value = value_extractor->GetMaxU64(&offset, value_size); 512 513 return AssignToMatchType(scalar, u64value, value->getType()); 514 } 515 516 return false; 517 } 518 519 bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module) 520 { 521 Memory::Region region = ResolveValue (value, module); 522 523 lldb_private::Scalar cast_scalar; 524 525 if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType())) 526 return false; 527 528 lldb_private::DataBufferHeap buf(cast_scalar.GetByteSize(), 0); 529 530 lldb_private::Error err; 531 532 if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, err)) 533 return false; 534 535 DataEncoderSP region_encoder = m_memory.GetEncoder(region); 536 537 memcpy(region_encoder->GetDataStart(), buf.GetBytes(), buf.GetByteSize()); 538 539 return true; 540 } 541 542 bool ResolveConstantValue (APInt &value, const Constant *constant) 543 { 544 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 545 { 546 value = constant_int->getValue(); 547 return true; 548 } 549 else if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant)) 550 { 551 value = constant_fp->getValueAPF().bitcastToAPInt(); 552 return true; 553 } 554 else if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant)) 555 { 556 switch (constant_expr->getOpcode()) 557 { 558 default: 559 return false; 560 case Instruction::IntToPtr: 561 case Instruction::BitCast: 562 return ResolveConstantValue(value, constant_expr->getOperand(0)); 563 case Instruction::GetElementPtr: 564 { 565 ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin(); 566 ConstantExpr::const_op_iterator op_end = constant_expr->op_end(); 567 568 Constant *base = dyn_cast<Constant>(*op_cursor); 569 570 if (!base) 571 return false; 572 573 if (!ResolveConstantValue(value, base)) 574 return false; 575 576 op_cursor++; 577 578 if (op_cursor == op_end) 579 return true; // no offset to apply! 580 581 SmallVector <Value *, 8> indices (op_cursor, op_end); 582 583 uint64_t offset = m_target_data.getIndexedOffset(base->getType(), indices); 584 585 const bool is_signed = true; 586 value += APInt(value.getBitWidth(), offset, is_signed); 587 588 return true; 589 } 590 } 591 } 592 593 return false; 594 } 595 596 bool ResolveConstant (Memory::Region ®ion, const Constant *constant) 597 { 598 APInt resolved_value; 599 600 if (!ResolveConstantValue(resolved_value, constant)) 601 return false; 602 603 const uint64_t *raw_data = resolved_value.getRawData(); 604 605 size_t constant_size = m_target_data.getTypeStoreSize(constant->getType()); 606 return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size); 607 } 608 609 Memory::Region ResolveValue (const Value *value, Module &module) 610 { 611 ValueMap::iterator i = m_values.find(value); 612 613 if (i != m_values.end()) 614 return i->second; 615 616 const GlobalValue *global_value = dyn_cast<GlobalValue>(value); 617 618 // If the variable is indirected through the argument 619 // array then we need to build an extra level of indirection 620 // for it. This is the default; only magic arguments like 621 // "this", "self", and "_cmd" are direct. 622 bool indirect_variable = true; 623 624 // Attempt to resolve the value using the program's data. 625 // If it is, the values to be created are: 626 // 627 // data_region - a region of memory in which the variable's data resides. 628 // ref_region - a region of memory in which its address (i.e., &var) resides. 629 // In the JIT case, this region would be a member of the struct passed in. 630 // pointer_region - a region of memory in which the address of the pointer 631 // resides. This is an IR-level variable. 632 do 633 { 634 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 635 636 lldb_private::Value resolved_value; 637 lldb_private::ClangExpressionVariable::FlagType flags; 638 639 if (global_value) 640 { 641 clang::NamedDecl *decl = IRForTarget::DeclForGlobal(global_value, &module); 642 643 if (!decl) 644 break; 645 646 if (isa<clang::FunctionDecl>(decl)) 647 { 648 if (log) 649 log->Printf("The interpreter does not handle function pointers at the moment"); 650 651 return Memory::Region(); 652 } 653 654 resolved_value = m_decl_map.LookupDecl(decl, flags); 655 } 656 else 657 { 658 // Special-case "this", "self", and "_cmd" 659 660 std::string name_str = value->getName().str(); 661 662 if (name_str == "this" || 663 name_str == "self" || 664 name_str == "_cmd") 665 resolved_value = m_decl_map.GetSpecialValue(lldb_private::ConstString(name_str.c_str())); 666 667 indirect_variable = false; 668 } 669 670 if (resolved_value.GetScalar().GetType() != lldb_private::Scalar::e_void) 671 { 672 if (resolved_value.