1 //===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/DataEncoder.h" 11 #include "lldb/Core/Log.h" 12 #include "lldb/Core/ValueObjectConstResult.h" 13 #include "lldb/Expression/ClangExpressionDeclMap.h" 14 #include "lldb/Expression/IRForTarget.h" 15 #include "lldb/Expression/IRInterpreter.h" 16 17 #include "llvm/Constants.h" 18 #include "llvm/Function.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetData.h" 23 24 #include <map> 25 26 using namespace llvm; 27 28 IRInterpreter::IRInterpreter(lldb_private::ClangExpressionDeclMap &decl_map, 29 lldb_private::Stream *error_stream) : 30 m_decl_map(decl_map), 31 m_error_stream(error_stream) 32 { 33 34 } 35 36 IRInterpreter::~IRInterpreter() 37 { 38 39 } 40 41 static std::string 42 PrintValue(const Value *value, bool truncate = false) 43 { 44 std::string s; 45 raw_string_ostream rso(s); 46 value->print(rso); 47 rso.flush(); 48 if (truncate) 49 s.resize(s.length() - 1); 50 51 size_t offset; 52 while ((offset = s.find('\n')) != s.npos) 53 s.erase(offset, 1); 54 while (s[0] == ' ' || s[0] == '\t') 55 s.erase(0, 1); 56 57 return s; 58 } 59 60 static std::string 61 PrintType(const Type *type, bool truncate = false) 62 { 63 std::string s; 64 raw_string_ostream rso(s); 65 type->print(rso); 66 rso.flush(); 67 if (truncate) 68 s.resize(s.length() - 1); 69 return s; 70 } 71 72 typedef SHARED_PTR(lldb_private::DataEncoder) DataEncoderSP; 73 typedef SHARED_PTR(lldb_private::DataExtractor) DataExtractorSP; 74 75 class Memory 76 { 77 public: 78 typedef uint32_t index_t; 79 80 struct Allocation 81 { 82 // m_virtual_address is always the address of the variable in the virtual memory 83 // space provided by Memory. 84 // 85 // m_origin is always non-NULL and describes the source of the data (possibly 86 // m_data if this allocation is the authoritative source). 87 // 88 // Possible value configurations: 89 // 90 // Allocation type getValueType() getContextType() m_origin->GetScalar() m_data 91 // ========================================================================================================================= 92 // FileAddress eValueTypeFileAddress eContextTypeInvalid A location in a binary NULL 93 // image 94 // 95 // LoadAddress eValueTypeLoadAddress eContextTypeInvalid A location in the target's NULL 96 // virtual memory 97 // 98 // Alloca eValueTypeHostAddress eContextTypeInvalid == m_data->GetBytes() Deleted at end of 99 // execution 100 // 101 // PersistentVar eValueTypeHostAddress eContextTypeClangType A persistent variable's NULL 102 // location in LLDB's memory 103 // 104 // Register [ignored] eContextTypeRegister [ignored] Flushed to the register 105 // at the end of execution 106 107 lldb::addr_t m_virtual_address; 108 size_t m_extent; 109 lldb_private::Value m_origin; 110 lldb::DataBufferSP m_data; 111 112 Allocation (lldb::addr_t virtual_address, 113 size_t extent, 114 lldb::DataBufferSP data) : 115 m_virtual_address(virtual_address), 116 m_extent(extent), 117 m_data(data) 118 { 119 } 120 121 Allocation (const Allocation &allocation) : 122 m_virtual_address(allocation.m_virtual_address), 123 m_extent(allocation.m_extent), 124 m_origin(allocation.m_origin), 125 m_data(allocation.m_data) 126 { 127 } 128 }; 129 130 typedef SHARED_PTR(Allocation) AllocationSP; 131 132 struct Region 133 { 134 AllocationSP m_allocation; 135 uint64_t m_base; 136 uint64_t m_extent; 137 138 Region () : 139 m_allocation(), 140 m_base(0), 141 m_extent(0) 142 { 143 } 144 145 Region (AllocationSP allocation, uint64_t base, uint64_t extent) : 146 m_allocation(allocation), 147 m_base(base), 148 m_extent(extent) 149 { 150 } 151 152 Region (const Region ®ion) : 153 m_allocation(region.m_allocation), 154 m_base(region.m_base), 155 m_extent(region.m_extent) 156 { 157 } 158 159 bool IsValid () 160 { 161 return m_allocation != NULL; 162 } 163 164 bool IsInvalid () 165 { 166 return m_allocation == NULL; 167 } 168 }; 169 170 typedef std::vector <AllocationSP> MemoryMap; 171 172 private: 173 lldb::addr_t m_addr_base; 174 lldb::addr_t m_addr_max; 175 MemoryMap m_memory; 176 lldb::ByteOrder m_byte_order; 177 lldb::addr_t m_addr_byte_size; 178 TargetData &m_target_data; 179 180 lldb_private::ClangExpressionDeclMap &m_decl_map; 181 182 MemoryMap::iterator LookupInternal (lldb::addr_t addr) 183 { 184 for (MemoryMap::iterator i = m_memory.begin(), e = m_memory.end(); 185 i != e; 186 ++i) 187 { 188 if ((*i)->m_virtual_address <= addr && 189 (*i)->m_virtual_address + (*i)->m_extent > addr) 190 return i; 191 } 192 193 return m_memory.end(); 194 } 195 196 public: 197 Memory (TargetData &target_data, 198 lldb_private::ClangExpressionDeclMap &decl_map, 199 lldb::addr_t alloc_start, 200 lldb::addr_t alloc_max) : 201 m_addr_base(alloc_start), 202 m_addr_max(alloc_max), 203 m_target_data(target_data), 204 m_decl_map(decl_map) 205 { 206 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 207 m_addr_byte_size = (target_data.getPointerSize()); 208 } 209 210 Region Malloc (size_t size, size_t align) 211 { 212 lldb::DataBufferSP data(new lldb_private::DataBufferHeap(size, 0)); 213 214 if (data) 215 { 216 index_t index = m_memory.size(); 217 218 const size_t mask = (align - 1); 219 220 m_addr_base += mask; 221 m_addr_base &= ~mask; 222 223 if (m_addr_base + size < m_addr_base || 224 m_addr_base + size > m_addr_max) 225 return Region(); 226 227 uint64_t base = m_addr_base; 228 229 m_memory.push_back(AllocationSP(new Allocation(base, size, data))); 230 231 m_addr_base += size; 232 233 AllocationSP alloc = m_memory[index]; 234 235 alloc->m_origin.GetScalar() = (unsigned long long)data->GetBytes(); 236 alloc->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 237 alloc->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 