1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <inttypes.h>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/RegisterValue.h"
21 #include "lldb/Utility/Scalar.h"
22 #include "lldb/Utility/StreamString.h"
23 #include "lldb/Utility/VMRange.h"
24 
25 #include "lldb/Host/Host.h"
26 #include "lldb/Utility/Endian.h"
27 
28 #include "lldb/Symbol/Function.h"
29 
30 #include "lldb/Target/ABI.h"
31 #include "lldb/Target/ExecutionContext.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/RegisterContext.h"
34 #include "lldb/Target/StackFrame.h"
35 #include "lldb/Target/StackID.h"
36 #include "lldb/Target/Target.h"
37 #include "lldb/Target/Thread.h"
38 
39 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 
44 static lldb::addr_t
45 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
46                                 uint32_t index) {
47   uint32_t index_size = dwarf_cu->GetAddressByteSize();
48   dw_offset_t addr_base = dwarf_cu->GetAddrBase();
49   lldb::offset_t offset = addr_base + index * index_size;
50   const DWARFDataExtractor &data =
51       dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
52   if (data.ValidOffsetForDataOfSize(offset, index_size))
53     return data.GetMaxU64_unchecked(&offset, index_size);
54   return LLDB_INVALID_ADDRESS;
55 }
56 
57 // DWARFExpression constructor
58 DWARFExpression::DWARFExpression()
59     : m_module_wp(), m_data(), m_dwarf_cu(nullptr),
60       m_reg_kind(eRegisterKindDWARF) {}
61 
62 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
63                                  const DataExtractor &data,
64                                  const DWARFUnit *dwarf_cu)
65     : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu),
66       m_reg_kind(eRegisterKindDWARF) {
67   if (module_sp)
68     m_module_wp = module_sp;
69 }
70 
71 // Destructor
72 DWARFExpression::~DWARFExpression() {}
73 
74 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
75 
76 void DWARFExpression::UpdateValue(uint64_t const_value,
77                                   lldb::offset_t const_value_byte_size,
78                                   uint8_t addr_byte_size) {
79   if (!const_value_byte_size)
80     return;
81 
82   m_data.SetData(
83       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
84   m_data.SetByteOrder(endian::InlHostByteOrder());
85   m_data.SetAddressByteSize(addr_byte_size);
86 }
87 
88 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
89                                    lldb::DescriptionLevel level,
90                                    ABI *abi) const {
91   llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
92       .print(s->AsRawOstream(), abi ? &abi->GetMCRegisterInfo() : nullptr,
93              nullptr);
94 }
95 
96 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
97                                                addr_t func_file_addr) {
98   m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
99 }
100 
101 int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
102 
103 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
104   m_reg_kind = reg_kind;
105 }
106 
107 bool DWARFExpression::IsLocationList() const {
108   return bool(m_loclist_addresses);
109 }
110 
111 namespace {
112 /// Implement enough of the DWARFObject interface in order to be able to call
113 /// DWARFLocationTable::dumpLocationList. We don't have access to a real
114 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
115 class DummyDWARFObject final: public llvm::DWARFObject {
116 public:
117   DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}
118 
119   bool isLittleEndian() const override { return IsLittleEndian; }
120 
121   llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
122                                             uint64_t Pos) const override {
123     return llvm::None;
124   }
125 private:
126   bool IsLittleEndian;
127 };
128 }
129 
130 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
131                                      addr_t location_list_base_addr,
132                                      ABI *abi) const {
133   if (IsLocationList()) {
134     // We have a location list
135     lldb::offset_t offset = 0;
136     std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
137         m_dwarf_cu->GetLocationTable(m_data);
138 
139     llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
140 
141     loctable_up->dumpLocationList(
142         &offset, s->AsRawOstream(),
143         llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
144         DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
145         llvm::DIDumpOptions(), s->GetIndentLevel() + 2);
146   } else {
147     // We have a normal location that contains DW_OP location opcodes
148     DumpLocation(s, m_data, level, abi);
149   }
150 }
151 
152 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
153                                       lldb::RegisterKind reg_kind,
154                                       uint32_t reg_num, Status *error_ptr,
155                                       Value &value) {
156   if (reg_ctx == nullptr) {
157     if (error_ptr)
158       error_ptr->SetErrorStringWithFormat("No register context in frame.\n");
159   } else {
160     uint32_t native_reg =
161         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
162     if (native_reg == LLDB_INVALID_REGNUM) {
163       if (error_ptr)
164         error_ptr->SetErrorStringWithFormat("Unable to convert register "
165                                             "kind=%u reg_num=%u to a native "
166                                             "register number.\n",
167                                             reg_kind, reg_num);
168     } else {
169       const RegisterInfo *reg_info =
170           reg_ctx->GetRegisterInfoAtIndex(native_reg);
171       RegisterValue reg_value;
172       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
173         if (reg_value.GetScalarValue(value.GetScalar())) {
174           value.SetValueType(Value::eValueTypeScalar);
175           value.SetContext(Value::eContextTypeRegisterInfo,
176                            const_cast<RegisterInfo *>(reg_info));
177           if (error_ptr)
178             error_ptr->Clear();
179           return true;
180         } else {
181           // If we get this error, then we need to implement a value buffer in
182           // the dwarf expression evaluation function...
183           if (error_ptr)
184             error_ptr->SetErrorStringWithFormat(
185                 "register %s can't be converted to a scalar value",
186                 reg_info->name);
187         }
188       } else {
189         if (error_ptr)
190           error_ptr->SetErrorStringWithFormat("register %s is not available",
191                                               reg_info->name);
192       }
193     }
194   }
195   return false;
196 }
197 
198 /// Return the length in bytes of the set of operands for \p op. No guarantees
199 /// are made on the state of \p data after this call.
200 static offset_t GetOpcodeDataSize(const DataExtractor &data,
201                                   const lldb::offset_t data_offset,
202                                   const uint8_t op) {
203   lldb::offset_t offset = data_offset;
204   switch (op) {
205   case DW_OP_addr:
206   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
207     return data.GetAddressByteSize();
208 
209   // Opcodes with no arguments
210   case DW_OP_deref:                // 0x06
211   case DW_OP_dup:                  // 0x12
212   case DW_OP_drop:                 // 0x13
213   case DW_OP_over:                 // 0x14
214   case DW_OP_swap:                 // 0x16
215   case DW_OP_rot:                  // 0x17
216   case DW_OP_xderef:               // 0x18
217   case DW_OP_abs:                  // 0x19
218   case DW_OP_and:                  // 0x1a
219   case DW_OP_div:                  // 0x1b
220   case DW_OP_minus:                // 0x1c
221   case DW_OP_mod:                  // 0x1d
222   case DW_OP_mul:                  // 0x1e
223   case DW_OP_neg:                  // 0x1f
224   case DW_OP_not:                  // 0x20
225   case DW_OP_or:                   // 0x21
226   case DW_OP_plus:                 // 0x22
227   case DW_OP_shl:                  // 0x24
228   case DW_OP_shr:                  // 0x25
229   case DW_OP_shra:                 // 0x26
230   case DW_OP_xor:                  // 0x27
231   case DW_OP_eq:                   // 0x29
232   case DW_OP_ge:                   // 0x2a
233   case DW_OP_gt:                   // 0x2b
234   case DW_OP_le:                   // 0x2c
235   case DW_OP_lt:                   // 0x2d
236   case DW_OP_ne:                   // 0x2e
237   case DW_OP_lit0:                 // 0x30
238   case DW_OP_lit1:                 // 0x31
239   case DW_OP_lit2:                 // 0x32
240   case DW_OP_lit3:                 // 0x33
241   case DW_OP_lit4:                 // 0x34
242   case DW_OP_lit5:                 // 0x35
243   case DW_OP_lit6:                 // 0x36
244   case DW_OP_lit7:                 // 0x37
245   case DW_OP_lit8:                 // 0x38
246   case DW_OP_lit9:                 // 0x39
247   case DW_OP_lit10:                // 0x3A
248   case DW_OP_lit11:                // 0x3B
249   case DW_OP_lit12:                // 0x3C
250   case DW_OP_lit13:                // 0x3D
251   case DW_OP_lit14:                // 0x3E
252   case DW_OP_lit15:                // 0x3F
253   case DW_OP_lit16:                // 0x40
254   case DW_OP_lit17:                // 0x41
255   case DW_OP_lit18:                // 0x42
256   case DW_OP_lit19:                // 0x43
257   case DW_OP_lit20:                // 0x44
258   case DW_OP_lit21:                // 0x45
259   case DW_OP_lit22:                // 0x46
260   case DW_OP_lit23:                // 0x47
261   case DW_OP_lit24:                // 0x48
262   case DW_OP_lit25:                // 0x49
263   case DW_OP_lit26:                // 0x4A
264   case DW_OP_lit27:                // 0x4B
265   case DW_OP_lit28:                // 0x4C
266   case DW_OP_lit29:                // 0x4D
267   case DW_OP_lit30:                // 0x4E
268   case DW_OP_lit31:                // 0x4f
269   case DW_OP_reg0:                 // 0x50
270   case DW_OP_reg1:                 // 0x51
271   case DW_OP_reg2:                 // 0x52
272   case DW_OP_reg3:                 // 0x53
273   case DW_OP_reg4:                 // 0x54
274   case DW_OP_reg5:                 // 0x55
275   case DW_OP_reg6:                 // 0x56
276   case DW_OP_reg7:                 // 0x57
277   case DW_OP_reg8:                 // 0x58
278   case DW_OP_reg9:                 // 0x59
279   case DW_OP_reg10:                // 0x5A
280   case DW_OP_reg11:                // 0x5B
281   case DW_OP_reg12:                // 0x5C
282   case DW_OP_reg13:                // 0x5D
283   case DW_OP_reg14:                // 0x5E
284   case DW_OP_reg15:                // 0x5F
285   case DW_OP_reg16:                // 0x60
286   case DW_OP_reg17:                // 0x61
287   case DW_OP_reg18:                // 0x62
288   case DW_OP_reg19:                // 0x63
289   case DW_OP_reg20:                // 0x64
290   case DW_OP_reg21:                // 0x65
291   case DW_OP_reg22:                // 0x66
292   case DW_OP_reg23:                // 0x67
293   case DW_OP_reg24:                // 0x68
294   case DW_OP_reg25:                // 0x69
295   case DW_OP_reg26:                // 0x6A
296   case DW_OP_reg27:                // 0x6B
297   case DW_OP_reg28:                // 0x6C
298   case DW_OP_reg29:                // 0x6D
299   case DW_OP_reg30:                // 0x6E
300   case DW_OP_reg31:                // 0x6F
301   case DW_OP_nop:                  // 0x96
302   case DW_OP_push_object_address:  // 0x97 DWARF3
303   case DW_OP_form_tls_address:     // 0x9b DWARF3
304   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
305   case DW_OP_stack_value:          // 0x9f DWARF4
306   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
307     return 0;
308 
309   // Opcodes with a single 1 byte arguments
310   case DW_OP_const1u:     // 0x08 1 1-byte constant
311   case DW_OP_const1s:     // 0x09 1 1-byte constant
312   case DW_OP_pick:        // 0x15 1 1-byte stack index
313   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
314   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
315     return 1;
316 
317   // Opcodes with a single 2 byte arguments
318   case DW_OP_const2u: // 0x0a 1 2-byte constant
319   case DW_OP_const2s: // 0x0b 1 2-byte constant
320   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
321   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
322   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
323     return 2;
324 
325   // Opcodes with a single 4 byte arguments
326   case DW_OP_const4u: // 0x0c 1 4-byte constant
327   case DW_OP_const4s: // 0x0d 1 4-byte constant
328   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
329     return 4;
330 
331   // Opcodes with a single 8 byte arguments
332   case DW_OP_const8u: // 0x0e 1 8-byte constant
333   case DW_OP_const8s: // 0x0f 1 8-byte constant
334     return 8;
335 
336   // All opcodes that have a single ULEB (signed or unsigned) argument
337   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
338   case DW_OP_constu:          // 0x10 1 ULEB128 constant
339   case DW_OP_consts:          // 0x11 1 SLEB128 constant
340   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
341   case DW_OP_breg0:           // 0x70 1 ULEB128 register
342   case DW_OP_breg1:           // 0x71 1 ULEB128 register
343   case DW_OP_breg2:           // 0x72 1 ULEB128 register
344   case DW_OP_breg3:           // 0x73 1 ULEB128 register
345   case DW_OP_breg4:           // 0x74 1 ULEB128 register
346   case DW_OP_breg5:           // 0x75 1 ULEB128 register
347   case DW_OP_breg6:           // 0x76 1 ULEB128 register
348   case DW_OP_breg7:           // 0x77 1 ULEB128 register
349   case DW_OP_breg8:           // 0x78 1 ULEB128 register
350   case DW_OP_breg9:           // 0x79 1 ULEB128 register
351   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
352   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
353   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
354   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
355   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
356   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
357   case DW_OP_breg16:          // 0x80 1 ULEB128 register
358   case DW_OP_breg17:          // 0x81 1 ULEB128 register
359   case DW_OP_breg18:          // 0x82 1 ULEB128 register
360   case DW_OP_breg19:          // 0x83 1 ULEB128 register