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 673 { 674 bool bare_register = (flags & lldb_private::ClangExpressionVariable::EVBareRegister); 675 676 if (bare_register) 677 indirect_variable = false; 678 679 Memory::Region data_region = m_memory.Malloc(value->getType()); 680 data_region.m_allocation->m_origin = resolved_value; 681 Memory::Region ref_region = m_memory.Malloc(value->getType()); 682 Memory::Region pointer_region; 683 684 if (indirect_variable) 685 pointer_region = m_memory.Malloc(value->getType()); 686 687 if (!Cache(data_region.m_allocation, value->getType())) 688 return Memory::Region(); 689 690 if (ref_region.IsInvalid()) 691 return Memory::Region(); 692 693 if (pointer_region.IsInvalid() && indirect_variable) 694 return Memory::Region(); 695 696 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 697 698 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 699 return Memory::Region(); 700 701 if (log) 702 { 703 log->Printf("Made an allocation for register variable %s", PrintValue(value).c_str()); 704 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 705 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 706 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 707 if (indirect_variable) 708 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); 709 } 710 711 if (indirect_variable) 712 { 713 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 714 715 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 716 return Memory::Region(); 717 718 m_values[value] = pointer_region; 719 return pointer_region; 720 } 721 else 722 { 723 m_values[value] = ref_region; 724 return ref_region; 725 } 726 } 727 else 728 { 729 Memory::Region data_region = m_memory.Place(value->getType(), resolved_value.GetScalar().ULongLong(), resolved_value); 730 Memory::Region ref_region = m_memory.Malloc(value->getType()); 731 Memory::Region pointer_region; 732 733 if (indirect_variable) 734 pointer_region = m_memory.Malloc(value->getType()); 735 736 if (ref_region.IsInvalid()) 737 return Memory::Region(); 738 739 if (pointer_region.IsInvalid() && indirect_variable) 740 return Memory::Region(); 741 742 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 743 744 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 745 return Memory::Region(); 746 747 if (indirect_variable) 748 { 749 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 750 751 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 752 return Memory::Region(); 753 754 m_values[value] = pointer_region; 755 } 756 757 if (log) 758 { 759 log->Printf("Made an allocation for %s", PrintValue(value).c_str()); 760 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 761 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 762 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 763 if (indirect_variable) 764 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); 765 } 766 767 if (indirect_variable) 768 return pointer_region; 769 else 770 return ref_region; 771 } 772 } 773 } 774 while(0); 775 776 // Fall back and allocate space [allocation type Alloca] 777 778 Type *type = value->getType(); 779 780 lldb::ValueSP backing_value(new lldb_private::Value); 781 782 Memory::Region data_region = m_memory.Malloc(type); 783 data_region.m_allocation->m_origin.GetScalar() = (unsigned long long)data_region.m_allocation->m_data->GetBytes(); 784 data_region.m_allocation->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 785 data_region.m_allocation->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 786 787 const Constant *constant = dyn_cast<Constant>(value); 788 789 do 790 { 791 if (!constant) 792 break; 793 794 if (!ResolveConstant (data_region, constant)) 795 return Memory::Region(); 796 } 797 while(0); 798 799 m_values[value] = data_region; 800 return data_region; 801 } 802 803 bool ConstructResult (lldb::ClangExpressionVariableSP &result, 804 const GlobalValue *result_value, 805 const lldb_private::ConstString &result_name, 806 lldb_private::TypeFromParser result_type, 807 Module &module) 808 { 809 // The result_value resolves to P, a pointer to a region R containing the result data. 810 // If the result variable is a reference, the region R contains a pointer to the result R_final in the original process. 