238 239 return Region(alloc, base, size); 240 } 241 242 return Region(); 243 } 244 245 Region Malloc (Type *type) 246 { 247 return Malloc (m_target_data.getTypeAllocSize(type), 248 m_target_data.getPrefTypeAlignment(type)); 249 } 250 251 Region Place (Type *type, lldb::addr_t base, lldb_private::Value &value) 252 { 253 index_t index = m_memory.size(); 254 size_t size = m_target_data.getTypeAllocSize(type); 255 256 m_memory.push_back(AllocationSP(new Allocation(base, size, lldb::DataBufferSP()))); 257 258 AllocationSP alloc = m_memory[index]; 259 260 alloc->m_origin = value; 261 262 return Region(alloc, base, size); 263 } 264 265 void Free (lldb::addr_t addr) 266 { 267 MemoryMap::iterator i = LookupInternal (addr); 268 269 if (i != m_memory.end()) 270 m_memory.erase(i); 271 } 272 273 Region Lookup (lldb::addr_t addr, Type *type) 274 { 275 MemoryMap::iterator i = LookupInternal(addr); 276 277 if (i == m_memory.end() || !type->isSized()) 278 return Region(); 279 280 size_t size = m_target_data.getTypeStoreSize(type); 281 282 return Region(*i, addr, size); 283 } 284 285 DataEncoderSP GetEncoder (Region region) 286 { 287 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 288 return DataEncoderSP(); 289 290 lldb::DataBufferSP buffer = region.m_allocation->m_data; 291 292 if (!buffer) 293 return DataEncoderSP(); 294 295 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 296 297 return DataEncoderSP(new lldb_private::DataEncoder(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 298 } 299 300 DataExtractorSP GetExtractor (Region region) 301 { 302 if (region.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress) 303 return DataExtractorSP(); 304 305 lldb::DataBufferSP buffer = region.m_allocation->m_data; 306 size_t base_offset = (size_t)(region.m_base - region.m_allocation->m_virtual_address); 307 308 if (buffer) 309 return DataExtractorSP(new lldb_private::DataExtractor(buffer->GetBytes() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 310 else 311 return DataExtractorSP(new lldb_private::DataExtractor((uint8_t*)region.m_allocation->m_origin.GetScalar().ULongLong() + base_offset, region.m_extent, m_byte_order, m_addr_byte_size)); 312 } 313 314 lldb_private::Value GetAccessTarget(lldb::addr_t addr) 315 { 316 MemoryMap::iterator i = LookupInternal(addr); 317 318 if (i == m_memory.end()) 319 return lldb_private::Value(); 320 321 lldb_private::Value target = (*i)->m_origin; 322 323 if (target.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 324 { 325 target.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 326 target.SetValueType(lldb_private::Value::eValueTypeHostAddress); 327 target.GetScalar() = (unsigned long long)(*i)->m_data->GetBytes(); 328 } 329 330 target.GetScalar() += (addr - (*i)->m_virtual_address); 331 332 return target; 333 } 334 335 bool Write (lldb::addr_t addr, const uint8_t *data, size_t length) 336 { 337 lldb_private::Value target = GetAccessTarget(addr); 338 339 return m_decl_map.WriteTarget(target, data, length); 340 } 341 342 bool Read (uint8_t *data, lldb::addr_t addr, size_t length) 343 { 344 lldb_private::Value source = GetAccessTarget(addr); 345 346 return m_decl_map.ReadTarget(data, source, length); 347 } 348 349 bool WriteToRawPtr (lldb::addr_t addr, const uint8_t *data, size_t length) 350 { 351 lldb_private::Value target = m_decl_map.WrapBareAddress(addr); 352 353 return m_decl_map.WriteTarget(target, data, length); 354 } 355 356 bool ReadFromRawPtr (uint8_t *data, lldb::addr_t addr, size_t length) 357 { 358 lldb_private::Value source = m_decl_map.WrapBareAddress(addr); 359 360 return m_decl_map.ReadTarget(data, source, length); 361 } 362 363 std::string PrintData (lldb::addr_t addr, size_t length) 364 { 365 lldb_private::Value target = GetAccessTarget(addr); 366 367 lldb_private::DataBufferHeap buf(length, 0); 368 369 if (!m_decl_map.ReadTarget(buf.GetBytes(), target, length)) 370 return std::string("<couldn't read data>"); 371 372 lldb_private::StreamString ss; 373 374 for (size_t i = 0; i < length; i++) 375 { 376 if ((!(i & 0xf)) && i) 377 ss.Printf("%02hhx - ", buf.GetBytes()[i]); 378 else 379 ss.Printf("%02hhx ", buf.GetBytes()[i]); 380 } 381 382 return ss.GetString(); 383 } 384 385 std::string SummarizeRegion (Region ®ion) 386 { 387 lldb_private::StreamString ss; 388 389 lldb_private::Value base = GetAccessTarget(region.m_base); 390 391 ss.Printf("%llx [%s - %s %llx]", 392 region.m_base, 393 lldb_private::Value::GetValueTypeAsCString(base.GetValueType()), 394 lldb_private::Value::GetContextTypeAsCString(base.GetContextType()), 395 base.GetScalar().ULongLong()); 396 397 ss.Printf(" %s", PrintData(region.m_base, region.m_extent).c_str()); 398 399 return ss.GetString(); 400 } 401 }; 402 403 class InterpreterStackFrame 404 { 405 public: 406 typedef std::map <const Value*, Memory::Region> ValueMap; 407 408 ValueMap m_values; 409 Memory &m_memory; 410 TargetData &m_target_data; 411 lldb_private::ClangExpressionDeclMap &m_decl_map; 412 const BasicBlock *m_bb; 413 BasicBlock::const_iterator m_ii; 414 BasicBlock::const_iterator m_ie; 415 416 lldb::ByteOrder m_byte_order; 417 size_t m_addr_byte_size; 418 419 InterpreterStackFrame (TargetData &target_data, 420 Memory &memory, 421 lldb_private::ClangExpressionDeclMap &decl_map) : 422 m_memory (memory), 423 m_target_data (target_data), 424 m_decl_map (decl_map) 425 { 426 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); 427 m_addr_byte_size = (target_data.getPointerSize()); 428 } 429 430 void Jump (const BasicBlock *bb) 431 { 432 m_bb = bb; 433 m_ii = m_bb->begin(); 434 m_ie = m_bb->end(); 435 } 436 437 bool Cache (Memory::AllocationSP allocation, Type *type) 438 { 439 if (allocation->m_origin.GetContextType() != lldb_private::Value::eContextTypeRegisterInfo) 440 return false; 441 442 return m_decl_map.ReadTarget(allocation->m_data->GetBytes(), allocation->m_origin, allocation->m_data->GetByteSize()); 443 } 444 445 std::string SummarizeValue (const Value *value) 446 { 447 lldb_private::StreamString ss; 448 449 ss.Printf("%s", PrintValue(value).c_str()); 450 451 ValueMap::iterator i = m_values.find(value); 452 453 if (i != m_values.end()) 454 { 455 Memory::Region region = i->second; 456 457 ss.Printf(" %s", m_memory.SummarizeRegion(region).c_str()); 458 } 459 460 return ss.GetString(); 461 } 462 463 bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type) 464 { 465 size_t type_size = m_target_data.getTypeStoreSize(type); 466 467 switch (type_size) 468 { 469 case 1: 470 scalar = (uint8_t)u64value; 471 break; 472 case 2: 473 scalar = (uint16_t)u64value; 474 break; 475 case 4: 476 scalar = (uint32_t)u64value; 477 break; 478 case 8: 479 scalar = (uint64_t)u64value; 480 break; 481 default: 482 return false; 483 } 484 485 return true; 486 } 487 488 bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module) 489 { 490 const Constant *constant = dyn_cast<Constant>(value); 491 492 if (constant) 493 { 494 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 495 { 496 return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType()); 497 } 498 } 499 else 500 { 501 Memory::Region region = ResolveValue(value, module); 502 DataExtractorSP value_extractor = m_memory.GetExtractor(region); 503 504 if (!value_extractor) 505 return false; 506 507 size_t value_size = m_target_data.getTypeStoreSize(value->getType()); 508 509 uint32_t offset = 0; 510 uint64_t u64value = value_extractor->GetMaxU64(&offset, value_size); 511 512 return AssignToMatchType(scalar, u64value, value->getType()); 513 } 514 515 return false; 516 } 517 518 bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module) 519 { 520 Memory::Region region = ResolveValue (value, module); 521 522 lldb_private::Scalar cast_scalar; 523 524 if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType())) 525 return false; 526 527 lldb_private::DataBufferHeap buf(cast_scalar.GetByteSize(), 0); 528 529 lldb_private::Error err; 530 531 if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, err)) 532 return false; 533 534 DataEncoderSP region_encoder = m_memory.GetEncoder(region); 535 536 memcpy(region_encoder->GetDataStart(), buf.GetBytes(), buf.GetByteSize()); 537 538 return true; 539 } 540 541 bool ResolveConstant (Memory::Region ®ion, const Constant *constant) 542 { 543 size_t constant_size = m_target_data.getTypeStoreSize(constant->getType()); 544 545 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) 546 { 547 const uint64_t *raw_data = constant_int->getValue().getRawData(); 548 return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size); 549 } 550 else if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant)) 551 { 552 const uint64_t *raw_data = constant_fp->getValueAPF().bitcastToAPInt().getRawData(); 553 return m_memory.Write(region.m_base, (const uint8_t*)raw_data, constant_size); 554 } 555 else if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant)) 556 { 557 switch (constant_expr->getOpcode()) 558 { 559 default: 560 return false; 561 case Instruction::IntToPtr: 562 case Instruction::BitCast: 563 return ResolveConstant(region, constant_expr->getOperand(0)); 564 } 565 } 566 567 return false; 568 } 569 570 Memory::Region ResolveValue (const Value *value, Module &module) 571 { 572 ValueMap::iterator i = m_values.find(value); 573 574 if (i != m_values.end()) 575 return i->second; 576 577 const GlobalValue *global_value = dyn_cast<GlobalValue>(value); 578 579 // If the variable is indirected through the argument 580 // array then we need to build an extra level of indirection 581 // for it. This is the default; only magic arguments like 582 // "this", "self", and "_cmd" are direct. 583 bool indirect_variable = true; 584 585 // Attempt to resolve the value using the program's data. 586 // If it is, the values to be created are: 587 // 588 // data_region - a region of memory in which the variable's data resides. 589 // ref_region - a region of memory in which its address (i.e., &var) resides. 590 // In the JIT case, this region would be a member of the struct passed in. 591 // pointer_region - a region of memory in which the address of the pointer 592 // resides. This is an IR-level variable. 593 do 594 { 595 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 596 597 lldb_private::Value resolved_value; 598 599 if (global_value) 600 { 601 clang::NamedDecl *decl = IRForTarget::DeclForGlobal(global_value, &module); 602 603 if (!decl) 604 break; 605 606 if (isa<clang::FunctionDecl>(decl)) 607 { 608 if (log) 609 log->Printf("The interpreter does not handle function pointers at the moment"); 610 611 return Memory::Region(); 612 } 613 614 resolved_value = m_decl_map.LookupDecl(decl); 615 } 616 else 617 { 618 // Special-case "this", "self", and "_cmd" 619 620 std::string name_str = value->getName().str(); 621 622 if (name_str == "this" || 623 name_str == "self" || 624 name_str == "_cmd") 625 resolved_value = m_decl_map.GetSpecialValue(lldb_private::ConstString(name_str.c_str())); 626 627 indirect_variable = false; 628 } 629 630 if (resolved_value.GetScalar().GetType() != lldb_private::Scalar::e_void) 631 { 632 if (resolved_value.