361   case DW_OP_breg20:          // 0x84 1 ULEB128 register
362   case DW_OP_breg21:          // 0x85 1 ULEB128 register
363   case DW_OP_breg22:          // 0x86 1 ULEB128 register
364   case DW_OP_breg23:          // 0x87 1 ULEB128 register
365   case DW_OP_breg24:          // 0x88 1 ULEB128 register
366   case DW_OP_breg25:          // 0x89 1 ULEB128 register
367   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
368   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
369   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
370   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
371   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
372   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
373   case DW_OP_regx:            // 0x90 1 ULEB128 register
374   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
375   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
376   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
377   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
378     data.Skip_LEB128(&offset);
379     return offset - data_offset;
380 
381   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
382   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
383   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
384     data.Skip_LEB128(&offset);
385     data.Skip_LEB128(&offset);
386     return offset - data_offset;
387 
388   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
389                              // (DWARF4)
390   {
391     uint64_t block_len = data.Skip_LEB128(&offset);
392     offset += block_len;
393     return offset - data_offset;
394   }
395 
396   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
397   {
398     uint64_t subexpr_len = data.GetULEB128(&offset);
399     return (offset - data_offset) + subexpr_len;
400   }
401 
402   default:
403     break;
404   }
405   return LLDB_INVALID_OFFSET;
406 }
407 
408 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
409                                                      bool &error) const {
410   error = false;
411   if (IsLocationList())
412     return LLDB_INVALID_ADDRESS;
413   lldb::offset_t offset = 0;
414   uint32_t curr_op_addr_idx = 0;
415   while (m_data.ValidOffset(offset)) {
416     const uint8_t op = m_data.GetU8(&offset);
417 
418     if (op == DW_OP_addr) {
419       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
420       if (curr_op_addr_idx == op_addr_idx)
421         return op_file_addr;
422       else
423         ++curr_op_addr_idx;
424     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
425       uint64_t index = m_data.GetULEB128(&offset);
426       if (curr_op_addr_idx == op_addr_idx) {
427         if (!m_dwarf_cu) {
428           error = true;
429           break;
430         }
431 
432         return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
433       } else
434         ++curr_op_addr_idx;
435     } else {
436       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
437       if (op_arg_size == LLDB_INVALID_OFFSET) {
438         error = true;
439         break;
440       }
441       offset += op_arg_size;
442     }
443   }
444   return LLDB_INVALID_ADDRESS;
445 }
446 
447 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
448   if (IsLocationList())
449     return false;
450   lldb::offset_t offset = 0;
451   while (m_data.ValidOffset(offset)) {
452     const uint8_t op = m_data.GetU8(&offset);
453 
454     if (op == DW_OP_addr) {
455       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
456       // We have to make a copy of the data as we don't know if this data is
457       // from a read only memory mapped buffer, so we duplicate all of the data
458       // first, then modify it, and if all goes well, we then replace the data
459       // for this expression
460 
461       // So first we copy the data into a heap buffer
462       std::unique_ptr<DataBufferHeap> head_data_up(
463           new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
464 
465       // Make en encoder so we can write the address into the buffer using the
466       // correct byte order (endianness)
467       DataEncoder encoder(head_data_up->GetBytes(), head_data_up->GetByteSize(),
468                           m_data.GetByteOrder(), addr_byte_size);
469 
470       // Replace the address in the new buffer
471       if (encoder.PutUnsigned(offset, addr_byte_size, file_addr) == UINT32_MAX)
472         return false;
473 
474       // All went well, so now we can reset the data using a shared pointer to
475       // the heap data so "m_data" will now correctly manage the heap data.
476       m_data.SetData(DataBufferSP(head_data_up.release()));
477       return true;
478     } else {
479       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
480       if (op_arg_size == LLDB_INVALID_OFFSET)
481         break;
482       offset += op_arg_size;
483     }
484   }
485   return false;
486 }
487 
488 bool DWARFExpression::ContainsThreadLocalStorage() const {
489   // We are assuming for now that any thread local variable will not have a
490   // location list. This has been true for all thread local variables we have
491   // seen so far produced by any compiler.
492   if (IsLocationList())
493     return false;
494   lldb::offset_t offset = 0;
495   while (m_data.ValidOffset(offset)) {
496     const uint8_t op = m_data.GetU8(&offset);
497 
498     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
499       return true;
500     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
501     if (op_arg_size == LLDB_INVALID_OFFSET)
502       return false;
503     else
504       offset += op_arg_size;
505   }
506   return false;
507 }
508 bool DWARFExpression::LinkThreadLocalStorage(
509     lldb::ModuleSP new_module_sp,
510     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
511         &link_address_callback) {
512   // We are assuming for now that any thread local variable will not have a
513   // location list. This has been true for all thread local variables we have
514   // seen so far produced by any compiler.
515   if (IsLocationList())
516     return false;
517 
518   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
519   // We have to make a copy of the data as we don't know if this data is from a
520   // read only memory mapped buffer, so we duplicate all of the data first,
521   // then modify it, and if all goes well, we then replace the data for this
522   // expression
523 
524   // So first we copy the data into a heap buffer
525   std::shared_ptr<DataBufferHeap> heap_data_sp(
526       new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
527 
528   // Make en encoder so we can write the address into the buffer using the
529   // correct byte order (endianness)
530   DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(),
531                       m_data.GetByteOrder(), addr_byte_size);
532 
533   lldb::offset_t offset = 0;
534   lldb::offset_t const_offset = 0;
535   lldb::addr_t const_value = 0;
536   size_t const_byte_size = 0;
537   while (m_data.ValidOffset(offset)) {
538     const uint8_t op = m_data.GetU8(&offset);
539 
540     bool decoded_data = false;
541     switch (op) {
542     case DW_OP_const4u:
543       // Remember the const offset in case we later have a
544       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
545       const_offset = offset;
546       const_value = m_data.GetU32(&offset);
547       decoded_data = true;
548       const_byte_size = 4;
549       break;
550 
551     case DW_OP_const8u:
552       // Remember the const offset in case we later have a
553       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
554       const_offset = offset;
555       const_value = m_data.GetU64(&offset);
556       decoded_data = true;
557       const_byte_size = 8;
558       break;
559 
560     case DW_OP_form_tls_address:
561     case DW_OP_GNU_push_tls_address:
562       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
563       // by a file address on the stack. We assume that DW_OP_const4u or
564       // DW_OP_const8u is used for these values, and we check that the last
565       // opcode we got before either of these was DW_OP_const4u or
566       // DW_OP_const8u. If so, then we can link the value accodingly. For
567       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
568       // address of a structure that contains a function pointer, the pthread
569       // key and the offset into the data pointed to by the pthread key. So we
570       // must link this address and also set the module of this expression to
571       // the new_module_sp so we can resolve the file address correctly
572       if (const_byte_size > 0) {
573         lldb::addr_t linked_file_addr = link_address_callback(const_value);
574         if (linked_file_addr == LLDB_INVALID_ADDRESS)
575           return false;
576         // Replace the address in the new buffer
577         if (encoder.PutUnsigned(const_offset, const_byte_size,
578                                 linked_file_addr) == UINT32_MAX)
579           return false;
580       }
581       break;
582 
583     default:
584       const_offset = 0;
585       const_value = 0;
586       const_byte_size = 0;
587       break;
588     }
589 
590     if (!decoded_data) {
591       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
592       if (op_arg_size == LLDB_INVALID_OFFSET)
593         return false;
594       else
595         offset += op_arg_size;
596     }
597   }
598 
599   // If we linked the TLS address correctly, update the module so that when the
600   // expression is evaluated it can resolve the file address to a load address
601   // and read the
602   // TLS data
603   m_module_wp = new_module_sp;
604   m_data.SetData(heap_data_sp);
605   return true;
606 }
607 
608 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
609                                                   lldb::addr_t addr) const {
610   if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
611     return false;
612 
613   if (!IsLocationList())
614     return false;
615 
616   return GetLocationExpression(func_load_addr, addr) != llvm::None;
617 }
618 
619 bool DWARFExpression::DumpLocationForAddress(Stream *s,
620                                              lldb::DescriptionLevel level,
621                                              addr_t func_load_addr,
622                                              addr_t address, ABI *abi) {
623   if (!IsLocationList()) {
624     DumpLocation(s, m_data, level, abi);
625     return true;
626   }
627   if (llvm::Optional<DataExtractor> expr =
628           GetLocationExpression(func_load_addr, address)) {
629     DumpLocation(s, *expr, level, abi);
630     return true;
631   }
632   return false;
633 }
634 
635 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
636                                        ExecutionContext *exe_ctx,
637                                        RegisterContext *reg_ctx,
638                                        const DataExtractor &opcodes,
639                                        lldb::offset_t &opcode_offset,
640                                        Status *error_ptr, Log *log) {
641   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
642   // function entry: this variable location is presumed to be optimized out at
643   // the current PC value.  The caller of the function may have call site
644   // information that describes an alternate location for the variable (e.g. a
645   // constant literal, or a spilled stack value) in the parent frame.
646   //
647   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
648   //
649   //     void child(int &sink, int x) {
650   //       ...
651   //       /* "x" gets optimized out. */
652   //
653   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
654   //       ++sink;
655   //     }
656   //
657   //     void parent() {
658   //       int sink;
659   //
660   //       /*
661   //        * The callsite information emitted here is:
662   //        *
663   //        * DW_TAG_call_site
664   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
665   //        *   DW_TAG_call_site_parameter (for "sink")
666   //        *     DW_AT_location   ($reg1)
667   //        *     DW_AT_call_value ($SP - 8)
668   //        *   DW_TAG_call_site_parameter (for "x")
669   //        *     DW_AT_location   ($reg2)
670   //        *     DW_AT_call_value ($literal 123)
671   //        *
672   //        * DW_TAG_call_site
673   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
674   //        *   ...
675   //        */
676   //       child(sink, 123);
677   //       child(sink, 456);
678   //     }
679   //
680   // When the program stops at "++sink" within `child`, the debugger determines
681   // the call site by analyzing the return address. Once the call site is found,
682   // the debugger determines which parameter is referenced by DW_OP_entry_value
683   // and evaluates the corresponding location for that parameter in `parent`.
684 
685   // 1. Find the function which pushed the current frame onto the stack.
686   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
687     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
688     return false;
689   }
690 
691   StackFrame *current_frame = exe_ctx->GetFramePtr();
692   Thread *thread = exe_ctx->GetThreadPtr();
693   if (!current_frame || !thread) {
694     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
695     return false;
696   }
697 
698   Target &target = exe_ctx->GetTargetRef();
699   StackFrameSP parent_frame = nullptr;
700   addr_t return_pc = LLDB_INVALID_ADDRESS;
701   uint32_t current_frame_idx = current_frame->GetFrameIndex();
702   uint32_t num_frames = thread->GetStackFrameCount();
703   for (uint32_t parent_frame_idx = current_frame_idx + 1;
704        parent_frame_idx < num_frames; ++parent_frame_idx) {
705     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
706     // Require a valid sequence of frames.
707     if (!parent_frame)
708       break;
709 
710     // Record the first valid return address, even if this is an inlined frame,
711     // in order to look up the associated call edge in the first non-inlined
712     // parent frame.
713     if (return_pc == LLDB_INVALID_ADDRESS) {
714       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
715       LLDB_LOG(log,
716                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
717                return_pc);
718     }
719 
720     // If we've found an inlined frame, skip it (these have no call site
721     // parameters).
722     if (parent_frame->IsInlined())
723       continue;
724 
725     // We've found the first non-inlined parent frame.
