1 //===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Expression/DWARFExpression.h" 11 12 #include <vector> 13 14 #include "lldb/Core/dwarf.h" 15 #include "lldb/Core/Log.h" 16 #include "lldb/Core/RegisterValue.h" 17 #include "lldb/Core/StreamString.h" 18 #include "lldb/Core/Scalar.h" 19 #include "lldb/Core/Value.h" 20 #include "lldb/Core/VMRange.h" 21 22 #include "lldb/Expression/ClangExpressionDeclMap.h" 23 #include "lldb/Expression/ClangExpressionVariable.h" 24 25 #include "lldb/Host/Endian.h" 26 27 #include "lldb/lldb-private-log.h" 28 29 #include "lldb/Symbol/ClangASTType.h" 30 #include "lldb/Symbol/ClangASTContext.h" 31 #include "lldb/Symbol/Type.h" 32 33 #include "lldb/Target/ABI.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Process.h" 36 #include "lldb/Target/RegisterContext.h" 37 #include "lldb/Target/StackFrame.h" 38 39 using namespace lldb; 40 using namespace lldb_private; 41 42 const char * 43 DW_OP_value_to_name (uint32_t val) 44 { 45 static char invalid[100]; 46 switch (val) { 47 case 0x03: return "DW_OP_addr"; 48 case 0x06: return "DW_OP_deref"; 49 case 0x08: return "DW_OP_const1u"; 50 case 0x09: return "DW_OP_const1s"; 51 case 0x0a: return "DW_OP_const2u"; 52 case 0x0b: return "DW_OP_const2s"; 53 case 0x0c: return "DW_OP_const4u"; 54 case 0x0d: return "DW_OP_const4s"; 55 case 0x0e: return "DW_OP_const8u"; 56 case 0x0f: return "DW_OP_const8s"; 57 case 0x10: return "DW_OP_constu"; 58 case 0x11: return "DW_OP_consts"; 59 case 0x12: return "DW_OP_dup"; 60 case 0x13: return "DW_OP_drop"; 61 case 0x14: return "DW_OP_over"; 62 case 0x15: return "DW_OP_pick"; 63 case 0x16: return "DW_OP_swap"; 64 case 0x17: return "DW_OP_rot"; 65 case 0x18: return "DW_OP_xderef"; 66 case 0x19: return "DW_OP_abs"; 67 case 0x1a: return "DW_OP_and"; 68 case 0x1b: return "DW_OP_div"; 69 case 0x1c: return "DW_OP_minus"; 70 case 0x1d: return "DW_OP_mod"; 71 case 0x1e: return "DW_OP_mul"; 72 case 0x1f: return "DW_OP_neg"; 73 case 0x20: return "DW_OP_not"; 74 case 0x21: return "DW_OP_or"; 75 case 0x22: return "DW_OP_plus"; 76 case 0x23: return "DW_OP_plus_uconst"; 77 case 0x24: return "DW_OP_shl"; 78 case 0x25: return "DW_OP_shr"; 79 case 0x26: return "DW_OP_shra"; 80 case 0x27: return "DW_OP_xor"; 81 case 0x2f: return "DW_OP_skip"; 82 case 0x28: return "DW_OP_bra"; 83 case 0x29: return "DW_OP_eq"; 84 case 0x2a: return "DW_OP_ge"; 85 case 0x2b: return "DW_OP_gt"; 86 case 0x2c: return "DW_OP_le"; 87 case 0x2d: return "DW_OP_lt"; 88 case 0x2e: return "DW_OP_ne"; 89 case 0x30: return "DW_OP_lit0"; 90 case 0x31: return "DW_OP_lit1"; 91 case 0x32: return "DW_OP_lit2"; 92 case 0x33: return "DW_OP_lit3"; 93 case 0x34: return "DW_OP_lit4"; 94 case 0x35: return "DW_OP_lit5"; 95 case 0x36: return "DW_OP_lit6"; 96 case 0x37: return "DW_OP_lit7"; 97 case 0x38: return "DW_OP_lit8"; 98 case 0x39: return "DW_OP_lit9"; 99 case 0x3a: return "DW_OP_lit10"; 100 case 0x3b: return "DW_OP_lit11"; 101 case 0x3c: return "DW_OP_lit12"; 102 case 0x3d: return "DW_OP_lit13"; 103 case 0x3e: return "DW_OP_lit14"; 104 case 0x3f: return "DW_OP_lit15"; 105 case 0x40: return "DW_OP_lit16"; 106 case 0x41: return "DW_OP_lit17"; 107 case 0x42: return "DW_OP_lit18"; 108 case 0x43: return "DW_OP_lit19"; 109 case 0x44: return "DW_OP_lit20"; 110 case 0x45: return "DW_OP_lit21"; 111 case 0x46: return "DW_OP_lit22"; 112 case 0x47: return "DW_OP_lit23"; 113 case 0x48: return "DW_OP_lit24"; 114 case 0x49: return "DW_OP_lit25"; 115 case 0x4a: return "DW_OP_lit26"; 116 case 0x4b: return "DW_OP_lit27"; 117 case 0x4c: return "DW_OP_lit28"; 118 case 0x4d: return "DW_OP_lit29"; 119 case 0x4e: return "DW_OP_lit30"; 120 case 0x4f: return "DW_OP_lit31"; 121 case 0x50: return "DW_OP_reg0"; 122 case 0x51: return "DW_OP_reg1"; 123 case 0x52: return "DW_OP_reg2"; 124 case 0x53: return "DW_OP_reg3"; 