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) 633 { 634 Memory::Region data_region = m_memory.Malloc(value->getType()); 635 data_region.m_allocation->m_origin = resolved_value; 636 Memory::Region ref_region = m_memory.Malloc(value->getType()); 637 Memory::Region pointer_region; 638 639 if (indirect_variable) 640 pointer_region = m_memory.Malloc(value->getType()); 641 642 if (!Cache(data_region.m_allocation, value->getType())) 643 return Memory::Region(); 644 645 if (ref_region.IsInvalid()) 646 return Memory::Region(); 647 648 if (pointer_region.IsInvalid() && indirect_variable) 649 return Memory::Region(); 650 651 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 652 653 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 654 return Memory::Region(); 655 656 if (log) 657 { 658 log->Printf("Made an allocation for register variable %s", PrintValue(value).c_str()); 659 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 660 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 661 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 662 if (indirect_variable) 663 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); 664 } 665 666 if (indirect_variable) 667 { 668 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 669 670 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 671 return Memory::Region(); 672 673 m_values[value] = pointer_region; 674 return pointer_region; 675 } 676 else 677 { 678 m_values[value] = ref_region; 679 return ref_region; 680 } 681 } 682 else 683 { 684 Memory::Region data_region = m_memory.Place(value->getType(), resolved_value.GetScalar().ULongLong(), resolved_value); 685 Memory::Region ref_region = m_memory.Malloc(value->getType()); 686 Memory::Region pointer_region; 687 688 if (indirect_variable) 689 pointer_region = m_memory.Malloc(value->getType()); 690 691 if (ref_region.IsInvalid()) 692 return Memory::Region(); 693 694 if (pointer_region.IsInvalid() && indirect_variable) 695 return Memory::Region(); 696 697 DataEncoderSP ref_encoder = m_memory.GetEncoder(ref_region); 698 699 if (ref_encoder->PutAddress(0, data_region.m_base) == UINT32_MAX) 700 return Memory::Region(); 701 702 if (indirect_variable) 703 { 704 DataEncoderSP pointer_encoder = m_memory.GetEncoder(pointer_region); 705 706 if (pointer_encoder->PutAddress(0, ref_region.m_base) == UINT32_MAX) 707 return Memory::Region(); 708 709 m_values[value] = pointer_region; 710 } 711 712 if (log) 713 { 714 log->Printf("Made an allocation for %s", PrintValue(value).c_str()); 715 log->Printf(" Data contents : %s", m_memory.PrintData(data_region.m_base, data_region.m_extent).c_str()); 716 log->Printf(" Data region : %llx", (unsigned long long)data_region.m_base); 717 log->Printf(" Ref region : %llx", (unsigned long long)ref_region.m_base); 718 if (indirect_variable) 719 log->Printf(" Pointer region : %llx", (unsigned long long)pointer_region.m_base); 720 } 721 722 if (indirect_variable) 723 return pointer_region; 724 else 725 return ref_region; 726 } 727 } 728 } 729 while(0); 730 731 // Fall back and allocate space [allocation type Alloca] 732 733 Type *type = value->getType(); 734 735 lldb::ValueSP backing_value(new lldb_private::Value); 736 737 Memory::Region data_region = m_memory.Malloc(type); 738 data_region.m_allocation->m_origin.GetScalar() = (unsigned long long)data_region.m_allocation->m_data->GetBytes(); 739 data_region.m_allocation->m_origin.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 740 data_region.m_allocation->m_origin.SetValueType(lldb_private::Value::eValueTypeHostAddress); 741 742 const Constant *constant = dyn_cast<Constant>(value); 743 744 do 745 { 746 if (!constant) 747 break; 748 749 if (!ResolveConstant (data_region, constant)) 750 return Memory::Region(); 751 } 752 while(0); 753 754 m_values[value] = data_region; 755 return data_region; 756 } 757 758 bool ConstructResult (lldb::ClangExpressionVariableSP &result, 759 const GlobalValue *result_value, 760 const lldb_private::ConstString &result_name, 761 lldb_private::TypeFromParser result_type, 762 Module &module) 763 { 764 // The result_value resolves to P, a pointer to a region R containing the result data. 765 // If the result variable is a reference, the region R contains a pointer to the result R_final in the original process. 766 767 if (!result_value) 768 return true; // There was no slot for a result – the expression doesn't return one. 769 770 ValueMap::iterator i = m_values.find(result_value); 771 772 if (i == m_values.end()) 773 return false; // There was a slot for the result, but we didn't write into it. 774 775 Memory::Region P = i->second; 776 DataExtractorSP P_extractor = m_memory.GetExtractor(P); 777 778 if (!P_extractor) 779 return false; 780 781 Type *pointer_ty = result_value->getType(); 782 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 783 if (!pointer_ptr_ty) 784 return false; 785 Type *R_ty = pointer_ptr_ty->getElementType(); 786 787 uint32_t offset = 0; 788 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 789 790 Memory::Region R = m_memory.Lookup(pointer, R_ty); 791 792 if (R.m_allocation->m_origin.GetValueType() != lldb_private::Value::eValueTypeHostAddress || 793 !R.m_allocation->m_data) 794 return false; 795 796 lldb_private::Value base; 797 798 bool transient = false; 799 bool maybe_make_load = false; 800 801 if (m_decl_map.ResultIsReference(result_name)) 802 { 803 PointerType *R_ptr_ty = dyn_cast<PointerType>(R_ty); 804 if (!R_ptr_ty) 805 return false; 806 Type *R_final_ty = R_ptr_ty->getElementType(); 807 808 DataExtractorSP R_extractor = m_memory.GetExtractor(R); 809 810 if (!R_extractor) 811 return false; 812 813 offset = 0; 814 lldb::addr_t R_pointer = R_extractor->GetAddress(&offset); 815 816 Memory::Region R_final = m_memory.Lookup(R_pointer, R_final_ty); 817 818 if (R_final.m_allocation) 819 { 820 if (R_final.m_allocation->m_data) 821 transient = true; // this is a stack allocation 822 823 base = R_final.m_allocation->m_origin; 824 base.GetScalar() += (R_final.m_base - R_final.m_allocation->m_virtual_address); 825 } 826 else 827 { 828 // We got a bare pointer. We are going to treat it as a load address 829 // or a file address, letting decl_map make the choice based on whether 830 // or not a process exists. 