811 812 if (!result_value) 813 return true; // There was no slot for a result – the expression doesn't return one. 814 815 ValueMap::iterator i = m_values.find(result_value); 816 817 if (i == m_values.end()) 818 return false; // There was a slot for the result, but we didn't write into it. 819 820 Memory::Region P = i->second; 821 DataExtractorSP P_extractor = m_memory.GetExtractor(P); 822 823 if (!P_extractor) 824 return false; 825 826 Type *pointer_ty = result_value->getType(); 827 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 828 if (!pointer_ptr_ty) 829 return false; 830 Type *R_ty = pointer_ptr_ty->getElementType(); 831 832 uint32_t offset = 0; 833 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 834 835 Memory::Region R = m_memory.Lookup(pointer, R_ty); 836 837 if (R.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress || 838 !R.m_allocation->m_data) 839 return false; 840 841 lldb_private::Value base; 842 843 bool transient = false; 844 bool maybe_make_load = false; 845 846 if (m_decl_map.ResultIsReference(result_name)) 847 { 848 PointerType *R_ptr_ty = dyn_cast<PointerType>(R_ty); 849 if (!R_ptr_ty) 850 return false; 851 Type *R_final_ty = R_ptr_ty->getElementType(); 852 853 DataExtractorSP R_extractor = m_memory.GetExtractor(R); 854 855 if (!R_extractor) 856 return false; 857 858 offset = 0; 859 lldb::addr_t R_pointer = R_extractor->GetAddress(&offset); 860 861 Memory::Region R_final = m_memory.Lookup(R_pointer, R_final_ty); 862 863 if (R_final.m_allocation) 864 { 865 if (R_final.m_allocation->m_data) 866 transient = true; // this is a stack allocation 867 868 base = R_final.m_allocation->m_origin; 869 base.GetScalar() += (R_final.m_base - R_final.m_allocation->m_virtual_address); 870 } 871 else 872 { 873 // We got a bare pointer. We are going to treat it as a load address 874 // or a file address, letting decl_map make the choice based on whether 875 // or not a process exists. 876 877 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 878 base.SetValueType(lldb_private::Value::eValueTypeFileAddress); 879 base.GetScalar() = (unsigned long long)R_pointer; 880 maybe_make_load = true; 881 } 882 } 883 else 884 { 885 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 886 base.SetValueType(lldb_private::Value::eValueTypeHostAddress); 887 base.GetScalar() = (unsigned long long)R.m_allocation->m_data->GetBytes() + (R.m_base - R.m_allocation->m_virtual_address); 888 } 889 890 return m_decl_map.CompleteResultVariable (result, base, result_name, result_type, transient, maybe_make_load); 891 } 892 }; 893 894 bool 895 IRInterpreter::maybeRunOnFunction (lldb::ClangExpressionVariableSP &result, 896 const lldb_private::ConstString &result_name, 897 lldb_private::TypeFromParser result_type, 898 Function &llvm_function, 899 Module &llvm_module, 900 lldb_private::Error &err) 901 { 902 if (supportsFunction (llvm_function, err)) 903 return runOnFunction(result, 904 result_name, 905 result_type, 906 llvm_function, 907 llvm_module, 908 err); 909 else 910 return false; 911 } 912 913 static const char *unsupported_opcode_error = "Interpreter doesn't handle one of the expression's opcodes"; 914 static const char *interpreter_initialization_error = "Interpreter couldn't be initialized"; 915 static const char *interpreter_internal_error = "Interpreter encountered an internal error"; 916 static const char *bad_value_error = "Interpreter couldn't resolve a value during execution"; 917 static const char *memory_allocation_error = "Interpreter couldn't allocate memory"; 918 static const char *memory_write_error = "Interpreter couldn't write to memory"; 919 static const char *memory_read_error = "Interpreter couldn't read from memory"; 920 static const char *infinite_loop_error = "Interpreter ran for too many cycles"; 921 static const char *bad_result_error = "Result of expression is in bad memory"; 922 923 bool 924 IRInterpreter::supportsFunction (Function &llvm_function, 925 lldb_private::Error &err) 926 { 927 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 928 929 for (Function::iterator bbi = llvm_function.begin(), bbe = llvm_function.end(); 930 bbi != bbe; 931 ++bbi) 932 { 933 for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end(); 934 ii != ie; 935 ++ii) 936 { 937 switch (ii->getOpcode()) 938 { 939 default: 940 { 941 if (log) 942 log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str()); 943 err.SetErrorToGenericError(); 944 err.SetErrorString(unsupported_opcode_error); 945 return false; 946 } 947 case Instruction::Add: 948 case Instruction::Alloca: 949 case Instruction::BitCast: 950 case Instruction::Br: 951 case Instruction::GetElementPtr: 952 break; 953 case Instruction::ICmp: 954 { 955 ICmpInst *icmp_inst = dyn_cast<ICmpInst>(ii); 956 957 if (!icmp_inst) 958 { 959 err.SetErrorToGenericError(); 960 err.SetErrorString(interpreter_internal_error); 961 return false; 962 } 963 964 switch (icmp_inst->getPredicate()) 965 { 966 default: 967 { 968 if (log) 969 log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str()); 970 971 err.SetErrorToGenericError(); 972 err.SetErrorString(unsupported_opcode_error); 973 return false; 974 } 975 case CmpInst::ICMP_EQ: 976 case CmpInst::ICMP_NE: 977 case CmpInst::ICMP_UGT: 978 case CmpInst::ICMP_UGE: 979 case CmpInst::ICMP_ULT: 980 case CmpInst::ICMP_ULE: 981 case CmpInst::ICMP_SGT: 982 case CmpInst::ICMP_SGE: 983 case CmpInst::ICMP_SLT: 984 case CmpInst::ICMP_SLE: 985 break; 986 } 987 } 988 break; 989 case Instruction::IntToPtr: 990 case Instruction::Load: 991 case Instruction::Mul: 992 case Instruction::Ret: 993 case Instruction::SDiv: 994 case Instruction::Store: 995 case Instruction::Sub: 996 case Instruction::UDiv: 997 break; 998 } 999 } 1000 } 1001 1002 return true; 1003 } 1004 1005 bool 1006 IRInterpreter::runOnFunction (lldb::ClangExpressionVariableSP &result, 1007 const lldb_private::ConstString &result_name, 1008 lldb_private::TypeFromParser result_type, 1009 Function &llvm_function, 1010 Module &llvm_module, 1011 lldb_private::Error &err) 1012 { 1013 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 1014 1015 lldb_private::ClangExpressionDeclMap::TargetInfo target_info = m_decl_map.GetTargetInfo(); 1016 1017 if (!target_info.IsValid()) 1018 { 1019 err.SetErrorToGenericError(); 1020 err.SetErrorString(interpreter_initialization_error); 1021 return false; 1022 } 1023 1024 lldb::addr_t alloc_min; 1025 lldb::addr_t alloc_max; 1026 1027 switch (target_info.address_byte_size) 1028 { 1029 default: 1030 err.SetErrorToGenericError(); 1031 err.SetErrorString(interpreter_initialization_error); 1032 return false; 1033 case 4: 1034 alloc_min = 0x00001000llu; 1035 alloc_max = 0x0000ffffllu; 1036 break; 1037 case 8: 1038 alloc_min = 0x0000000000001000llu; 1039 alloc_max = 0x000000000000ffffllu; 1040 break; 1041 } 1042 1043 TargetData target_data(&llvm_module); 1044 if (target_data.getPointerSize() != target_info.address_byte_size) 1045 { 1046 err.SetErrorToGenericError(); 1047 err.SetErrorString(interpreter_initialization_error); 1048 return false; 1049 } 1050 if (target_data.isLittleEndian() != (target_info.byte_order == lldb::eByteOrderLittle)) 1051 { 1052 err.SetErrorToGenericError(); 1053 err.SetErrorString(interpreter_initialization_error); 1054 return false; 1055 } 1056 1057 Memory memory(target_data, m_decl_map, alloc_min, alloc_max); 1058 InterpreterStackFrame frame(target_data, memory, m_decl_map); 1059 1060 uint32_t num_insts = 0; 1061 1062 frame.Jump(llvm_function.begin()); 1063 1064 while (frame.m_ii != frame.m_ie && (++num_insts < 4096)) 1065 { 1066 const Instruction *inst = frame.m_ii; 1067 1068 if (log) 1069 log->Printf("Interpreting %s", PrintValue(inst).c_str()); 1070 1071 switch (inst->getOpcode()) 1072 { 1073 default: 1074 break; 1075 case Instruction::Add: 1076 case Instruction::Sub: 1077 case Instruction::Mul: 1078 case Instruction::SDiv: 1079 case Instruction::UDiv: 1080 { 1081 const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst); 1082 1083 if (!bin_op) 1084 { 1085 if (log) 1086 log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName()); 1087 err.SetErrorToGenericError(); 1088 err.SetErrorString(interpreter_internal_error); 1089 return false; 1090 } 1091 1092 Value *lhs = inst->getOperand(0); 1093 Value *rhs = inst->getOperand(1); 1094 1095 lldb_private::Scalar L; 1096 lldb_private::Scalar R; 1097 1098 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1099 { 