125 case 0x54: return "DW_OP_reg4"; 126 case 0x55: return "DW_OP_reg5"; 127 case 0x56: return "DW_OP_reg6"; 128 case 0x57: return "DW_OP_reg7"; 129 case 0x58: return "DW_OP_reg8"; 130 case 0x59: return "DW_OP_reg9"; 131 case 0x5a: return "DW_OP_reg10"; 132 case 0x5b: return "DW_OP_reg11"; 133 case 0x5c: return "DW_OP_reg12"; 134 case 0x5d: return "DW_OP_reg13"; 135 case 0x5e: return "DW_OP_reg14"; 136 case 0x5f: return "DW_OP_reg15"; 137 case 0x60: return "DW_OP_reg16"; 138 case 0x61: return "DW_OP_reg17"; 139 case 0x62: return "DW_OP_reg18"; 140 case 0x63: return "DW_OP_reg19"; 141 case 0x64: return "DW_OP_reg20"; 142 case 0x65: return "DW_OP_reg21"; 143 case 0x66: return "DW_OP_reg22"; 144 case 0x67: return "DW_OP_reg23"; 145 case 0x68: return "DW_OP_reg24"; 146 case 0x69: return "DW_OP_reg25"; 147 case 0x6a: return "DW_OP_reg26"; 148 case 0x6b: return "DW_OP_reg27"; 149 case 0x6c: return "DW_OP_reg28"; 150 case 0x6d: return "DW_OP_reg29"; 151 case 0x6e: return "DW_OP_reg30"; 152 case 0x6f: return "DW_OP_reg31"; 153 case 0x70: return "DW_OP_breg0"; 154 case 0x71: return "DW_OP_breg1"; 155 case 0x72: return "DW_OP_breg2"; 156 case 0x73: return "DW_OP_breg3"; 157 case 0x74: return "DW_OP_breg4"; 158 case 0x75: return "DW_OP_breg5"; 159 case 0x76: return "DW_OP_breg6"; 160 case 0x77: return "DW_OP_breg7"; 161 case 0x78: return "DW_OP_breg8"; 162 case 0x79: return "DW_OP_breg9"; 163 case 0x7a: return "DW_OP_breg10"; 164 case 0x7b: return "DW_OP_breg11"; 165 case 0x7c: return "DW_OP_breg12"; 166 case 0x7d: return "DW_OP_breg13"; 167 case 0x7e: return "DW_OP_breg14"; 168 case 0x7f: return "DW_OP_breg15"; 169 case 0x80: return "DW_OP_breg16"; 170 case 0x81: return "DW_OP_breg17"; 171 case 0x82: return "DW_OP_breg18"; 172 case 0x83: return "DW_OP_breg19"; 173 case 0x84: return "DW_OP_breg20"; 174 case 0x85: return "DW_OP_breg21"; 175 case 0x86: return "DW_OP_breg22"; 176 case 0x87: return "DW_OP_breg23"; 177 case 0x88: return "DW_OP_breg24"; 178 case 0x89: return "DW_OP_breg25"; 179 case 0x8a: return "DW_OP_breg26"; 180 case 0x8b: return "DW_OP_breg27"; 181 case 0x8c: return "DW_OP_breg28"; 182 case 0x8d: return "DW_OP_breg29"; 183 case 0x8e: return "DW_OP_breg30"; 184 case 0x8f: return "DW_OP_breg31"; 185 case 0x90: return "DW_OP_regx"; 186 case 0x91: return "DW_OP_fbreg"; 187 case 0x92: return "DW_OP_bregx"; 188 case 0x93: return "DW_OP_piece"; 189 case 0x94: return "DW_OP_deref_size"; 190 case 0x95: return "DW_OP_xderef_size"; 191 case 0x96: return "DW_OP_nop"; 192 case 0x97: return "DW_OP_push_object_address"; 193 case 0x98: return "DW_OP_call2"; 194 case 0x99: return "DW_OP_call4"; 195 case 0x9a: return "DW_OP_call_ref"; 196 case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; 197 case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; 198 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; 199 case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; 200 case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; 201 case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; 202 case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; 203 case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; 204 case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; 205 case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; 206 case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; 207 case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; 208 case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; 209 default: 210 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); 211 return invalid; 212 } 213 } 214 215 216 //---------------------------------------------------------------------- 217 // DWARFExpression constructor 218 //---------------------------------------------------------------------- 219 DWARFExpression::DWARFExpression() : 