726     break;
727   }
728   if (!parent_frame || !parent_frame->GetRegisterContext()) {
729     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
730     return false;
731   }
732 
733   Function *parent_func =
734       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
735   if (!parent_func) {
736     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
737     return false;
738   }
739 
740   // 2. Find the call edge in the parent function responsible for creating the
741   //    current activation.
742   Function *current_func =
743       current_frame->GetSymbolContext(eSymbolContextFunction).function;
744   if (!current_func) {
745     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
746     return false;
747   }
748 
749   CallEdge *call_edge = nullptr;
750   ModuleList &modlist = target.GetImages();
751   ExecutionContext parent_exe_ctx = *exe_ctx;
752   parent_exe_ctx.SetFrameSP(parent_frame);
753   if (!parent_frame->IsArtificial()) {
754     // If the parent frame is not artificial, the current activation may be
755     // produced by an ambiguous tail call. In this case, refuse to proceed.
756     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
757     if (!call_edge) {
758       LLDB_LOG(log,
759                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
760                "in parent frame {1}",
761                return_pc, parent_func->GetName());
762       return false;
763     }
764     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
765     if (callee_func != current_func) {
766       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
767                     "can't find real parent frame");
768       return false;
769     }
770   } else {
771     // The StackFrameList solver machinery has deduced that an unambiguous tail
772     // call sequence that produced the current activation.  The first edge in
773     // the parent that points to the current function must be valid.
774     for (auto &edge : parent_func->GetTailCallingEdges()) {
775       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
776         call_edge = edge.get();
777         break;
778       }
779     }
780   }
781   if (!call_edge) {
782     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
783                   "to current function");
784     return false;
785   }
786 
787   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
788   //    available call site parameters. If found, evaluate the corresponding
789   //    parameter in the context of the parent frame.
790   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
791   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
792   if (!subexpr_data) {
793     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
794     return false;
795   }
796 
797   const CallSiteParameter *matched_param = nullptr;
798   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
799     DataExtractor param_subexpr_extractor;
800     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
801       continue;
802     lldb::offset_t param_subexpr_offset = 0;
803     const void *param_subexpr_data =
804         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
805     if (!param_subexpr_data ||
806         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
807       continue;
808 
809     // At this point, the DW_OP_entry_value sub-expression and the callee-side
810     // expression in the call site parameter are known to have the same length.
811     // Check whether they are equal.
812     //
813     // Note that an equality check is sufficient: the contents of the
814     // DW_OP_entry_value subexpression are only used to identify the right call
815     // site parameter in the parent, and do not require any special handling.
816     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
817       matched_param = &param;
818       break;
819     }
820   }
821   if (!matched_param) {
822     LLDB_LOG(log,
823              "Evaluate_DW_OP_entry_value: no matching call site param found");
824     return false;
825   }
826 
827   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
828   // subexpresion whenever llvm does.
829   Value result;
830   const DWARFExpression &param_expr = matched_param->LocationInCaller;
831   if (!param_expr.Evaluate(&parent_exe_ctx,
832                            parent_frame->GetRegisterContext().get(),
833                            /*loclist_base_addr=*/LLDB_INVALID_ADDRESS,
834                            /*initial_value_ptr=*/nullptr,
835                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
836     LLDB_LOG(log,
837              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
838     return false;
839   }
840 
841   stack.push_back(result);
842   return true;
843 }
844 
845 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
846                                lldb::addr_t loclist_base_load_addr,
847                                const Value *initial_value_ptr,
848                                const Value *object_address_ptr, Value &result,
849                                Status *error_ptr) const {
850   ExecutionContext exe_ctx(exe_scope);
851   return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
852                   object_address_ptr, result, error_ptr);
853 }
854 
855 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
856                                RegisterContext *reg_ctx,
857                                lldb::addr_t func_load_addr,
858                                const Value *initial_value_ptr,
859                                const Value *object_address_ptr, Value &result,
860                                Status *error_ptr) const {
861   ModuleSP module_sp = m_module_wp.lock();
862 
863   if (IsLocationList()) {
864     addr_t pc;
865     StackFrame *frame = nullptr;
866     if (reg_ctx)
867       pc = reg_ctx->GetPC();
868     else {
869       frame = exe_ctx->GetFramePtr();
870       if (!frame)
871         return false;
872       RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
873       if (!reg_ctx_sp)
874         return false;
875       pc = reg_ctx_sp->GetPC();
876     }
877 
878     if (func_load_addr != LLDB_INVALID_ADDRESS) {
879       if (pc == LLDB_INVALID_ADDRESS) {
880         if (error_ptr)
881           error_ptr->SetErrorString("Invalid PC in frame.");
882         return false;
883       }
884 
885       if (llvm::Optional<DataExtractor> expr =
886               GetLocationExpression(func_load_addr, pc)) {
887         return DWARFExpression::Evaluate(
888             exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
889             initial_value_ptr, object_address_ptr, result, error_ptr);
890       }
891     }
892     if (error_ptr)
893       error_ptr->SetErrorString("variable not available");
894     return false;
895   }
896 
897   // Not a location list, just a single expression.
898   return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
899                                    m_dwarf_cu, m_reg_kind, initial_value_ptr,
900                                    object_address_ptr, result, error_ptr);
901 }
902 
903 bool DWARFExpression::Evaluate(
904     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
905     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
906     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
907     const Value *initial_value_ptr, const Value *object_address_ptr,
908     Value &result, Status *error_ptr) {
909 
910   if (opcodes.GetByteSize() == 0) {
911     if (error_ptr)
912       error_ptr->SetErrorString(
913           "no location, value may have been optimized out");
914     return false;
915   }
916   std::vector<Value> stack;
917 
918   Process *process = nullptr;
919   StackFrame *frame = nullptr;
920 
921   if (exe_ctx) {
922     process = exe_ctx->GetProcessPtr();
923     frame = exe_ctx->GetFramePtr();
924   }
925   if (reg_ctx == nullptr && frame)
926     reg_ctx = frame->GetRegisterContext().get();
927 
928   if (initial_value_ptr)
929     stack.push_back(*initial_value_ptr);
930 
931   lldb::offset_t offset = 0;
932   Value tmp;
933   uint32_t reg_num;
934 
935   /// Insertion point for evaluating multi-piece expression.
936   uint64_t op_piece_offset = 0;
937   Value pieces; // Used for DW_OP_piece
938 
939   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
940 
941   while (opcodes.ValidOffset(offset)) {
942     const lldb::offset_t op_offset = offset;
943     const uint8_t op = opcodes.GetU8(&offset);
944 
945     if (log && log->GetVerbose()) {
946       size_t count = stack.size();
947       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
948                 (uint64_t)count);
949       for (size_t i = 0; i < count; ++i) {
950         StreamString new_value;
951         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
952         stack[i].Dump(&new_value);
953         LLDB_LOGF(log, "  %s", new_value.GetData());
954       }
955       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
956                 DW_OP_value_to_name(op));
957     }
958 
959     switch (op) {
960     // The DW_OP_addr operation has a single operand that encodes a machine
961     // address and whose size is the size of an address on the target machine.
962     case DW_OP_addr:
963       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
964       stack.back().SetValueType(Value::eValueTypeFileAddress);
965       // Convert the file address to a load address, so subsequent
966       // DWARF operators can operate on it.
967       if (frame)
968         stack.back().ConvertToLoadAddress(module_sp.get(),
969                                           frame->CalculateTarget().get());
970       break;
971 
972     // The DW_OP_addr_sect_offset4 is used for any location expressions in
973     // shared libraries that have a location like:
974     //  DW_OP_addr(0x1000)
975     // If this address resides in a shared library, then this virtual address
976     // won't make sense when it is evaluated in the context of a running
977     // process where shared libraries have been slid. To account for this, this
978     // new address type where we can store the section pointer and a 4 byte
979     // offset.
980     //      case DW_OP_addr_sect_offset4:
981     //          {
982     //              result_type = eResultTypeFileAddress;
983     //              lldb::Section *sect = (lldb::Section
984     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
985     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
986     //
987     //              Address so_addr (sect, sect_offset);
988     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
989     //              if (load_addr != LLDB_INVALID_ADDRESS)
990     //              {
991     //                  // We successfully resolve a file address to a load
992     //                  // address.
993     //                  stack.push_back(load_addr);
994     //                  break;
995     //              }
996     //              else
997     //              {
998     //                  // We were able
999     //                  if (error_ptr)
1000     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
1001     //                      %s is not currently loaded.\n",
1002     //                      sect->GetName().AsCString(),
1003     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1004     //                  return false;
1005     //              }
1006     //          }
1007     //          break;
1008 
1009     // OPCODE: DW_OP_deref
1010     // OPERANDS: none
1011     // DESCRIPTION: Pops the top stack entry and treats it as an address.
1012     // The value retrieved from that address is pushed. The size of the data
1013     // retrieved from the dereferenced address is the size of an address on the
1014     // target machine.
1015     case DW_OP_deref: {
1016       if (stack.empty()) {
1017         if (error_ptr)
1018           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1019         return false;
1020       }
1021       Value::ValueType value_type = stack.back().GetValueType();
1022       switch (value_type) {
1023       case Value::eValueTypeHostAddress: {
1024         void *src = (void *)stack.back().GetScalar().ULongLong();
1025         intptr_t ptr;
1026         ::memcpy(&ptr, src, sizeof(void *));
1027         stack.back().GetScalar() = ptr;
1028         stack.back().ClearContext();
1029       } break;
1030       case Value::eValueTypeFileAddress: {
1031         auto file_addr = stack.back().GetScalar().ULongLong(
1032             LLDB_INVALID_ADDRESS);
1033         if (!module_sp) {
1034           if (error_ptr)
1035             error_ptr->SetErrorStringWithFormat(
1036                 "need module to resolve file address for DW_OP_deref");
1037           return false;
1038         }
1039         Address so_addr;
1040         if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
1041           if (error_ptr)
1042             error_ptr->SetErrorStringWithFormat(
1043                 "failed to resolve file address in module");
1044           return false;
1045         }
1046         addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
1047         if (load_Addr == LLDB_INVALID_ADDRESS) {
1048           if (error_ptr)
1049             error_ptr->SetErrorStringWithFormat(
1050                 "failed to resolve load address");
1051           return false;
1052         }
1053         stack.back().GetScalar() = load_Addr;
1054         stack.back().SetValueType(Value::eValueTypeLoadAddress);
1055         // Fall through to load address code below...
1056       } LLVM_FALLTHROUGH;
1057       case Value::eValueTypeLoadAddress:
1058         if (exe_ctx) {
1059           if (process) {
1060             lldb::addr_t pointer_addr =
1061                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1062             Status error;
1063             lldb::addr_t pointer_value =
1064                 process->ReadPointerFromMemory(pointer_addr, error);
1065             if (pointer_value != LLDB_INVALID_ADDRESS) {
1066               stack.back().GetScalar() = pointer_value;
1067               stack.back().ClearContext();
1068             } else {
1069               if (error_ptr)
1070                 error_ptr->SetErrorStringWithFormat(
1071                     "Failed to dereference pointer from 0x%" PRIx64
1072                     " for DW_OP_deref: %s\n",
1073                     pointer_addr, error.AsCString());
1074               return false;
1075             }
1076           } else {
1077             if (error_ptr)
1078               error_ptr->SetErrorStringWithFormat(
1079                   "NULL process for DW_OP_deref.\n");
1080             return false;
1081           }
1082         } else {
1083           if (error_ptr)
1084             error_ptr->SetErrorStringWithFormat(
1085                 "NULL execution context for DW_OP_deref.\n");
1086           return false;
1087         }
1088         break;
1089 
1090       default:
1091         break;
1092       }
1093 
1094     } break;
1095 
1096     // OPCODE: DW_OP_deref_size
1097     // OPERANDS: 1
1098     //  1 - uint8_t that specifies the size of the data to dereference.
1099     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1100     // stack entry and treats it as an address. The value retrieved from that
1101     // address is pushed. In the DW_OP_deref_size operation, however, the size
1102     // in bytes of the data retrieved from the dereferenced address is
1103     // specified by the single operand. This operand is a 1-byte unsigned
1104     // integral constant whose value may not be larger than the size of an
1105     // address on the target machine. The data retrieved is zero extended to
1106     // the size of an address on the target machine before being pushed on the
1107     // expression stack.