1100 if (log) 1101 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1102 err.SetErrorToGenericError(); 1103 err.SetErrorString(bad_value_error); 1104 return false; 1105 } 1106 1107 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1108 { 1109 if (log) 1110 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1111 err.SetErrorToGenericError(); 1112 err.SetErrorString(bad_value_error); 1113 return false; 1114 } 1115 1116 lldb_private::Scalar result; 1117 1118 switch (inst->getOpcode()) 1119 { 1120 default: 1121 break; 1122 case Instruction::Add: 1123 result = L + R; 1124 break; 1125 case Instruction::Mul: 1126 result = L * R; 1127 break; 1128 case Instruction::Sub: 1129 result = L - R; 1130 break; 1131 case Instruction::SDiv: 1132 result = L / R; 1133 break; 1134 case Instruction::UDiv: 1135 result = L.GetRawBits64(0) / R.GetRawBits64(1); 1136 break; 1137 } 1138 1139 frame.AssignValue(inst, result, llvm_module); 1140 1141 if (log) 1142 { 1143 log->Printf("Interpreted a %s", inst->getOpcodeName()); 1144 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1145 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1146 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1147 } 1148 } 1149 break; 1150 case Instruction::Alloca: 1151 { 1152 const AllocaInst *alloca_inst = dyn_cast<AllocaInst>(inst); 1153 1154 if (!alloca_inst) 1155 { 1156 if (log) 1157 log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst"); 1158 err.SetErrorToGenericError(); 1159 err.SetErrorString(interpreter_internal_error); 1160 return false; 1161 } 1162 1163 if (alloca_inst->isArrayAllocation()) 1164 { 1165 if (log) 1166 log->Printf("AllocaInsts are not handled if isArrayAllocation() is true"); 1167 err.SetErrorToGenericError(); 1168 err.SetErrorString(unsupported_opcode_error); 1169 return false; 1170 } 1171 1172 // The semantics of Alloca are: 1173 // Create a region R of virtual memory of type T, backed by a data buffer 1174 // Create a region P of virtual memory of type T*, backed by a data buffer 1175 // Write the virtual address of R into P 1176 1177 Type *T = alloca_inst->getAllocatedType(); 1178 Type *Tptr = alloca_inst->getType(); 1179 1180 Memory::Region R = memory.Malloc(T); 1181 1182 if (R.IsInvalid()) 1183 { 1184 if (log) 1185 log->Printf("Couldn't allocate memory for an AllocaInst"); 1186 err.SetErrorToGenericError(); 1187 err.SetErrorString(memory_allocation_error); 1188 return false; 1189 } 1190 1191 Memory::Region P = memory.Malloc(Tptr); 1192 1193 if (P.IsInvalid()) 1194 { 1195 if (log) 1196 log->Printf("Couldn't allocate the result pointer for an AllocaInst"); 1197 err.SetErrorToGenericError(); 1198 err.SetErrorString(memory_allocation_error); 1199 return false; 1200 } 1201 1202 DataEncoderSP P_encoder = memory.GetEncoder(P); 1203 1204 if (P_encoder->PutAddress(0, R.m_base) == UINT32_MAX) 1205 { 1206 if (log) 1207 log->Printf("Couldn't write the result pointer for an AllocaInst"); 1208 err.SetErrorToGenericError(); 1209 err.SetErrorString(memory_write_error); 1210 return false; 1211 } 1212 1213 frame.m_values[alloca_inst] = P; 1214 1215 if (log) 1216 { 1217 log->Printf("Interpreted an AllocaInst"); 1218 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1219 log->Printf(" P : %s", frame.SummarizeValue(alloca_inst).c_str()); 1220 } 1221 } 1222 break; 1223 case Instruction::BitCast: 1224 { 1225 const BitCastInst *bit_cast_inst = dyn_cast<BitCastInst>(inst); 1226 1227 if (!bit_cast_inst) 1228 { 1229 if (log) 1230 log->Printf("getOpcode() returns BitCast, but instruction is not a BitCastInst"); 1231 err.SetErrorToGenericError(); 1232 err.SetErrorString(interpreter_internal_error); 1233 return false; 1234 } 1235 1236 Value *source = bit_cast_inst->getOperand(0); 1237 1238 lldb_private::Scalar S; 1239 1240 if (!frame.EvaluateValue(S, source, llvm_module)) 1241 { 1242 if (log) 1243 log->Printf("Couldn't evaluate %s", PrintValue(source).c_str()); 1244 err.SetErrorToGenericError(); 1245 err.SetErrorString(bad_value_error); 1246 return false; 1247 } 1248 1249 frame.AssignValue(inst, S, llvm_module); 1250 } 1251 break; 1252 case Instruction::Br: 1253 { 1254 const BranchInst *br_inst = dyn_cast<BranchInst>(inst); 1255 1256 if (!br_inst) 1257 { 1258 if (log) 1259 log->Printf("getOpcode() returns Br, but instruction is not a BranchInst"); 1260 err.SetErrorToGenericError(); 