220 m_data(), 221 m_reg_kind (eRegisterKindDWARF), 222 m_loclist_slide (LLDB_INVALID_ADDRESS) 223 { 224 } 225 226 DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : 227 m_data(rhs.m_data), 228 m_reg_kind (rhs.m_reg_kind), 229 m_loclist_slide(rhs.m_loclist_slide) 230 { 231 } 232 233 234 DWARFExpression::DWARFExpression(const DataExtractor& data, uint32_t data_offset, uint32_t data_length) : 235 m_data(data, data_offset, data_length), 236 m_reg_kind (eRegisterKindDWARF), 237 m_loclist_slide(LLDB_INVALID_ADDRESS) 238 { 239 } 240 241 //---------------------------------------------------------------------- 242 // Destructor 243 //---------------------------------------------------------------------- 244 DWARFExpression::~DWARFExpression() 245 { 246 } 247 248 249 bool 250 DWARFExpression::IsValid() const 251 { 252 return m_data.GetByteSize() > 0; 253 } 254 255 void 256 DWARFExpression::SetOpcodeData (const DataExtractor& data) 257 { 258 m_data = data; 259 } 260 261 void 262 DWARFExpression::SetOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length) 263 { 264 m_data.SetData(data, data_offset, data_length); 265 } 266 267 void 268 DWARFExpression::DumpLocation (Stream *s, uint32_t offset, uint32_t length, lldb::DescriptionLevel level, ABI *abi) const 269 { 270 if (!m_data.ValidOffsetForDataOfSize(offset, length)) 271 return; 272 const uint32_t start_offset = offset; 273 const uint32_t end_offset = offset + length; 274 while (m_data.ValidOffset(offset) && offset < end_offset) 275 { 276 const uint32_t op_offset = offset; 277 const uint8_t op = m_data.GetU8(&offset); 278 279 switch (level) 280 { 281 default: 282 break; 283 284 case lldb::eDescriptionLevelBrief: 285 if (offset > start_offset) 286 s->PutChar(' '); 287 break; 288 289 case lldb::eDescriptionLevelFull: 290 case lldb::eDescriptionLevelVerbose: 291 if (offset > start_offset) 292 s->EOL(); 293 s->Indent(); 294 if (level == lldb::eDescriptionLevelFull) 295 break; 296 // Fall through for verbose and print offset and DW_OP prefix.. 297 s->Printf("0x%8.8x: %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); 298 break; 299 } 300 301 switch (op) 302 { 303 case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address 304 case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 305 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant 306 case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant 307 case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant 308 case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant 309 case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant 310 case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant 311 case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant 312 case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant 313 case DW_OP_constu: s->Printf("DW_OP_constu(0x%x) ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant 314 case DW_OP_consts: s->Printf("DW_OP_consts(0x%x) ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant 315 case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 316 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 317 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 318 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index 319 case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 320 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 321 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 322 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 323 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a 324 case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b 325 case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c 326 case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d 327 case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e 