831 832 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 833 base.SetValueType(lldb_private::Value::eValueTypeFileAddress); 834 base.GetScalar() = (unsigned long long)R_pointer; 835 maybe_make_load = true; 836 } 837 } 838 else 839 { 840 base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); 841 base.SetValueType(lldb_private::Value::eValueTypeHostAddress); 842 base.GetScalar() = (unsigned long long)R.m_allocation->m_data->GetBytes() + (R.m_base - R.m_allocation->m_virtual_address); 843 } 844 845 return m_decl_map.CompleteResultVariable (result, base, result_name, result_type, transient, maybe_make_load); 846 } 847 }; 848 849 bool 850 IRInterpreter::maybeRunOnFunction (lldb::ClangExpressionVariableSP &result, 851 const lldb_private::ConstString &result_name, 852 lldb_private::TypeFromParser result_type, 853 Function &llvm_function, 854 Module &llvm_module, 855 lldb_private::Error &err) 856 { 857 if (supportsFunction (llvm_function, err)) 858 return runOnFunction(result, 859 result_name, 860 result_type, 861 llvm_function, 862 llvm_module, 863 err); 864 else 865 return false; 866 } 867 868 static const char *unsupported_opcode_error = "Interpreter doesn't handle one of the expression's opcodes"; 869 static const char *interpreter_initialization_error = "Interpreter couldn't be initialized"; 870 static const char *interpreter_internal_error = "Interpreter encountered an internal error"; 871 static const char *bad_value_error = "Interpreter couldn't resolve a value during execution"; 872 static const char *memory_allocation_error = "Interpreter couldn't allocate memory"; 873 static const char *memory_write_error = "Interpreter couldn't write to memory"; 874 static const char *memory_read_error = "Interpreter couldn't read from memory"; 875 static const char *infinite_loop_error = "Interpreter ran for too many cycles"; 876 877 bool 878 IRInterpreter::supportsFunction (Function &llvm_function, 879 lldb_private::Error &err) 880 { 881 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 882 883 for (Function::iterator bbi = llvm_function.begin(), bbe = llvm_function.end(); 884 bbi != bbe; 885 ++bbi) 886 { 887 for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end(); 888 ii != ie; 889 ++ii) 890 { 891 switch (ii->getOpcode()) 892 { 893 default: 894 { 895 if (log) 896 log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str()); 897 err.SetErrorToGenericError(); 898 err.SetErrorString(unsupported_opcode_error); 899 return false; 900 } 901 case Instruction::Add: 902 case Instruction::Alloca: 903 case Instruction::BitCast: 904 case Instruction::Br: 905 case Instruction::GetElementPtr: 906 break; 907 case Instruction::ICmp: 908 { 909 ICmpInst *icmp_inst = dyn_cast<ICmpInst>(ii); 910 911 if (!icmp_inst) 912 { 913 err.SetErrorToGenericError(); 914 err.SetErrorString(interpreter_internal_error); 915 return false; 916 } 917 918 switch (icmp_inst->getPredicate()) 919 { 920 default: 921 { 922 if (log) 923 log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str()); 924 925 err.SetErrorToGenericError(); 926 err.SetErrorString(unsupported_opcode_error); 927 return false; 928 } 929 case CmpInst::ICMP_EQ: 930 case CmpInst::ICMP_NE: 931 case CmpInst::ICMP_UGT: 932 case CmpInst::ICMP_UGE: 933 case CmpInst::ICMP_ULT: 934 case CmpInst::ICMP_ULE: 935 case CmpInst::ICMP_SGT: 936 case CmpInst::ICMP_SGE: 937 case CmpInst::ICMP_SLT: 938 case CmpInst::ICMP_SLE: 939 break; 940 } 941 } 942 break; 943 case Instruction::IntToPtr: 944 case Instruction::Load: 945 case Instruction::Mul: 946 case Instruction::Ret: 947 case Instruction::SDiv: 948 case Instruction::Store: 949 case Instruction::Sub: 950 case Instruction::UDiv: 951 break; 952 } 953 } 954 } 955 956 return true; 957 } 958 959 bool 960 IRInterpreter::runOnFunction (lldb::ClangExpressionVariableSP &result, 961 const lldb_private::ConstString &result_name, 962 lldb_private::TypeFromParser result_type, 963 Function &llvm_function, 964 Module &llvm_module, 965 lldb_private::Error &err) 966 { 967 lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); 968 969 lldb_private::ClangExpressionDeclMap::TargetInfo target_info = m_decl_map.GetTargetInfo(); 970 971 if (!target_info.IsValid()) 972 { 973 err.SetErrorToGenericError(); 974 err.SetErrorString(interpreter_initialization_error); 975 return false; 976 } 977 978 lldb::addr_t alloc_min; 979 lldb::addr_t alloc_max; 980 981 switch (target_info.address_byte_size) 982 { 983 default: 984 err.SetErrorToGenericError(); 985 err.SetErrorString(interpreter_initialization_error); 986 return false; 987 case 4: 988 alloc_min = 0x00001000llu; 989 alloc_max = 0x0000ffffllu; 990 break; 991 case 8: 992 alloc_min = 0x0000000000001000llu; 993 alloc_max = 0x000000000000ffffllu; 994 break; 995 } 996 997 TargetData target_data(&llvm_module); 998 if (target_data.getPointerSize() != target_info.address_byte_size) 999 { 1000 err.SetErrorToGenericError(); 1001 err.SetErrorString(interpreter_initialization_error); 1002 return false; 1003 } 1004 if (target_data.isLittleEndian() != (target_info.byte_order == lldb::eByteOrderLittle)) 1005 { 1006 err.SetErrorToGenericError(); 1007 err.SetErrorString(interpreter_initialization_error); 1008 return false; 1009 } 1010 1011 Memory memory(target_data, m_decl_map, alloc_min, alloc_max); 1012 InterpreterStackFrame frame(target_data, memory, m_decl_map); 1013 1014 uint32_t num_insts = 0; 1015 1016 frame.Jump(llvm_function.begin()); 1017 1018 