1108     case DW_OP_deref_size: {
1109       if (stack.empty()) {
1110         if (error_ptr)
1111           error_ptr->SetErrorString(
1112               "Expression stack empty for DW_OP_deref_size.");
1113         return false;
1114       }
1115       uint8_t size = opcodes.GetU8(&offset);
1116       Value::ValueType value_type = stack.back().GetValueType();
1117       switch (value_type) {
1118       case Value::eValueTypeHostAddress: {
1119         void *src = (void *)stack.back().GetScalar().ULongLong();
1120         intptr_t ptr;
1121         ::memcpy(&ptr, src, sizeof(void *));
1122         // I can't decide whether the size operand should apply to the bytes in
1123         // their
1124         // lldb-host endianness or the target endianness.. I doubt this'll ever
1125         // come up but I'll opt for assuming big endian regardless.
1126         switch (size) {
1127         case 1:
1128           ptr = ptr & 0xff;
1129           break;
1130         case 2:
1131           ptr = ptr & 0xffff;
1132           break;
1133         case 3:
1134           ptr = ptr & 0xffffff;
1135           break;
1136         case 4:
1137           ptr = ptr & 0xffffffff;
1138           break;
1139         // the casts are added to work around the case where intptr_t is a 32
1140         // bit quantity;
1141         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1142         // program.
1143         case 5:
1144           ptr = (intptr_t)ptr & 0xffffffffffULL;
1145           break;
1146         case 6:
1147           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1148           break;
1149         case 7:
1150           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1151           break;
1152         default:
1153           break;
1154         }
1155         stack.back().GetScalar() = ptr;
1156         stack.back().ClearContext();
1157       } break;
1158       case Value::eValueTypeLoadAddress:
1159         if (exe_ctx) {
1160           if (process) {
1161             lldb::addr_t pointer_addr =
1162                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1163             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1164             Status error;
1165             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1166                 size) {
1167               DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
1168                                       process->GetByteOrder(), size);
1169               lldb::offset_t addr_data_offset = 0;
1170               switch (size) {
1171               case 1:
1172                 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
1173                 break;
1174               case 2:
1175                 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
1176                 break;
1177               case 4:
1178                 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
1179                 break;
1180               case 8:
1181                 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
1182                 break;
1183               default:
1184                 stack.back().GetScalar() =
1185                     addr_data.GetAddress(&addr_data_offset);
1186               }
1187               stack.back().ClearContext();
1188             } else {
1189               if (error_ptr)
1190                 error_ptr->SetErrorStringWithFormat(
1191                     "Failed to dereference pointer from 0x%" PRIx64
1192                     " for DW_OP_deref: %s\n",
1193                     pointer_addr, error.AsCString());
1194               return false;
1195             }
1196           } else {
1197             if (error_ptr)
1198               error_ptr->SetErrorStringWithFormat(
1199                   "NULL process for DW_OP_deref.\n");
1200             return false;
1201           }
1202         } else {
1203           if (error_ptr)
1204             error_ptr->SetErrorStringWithFormat(
1205                 "NULL execution context for DW_OP_deref.\n");
1206           return false;
1207         }
1208         break;
1209 
1210       default:
1211         break;
1212       }
1213 
1214     } break;
1215 
1216     // OPCODE: DW_OP_xderef_size
1217     // OPERANDS: 1
1218     //  1 - uint8_t that specifies the size of the data to dereference.
1219     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1220     // the top of the stack is treated as an address. The second stack entry is
1221     // treated as an "address space identifier" for those architectures that
1222     // support multiple address spaces. The top two stack elements are popped,
1223     // a data item is retrieved through an implementation-defined address
1224     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1225     // operation, however, the size in bytes of the data retrieved from the
1226     // dereferenced address is specified by the single operand. This operand is
1227     // a 1-byte unsigned integral constant whose value may not be larger than
1228     // the size of an address on the target machine. The data retrieved is zero
1229     // extended to the size of an address on the target machine before being
1230     // pushed on the expression stack.
1231     case DW_OP_xderef_size:
1232       if (error_ptr)
1233         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1234       return false;
1235     // OPCODE: DW_OP_xderef
1236     // OPERANDS: none
1237     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1238     // the top of the stack is treated as an address. The second stack entry is
1239     // treated as an "address space identifier" for those architectures that
1240     // support multiple address spaces. The top two stack elements are popped,
1241     // a data item is retrieved through an implementation-defined address
1242     // calculation and pushed as the new stack top. The size of the data
1243     // retrieved from the dereferenced address is the size of an address on the
1244     // target machine.
1245     case DW_OP_xderef:
1246       if (error_ptr)
1247         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1248       return false;
1249 
1250     // All DW_OP_constXXX opcodes have a single operand as noted below:
1251     //
1252     // Opcode           Operand 1
1253     // DW_OP_const1u    1-byte unsigned integer constant DW_OP_const1s
1254     // 1-byte signed integer constant DW_OP_const2u    2-byte unsigned integer
1255     // constant DW_OP_const2s    2-byte signed integer constant DW_OP_const4u
1256     // 4-byte unsigned integer constant DW_OP_const4s    4-byte signed integer
1257     // constant DW_OP_const8u    8-byte unsigned integer constant DW_OP_const8s
1258     // 8-byte signed integer constant DW_OP_constu     unsigned LEB128 integer
1259     // constant DW_OP_consts     signed LEB128 integer constant
1260     case DW_OP_const1u:
1261       stack.push_back(Scalar((uint8_t)opcodes.GetU8(&offset)));
1262       break;
1263     case DW_OP_const1s:
1264       stack.push_back(Scalar((int8_t)opcodes.GetU8(&offset)));
1265       break;
1266     case DW_OP_const2u:
1267       stack.push_back(Scalar((uint16_t)opcodes.GetU16(&offset)));
1268       break;
1269     case DW_OP_const2s:
1270       stack.push_back(Scalar((int16_t)opcodes.GetU16(&offset)));
1271       break;
1272     case DW_OP_const4u:
1273       stack.push_back(Scalar((uint32_t)opcodes.GetU32(&offset)));
1274       break;
1275     case DW_OP_const4s:
1276       stack.push_back(Scalar((int32_t)opcodes.GetU32(&offset)));
1277       break;
1278     case DW_OP_const8u:
1279       stack.push_back(Scalar((uint64_t)opcodes.GetU64(&offset)));
1280       break;
1281     case DW_OP_const8s:
1282       stack.push_back(Scalar((int64_t)opcodes.GetU64(&offset)));
1283       break;
1284     case DW_OP_constu:
1285       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1286       break;
1287     case DW_OP_consts:
1288       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1289       break;
1290 
1291     // OPCODE: DW_OP_dup
1292     // OPERANDS: none
1293     // DESCRIPTION: duplicates the value at the top of the stack
1294     case DW_OP_dup:
1295       if (stack.empty()) {
1296         if (error_ptr)
1297           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1298         return false;
1299       } else
1300         stack.push_back(stack.back());
1301       break;
1302 
1303     // OPCODE: DW_OP_drop
1304     // OPERANDS: none
1305     // DESCRIPTION: pops the value at the top of the stack
1306     case DW_OP_drop:
1307       if (stack.empty()) {
1308         if (error_ptr)
1309           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1310         return false;
1311       } else
1312         stack.pop_back();
1313       break;
1314 
1315     // OPCODE: DW_OP_over
1316     // OPERANDS: none
1317     // DESCRIPTION: Duplicates the entry currently second in the stack at
1318     // the top of the stack.
1319     case DW_OP_over:
1320       if (stack.size() < 2) {
1321         if (error_ptr)
1322           error_ptr->SetErrorString(
1323               "Expression stack needs at least 2 items for DW_OP_over.");
1324         return false;
1325       } else
1326         stack.push_back(stack[stack.size() - 2]);
1327       break;
1328 
1329     // OPCODE: DW_OP_pick
1330     // OPERANDS: uint8_t index into the current stack
1331     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1332     // inclusive) is pushed on the stack
1333     case DW_OP_pick: {
1334       uint8_t pick_idx = opcodes.GetU8(&offset);
1335       if (pick_idx < stack.size())
1336         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1337       else {
1338         if (error_ptr)
1339           error_ptr->SetErrorStringWithFormat(
1340               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1341         return false;
1342       }
1343     } break;
1344 
1345     // OPCODE: DW_OP_swap
1346     // OPERANDS: none
1347     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1348     // of the stack becomes the second stack entry, and the second entry
1349     // becomes the top of the stack
1350     case DW_OP_swap:
1351       if (stack.size() < 2) {
1352         if (error_ptr)
1353           error_ptr->SetErrorString(
1354               "Expression stack needs at least 2 items for DW_OP_swap.");
1355         return false;
1356       } else {
1357         tmp = stack.back();
1358         stack.back() = stack[stack.size() - 2];
1359         stack[stack.size() - 2] = tmp;
1360       }
1361       break;
1362 
1363     // OPCODE: DW_OP_rot
1364     // OPERANDS: none
1365     // DESCRIPTION: Rotates the first three stack entries. The entry at
1366     // the top of the stack becomes the third stack entry, the second entry
1367     // becomes the top of the stack, and the third entry becomes the second
1368     // entry.
1369     case DW_OP_rot:
1370       if (stack.size() < 3) {
1371         if (error_ptr)
1372           error_ptr->SetErrorString(
1373               "Expression stack needs at least 3 items for DW_OP_rot.");
1374         return false;
1375       } else {
1376         size_t last_idx = stack.size() - 1;
1377         Value old_top = stack[last_idx];
1378         stack[last_idx] = stack[last_idx - 1];
1379         stack[last_idx - 1] = stack[last_idx - 2];
1380         stack[last_idx - 2] = old_top;
1381       }
1382       break;
1383 
1384     // OPCODE: DW_OP_abs
1385     // OPERANDS: none
1386     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1387     // value and pushes its absolute value. If the absolute value can not be
1388     // represented, the result is undefined.
1389     case DW_OP_abs:
1390       if (stack.empty()) {
1391         if (error_ptr)
1392           error_ptr->SetErrorString(
1393               "Expression stack needs at least 1 item for DW_OP_abs.");
1394         return false;
1395       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1396         if (error_ptr)
1397           error_ptr->SetErrorString(
1398               "Failed to take the absolute value of the first stack item.");
1399         return false;
1400       }
1401       break;
1402 
1403     // OPCODE: DW_OP_and
1404     // OPERANDS: none
1405     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1406     // operation on the two, and pushes the result.
1407     case DW_OP_and:
1408       if (stack.size() < 2) {
1409         if (error_ptr)
1410           error_ptr->SetErrorString(
1411               "Expression stack needs at least 2 items for DW_OP_and.");
1412         return false;
1413       } else {
1414         tmp = stack.back();
1415         stack.pop_back();
1416         stack.back().ResolveValue(exe_ctx) =
1417             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1418       }
1419       break;
1420 
1421     // OPCODE: DW_OP_div
1422     // OPERANDS: none
1423     // DESCRIPTION: pops the top two stack values, divides the former second
1424     // entry by the former top of the stack using signed division, and pushes
1425     // the result.
1426     case DW_OP_div:
1427       if (stack.size() < 2) {
1428         if (error_ptr)
1429           error_ptr->SetErrorString(
1430               "Expression stack needs at least 2 items for DW_OP_div.");
1431         return false;
1432       } else {
1433         tmp = stack.back();
1434         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1435           if (error_ptr)
1436             error_ptr->SetErrorString("Divide by zero.");
1437           return false;
1438         } else {
1439           stack.pop_back();
1440           stack.back() =
1441               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1442           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1443             if (error_ptr)
1444               error_ptr->SetErrorString("Divide failed.");
1445             return false;
1446           }
1447         }
1448       }
1449       break;
1450 
1451     // OPCODE: DW_OP_minus
1452     // OPERANDS: none
1453     // DESCRIPTION: pops the top two stack values, subtracts the former top
1454     // of the stack from the former second entry, and pushes the result.
1455     case DW_OP_minus:
1456       if (stack.size() < 2) {
1457         if (error_ptr)
1458           error_ptr->SetErrorString(
1459               "Expression stack needs at least 2 items for DW_OP_minus.");
1460         return false;
1461       } else {
1462         tmp = stack.back();
1463         stack.pop_back();
1464         stack.back().ResolveValue(exe_ctx) =
1465             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1466       }
1467       break;
1468 
1469     // OPCODE: DW_OP_mod
1470     // OPERANDS: none
1471     // DESCRIPTION: pops the top two stack values and pushes the result of
1472     // the calculation: former second stack entry modulo the former top of the
1473     // stack.