328 case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f 329 case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 330 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 331 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 332 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 333 s->Printf("DW_OP_plus_uconst(0x%x) ", m_data.GetULEB128(&offset)); 334 break; 335 336 case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 337 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 338 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 339 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 340 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant 341 case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant 342 case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 343 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a 344 case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b 345 case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c 346 case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d 347 case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e 348 349 case DW_OP_lit0: // 0x30 350 case DW_OP_lit1: // 0x31 351 case DW_OP_lit2: // 0x32 352 case DW_OP_lit3: // 0x33 353 case DW_OP_lit4: // 0x34 354 case DW_OP_lit5: // 0x35 355 case DW_OP_lit6: // 0x36 356 case DW_OP_lit7: // 0x37 357 case DW_OP_lit8: // 0x38 358 case DW_OP_lit9: // 0x39 359 case DW_OP_lit10: // 0x3A 360 case DW_OP_lit11: // 0x3B 361 case DW_OP_lit12: // 0x3C 362 case DW_OP_lit13: // 0x3D 363 case DW_OP_lit14: // 0x3E 364 case DW_OP_lit15: // 0x3F 365 case DW_OP_lit16: // 0x40 366 case DW_OP_lit17: // 0x41 367 case DW_OP_lit18: // 0x42 368 case DW_OP_lit19: // 0x43 369 case DW_OP_lit20: // 0x44 370 case DW_OP_lit21: // 0x45 371 case DW_OP_lit22: // 0x46 372 case DW_OP_lit23: // 0x47 373 case DW_OP_lit24: // 0x48 374 case DW_OP_lit25: // 0x49 375 case DW_OP_lit26: // 0x4A 376 case DW_OP_lit27: // 0x4B 377 case DW_OP_lit28: // 0x4C 378 case DW_OP_lit29: // 0x4D 379 case DW_OP_lit30: // 0x4E 380 case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f 381 382 case DW_OP_reg0: // 0x50 383 case DW_OP_reg1: // 0x51 384 case DW_OP_reg2: // 0x52 385 case DW_OP_reg3: // 0x53 386 case DW_OP_reg4: // 0x54 387 case DW_OP_reg5: // 0x55 388 case DW_OP_reg6: // 0x56 389 case DW_OP_reg7: // 0x57 390 case DW_OP_reg8: // 0x58 391 case DW_OP_reg9: // 0x59 392 case DW_OP_reg10: // 0x5A 393 case DW_OP_reg11: // 0x5B 394 case DW_OP_reg12: // 0x5C 395 case DW_OP_reg13: // 0x5D 396 case DW_OP_reg14: // 0x5E 397 case DW_OP_reg15: // 0x5F 398 case DW_OP_reg16: // 0x60 399 case DW_OP_reg17: // 0x61 400 case DW_OP_reg18: // 0x62 401 case DW_OP_reg19: // 0x63 402 case DW_OP_reg20: // 0x64 403 case DW_OP_reg21: // 0x65 404 case DW_OP_reg22: // 0x66 405 case DW_OP_reg23: // 0x67 406 case DW_OP_reg24: // 0x68 407 case DW_OP_reg25: // 0x69 408 case DW_OP_reg26: // 0x6A 409 case DW_OP_reg27: // 0x6B 410 case DW_OP_reg28: // 0x6C 411 case DW_OP_reg29: // 0x6D 412 case DW_OP_reg30: // 0x6E 413 case DW_OP_reg31: // 0x6F 414 { 415 uint32_t reg_num = op - DW_OP_reg0; 416 if (abi) 417 { 418 RegisterInfo reg_info; 419 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 420 { 421 if (reg_info.name) 422 { 423 s->PutCString (reg_info.name); 424 break; 425 } 426 else if (reg_info.alt_name) 427 { 428 s->PutCString (reg_info.alt_name); 429 break; 430 } 431 } 432 } 433 s->Printf("DW_OP_reg%u", reg_num); break; 434 } 435 break; 436 437 case DW_OP_breg0: 438 case DW_OP_breg1: 439 case DW_OP_breg2: 440 case DW_OP_breg3: 441 case DW_OP_breg4: 442 case DW_OP_breg5: 443 case DW_OP_breg6: 444 case DW_OP_breg7: 445 case DW_OP_breg8: 446 case DW_OP_breg9: 447 case DW_OP_breg10: 448 case DW_OP_breg11: 449 case DW_OP_breg12: 450 case DW_OP_breg13: 451 case DW_OP_breg14: 