while (frame.m_ii != frame.m_ie && (++num_insts < 4096)) 1019 { 1020 const Instruction *inst = frame.m_ii; 1021 1022 if (log) 1023 log->Printf("Interpreting %s", PrintValue(inst).c_str()); 1024 1025 switch (inst->getOpcode()) 1026 { 1027 default: 1028 break; 1029 case Instruction::Add: 1030 case Instruction::Sub: 1031 case Instruction::Mul: 1032 case Instruction::SDiv: 1033 case Instruction::UDiv: 1034 { 1035 const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst); 1036 1037 if (!bin_op) 1038 { 1039 if (log) 1040 log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName()); 1041 err.SetErrorToGenericError(); 1042 err.SetErrorString(interpreter_internal_error); 1043 return false; 1044 } 1045 1046 Value *lhs = inst->getOperand(0); 1047 Value *rhs = inst->getOperand(1); 1048 1049 lldb_private::Scalar L; 1050 lldb_private::Scalar R; 1051 1052 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1053 { 1054 if (log) 1055 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1056 err.SetErrorToGenericError(); 1057 err.SetErrorString(bad_value_error); 1058 return false; 1059 } 1060 1061 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1062 { 1063 if (log) 1064 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1065 err.SetErrorToGenericError(); 1066 err.SetErrorString(bad_value_error); 1067 return false; 1068 } 1069 1070 lldb_private::Scalar result; 1071 1072 switch (inst->getOpcode()) 1073 { 1074 default: 1075 break; 1076 case Instruction::Add: 1077 result = L + R; 1078 break; 1079 case Instruction::Mul: 1080 result = L * R; 1081 break; 1082 case Instruction::Sub: 1083 result = L - R; 1084 break; 1085 case Instruction::SDiv: 1086 result = L / R; 1087 break; 1088 case Instruction::UDiv: 1089 result = L.GetRawBits64(0) / R.GetRawBits64(1); 1090 break; 1091 } 1092 1093 frame.AssignValue(inst, result, llvm_module); 1094 1095 if (log) 1096 { 1097 log->Printf("Interpreted a %s", inst->getOpcodeName()); 1098 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1099 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1100 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1101 } 1102 } 1103 break; 1104 case Instruction::Alloca: 1105 { 1106 const AllocaInst *alloca_inst = dyn_cast<AllocaInst>(inst); 1107 1108 if (!alloca_inst) 1109 { 1110 if (log) 1111 log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst"); 1112 err.SetErrorToGenericError(); 1113 err.SetErrorString(interpreter_internal_error); 1114 return false; 1115 } 1116 1117 if (alloca_inst->isArrayAllocation()) 1118 { 1119 if (log) 1120 log->Printf("AllocaInsts are not handled if isArrayAllocation() is true"); 1121 err.SetErrorToGenericError(); 1122 err.SetErrorString(unsupported_opcode_error); 1123 return false; 1124 } 1125 1126 // The semantics of Alloca are: 1127 // Create a region R of virtual memory of type T, backed by a data buffer 1128 // Create a region P of virtual memory of type T*, backed by a data buffer 1129 // Write the virtual address of R into P 1130 1131 Type *T = alloca_inst->getAllocatedType(); 1132 Type *Tptr = alloca_inst->getType(); 1133 1134 Memory::Region R = memory.Malloc(T); 1135 1136 if (R.IsInvalid()) 1137 { 1138 if (log) 1139 log->Printf("Couldn't allocate memory for an AllocaInst"); 1140 err.SetErrorToGenericError(); 1141 err.SetErrorString(memory_allocation_error); 1142 return false; 1143 } 1144 1145 Memory::Region P = memory.Malloc(Tptr); 1146 1147 if (P.IsInvalid()) 1148 { 1149 if (log) 1150 log->Printf("Couldn't allocate the result pointer for an AllocaInst"); 1151 err.SetErrorToGenericError(); 1152 err.SetErrorString(memory_allocation_error); 1153 return false; 1154 } 1155 1156 DataEncoderSP P_encoder = memory.GetEncoder(P); 1157 1158 if (P_encoder->PutAddress(0, R.m_base) == UINT32_MAX) 1159 { 1160 if (log) 1161 log->Printf("Couldn't write the result pointer for an AllocaInst"); 1162 err.SetErrorToGenericError(); 1163 err.SetErrorString(memory_write_error); 1164 return false; 1165 } 1166 1167 frame.m_values[alloca_inst] = P; 1168 1169 if (log) 1170 { 1171 log->Printf("Interpreted an AllocaInst"); 1172 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1173 log->Printf(" P : %s", frame.SummarizeValue(alloca_inst).c_str()); 1174 } 1175 } 1176 break; 1177 case Instruction::BitCast: 1178 { 1179 const BitCastInst *bit_cast_inst = dyn_cast<BitCastInst>(inst); 1180 1181 if (!bit_cast_inst) 1182 { 1183 if (log) 1184 log->Printf("getOpcode() returns BitCast, but instruction is not a BitCastInst"); 1185 err.SetErrorToGenericError(); 1186 err.SetErrorString(interpreter_internal_error); 1187 return false; 1188 } 1189 1190 Value *source = bit_cast_inst->getOperand(0); 1191 1192 lldb_private::Scalar S; 1193 1194 if (!frame.EvaluateValue(S, source, llvm_module)) 1195 { 1196 if (log) 1197 log->Printf("Couldn't evaluate %s", PrintValue(source).c_str()); 1198 err.SetErrorToGenericError(); 1199 err.SetErrorString(bad_value_error); 1200 return false; 1201 } 1202 1203 frame.AssignValue(inst, S, llvm_module); 1204 } 1205 break; 1206 case Instruction::Br: 1207 { 1208 const BranchInst *br_inst = dyn_cast<BranchInst>(inst); 1209 1210 if (!br_inst) 1211 { 1212 if (log) 1213 log->Printf("getOpcode() returns Br, but instruction is not a BranchInst"); 1214 err.SetErrorToGenericError(); 1215 err.SetErrorString(interpreter_internal_error); 1216 return false; 1217 } 1218 1219 if (br_inst->isConditional()) 1220 { 1221 Value *condition = br_inst->getCondition(); 1222 1223 lldb_private::Scalar C; 1224 1225 if (!frame.EvaluateValue(C, condition, llvm_module)) 1226 { 1227 if (log) 1228 log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str()); 1229 err.SetErrorToGenericError(); 1230 err.SetErrorString(bad_value_error); 1231 