1474     case DW_OP_mod:
1475       if (stack.size() < 2) {
1476         if (error_ptr)
1477           error_ptr->SetErrorString(
1478               "Expression stack needs at least 2 items for DW_OP_mod.");
1479         return false;
1480       } else {
1481         tmp = stack.back();
1482         stack.pop_back();
1483         stack.back().ResolveValue(exe_ctx) =
1484             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1485       }
1486       break;
1487 
1488     // OPCODE: DW_OP_mul
1489     // OPERANDS: none
1490     // DESCRIPTION: pops the top two stack entries, multiplies them
1491     // together, and pushes the result.
1492     case DW_OP_mul:
1493       if (stack.size() < 2) {
1494         if (error_ptr)
1495           error_ptr->SetErrorString(
1496               "Expression stack needs at least 2 items for DW_OP_mul.");
1497         return false;
1498       } else {
1499         tmp = stack.back();
1500         stack.pop_back();
1501         stack.back().ResolveValue(exe_ctx) =
1502             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1503       }
1504       break;
1505 
1506     // OPCODE: DW_OP_neg
1507     // OPERANDS: none
1508     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1509     case DW_OP_neg:
1510       if (stack.empty()) {
1511         if (error_ptr)
1512           error_ptr->SetErrorString(
1513               "Expression stack needs at least 1 item for DW_OP_neg.");
1514         return false;
1515       } else {
1516         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1517           if (error_ptr)
1518             error_ptr->SetErrorString("Unary negate failed.");
1519           return false;
1520         }
1521       }
1522       break;
1523 
1524     // OPCODE: DW_OP_not
1525     // OPERANDS: none
1526     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1527     // complement
1528     case DW_OP_not:
1529       if (stack.empty()) {
1530         if (error_ptr)
1531           error_ptr->SetErrorString(
1532               "Expression stack needs at least 1 item for DW_OP_not.");
1533         return false;
1534       } else {
1535         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1536           if (error_ptr)
1537             error_ptr->SetErrorString("Logical NOT failed.");
1538           return false;
1539         }
1540       }
1541       break;
1542 
1543     // OPCODE: DW_OP_or
1544     // OPERANDS: none
1545     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1546     // operation on the two, and pushes the result.
1547     case DW_OP_or:
1548       if (stack.size() < 2) {
1549         if (error_ptr)
1550           error_ptr->SetErrorString(
1551               "Expression stack needs at least 2 items for DW_OP_or.");
1552         return false;
1553       } else {
1554         tmp = stack.back();
1555         stack.pop_back();
1556         stack.back().ResolveValue(exe_ctx) =
1557             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1558       }
1559       break;
1560 
1561     // OPCODE: DW_OP_plus
1562     // OPERANDS: none
1563     // DESCRIPTION: pops the top two stack entries, adds them together, and
1564     // pushes the result.
1565     case DW_OP_plus:
1566       if (stack.size() < 2) {
1567         if (error_ptr)
1568           error_ptr->SetErrorString(
1569               "Expression stack needs at least 2 items for DW_OP_plus.");
1570         return false;
1571       } else {
1572         tmp = stack.back();
1573         stack.pop_back();
1574         stack.back().GetScalar() += tmp.GetScalar();
1575       }
1576       break;
1577 
1578     // OPCODE: DW_OP_plus_uconst
1579     // OPERANDS: none
1580     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1581     // constant operand and pushes the result.
1582     case DW_OP_plus_uconst:
1583       if (stack.empty()) {
1584         if (error_ptr)
1585           error_ptr->SetErrorString(
1586               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1587         return false;
1588       } else {
1589         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1590         // Implicit conversion from a UINT to a Scalar...
1591         stack.back().GetScalar() += uconst_value;
1592         if (!stack.back().GetScalar().IsValid()) {
1593           if (error_ptr)
1594             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1595           return false;
1596         }
1597       }
1598       break;
1599 
1600     // OPCODE: DW_OP_shl
1601     // OPERANDS: none
1602     // DESCRIPTION:  pops the top two stack entries, shifts the former
1603     // second entry left by the number of bits specified by the former top of
1604     // the stack, and pushes the result.
1605     case DW_OP_shl:
1606       if (stack.size() < 2) {
1607         if (error_ptr)
1608           error_ptr->SetErrorString(
1609               "Expression stack needs at least 2 items for DW_OP_shl.");
1610         return false;
1611       } else {
1612         tmp = stack.back();
1613         stack.pop_back();
1614         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1615       }
1616       break;
1617 
1618     // OPCODE: DW_OP_shr
1619     // OPERANDS: none
1620     // DESCRIPTION: pops the top two stack entries, shifts the former second
1621     // entry right logically (filling with zero bits) by the number of bits
1622     // specified by the former top of the stack, and pushes the result.
1623     case DW_OP_shr:
1624       if (stack.size() < 2) {
1625         if (error_ptr)
1626           error_ptr->SetErrorString(
1627               "Expression stack needs at least 2 items for DW_OP_shr.");
1628         return false;
1629       } else {
1630         tmp = stack.back();
1631         stack.pop_back();
1632         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1633                 tmp.ResolveValue(exe_ctx))) {
1634           if (error_ptr)
1635             error_ptr->SetErrorString("DW_OP_shr failed.");
1636           return false;
1637         }
1638       }
1639       break;
1640 
1641     // OPCODE: DW_OP_shra
1642     // OPERANDS: none
1643     // DESCRIPTION: pops the top two stack entries, shifts the former second
1644     // entry right arithmetically (divide the magnitude by 2, keep the same
1645     // sign for the result) by the number of bits specified by the former top
1646     // of the stack, and pushes the result.
1647     case DW_OP_shra:
1648       if (stack.size() < 2) {
1649         if (error_ptr)
1650           error_ptr->SetErrorString(
1651               "Expression stack needs at least 2 items for DW_OP_shra.");
1652         return false;
1653       } else {
1654         tmp = stack.back();
1655         stack.pop_back();
1656         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1657       }
1658       break;
1659 
1660     // OPCODE: DW_OP_xor
1661     // OPERANDS: none
1662     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1663     // exclusive-or operation on the two, and pushes the result.
1664     case DW_OP_xor:
1665       if (stack.size() < 2) {
1666         if (error_ptr)
1667           error_ptr->SetErrorString(
1668               "Expression stack needs at least 2 items for DW_OP_xor.");
1669         return false;
1670       } else {
1671         tmp = stack.back();
1672         stack.pop_back();
1673         stack.back().ResolveValue(exe_ctx) =
1674             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1675       }
1676       break;
1677 
1678     // OPCODE: DW_OP_skip
1679     // OPERANDS: int16_t
1680     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1681     // signed integer constant. The 2-byte constant is the number of bytes of
1682     // the DWARF expression to skip forward or backward from the current
1683     // operation, beginning after the 2-byte constant.
1684     case DW_OP_skip: {
1685       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1686       lldb::offset_t new_offset = offset + skip_offset;
1687       if (opcodes.ValidOffset(new_offset))
1688         offset = new_offset;
1689       else {
1690         if (error_ptr)
1691           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1692         return false;
1693       }
1694     } break;
1695 
1696     // OPCODE: DW_OP_bra
1697     // OPERANDS: int16_t
1698     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1699     // signed integer constant. This operation pops the top of stack. If the
1700     // value popped is not the constant 0, the 2-byte constant operand is the
1701     // number of bytes of the DWARF expression to skip forward or backward from
1702     // the current operation, beginning after the 2-byte constant.
1703     case DW_OP_bra:
1704       if (stack.empty()) {
1705         if (error_ptr)
1706           error_ptr->SetErrorString(
1707               "Expression stack needs at least 1 item for DW_OP_bra.");
1708         return false;
1709       } else {
1710         tmp = stack.back();
1711         stack.pop_back();
1712         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1713         Scalar zero(0);
1714         if (tmp.ResolveValue(exe_ctx) != zero) {
1715           lldb::offset_t new_offset = offset + bra_offset;
1716           if (opcodes.ValidOffset(new_offset))
1717             offset = new_offset;
1718           else {
1719             if (error_ptr)
1720               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1721             return false;
1722           }
1723         }
1724       }
1725       break;
1726 
1727     // OPCODE: DW_OP_eq
1728     // OPERANDS: none
1729     // DESCRIPTION: pops the top two stack values, compares using the
1730     // equals (==) operator.
1731     // STACK RESULT: push the constant value 1 onto the stack if the result
1732     // of the operation is true or the constant value 0 if the result of the
1733     // operation is false.
1734     case DW_OP_eq:
1735       if (stack.size() < 2) {
1736         if (error_ptr)
1737           error_ptr->SetErrorString(
1738               "Expression stack needs at least 2 items for DW_OP_eq.");
1739         return false;
1740       } else {
1741         tmp = stack.back();
1742         stack.pop_back();
1743         stack.back().ResolveValue(exe_ctx) =
1744             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1745       }
1746       break;
1747 
1748     // OPCODE: DW_OP_ge
1749     // OPERANDS: none
1750     // DESCRIPTION: pops the top two stack values, compares using the
1751     // greater than or equal to (>=) operator.
1752     // STACK RESULT: push the constant value 1 onto the stack if the result
1753     // of the operation is true or the constant value 0 if the result of the
1754     // operation is false.
1755     case DW_OP_ge:
1756       if (stack.size() < 2) {
1757         if (error_ptr)
1758           error_ptr->SetErrorString(
1759               "Expression stack needs at least 2 items for DW_OP_ge.");
1760         return false;
1761       } else {
1762         tmp = stack.back();
1763         stack.pop_back();
1764         stack.back().ResolveValue(exe_ctx) =
1765             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1766       }
1767       break;
1768 
1769     // OPCODE: DW_OP_gt
1770     // OPERANDS: none
1771     // DESCRIPTION: pops the top two stack values, compares using the
1772     // greater than (>) operator.
1773     // STACK RESULT: push the constant value 1 onto the stack if the result
1774     // of the operation is true or the constant value 0 if the result of the
1775     // operation is false.
1776     case DW_OP_gt:
1777       if (stack.size() < 2) {
1778         if (error_ptr)
1779           error_ptr->SetErrorString(
1780               "Expression stack needs at least 2 items for DW_OP_gt.");
1781         return false;
1782       } else {
1783         tmp = stack.back();
1784         stack.pop_back();
1785         stack.back().ResolveValue(exe_ctx) =
1786             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1787       }
1788       break;
1789 
1790     // OPCODE: DW_OP_le
1791     // OPERANDS: none
1792     // DESCRIPTION: pops the top two stack values, compares using the
1793     // less than or equal to (<=) operator.
1794     // STACK RESULT: push the constant value 1 onto the stack if the result
1795     // of the operation is true or the constant value 0 if the result of the
1796     // operation is false.
1797     case DW_OP_le:
1798       if (stack.size() < 2) {
1799         if (error_ptr)
1800           error_ptr->SetErrorString(
1801               "Expression stack needs at least 2 items for DW_OP_le.");
1802         return false;
1803       } else {
1804         tmp = stack.back();
1805         stack.pop_back();
1806         stack.back().ResolveValue(exe_ctx) =
1807             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1808       }
1809       break;
1810 
1811     // OPCODE: DW_OP_lt
1812     // OPERANDS: none
1813     // DESCRIPTION: pops the top two stack values, compares using the
1814     // less than (<) operator.
1815     // STACK RESULT: push the constant value 1 onto the stack if the result
1816     // of the operation is true or the constant value 0 if the result of the
1817     // operation is false.
1818     case DW_OP_lt:
1819       if (stack.size() < 2) {
1820         if (error_ptr)
1821           error_ptr->SetErrorString(
1822               "Expression stack needs at least 2 items for DW_OP_lt.");
1823         return false;
1824       } else {
1825         tmp = stack.back();
1826         stack.pop_back();
1827         stack.back().ResolveValue(exe_ctx) =
1828             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1829       }
1830       break;
1831 
1832     // OPCODE: DW_OP_ne
1833     // OPERANDS: none
1834     // DESCRIPTION: pops the top two stack values, compares using the
1835     // not equal (!=) operator.
1836     // STACK RESULT: push the constant value 1 onto the stack if the result
1837     // of the operation is true or the constant value 0 if the result of the
1838     // operation is false.