452 case DW_OP_breg15: 453 case DW_OP_breg16: 454 case DW_OP_breg17: 455 case DW_OP_breg18: 456 case DW_OP_breg19: 457 case DW_OP_breg20: 458 case DW_OP_breg21: 459 case DW_OP_breg22: 460 case DW_OP_breg23: 461 case DW_OP_breg24: 462 case DW_OP_breg25: 463 case DW_OP_breg26: 464 case DW_OP_breg27: 465 case DW_OP_breg28: 466 case DW_OP_breg29: 467 case DW_OP_breg30: 468 case DW_OP_breg31: 469 { 470 uint32_t reg_num = op - DW_OP_breg0; 471 int64_t reg_offset = m_data.GetSLEB128(&offset); 472 if (abi) 473 { 474 RegisterInfo reg_info; 475 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 476 { 477 if (reg_info.name) 478 { 479 s->Printf("[%s%+lli]", reg_info.name, reg_offset); 480 break; 481 } 482 else if (reg_info.alt_name) 483 { 484 s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); 485 break; 486 } 487 } 488 } 489 s->Printf("DW_OP_breg%i(0x%llx)", reg_num, reg_offset); 490 } 491 break; 492 493 case DW_OP_regx: // 0x90 1 ULEB128 register 494 { 495 uint64_t reg_num = m_data.GetULEB128(&offset); 496 if (abi) 497 { 498 RegisterInfo reg_info; 499 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 500 { 501 if (reg_info.name) 502 { 503 s->PutCString (reg_info.name); 504 break; 505 } 506 else if (reg_info.alt_name) 507 { 508 s->PutCString (reg_info.alt_name); 509 break; 510 } 511 } 512 } 513 s->Printf("DW_OP_regx(%llu)", reg_num); break; 514 } 515 break; 516 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 517 s->Printf("DW_OP_fbreg(%lli)",m_data.GetSLEB128(&offset)); 518 break; 519 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 520 { 521 uint32_t reg_num = m_data.GetULEB128(&offset); 522 int64_t reg_offset = m_data.GetSLEB128(&offset); 523 if (abi) 524 { 525 RegisterInfo reg_info; 526 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 527 { 528 if (reg_info.name) 529 { 530 s->Printf("[%s%+lli]", reg_info.name, reg_offset); 531 break; 532 } 533 else if (reg_info.alt_name) 534 { 535 s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); 536 break; 537 } 538 } 539 } 540 s->Printf("DW_OP_bregx(reg=%u,offset=%lli)", reg_num, reg_offset); 541 } 542 break; 543 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 544 s->Printf("DW_OP_piece(0x%x)", m_data.GetULEB128(&offset)); 545 break; 546 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 547 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); 548 break; 549 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 550 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); 551 break; 552 case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 553 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 554 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE 555 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); 556 break; 557 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE 558 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); 559 break; 560 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE 561 s->Printf("DW_OP_call_ref(0x%8.8llx)", m_data.GetAddress(&offset)); 562 break; 563 // case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3 564 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 565 // case DW_OP_bit_piece: // 0x9d DWARF3 2 566 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); 567 // break; 568 // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0 569 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff 570 case DW_OP_APPLE_extern: 571 s->Printf("DW_OP_APPLE_extern(%u)", m_data.GetULEB128(&offset)); 572 break; 573 case DW_OP_APPLE_array_ref: 574 s->PutCString("DW_OP_APPLE_array_ref"); 575 break; 576 case DW_OP_APPLE_uninit: 577 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 578 break; 579 case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) 580 s->PutCString("DW_OP_APPLE_assign"); 581 break; 582 