return false; 1232 } 1233 1234 if (C.GetRawBits64(0)) 1235 frame.Jump(br_inst->getSuccessor(0)); 1236 else 1237 frame.Jump(br_inst->getSuccessor(1)); 1238 1239 if (log) 1240 { 1241 log->Printf("Interpreted a BrInst with a condition"); 1242 log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str()); 1243 } 1244 } 1245 else 1246 { 1247 frame.Jump(br_inst->getSuccessor(0)); 1248 1249 if (log) 1250 { 1251 log->Printf("Interpreted a BrInst with no condition"); 1252 } 1253 } 1254 } 1255 continue; 1256 case Instruction::GetElementPtr: 1257 { 1258 const GetElementPtrInst *gep_inst = dyn_cast<GetElementPtrInst>(inst); 1259 1260 if (!gep_inst) 1261 { 1262 if (log) 1263 log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst"); 1264 err.SetErrorToGenericError(); 1265 err.SetErrorString(interpreter_internal_error); 1266 return false; 1267 } 1268 1269 const Value *pointer_operand = gep_inst->getPointerOperand(); 1270 Type *pointer_type = pointer_operand->getType(); 1271 1272 lldb_private::Scalar P; 1273 1274 if (!frame.EvaluateValue(P, pointer_operand, llvm_module)) 1275 { 1276 if (log) 1277 log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str()); 1278 err.SetErrorToGenericError(); 1279 err.SetErrorString(bad_value_error); 1280 return false; 1281 } 1282 1283 SmallVector <Value *, 8> indices (gep_inst->idx_begin(), 1284 gep_inst->idx_end()); 1285 1286 uint64_t offset = target_data.getIndexedOffset(pointer_type, indices); 1287 1288 lldb_private::Scalar Poffset = P + offset; 1289 1290 frame.AssignValue(inst, Poffset, llvm_module); 1291 1292 if (log) 1293 { 1294 log->Printf("Interpreted a GetElementPtrInst"); 1295 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1296 log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str()); 1297 } 1298 } 1299 break; 1300 case Instruction::ICmp: 1301 { 1302 const ICmpInst *icmp_inst = dyn_cast<ICmpInst>(inst); 1303 1304 if (!icmp_inst) 1305 { 1306 if (log) 1307 log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst"); 1308 err.SetErrorToGenericError(); 1309 err.SetErrorString(interpreter_internal_error); 1310 return false; 1311 } 1312 1313 CmpInst::Predicate predicate = icmp_inst->getPredicate(); 1314 1315 Value *lhs = inst->getOperand(0); 1316 Value *rhs = inst->getOperand(1); 1317 1318 lldb_private::Scalar L; 1319 lldb_private::Scalar R; 1320 1321 if (!frame.EvaluateValue(L, lhs, llvm_module)) 1322 { 1323 if (log) 1324 log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); 1325 err.SetErrorToGenericError(); 1326 err.SetErrorString(bad_value_error); 1327 return false; 1328 } 1329 1330 if (!frame.EvaluateValue(R, rhs, llvm_module)) 1331 { 1332 if (log) 1333 log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); 1334 err.SetErrorToGenericError(); 1335 err.SetErrorString(bad_value_error); 1336 return false; 1337 } 1338 1339 lldb_private::Scalar result; 1340 1341 switch (predicate) 1342 { 1343 default: 1344 return false; 1345 case CmpInst::ICMP_EQ: 1346 result = (L == R); 1347 break; 1348 case CmpInst::ICMP_NE: 1349 result = (L != R); 1350 break; 1351 case CmpInst::ICMP_UGT: 1352 result = (L.GetRawBits64(0) > R.GetRawBits64(0)); 1353 break; 1354 case CmpInst::ICMP_UGE: 1355 result = (L.GetRawBits64(0) >= R.GetRawBits64(0)); 1356 break; 1357 case CmpInst::ICMP_ULT: 1358 result = (L.GetRawBits64(0) < R.GetRawBits64(0)); 1359 break; 1360 case CmpInst::ICMP_ULE: 1361 result = (L.GetRawBits64(0) <= R.GetRawBits64(0)); 1362 break; 1363 case CmpInst::ICMP_SGT: 1364 result = (L > R); 1365 break; 1366 case CmpInst::ICMP_SGE: 1367 result = (L >= R); 1368 break; 1369 case CmpInst::ICMP_SLT: 1370 result = (L < R); 1371 break; 1372 case CmpInst::ICMP_SLE: 1373 result = (L <= R); 1374 break; 1375 } 1376 1377 frame.AssignValue(inst, result, llvm_module); 1378 1379 if (log) 1380 { 1381 log->Printf("Interpreted an ICmpInst"); 1382 log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); 1383 log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); 1384 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1385 } 1386 } 1387 break; 1388 case Instruction::IntToPtr: 1389 { 1390 const IntToPtrInst *int_to_ptr_inst = dyn_cast<IntToPtrInst>(inst); 1391 1392 if (!int_to_ptr_inst) 1393 { 1394 if (log) 1395 log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst"); 1396 err.SetErrorToGenericError(); 1397 err.SetErrorString(interpreter_internal_error); 1398 return false; 1399 } 1400 1401 Value *src_operand = int_to_ptr_inst->getOperand(0); 1402 1403 lldb_private::Scalar I; 1404 1405 if (!frame.EvaluateValue(I, src_operand, llvm_module)) 1406 { 1407 if (log) 1408 log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); 1409 err.SetErrorToGenericError(); 1410 err.SetErrorString(bad_value_error); 1411 return false; 1412 } 1413 1414 frame.AssignValue(inst, I, llvm_module); 1415 1416 if (log) 1417 { 1418 log->Printf("Interpreted an IntToPtr"); 1419 log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); 1420 log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); 1421 } 1422 } 1423 break; 1424 case Instruction::Load: 1425 { 1426 const LoadInst *load_inst = dyn_cast<LoadInst>(inst); 1427 1428 if (!load_inst) 1429 { 1430 if (log) 1431 log->Printf("getOpcode() returns Load, but instruction is not a LoadInst"); 1432 err.SetErrorToGenericError(); 1433 err.SetErrorString(interpreter_internal_error); 1434 return false; 1435 } 1436 1437 // The semantics of Load are: 1438 // Create a region D that will contain the loaded data 1439 // Resolve the region P containing a pointer 1440 // Dereference P to get the region R that the data should be loaded from 1441 // Transfer a unit of type type(D) from R to D 1442 1443 const Value *pointer_operand = load_inst->getPointerOperand(); 