1839     case DW_OP_ne:
1840       if (stack.size() < 2) {
1841         if (error_ptr)
1842           error_ptr->SetErrorString(
1843               "Expression stack needs at least 2 items for DW_OP_ne.");
1844         return false;
1845       } else {
1846         tmp = stack.back();
1847         stack.pop_back();
1848         stack.back().ResolveValue(exe_ctx) =
1849             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1850       }
1851       break;
1852 
1853     // OPCODE: DW_OP_litn
1854     // OPERANDS: none
1855     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1856     // STACK RESULT: push the unsigned literal constant value onto the top
1857     // of the stack.
1858     case DW_OP_lit0:
1859     case DW_OP_lit1:
1860     case DW_OP_lit2:
1861     case DW_OP_lit3:
1862     case DW_OP_lit4:
1863     case DW_OP_lit5:
1864     case DW_OP_lit6:
1865     case DW_OP_lit7:
1866     case DW_OP_lit8:
1867     case DW_OP_lit9:
1868     case DW_OP_lit10:
1869     case DW_OP_lit11:
1870     case DW_OP_lit12:
1871     case DW_OP_lit13:
1872     case DW_OP_lit14:
1873     case DW_OP_lit15:
1874     case DW_OP_lit16:
1875     case DW_OP_lit17:
1876     case DW_OP_lit18:
1877     case DW_OP_lit19:
1878     case DW_OP_lit20:
1879     case DW_OP_lit21:
1880     case DW_OP_lit22:
1881     case DW_OP_lit23:
1882     case DW_OP_lit24:
1883     case DW_OP_lit25:
1884     case DW_OP_lit26:
1885     case DW_OP_lit27:
1886     case DW_OP_lit28:
1887     case DW_OP_lit29:
1888     case DW_OP_lit30:
1889     case DW_OP_lit31:
1890       stack.push_back(Scalar((uint64_t)(op - DW_OP_lit0)));
1891       break;
1892 
1893     // OPCODE: DW_OP_regN
1894     // OPERANDS: none
1895     // DESCRIPTION: Push the value in register n on the top of the stack.
1896     case DW_OP_reg0:
1897     case DW_OP_reg1:
1898     case DW_OP_reg2:
1899     case DW_OP_reg3:
1900     case DW_OP_reg4:
1901     case DW_OP_reg5:
1902     case DW_OP_reg6:
1903     case DW_OP_reg7:
1904     case DW_OP_reg8:
1905     case DW_OP_reg9:
1906     case DW_OP_reg10:
1907     case DW_OP_reg11:
1908     case DW_OP_reg12:
1909     case DW_OP_reg13:
1910     case DW_OP_reg14:
1911     case DW_OP_reg15:
1912     case DW_OP_reg16:
1913     case DW_OP_reg17:
1914     case DW_OP_reg18:
1915     case DW_OP_reg19:
1916     case DW_OP_reg20:
1917     case DW_OP_reg21:
1918     case DW_OP_reg22:
1919     case DW_OP_reg23:
1920     case DW_OP_reg24:
1921     case DW_OP_reg25:
1922     case DW_OP_reg26:
1923     case DW_OP_reg27:
1924     case DW_OP_reg28:
1925     case DW_OP_reg29:
1926     case DW_OP_reg30:
1927     case DW_OP_reg31: {
1928       reg_num = op - DW_OP_reg0;
1929 
1930       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1931         stack.push_back(tmp);
1932       else
1933         return false;
1934     } break;
1935     // OPCODE: DW_OP_regx
1936     // OPERANDS:
1937     //      ULEB128 literal operand that encodes the register.
1938     // DESCRIPTION: Push the value in register on the top of the stack.
1939     case DW_OP_regx: {
1940       reg_num = opcodes.GetULEB128(&offset);
1941       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1942         stack.push_back(tmp);
1943       else
1944         return false;
1945     } break;
1946 
1947     // OPCODE: DW_OP_bregN
1948     // OPERANDS:
1949     //      SLEB128 offset from register N
1950     // DESCRIPTION: Value is in memory at the address specified by register
1951     // N plus an offset.
1952     case DW_OP_breg0:
1953     case DW_OP_breg1:
1954     case DW_OP_breg2:
1955     case DW_OP_breg3:
1956     case DW_OP_breg4:
1957     case DW_OP_breg5:
1958     case DW_OP_breg6:
1959     case DW_OP_breg7:
1960     case DW_OP_breg8:
1961     case DW_OP_breg9:
1962     case DW_OP_breg10:
1963     case DW_OP_breg11:
1964     case DW_OP_breg12:
1965     case DW_OP_breg13:
1966     case DW_OP_breg14:
1967     case DW_OP_breg15:
1968     case DW_OP_breg16:
1969     case DW_OP_breg17:
1970     case DW_OP_breg18:
1971     case DW_OP_breg19:
1972     case DW_OP_breg20:
1973     case DW_OP_breg21:
1974     case DW_OP_breg22:
1975     case DW_OP_breg23:
1976     case DW_OP_breg24:
1977     case DW_OP_breg25:
1978     case DW_OP_breg26:
1979     case DW_OP_breg27:
1980     case DW_OP_breg28:
1981     case DW_OP_breg29:
1982     case DW_OP_breg30:
1983     case DW_OP_breg31: {
1984       reg_num = op - DW_OP_breg0;
1985 
1986       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
1987                                     tmp)) {
1988         int64_t breg_offset = opcodes.GetSLEB128(&offset);
1989         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
1990         tmp.ClearContext();
1991         stack.push_back(tmp);
1992         stack.back().SetValueType(Value::eValueTypeLoadAddress);
1993       } else
1994         return false;
1995     } break;
1996     // OPCODE: DW_OP_bregx
1997     // OPERANDS: 2
1998     //      ULEB128 literal operand that encodes the register.
1999     //      SLEB128 offset from register N
2000     // DESCRIPTION: Value is in memory at the address specified by register
2001     // N plus an offset.
2002     case DW_OP_bregx: {
2003       reg_num = opcodes.GetULEB128(&offset);
2004 
2005       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2006                                     tmp)) {
2007         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2008         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2009         tmp.ClearContext();
2010         stack.push_back(tmp);
2011         stack.back().SetValueType(Value::eValueTypeLoadAddress);
2012       } else
2013         return false;
2014     } break;
2015 
2016     case DW_OP_fbreg:
2017       if (exe_ctx) {
2018         if (frame) {
2019           Scalar value;
2020           if (frame->GetFrameBaseValue(value, error_ptr)) {
2021             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2022             value += fbreg_offset;
2023             stack.push_back(value);
2024             stack.back().SetValueType(Value::eValueTypeLoadAddress);
2025           } else
2026             return false;
2027         } else {
2028           if (error_ptr)
2029             error_ptr->SetErrorString(
2030                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2031           return false;
2032         }
2033       } else {
2034         if (error_ptr)
2035           error_ptr->SetErrorStringWithFormat(
2036               "NULL execution context for DW_OP_fbreg.\n");
2037         return false;
2038       }
2039 
2040       break;
2041 
2042     // OPCODE: DW_OP_nop
2043     // OPERANDS: none
2044     // DESCRIPTION: A place holder. It has no effect on the location stack
2045     // or any of its values.
2046     case DW_OP_nop:
2047       break;
2048 
2049     // OPCODE: DW_OP_piece
2050     // OPERANDS: 1
2051     //      ULEB128: byte size of the piece
2052     // DESCRIPTION: The operand describes the size in bytes of the piece of
2053     // the object referenced by the DWARF expression whose result is at the top
2054     // of the stack. If the piece is located in a register, but does not occupy
2055     // the entire register, the placement of the piece within that register is
2056     // defined by the ABI.
2057     //
2058     // Many compilers store a single variable in sets of registers, or store a
2059     // variable partially in memory and partially in registers. DW_OP_piece
2060     // provides a way of describing how large a part of a variable a particular
2061     // DWARF expression refers to.
2062     case DW_OP_piece: {
2063       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2064 
2065       if (piece_byte_size > 0) {
2066         Value curr_piece;
2067 
2068         if (stack.empty()) {
2069           // In a multi-piece expression, this means that the current piece is
2070           // not available. Fill with zeros for now by resizing the data and
2071           // appending it
2072           curr_piece.ResizeData(piece_byte_size);
2073           // Note that "0" is not a correct value for the unknown bits.
2074           // It would be better to also return a mask of valid bits together
2075           // with the expression result, so the debugger can print missing
2076           // members as "<optimized out>" or something.
2077           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2078           pieces.AppendDataToHostBuffer(curr_piece);
2079         } else {
2080           Status error;
2081           // Extract the current piece into "curr_piece"
2082           Value curr_piece_source_value(stack.back());
2083           stack.pop_back();
2084 
2085           const Value::ValueType curr_piece_source_value_type =
2086               curr_piece_source_value.GetValueType();
2087           switch (curr_piece_source_value_type) {
2088           case Value::eValueTypeLoadAddress:
2089             if (process) {
2090               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2091                 lldb::addr_t load_addr =
2092                     curr_piece_source_value.GetScalar().ULongLong(
2093                         LLDB_INVALID_ADDRESS);
2094                 if (process->ReadMemory(
2095                         load_addr, curr_piece.GetBuffer().GetBytes(),
2096                         piece_byte_size, error) != piece_byte_size) {
2097                   if (error_ptr)
2098                     error_ptr->SetErrorStringWithFormat(
2099                         "failed to read memory DW_OP_piece(%" PRIu64
2100                         ") from 0x%" PRIx64,
2101                         piece_byte_size, load_addr);
2102                   return false;
2103                 }
2104               } else {
2105                 if (error_ptr)
2106                   error_ptr->SetErrorStringWithFormat(
2107                       "failed to resize the piece memory buffer for "
2108                       "DW_OP_piece(%" PRIu64 ")",
2109                       piece_byte_size);
2110                 return false;
2111               }
2112             }
2113             break;
2114 
2115           case Value::eValueTypeFileAddress:
2116           case Value::eValueTypeHostAddress:
2117             if (error_ptr) {
2118               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2119                   LLDB_INVALID_ADDRESS);
2120               error_ptr->SetErrorStringWithFormat(
2121                   "failed to read memory DW_OP_piece(%" PRIu64
2122                   ") from %s address 0x%" PRIx64,
2123                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2124                                            Value::eValueTypeFileAddress
2125                                        ? "file"
2126                                        : "host",
2127                   addr);
2128             }
2129             return false;
2130 
2131           case Value::eValueTypeScalar: {
2132             uint32_t bit_size = piece_byte_size * 8;
2133             uint32_t bit_offset = 0;
2134             Scalar &scalar = curr_piece_source_value.GetScalar();
2135             if (!scalar.ExtractBitfield(
2136                     bit_size, bit_offset)) {
2137               if (error_ptr)
2138                 error_ptr->SetErrorStringWithFormat(
2139                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2140                     " byte scalar value.",
2141                     piece_byte_size,
2142                     (uint64_t)curr_piece_source_value.GetScalar()
2143                         .GetByteSize());
2144               return false;
2145             }
2146             // Create curr_piece with bit_size. By default Scalar
2147             // grows to the nearest host integer type.
2148             llvm::APInt fail_value(1, 0, false);
2149             llvm::APInt ap_int = scalar.UInt128(fail_value);
2150             assert(ap_int.getBitWidth() >= bit_size);
2151             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2152                                          ap_int.getNumWords()};
2153             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2154           } break;
2155 
2156           case Value::eValueTypeVector: {
2157             if (curr_piece_source_value.GetVector().length >= piece_byte_size)
2158               curr_piece_source_value.GetVector().length = piece_byte_size;
2159             else {
2160               if (error_ptr)
2161                 error_ptr->SetErrorStringWithFormat(
2162                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2163                     " byte vector value.",
2164                     piece_byte_size,
2165                     (uint64_t)curr_piece_source_value.GetVector().length);
2166               return false;
2167             }
2168           } break;
2169           }
2170 
2171           // Check if this is the first piece?
2172           if (op_piece_offset == 0) {
2173             // This is the first piece, we should push it back onto the stack
2174             // so subsequent pieces will be able to access this piece and add
2175             // to it.
2176             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2177               if (error_ptr)
2178                 error_ptr->SetErrorString("failed to append piece data");
2179               return false;
2180             }
2181           } else {
2182             // If this is the second or later piece there should be a value on
2183             // the stack.