case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) 583 s->PutCString("DW_OP_APPLE_address_of"); 584 break; 585 case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) 586 s->PutCString("DW_OP_APPLE_value_of"); 587 break; 588 case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) 589 s->PutCString("DW_OP_APPLE_deref_type"); 590 break; 591 case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index 592 s->Printf("DW_OP_APPLE_expr_local(%u)", m_data.GetULEB128(&offset)); 593 break; 594 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 595 { 596 uint8_t float_length = m_data.GetU8(&offset); 597 s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); 598 m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 599 s->PutChar(')'); 600 // Consume the float data 601 m_data.GetData(&offset, float_length); 602 } 603 break; 604 case DW_OP_APPLE_scalar_cast: 605 s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); 606 break; 607 case DW_OP_APPLE_clang_cast: 608 { 609 clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); 610 s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); 611 } 612 break; 613 case DW_OP_APPLE_clear: 614 s->PutCString("DW_OP_APPLE_clear"); 615 break; 616 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 617 s->PutCString("DW_OP_APPLE_error"); 618 break; 619 } 620 } 621 } 622 623 void 624 DWARFExpression::SetLocationListSlide (addr_t slide) 625 { 626 m_loclist_slide = slide; 627 } 628 629 int 630 DWARFExpression::GetRegisterKind () 631 { 632 return m_reg_kind; 633 } 634 635 void 636 DWARFExpression::SetRegisterKind (RegisterKind reg_kind) 637 { 638 m_reg_kind = reg_kind; 639 } 640 641 bool 642 DWARFExpression::IsLocationList() const 643 { 644 return m_loclist_slide != LLDB_INVALID_ADDRESS; 645 } 646 647 void 648 DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const 649 { 650 if (IsLocationList()) 651 { 652 // We have a location list 653 uint32_t offset = 0; 654 uint32_t count = 0; 655 addr_t curr_base_addr = location_list_base_addr; 656 while (m_data.ValidOffset(offset)) 657 { 658 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); 659 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); 660 if (begin_addr_offset < end_addr_offset) 661 { 662 if (count > 0) 663 s->PutCString(", "); 664 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); 665 addr_range.Dump(s, 0, 8); 666 s->PutChar('{'); 667 uint32_t location_length = m_data.GetU16(&offset); 668 DumpLocation (s, offset, location_length, level, abi); 669 s->PutChar('}'); 670 offset += location_length; 671 } 672 else if (begin_addr_offset == 0 && end_addr_offset == 0) 673 { 674 // The end of the location list is marked by both the start and end offset being zero 675 break; 676 } 677 else 678 { 679 if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || 680 (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) 681 { 682 curr_base_addr = end_addr_offset + location_list_base_addr; 683 // We have a new base address 684 if (count > 0) 685 s->PutCString(", "); 686 *s << "base_addr = " << end_addr_offset; 687 } 688 } 689 690 count++; 691 } 692 } 693 else 694 { 695 // We have a normal location that contains DW_OP location opcodes 696 DumpLocation (s, 0, m_data.GetByteSize(), level, abi); 697 } 698 } 699 700 static bool 701 ReadRegisterValueAsScalar 702 ( 703 RegisterContext *reg_ctx, 704 uint32_t reg_kind, 705 uint32_t reg_num, 706 Error *error_ptr, 707 Value &value 708 ) 709 { 710 if (reg_ctx == NULL) 711 { 712 if (error_ptr) 713 error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); 714 } 715 else 716 { 717 uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 718 if (native_reg == LLDB_INVALID_REGNUM) 719 { 720 if (error_ptr) 721 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); 722 } 723 else 724 { 725 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); 726 RegisterValue reg_value; 727 if (reg_ctx->ReadRegister (reg_info, reg_value)) 728 { 729 if (reg_value.GetScalarValue(value.GetScalar())) 730 { 731 value.SetValueType (Value::eValueTypeScalar); 732 value.SetContext (Value::eContextTypeRegisterInfo, 733 const_cast<RegisterInfo *>(reg_info)); 734 if (error_ptr) 735 error_ptr->Clear(); 736 return true; 737 } 738 else 739 { 740 // If we get this error, then we need to implement a value 741 // buffer in the dwarf expression evaluation function... 