1261 err.SetErrorString(interpreter_internal_error); 1262 return false; 1263 } 1264 1265 if (br_inst->isConditional()) 1266 { 1267 Value *condition = br_inst->getCondition(); 1268 1269 lldb_private::Scalar C; 1270 1271 if (!frame.EvaluateValue(C, condition, llvm_module)) 1272 { 1273 if (log) 1274 log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str()); 1275 err.SetErrorToGenericError(); 1276 err.SetErrorString(bad_value_error); 1277 return false; 1278 } 1279 1280 if (C.GetRawBits64(0)) 1281 frame.Jump(br_inst->getSuccessor(0)); 1282 else 1283 frame.Jump(br_inst->getSuccessor(1)); 1284 1285 if (log) 1286 { 1287 log->Printf("Interpreted a BrInst with a condition"); 1288 log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str()); 1289 } 1290 } 1291 else 1292 { 1293 frame.Jump(br_inst->getSuccessor(0)); 1294 1295 if (log) 1296 { 1297 log->Printf("Interpreted a BrInst with no condition"); 1298 } 1299 } 1300 } 1301 continue; 1302 case Instruction::GetElementPtr: 1303 { 1304 const GetElementPtrInst *gep_inst = dyn_cast<GetElementPtrInst>(inst); 1305 1306 if (!gep_inst) 1307 { 1308 if (log) 1309 log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst"); 1310 err.SetErrorToGenericError(); 1311 err.SetErrorString(interpreter_internal_error); 1312 return false; 1313 } 1314 1315 const Value *pointer_operand = gep_inst->getPointerOperand(); 1316 Type *pointer_type = pointer_operand->getType(); 1317 1318 lldb_private::Scalar P; 1319 1320 if (!frame.EvaluateValue(P, pointer_operand, llvm_module)) 1321 { 1322 if (log) 1323 log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str()); 1324 err.SetErrorToGenericError(); 1325 err.SetErrorString(bad_value_error); 1326 return false; 1327 } 1328 1329 typedef SmallVector <Value *, 8> IndexVector; 1330 typedef IndexVector::iterator IndexIterator; 1331 1332 SmallVector <Value *, 8> indices (gep_inst->idx_begin(), 1333 gep_inst->idx_end()); 1334 1335 SmallVector <Value *, 8> const_indices; 1336 1337 for (IndexIterator ii = indices.begin(), ie = indices.end(); 1338 ii != ie; 1339 ++ii) 1340 { 1341 ConstantInt *constant_index = dyn_cast<ConstantInt>(*ii); 1342 1343 if (!constant_index) 1344 { 1345 lldb_private::Scalar I; 1346 1347 if (!frame.EvaluateValue(I, *ii, llvm_module)) 1348 { 1349 if (log) 1350 log->Printf("Couldn't evaluate %s", PrintValue(*ii).c_str()); 1351 err.SetErrorToGenericError(); 1352 err.SetErrorString(bad_value_error); 1353 return false; 1354 } 1355 1356 if (log) 1357 log->Printf("Evaluated constant index %s as %llu", PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS)); 1358 1359 constant_index = cast<ConstantInt>(ConstantInt::get((*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS))); 1360 } 1361 1362 const_indices.push_back(constant_index); 1363 } 1364 1365 uint64_t offset = target_data.getIndexedOffset(pointer_type, const_indices); 1366 1367 lldb_private::Scalar Poffset = P + offset; 1368 1369 frame.AssignValue(inst, Poffset, llvm_module); 1370 1371 if (log) 1372 { 1373 log->Printf("Interpreted a GetElementPtrInst"); 1374 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1375 log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str()); 1376 } 1377 } 1378 break; 1379 case Instruction::ICmp: 1380 { 1381 const ICmpInst *icmp_inst = dyn_cast<ICmpInst>(inst); 1382 1383 if (!icmp_inst) 1384 { 1385 if (log) 1386 log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst"); 1387 err.SetErrorToGenericError(); 1388 err.SetErrorString(interpreter_internal_error); 1389 return false; 1390 } 1391 1392 CmpInst::Predicate predicate = icmp_inst->getPredicate(); 1393 1394 Value *lhs = inst->getOperand(0); 1395 Value *rhs = inst->getOperand(1); 1396 1397 lldb_private::Scalar L; 1398 lldb_private::Scalar R; 1399 1400 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1401 { 1402 if (log) 1403 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1404 err.SetErrorToGenericError(); 1405 err.SetErrorString(bad_value_error); 1406 return false; 1407 } 1408 1409 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1410 { 1411 if (log) 1412 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1413 err.SetErrorToGenericError(); 1414 err.SetErrorString(bad_value_error); 1415 return false; 1416 } 1417 1418 lldb_private::Scalar result; 1419 1420 switch (predicate) 1421 { 1422 default: 