2184             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2185               if (error_ptr)
2186                 error_ptr->SetErrorStringWithFormat(
2187                     "DW_OP_piece for offset %" PRIu64
2188                     " but top of stack is of size %" PRIu64,
2189                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2190               return false;
2191             }
2192 
2193             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2194               if (error_ptr)
2195                 error_ptr->SetErrorString("failed to append piece data");
2196               return false;
2197             }
2198           }
2199         }
2200         op_piece_offset += piece_byte_size;
2201       }
2202     } break;
2203 
2204     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2205       if (stack.size() < 1) {
2206         if (error_ptr)
2207           error_ptr->SetErrorString(
2208               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2209         return false;
2210       } else {
2211         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2212         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2213         switch (stack.back().GetValueType()) {
2214         case Value::eValueTypeScalar: {
2215           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2216                                                         piece_bit_offset)) {
2217             if (error_ptr)
2218               error_ptr->SetErrorStringWithFormat(
2219                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2220                   " bit offset from a %" PRIu64 " bit scalar value.",
2221                   piece_bit_size, piece_bit_offset,
2222                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2223             return false;
2224           }
2225         } break;
2226 
2227         case Value::eValueTypeFileAddress:
2228         case Value::eValueTypeLoadAddress:
2229         case Value::eValueTypeHostAddress:
2230           if (error_ptr) {
2231             error_ptr->SetErrorStringWithFormat(
2232                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2233                 ", bit_offset = %" PRIu64 ") from an address value.",
2234                 piece_bit_size, piece_bit_offset);
2235           }
2236           return false;
2237 
2238         case Value::eValueTypeVector:
2239           if (error_ptr) {
2240             error_ptr->SetErrorStringWithFormat(
2241                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2242                 ", bit_offset = %" PRIu64 ") from a vector value.",
2243                 piece_bit_size, piece_bit_offset);
2244           }
2245           return false;
2246         }
2247       }
2248       break;
2249 
2250     // OPCODE: DW_OP_push_object_address
2251     // OPERANDS: none
2252     // DESCRIPTION: Pushes the address of the object currently being
2253     // evaluated as part of evaluation of a user presented expression. This
2254     // object may correspond to an independent variable described by its own
2255     // DIE or it may be a component of an array, structure, or class whose
2256     // address has been dynamically determined by an earlier step during user
2257     // expression evaluation.
2258     case DW_OP_push_object_address:
2259       if (object_address_ptr)
2260         stack.push_back(*object_address_ptr);
2261       else {
2262         if (error_ptr)
2263           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2264                                     "specifying an object address");
2265         return false;
2266       }
2267       break;
2268 
2269     // OPCODE: DW_OP_call2
2270     // OPERANDS:
2271     //      uint16_t compile unit relative offset of a DIE
2272     // DESCRIPTION: Performs subroutine calls during evaluation
2273     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2274     // debugging information entry in the current compilation unit.
2275     //
2276     // Operand interpretation is exactly like that for DW_FORM_ref2.
2277     //
2278     // This operation transfers control of DWARF expression evaluation to the
2279     // DW_AT_location attribute of the referenced DIE. If there is no such
2280     // attribute, then there is no effect. Execution of the DWARF expression of
2281     // a DW_AT_location attribute may add to and/or remove from values on the
2282     // stack. Execution returns to the point following the call when the end of
2283     // the attribute is reached. Values on the stack at the time of the call
2284     // may be used as parameters by the called expression and values left on
2285     // the stack by the called expression may be used as return values by prior
2286     // agreement between the calling and called expressions.
2287     case DW_OP_call2:
2288       if (error_ptr)
2289         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2290       return false;
2291     // OPCODE: DW_OP_call4
2292     // OPERANDS: 1
2293     //      uint32_t compile unit relative offset of a DIE
2294     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2295     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2296     // a debugging information entry in  the current compilation unit.
2297     //
2298     // Operand interpretation DW_OP_call4 is exactly like that for
2299     // DW_FORM_ref4.
2300     //
2301     // This operation transfers control of DWARF expression evaluation to the
2302     // DW_AT_location attribute of the referenced DIE. If there is no such
2303     // attribute, then there is no effect. Execution of the DWARF expression of
2304     // a DW_AT_location attribute may add to and/or remove from values on the
2305     // stack. Execution returns to the point following the call when the end of
2306     // the attribute is reached. Values on the stack at the time of the call
2307     // may be used as parameters by the called expression and values left on
2308     // the stack by the called expression may be used as return values by prior
2309     // agreement between the calling and called expressions.
2310     case DW_OP_call4:
2311       if (error_ptr)
2312         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2313       return false;
2314 
2315     // OPCODE: DW_OP_stack_value
2316     // OPERANDS: None
2317     // DESCRIPTION: Specifies that the object does not exist in memory but
2318     // rather is a constant value.  The value from the top of the stack is the
2319     // value to be used.  This is the actual object value and not the location.
2320     case DW_OP_stack_value:
2321       stack.back().SetValueType(Value::eValueTypeScalar);
2322       break;
2323 
2324     // OPCODE: DW_OP_convert
2325     // OPERANDS: 1
2326     //      A ULEB128 that is either a DIE offset of a
2327     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2328     //
2329     // DESCRIPTION: Pop the top stack element, convert it to a
2330     // different type, and push the result.
2331     case DW_OP_convert: {
2332       if (stack.size() < 1) {
2333         if (error_ptr)
2334           error_ptr->SetErrorString(
2335               "Expression stack needs at least 1 item for DW_OP_convert.");
2336         return false;
2337       }
2338       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2339       Scalar::Type type = Scalar::e_void;
2340       uint64_t bit_size;
2341       if (die_offset == 0) {
2342         // The generic type has the size of an address on the target
2343         // machine and an unspecified signedness. Scalar has no
2344         // "unspecified signedness", so we use unsigned types.
2345         if (!module_sp) {
2346           if (error_ptr)
2347             error_ptr->SetErrorString("No module");
2348           return false;
2349         }
2350         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2351         if (!bit_size) {
2352           if (error_ptr)
2353             error_ptr->SetErrorString("unspecified architecture");
2354           return false;
2355         }
2356         type = Scalar::GetBestTypeForBitSize(bit_size, false);
2357       } else {
2358         // Retrieve the type DIE that the value is being converted to.
2359         // FIXME: the constness has annoying ripple effects.
2360         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2361         if (!die) {
2362           if (error_ptr)
2363             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2364           return false;
2365         }
2366         uint64_t encoding =
2367             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2368         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2369         if (!bit_size)
2370           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2371         if (!bit_size) {
2372           if (error_ptr)
2373             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2374           return false;
2375         }
2376         switch (encoding) {
2377         case DW_ATE_signed:
2378         case DW_ATE_signed_char:
2379           type = Scalar::GetBestTypeForBitSize(bit_size, true);
2380           break;
2381         case DW_ATE_unsigned:
2382         case DW_ATE_unsigned_char:
2383           type = Scalar::GetBestTypeForBitSize(bit_size, false);
2384           break;
2385         default:
2386           if (error_ptr)
2387             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2388           return false;
2389         }
2390       }
2391       if (type == Scalar::e_void) {
2392         if (error_ptr)
2393           error_ptr->SetErrorString("Unsupported pointer size");
2394         return false;
2395       }
2396       Scalar &top = stack.back().ResolveValue(exe_ctx);
2397       top.TruncOrExtendTo(type, bit_size);
2398       break;
2399     }
2400 
2401     // OPCODE: DW_OP_call_frame_cfa
2402     // OPERANDS: None
2403     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2404     // the canonical frame address consistent with the call frame information
2405     // located in .debug_frame (or in the FDEs of the eh_frame section).
2406     case DW_OP_call_frame_cfa:
2407       if (frame) {
2408         // Note that we don't have to parse FDEs because this DWARF expression
2409         // is commonly evaluated with a valid stack frame.
2410         StackID id = frame->GetStackID();
2411         addr_t cfa = id.GetCallFrameAddress();
2412         if (cfa != LLDB_INVALID_ADDRESS) {
2413           stack.push_back(Scalar(cfa));
2414           stack.back().SetValueType(Value::eValueTypeLoadAddress);
2415         } else if (error_ptr)
2416           error_ptr->SetErrorString("Stack frame does not include a canonical "
2417                                     "frame address for DW_OP_call_frame_cfa "
2418                                     "opcode.");
2419       } else {
2420         if (error_ptr)
2421           error_ptr->SetErrorString("Invalid stack frame in context for "
2422                                     "DW_OP_call_frame_cfa opcode.");
2423         return false;
2424       }
2425       break;
2426 
2427     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2428     // opcode, DW_OP_GNU_push_tls_address)
2429     // OPERANDS: none
2430     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2431     // an address in the current thread's thread-local storage block, and
2432     // pushes it on the stack.
2433     case DW_OP_form_tls_address:
2434     case DW_OP_GNU_push_tls_address: {
2435       if (stack.size() < 1) {
2436         if (error_ptr) {
2437           if (op == DW_OP_form_tls_address)
2438             error_ptr->SetErrorString(
2439                 "DW_OP_form_tls_address needs an argument.");
2440           else
2441             error_ptr->SetErrorString(
2442                 "DW_OP_GNU_push_tls_address needs an argument.");
2443         }
2444         return false;
2445       }
2446 
2447       if (!exe_ctx || !module_sp) {
2448         if (error_ptr)
2449           error_ptr->SetErrorString("No context to evaluate TLS within.");
2450         return false;
2451       }
2452 
2453       Thread *thread = exe_ctx->GetThreadPtr();
2454       if (!thread) {
2455         if (error_ptr)
2456           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2457         return false;
2458       }
2459 
2460       // Lookup the TLS block address for this thread and module.
2461       const addr_t tls_file_addr =
2462           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2463       const addr_t tls_load_addr =
2464           thread->GetThreadLocalData(module_sp, tls_file_addr);
2465 
2466       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2467         if (error_ptr)
2468           error_ptr->SetErrorString(
2469               "No TLS data currently exists for this thread.");
2470         return false;
2471       }
2472 
2473       stack.back().GetScalar() = tls_load_addr;
2474       stack.back().SetValueType(Value::eValueTypeLoadAddress);
2475     } break;
2476 
2477     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2478     // OPERANDS: 1
2479     //      ULEB128: index to the .debug_addr section
2480     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2481     // section with the base address specified by the DW_AT_addr_base attribute
2482     // and the 0 based index is the ULEB128 encoded index.
2483     case DW_OP_addrx:
2484     case DW_OP_GNU_addr_index: {
2485       if (!dwarf_cu) {
2486         if (error_ptr)
2487           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2488                                     "compile unit being specified");
2489         return false;
2490       }
2491       uint64_t index = opcodes.GetULEB128(&offset);
2492       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2493       stack.push_back(Scalar(value));
2494       stack.back().SetValueType(Value::eValueTypeFileAddress);
2495     } break;
2496 
2497     // OPCODE: DW_OP_GNU_const_index
2498     // OPERANDS: 1
2499     //      ULEB128: index to the .debug_addr section
2500     // DESCRIPTION: Pushes an constant with the size of a machine address to
2501     // the stack from the .debug_addr section with the base address specified
2502     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2503     // encoded index.