1444 1445 Type *pointer_ty = pointer_operand->getType(); 1446 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1447 if (!pointer_ptr_ty) 1448 { 1449 if (log) 1450 log->Printf("getPointerOperand()->getType() is not a PointerType"); 1451 err.SetErrorToGenericError(); 1452 err.SetErrorString(interpreter_internal_error); 1453 return false; 1454 } 1455 Type *target_ty = pointer_ptr_ty->getElementType(); 1456 1457 Memory::Region D = frame.ResolveValue(load_inst, llvm_module); 1458 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1459 1460 if (D.IsInvalid()) 1461 { 1462 if (log) 1463 log->Printf("LoadInst's value doesn't resolve to anything"); 1464 err.SetErrorToGenericError(); 1465 err.SetErrorString(bad_value_error); 1466 return false; 1467 } 1468 1469 if (P.IsInvalid()) 1470 { 1471 if (log) 1472 log->Printf("LoadInst's pointer doesn't resolve to anything"); 1473 err.SetErrorToGenericError(); 1474 err.SetErrorString(bad_value_error); 1475 return false; 1476 } 1477 1478 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1479 DataEncoderSP D_encoder(memory.GetEncoder(D)); 1480 1481 uint32_t offset = 0; 1482 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1483 1484 Memory::Region R = memory.Lookup(pointer, target_ty); 1485 1486 if (R.IsValid()) 1487 { 1488 if (!memory.Read(D_encoder->GetDataStart(), R.m_base, target_data.getTypeStoreSize(target_ty))) 1489 { 1490 if (log) 1491 log->Printf("Couldn't read from a region on behalf of a LoadInst"); 1492 err.SetErrorToGenericError(); 1493 err.SetErrorString(memory_read_error); 1494 return false; 1495 } 1496 } 1497 else 1498 { 1499 if (!memory.ReadFromRawPtr(D_encoder->GetDataStart(), pointer, target_data.getTypeStoreSize(target_ty))) 1500 { 1501 if (log) 1502 log->Printf("Couldn't read from a raw pointer on behalf of a LoadInst"); 1503 err.SetErrorToGenericError(); 1504 err.SetErrorString(memory_read_error); 1505 return false; 1506 } 1507 } 1508 1509 if (log) 1510 { 1511 log->Printf("Interpreted a LoadInst"); 1512 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1513 if (R.IsValid()) 1514 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1515 else 1516 log->Printf(" R : raw pointer 0x%llx", (unsigned long long)pointer); 1517 log->Printf(" D : %s", frame.SummarizeValue(load_inst).c_str()); 1518 } 1519 } 1520 break; 1521 case Instruction::Ret: 1522 { 1523 if (result_name.IsEmpty()) 1524 return true; 1525 1526 GlobalValue *result_value = llvm_module.getNamedValue(result_name.GetCString()); 1527 return frame.ConstructResult(result, result_value, result_name, result_type, llvm_module); 1528 } 1529 case Instruction::Store: 1530 { 1531 const StoreInst *store_inst = dyn_cast<StoreInst>(inst); 1532 1533 if (!store_inst) 1534 { 1535 if (log) 1536 log->Printf("getOpcode() returns Store, but instruction is not a StoreInst"); 1537 err.SetErrorToGenericError(); 1538 err.SetErrorString(interpreter_internal_error); 1539 return false; 1540 } 1541 1542 // The semantics of Store are: 1543 // Resolve the region D containing the data to be stored 1544 // Resolve the region P containing a pointer 1545 // Dereference P to get the region R that the data should be stored in 1546 // Transfer a unit of type type(D) from D to R 1547 1548 const Value *value_operand = store_inst->getValueOperand(); 1549 const Value *pointer_operand = store_inst->getPointerOperand(); 1550 1551 Type *pointer_ty = pointer_operand->getType(); 1552 PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty); 1553 if (!pointer_ptr_ty) 1554 return false; 1555 Type *target_ty = pointer_ptr_ty->getElementType(); 1556 1557 Memory::Region D = frame.ResolveValue(value_operand, llvm_module); 1558 Memory::Region P = frame.ResolveValue(pointer_operand, llvm_module); 1559 1560 if (D.IsInvalid()) 1561 { 1562 if (log) 1563 log->Printf("StoreInst's value doesn't resolve to anything"); 1564 err.SetErrorToGenericError(); 1565 err.SetErrorString(bad_value_error); 1566 return false; 1567 } 1568 1569 if (P.IsInvalid()) 1570 { 1571 if (log) 1572 log->Printf("StoreInst's pointer doesn't resolve to anything"); 1573 err.SetErrorToGenericError(); 1574 err.SetErrorString(bad_value_error); 1575 return false; 1576 } 1577 1578 DataExtractorSP P_extractor(memory.GetExtractor(P)); 1579 DataExtractorSP D_extractor(memory.GetExtractor(D)); 1580 1581 if (!P_extractor || !D_extractor) 1582 return false; 1583 1584 uint32_t offset = 0; 1585 lldb::addr_t pointer = P_extractor->GetAddress(&offset); 1586 1587 Memory::Region R = memory.Lookup(pointer, target_ty); 1588 1589 if (R.IsValid()) 1590 { 1591 if (!memory.Write(R.m_base, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1592 { 1593 if (log) 1594 log->Printf("Couldn't write to a region on behalf of a LoadInst"); 1595 err.SetErrorToGenericError(); 1596 err.SetErrorString(memory_write_error); 1597 return false; 1598 } 1599 } 1600 else 1601 { 1602 if (!memory.WriteToRawPtr(pointer, D_extractor->GetDataStart(), target_data.getTypeStoreSize(target_ty))) 1603 { 1604 if (log) 1605 log->Printf("Couldn't write to a raw pointer on behalf of a LoadInst"); 1606 err.SetErrorToGenericError(); 1607 err.SetErrorString(memory_write_error); 1608 return false; 1609 } 1610 } 1611 1612 1613 if (log) 1614 { 1615 log->Printf("Interpreted a StoreInst"); 1616 log->Printf(" D : %s", frame.SummarizeValue(value_operand).c_str()); 1617 log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); 1618 log->Printf(" R : %s", memory.SummarizeRegion(R).c_str()); 1619 } 1620 } 1621 break; 1622 } 1623 1624 ++frame.m_ii; 1625 } 1626 1627 if (num_insts >= 4096) 1628 { 1629 err.SetErrorToGenericError(); 1630 err.SetErrorString(infinite_loop_error); 1631 return false; 1632 } 1633 1634 return false; 1635 } 1636