1423 return false; 1424 case CmpInst::ICMP_EQ: 1425 result = (L == R); 1426 break; 1427 case CmpInst::ICMP_NE: 1428 result = (L != R); 1429 break; 1430 case CmpInst::ICMP_UGT: 1431 result = (L.GetRawBits64(0) > R.GetRawBits64(0)); 1432 break; 1433 case CmpInst::ICMP_UGE: 1434 result = (L.GetRawBits64(0) >= R.GetRawBits64(0)); 1435 break; 1436 case CmpInst::ICMP_ULT: 1437 result = (L.GetRawBits64(0) < R.GetRawBits64(0)); 1438 break; 1439 case CmpInst::ICMP_ULE: 1440 result = (L.GetRawBits64(0) <= R.GetRawBits64(0)); 1441 break; 1442 case CmpInst::ICMP_SGT: 1443 result = (L > R); 1444 break; 1445 case CmpInst::ICMP_SGE: 1446 result = (L >= R); 1447 break; 1448 case CmpInst::ICMP_SLT: 1449 result = (L < R); 1450 break; 1451 case CmpInst::ICMP_SLE: 1452 result = (L <= R); 1453 break; 1454 } 1455 1456 frame.AssignValue(inst, result, llvm_module); 1457 1458 if (log) 1459 { 1460 log->Printf("Interpreted an ICmpInst"); 1461 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1462 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1463 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1464 } 1465 } 1466 break; 1467 case Instruction::IntToPtr: 1468 { 1469 const IntToPtrInst *int_to_ptr_inst = dyn_cast<IntToPtrInst>(inst); 1470 1471 if (!int_to_ptr_inst) 1472 { 1473 if (log) 1474 log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst"); 1475 err.SetErrorToGenericError(); 1476 err.SetErrorString(interpreter_internal_error); 1477 return false; 1478 } 1479 1480 Value *src_operand = int_to_ptr_inst->getOperand(0); 1481 1482 lldb_private::Scalar I; 1483 1484 if (!frame.EvaluateValue(I, src_operand, llvm_module)) 1485 { 1486 if (log) 1487 log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); 1488 err.SetErrorToGenericError(); 1489 err.SetErrorString(bad_value_error); 1490 return false; 1491 } 1492 1493 frame.AssignValue(inst, I, llvm_module); 1494 1495 if (log) 1496 { 1497 log->Printf("Interpreted an IntToPtr"); 1498 log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); 1499 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1500 } 1501 } 1502 break; 1503 case Instruction::Load: 1504 { 1505 const LoadInst *load_inst = dyn_cast<LoadInst>(inst); 1506 1507 if (!load_inst) 1508 { 1509 if (log) 1510 log->Printf("getOpcode() returns Load, but instruction is not a LoadInst"); 1511 err.SetErrorToGenericError(); 1512 err.SetErrorString(interpreter_internal_error); 1513 return false; 1514 } 1515 1516 // The semantics of Load are: 1517 // Create a region D that will contain the loaded data 1518 // Resolve the region P containing a pointer 1519 // Dereference P to get the region R that the data should be loaded from 1520 // Transfer a unit of type type(D) from R to D 1521 1522 const Value *pointer_operand = load_inst->getPointerOperand(); 1523 1524 Type *pointer_ty = pointer_operand->getType(); 1525 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1526 if (!pointer_ptr_ty) 1527 { 1528 if (log) 1529 log->Printf("getPointerOperand()->getType() is not a PointerType"); 1530 err.SetErrorToGenericError(); 1531 err.SetErrorString(interpreter_internal_error); 1532 return false; 1533 } 1534 Type *target_ty = pointer_ptr_ty->getElementType(); 1535 1536 Memory::Region D = frame.ResolveValue(load_inst, llvm_module); 1537 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1538 1539 if (D.IsInvalid()) 1540 { 1541 if (log) 1542 log->Printf("LoadInst's value doesn't resolve to anything"); 1543 err.SetErrorToGenericError(); 1544 err.SetErrorString(bad_value_error); 1545 return false; 1546 } 1547 1548 if (P.IsInvalid()) 1549 { 1550 if (log) 1551 log->Printf("LoadInst's pointer doesn't resolve to anything"); 1552 err.SetErrorToGenericError(); 1553 err.SetErrorString(bad_value_error); 1554 return false; 1555 } 1556 1557 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1558 DataEncoderSP D_encoder(memory.GetEncoder(D)); 1559 1560 uint32_t offset = 0; 1561 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1562 1563 Memory::Region R = memory.Lookup(pointer, target_ty); 1564 1565 if (R.IsValid()) 1566 { 1567 if (!memory.Read(D_encoder->GetDataStart(), R.m_base, target_data.getTypeStoreSize(target_ty))) 1568 { 1569 if (log) 1570 log->Printf("Couldn't read from a region on behalf of a LoadInst"); 1571 err.SetErrorToGenericError(); 1572 err.SetErrorString(memory_read_error); 