2504     case DW_OP_GNU_const_index: {
2505       if (!dwarf_cu) {
2506         if (error_ptr)
2507           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2508                                     "compile unit being specified");
2509         return false;
2510       }
2511       uint64_t index = opcodes.GetULEB128(&offset);
2512       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2513       stack.push_back(Scalar(value));
2514     } break;
2515 
2516     case DW_OP_entry_value: {
2517       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2518                                       error_ptr, log)) {
2519         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2520                     DW_OP_value_to_name(op));
2521         return false;
2522       }
2523       break;
2524     }
2525 
2526     default:
2527       LLDB_LOGF(log, "Unhandled opcode %s in DWARFExpression.",
2528                 DW_OP_value_to_name(op));
2529       break;
2530     }
2531   }
2532 
2533   if (stack.empty()) {
2534     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2535     // or DW_OP_bit_piece opcodes
2536     if (pieces.GetBuffer().GetByteSize()) {
2537       result = pieces;
2538     } else {
2539       if (error_ptr)
2540         error_ptr->SetErrorString("Stack empty after evaluation.");
2541       return false;
2542     }
2543   } else {
2544     if (log && log->GetVerbose()) {
2545       size_t count = stack.size();
2546       LLDB_LOGF(log, "Stack after operation has %" PRIu64 " values:",
2547                 (uint64_t)count);
2548       for (size_t i = 0; i < count; ++i) {
2549         StreamString new_value;
2550         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2551         stack[i].Dump(&new_value);
2552         LLDB_LOGF(log, "  %s", new_value.GetData());
2553       }
2554     }
2555     result = stack.back();
2556   }
2557   return true; // Return true on success
2558 }
2559 
2560 static bool print_dwarf_exp_op(Stream &s, const DataExtractor &data,
2561                                lldb::offset_t *offset_ptr, int address_size,
2562                                int dwarf_ref_size) {
2563   uint8_t opcode = data.GetU8(offset_ptr);
2564   DRC_class opcode_class;
2565   uint64_t uint;
2566   int64_t sint;
2567 
2568   int size;
2569 
2570   opcode_class = DW_OP_value_to_class(opcode) & (~DRC_DWARFv3);
2571 
2572   s.Printf("%s ", DW_OP_value_to_name(opcode));
2573 
2574   /* Does this take zero parameters?  If so we can shortcut this function.  */
2575   if (opcode_class == DRC_ZEROOPERANDS)
2576     return true;
2577 
2578   if (opcode_class == DRC_TWOOPERANDS && opcode == DW_OP_bregx) {
2579     uint = data.GetULEB128(offset_ptr);
2580     sint = data.GetSLEB128(offset_ptr);
2581     s.Printf("%" PRIu64 " %" PRIi64, uint, sint);
2582     return true;
2583   }
2584   if (opcode_class == DRC_TWOOPERANDS && opcode == DW_OP_entry_value) {
2585     uint = data.GetULEB128(offset_ptr);
2586     s.Printf("%" PRIu64 " ", uint);
2587     return true;
2588   }
2589   if (opcode_class != DRC_ONEOPERAND) {
2590     s.Printf("UNKNOWN OP %u", opcode);
2591     return false;
2592   }
2593 
2594   switch (opcode) {
2595   case DW_OP_addr:
2596     size = address_size;
2597     break;
2598   case DW_OP_const1u:
2599     size = 1;
2600     break;
2601   case DW_OP_const1s:
2602     size = -1;
2603     break;
2604   case DW_OP_const2u:
2605     size = 2;
2606     break;
2607   case DW_OP_const2s:
2608     size = -2;
2609     break;
2610   case DW_OP_const4u:
2611     size = 4;
2612     break;
2613   case DW_OP_const4s:
2614     size = -4;
2615     break;
2616   case DW_OP_const8u:
2617     size = 8;
2618     break;
2619   case DW_OP_const8s:
2620     size = -8;
2621     break;
2622   case DW_OP_constu:
2623     size = 128;
2624     break;
2625   case DW_OP_consts:
2626     size = -128;
2627     break;
2628   case DW_OP_fbreg:
2629     size = -128;
2630     break;
2631   case DW_OP_breg0:
2632   case DW_OP_breg1:
2633   case DW_OP_breg2:
2634   case DW_OP_breg3:
2635   case DW_OP_breg4:
2636   case DW_OP_breg5:
2637   case DW_OP_breg6:
2638   case DW_OP_breg7:
2639   case DW_OP_breg8:
2640   case DW_OP_breg9:
2641   case DW_OP_breg10:
2642   case DW_OP_breg11:
2643   case DW_OP_breg12:
2644   case DW_OP_breg13:
2645   case DW_OP_breg14:
2646   case DW_OP_breg15:
2647   case DW_OP_breg16:
2648   case DW_OP_breg17:
2649   case DW_OP_breg18:
2650   case DW_OP_breg19:
2651   case DW_OP_breg20:
2652   case DW_OP_breg21:
2653   case DW_OP_breg22:
2654   case DW_OP_breg23:
2655   case DW_OP_breg24:
2656   case DW_OP_breg25:
2657   case DW_OP_breg26:
2658   case DW_OP_breg27:
2659   case DW_OP_breg28:
2660   case DW_OP_breg29:
2661   case DW_OP_breg30:
2662   case DW_OP_breg31:
2663     size = -128;
2664     break;
2665   case DW_OP_pick:
2666   case DW_OP_deref_size:
2667   case DW_OP_xderef_size:
2668     size = 1;
2669     break;
2670   case DW_OP_skip:
2671   case DW_OP_bra:
2672     size = -2;
2673     break;
2674   case DW_OP_call2:
2675     size = 2;
2676     break;
2677   case DW_OP_call4:
2678     size = 4;
2679     break;
2680   case DW_OP_call_ref:
2681     size = dwarf_ref_size;
2682     break;
2683   case DW_OP_addrx:
2684   case DW_OP_piece:
2685   case DW_OP_plus_uconst:
2686   case DW_OP_regx:
2687   case DW_OP_GNU_addr_index:
2688   case DW_OP_GNU_const_index:
2689   case DW_OP_entry_value:
2690     size = 128;
2691     break;
2692   default:
2693     s.Printf("UNKNOWN ONE-OPERAND OPCODE, #%u", opcode);
2694     return false;
2695   }
2696 
2697   switch (size) {
2698   case -1:
2699     sint = (int8_t)data.GetU8(offset_ptr);
2700     s.Printf("%+" PRIi64, sint);
2701     break;
2702   case -2:
2703     sint = (int16_t)data.GetU16(offset_ptr);
2704     s.Printf("%+" PRIi64, sint);
2705     break;
2706   case -4:
2707     sint = (int32_t)data.GetU32(offset_ptr);
2708     s.Printf("%+" PRIi64, sint);
2709     break;
2710   case -8:
2711     sint = (int64_t)data.GetU64(offset_ptr);
2712     s.Printf("%+" PRIi64, sint);
2713     break;
2714   case -128:
2715     sint = data.GetSLEB128(offset_ptr);
2716     s.Printf("%+" PRIi64, sint);
2717     break;
2718   case 1:
2719     uint = data.GetU8(offset_ptr);
2720     s.Printf("0x%2.2" PRIx64, uint);
2721     break;
2722   case 2:
2723     uint = data.GetU16(offset_ptr);
2724     s.Printf("0x%4.4" PRIx64, uint);
2725     break;
2726   case 4:
2727     uint = data.GetU32(offset_ptr);
2728     s.Printf("0x%8.8" PRIx64, uint);
2729     break;
2730   case 8:
2731     uint = data.GetU64(offset_ptr);
2732     s.Printf("0x%16.16" PRIx64, uint);
2733     break;
2734   case 128:
2735     uint = data.GetULEB128(offset_ptr);
2736     s.Printf("0x%" PRIx64, uint);
2737     break;
2738   }
2739 
2740   return true;
2741 }
2742 
2743 bool DWARFExpression::PrintDWARFExpression(Stream &s, const DataExtractor &data,
2744                                            int address_size, int dwarf_ref_size,
2745                                            bool location_expression) {
2746   int op_count = 0;
2747   lldb::offset_t offset = 0;
2748   while (data.ValidOffset(offset)) {
2749     if (location_expression && op_count > 0)
2750       return false;
2751     if (op_count > 0)
2752       s.PutCString(", ");
2753     if (!print_dwarf_exp_op(s, data, &offset, address_size, dwarf_ref_size))
2754       return false;
2755     op_count++;
2756   }
2757 
2758   return true;
2759 }
2760 
2761 void DWARFExpression::PrintDWARFLocationList(
2762     Stream &s, const DWARFUnit *cu, const DataExtractor &debug_loc_data,
2763     lldb::offset_t offset) {
2764   uint64_t start_addr, end_addr;
2765   uint32_t addr_size = DWARFUnit::GetAddressByteSize(cu);
2766   s.SetAddressByteSize(DWARFUnit::GetAddressByteSize(cu));
2767   dw_addr_t base_addr = cu ? cu->GetBaseAddress() : 0;
2768   while (debug_loc_data.ValidOffset(offset)) {
2769     start_addr = debug_loc_data.GetMaxU64(&offset, addr_size);
2770     end_addr = debug_loc_data.GetMaxU64(&offset, addr_size);
2771 
2772     if (start_addr == 0 && end_addr == 0)
2773       break;
2774 
2775     s.PutCString("\n            ");
2776     s.Indent();
2777     if (cu)
2778       DumpAddressRange(s.AsRawOstream(), start_addr + base_addr,
2779                        end_addr + base_addr, cu->GetAddressByteSize(), nullptr,
2780                        ": ");
2781     uint32_t loc_length = debug_loc_data.GetU16(&offset);
2782 
2783     DataExtractor locationData(debug_loc_data, offset, loc_length);
2784     PrintDWARFExpression(s, locationData, addr_size, 4, false);
2785     offset += loc_length;
2786   }
2787 }
2788 
2789 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
2790                                      ByteOrder byte_order, uint32_t addr_size) {
2791   auto buffer_sp =
2792       std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
2793   return DataExtractor(buffer_sp, byte_order, addr_size);
2794 }
2795 
2796 llvm::Optional<DataExtractor>
2797 DWARFExpression::GetLocationExpression(addr_t load_function_start,
2798                                        addr_t addr) const {
2799   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
2800 
2801   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2802       m_dwarf_cu->GetLocationTable(m_data);
2803   llvm::Optional<DataExtractor> result;
2804   uint64_t offset = 0;
2805   auto lookup_addr =
2806       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2807     addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
2808     if (address == LLDB_INVALID_ADDRESS)
2809       return llvm::None;
2810     return llvm::object::SectionedAddress{address};
2811   };
2812   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2813     if (!loc) {
2814       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2815       return true;
2816     }
2817     if (loc->Range) {
2818       // This relocates low_pc and high_pc by adding the difference between the
2819       // function file address, and the actual address it is loaded in memory.
2820       addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
2821       loc->Range->LowPC += slide;
2822       loc->Range->HighPC += slide;
2823 
2824       if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC)
2825         result = ToDataExtractor(*loc, m_data.GetByteOrder(),
2826                                  m_data.GetAddressByteSize());
2827     }
2828     return !result;
2829   };
2830   llvm::Error E = loctable_up->visitAbsoluteLocationList(
2831       offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
2832       lookup_addr, process_list);
2833   if (E)
2834     LLDB_LOG_ERROR(log, std::move(E), "{0}");
2835   return result;
2836 }
2837 
2838 bool DWARFExpression::MatchesOperand(StackFrame &frame,
2839                                      const Instruction::Operand &operand) {
2840   using namespace OperandMatchers;
2841 
2842   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2843   if (!reg_ctx_sp) {
2844     return false;
2845   }
2846 
2847   DataExtractor opcodes;
2848   if (IsLocationList()) {
2849     SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
2850     if (!sc.function)
2851       return false;
2852 
2853     addr_t load_function_start =
2854         sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
2855     if (load_function_start == LLDB_INVALID_ADDRESS)
2856       return false;
2857 
2858     addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
2859         frame.CalculateTarget().get());
2860 
2861     if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc))
2862       opcodes = std::move(*expr);
2863     else
2864       return false;
2865   } else
2866     opcodes = m_data;
2867 
2868 
2869   lldb::offset_t op_offset = 0;
2870   uint8_t opcode = opcodes.GetU8(&op_offset);
2871 
2872   if (opcode == DW_OP_fbreg) {
2873     int64_t offset = opcodes.GetSLEB128(&op_offset);
2874 
2875     DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
2876     if (!fb_expr) {
2877       return false;
2878     }
2879 
2880     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2881       return fb_expr->MatchesOperand(frame, child);
2882     };
2883 
2884     if (!offset &&
2885         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2886                      recurse)(operand)) {
2887       return true;
2888     }
2889 
2890     return MatchUnaryOp(
2891         MatchOpType(Instruction::Operand::Type::Dereference),
2892         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2893                       MatchImmOp(offset), recurse))(operand);
2894   }
2895 
2896   bool dereference = false;
2897   const RegisterInfo *reg = nullptr;
2898   int64_t offset = 0;
2899 
2900   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2901     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2902   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2903     offset = opcodes.GetSLEB128(&op_offset);
2904     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2905   } else if (opcode == DW_OP_regx) {
2906     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2907     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2908   } else if (opcode == DW_OP_bregx) {
2909     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2910     offset = opcodes.GetSLEB128(&op_offset);
2911     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2912   } else {
2913     return false;
2914   }
2915 
2916   if (!reg) {
2917     return false;
2918   }
2919 
2920   if (dereference) {
2921     if (!offset &&
2922         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2923                      MatchRegOp(*reg))(operand)) {
2924       return true;
2925     }
2926 
2927     return MatchUnaryOp(
2928         MatchOpType(Instruction::Operand::Type::Dereference),
2929         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2930                       MatchRegOp(*reg),
2931                       MatchImmOp(offset)))(operand);
2932   } else {
2933     return MatchRegOp(*reg)(operand);
2934   }
2935 }
2936 
2937