1573 return false; 1574 } 1575 } 1576 else 1577 { 1578 if (!memory.ReadFromRawPtr(D_encoder->GetDataStart(), pointer, target_data.getTypeStoreSize(target_ty))) 1579 { 1580 if (log) 1581 log->Printf("Couldn't read from a raw pointer on behalf of a LoadInst"); 1582 err.SetErrorToGenericError(); 1583 err.SetErrorString(memory_read_error); 1584 return false; 1585 } 1586 } 1587 1588 if (log) 1589 { 1590 log->Printf("Interpreted a LoadInst"); 1591 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1592 if (R.IsValid()) 1593 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1594 else 1595 log->Printf(" R : raw pointer 0x%llx", (unsigned long long)pointer); 1596 log->Printf(" D : %s", frame.SummarizeValue(load_inst).c_str()); 1597 } 1598 } 1599 break; 1600 case Instruction::Ret: 1601 { 1602 if (result_name.IsEmpty()) 1603 return true; 1604 1605 GlobalValue *result_value = llvm_module.getNamedValue(result_name.GetCString()); 1606 1607 if (!frame.ConstructResult(result, result_value, result_name, result_type, llvm_module)) 1608 { 1609 if (log) 1610 log->Printf("Couldn't construct the expression's result"); 1611 err.SetErrorToGenericError(); 1612 err.SetErrorString(bad_result_error); 1613 return false; 1614 } 1615 1616 return true; 1617 } 1618 case Instruction::Store: 1619 { 1620 const StoreInst *store_inst = dyn_cast<StoreInst>(inst); 1621 1622 if (!store_inst) 1623 { 1624 if (log) 1625 log->Printf("getOpcode() returns Store, but instruction is not a StoreInst"); 1626 err.SetErrorToGenericError(); 1627 err.SetErrorString(interpreter_internal_error); 1628 return false; 1629 } 1630 1631 // The semantics of Store are: 1632 // Resolve the region D containing the data to be stored 1633 // Resolve the region P containing a pointer 1634 // Dereference P to get the region R that the data should be stored in 1635 // Transfer a unit of type type(D) from D to R 1636 1637 const Value *value_operand = store_inst->getValueOperand(); 1638 const Value *pointer_operand = store_inst->getPointerOperand(); 1639 1640 Type *pointer_ty = pointer_operand->getType(); 1641 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1642 if (!pointer_ptr_ty) 1643 return false; 1644 Type *target_ty = pointer_ptr_ty->getElementType(); 1645 1646 Memory::Region D = frame.ResolveValue(value_operand, llvm_module); 1647 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1648 1649 if (D.IsInvalid()) 1650 { 1651 if (log) 1652 log->Printf("StoreInst's value doesn't resolve to anything"); 1653 err.SetErrorToGenericError(); 1654 err.SetErrorString(bad_value_error); 1655 return false; 1656 } 1657 1658 if (P.IsInvalid()) 1659 { 1660 if (log) 1661 log->Printf("StoreInst's pointer doesn't resolve to anything"); 1662 err.SetErrorToGenericError(); 1663 err.SetErrorString(bad_value_error); 1664 return false; 1665 } 1666 1667 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1668 DataExtractorSP D_extractor(memory.GetExtractor(D)); 1669 1670 if (!P_extractor || !D_extractor) 1671 return false; 1672 1673 uint32_t offset = 0; 1674 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1675 1676 Memory::Region R = memory.Lookup(pointer, target_ty); 1677 1678 if (R.IsValid()) 1679 { 1680 if (!memory.Write(R.m_base, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1681 { 1682 if (log) 1683 log->Printf("Couldn't write to a region on behalf of a LoadInst"); 1684 err.SetErrorToGenericError(); 1685 err.SetErrorString(memory_write_error); 1686 return false; 1687 } 1688 } 1689 else 1690 { 1691 if (!memory.WriteToRawPtr(pointer, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1692 { 1693 if (log) 1694 log->Printf("Couldn't write to a raw pointer on behalf of a LoadInst"); 1695 err.SetErrorToGenericError(); 1696 err.SetErrorString(memory_write_error); 1697 return false; 1698 } 1699 } 1700 1701 1702 if (log) 1703 { 1704 log->Printf("Interpreted a StoreInst"); 1705 log->Printf(" D : %s", frame.SummarizeValue(value_operand).c_str()); 1706 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1707 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1708 } 1709 } 1710 break; 1711 } 1712 1713 ++frame.m_ii; 1714 } 1715 1716 if (num_insts >= 4096) 1717 { 1718 err.SetErrorToGenericError(); 1719 err.SetErrorString(infinite_loop_error); 1720 return false; 1721 } 1722 1723 return false; 1724 } 1725