742 if (error_ptr) 743 error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value", 744 reg_info->name); 745 } 746 } 747 else 748 { 749 if (error_ptr) 750 error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); 751 } 752 } 753 } 754 return false; 755 } 756 757 //bool 758 //DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const 759 //{ 760 // return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); 761 //} 762 // 763 //bool 764 //DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const 765 //{ 766 // if (load_addr == LLDB_INVALID_ADDRESS) 767 // return false; 768 // 769 // if (IsLocationList()) 770 // { 771 // uint32_t offset = 0; 772 // 773 // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); 774 // 775 // if (loc_list_base_addr == LLDB_INVALID_ADDRESS) 776 // return false; 777 // 778 // while (m_data.ValidOffset(offset)) 779 // { 780 // // We need to figure out what the value is for the location. 781 // addr_t lo_pc = m_data.GetAddress(&offset); 782 // addr_t hi_pc = m_data.GetAddress(&offset); 783 // if (lo_pc == 0 && hi_pc == 0) 784 // break; 785 // else 786 // { 787 // lo_pc += loc_list_base_addr; 788 // hi_pc += loc_list_base_addr; 789 // 790 // if (lo_pc <= load_addr && load_addr < hi_pc) 791 // return true; 792 // 793 // offset += m_data.GetU16(&offset); 794 // } 795 // } 796 // } 797 // return false; 798 //} 799 800 bool 801 DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const 802 { 803 if (addr == LLDB_INVALID_ADDRESS) 804 return false; 805 806 if (IsLocationList()) 807 { 808 uint32_t offset = 0; 809 810 if (loclist_base_addr == LLDB_INVALID_ADDRESS) 811 return false; 812 813 while (m_data.ValidOffset(offset)) 814 { 815 // We need to figure out what the value is for the location. 816 addr_t lo_pc = m_data.GetAddress(&offset); 817 addr_t hi_pc = m_data.GetAddress(&offset); 818 if (lo_pc == 0 && hi_pc == 0) 819 break; 820 else 821 { 822 lo_pc += loclist_base_addr - m_loclist_slide; 823 hi_pc += loclist_base_addr - m_loclist_slide; 824 825 if (lo_pc <= addr && addr < hi_pc) 826 return true; 827 828 offset += m_data.GetU16(&offset); 829 } 830 } 831 } 832 return false; 833 } 834 835 bool 836 DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, uint32_t &offset, uint32_t &length) 837 { 838 offset = 0; 839 if (!IsLocationList()) 840 { 841 length = m_data.GetByteSize(); 842 return true; 843 } 844 845 if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) 846 { 847 addr_t curr_base_addr = base_addr; 848 849 while (m_data.ValidOffset(offset)) 850 { 851 // We need to figure out what the value is for the location. 852 addr_t lo_pc = m_data.GetAddress(&offset); 853 addr_t hi_pc = m_data.GetAddress(&offset); 854 if (lo_pc == 0 && hi_pc == 0) 855 { 856 break; 857 } 858 else 859 { 860 lo_pc += curr_base_addr - m_loclist_slide; 861 hi_pc += curr_base_addr - m_loclist_slide; 862 863 length = m_data.GetU16(&offset); 864 865 if (length > 0 && lo_pc <= pc && pc < hi_pc) 866 return true; 867 868 offset += length; 869 } 870 } 871 } 872 offset = UINT32_MAX; 873 length = 0; 874 return false; 875 } 876 877 bool 878 DWARFExpression::DumpLocationForAddress (Stream *s, 879 lldb::DescriptionLevel level, 880 addr_t base_addr, 881 addr_t address, 882 ABI *abi) 883 { 884 uint32_t offset = 0; 885 uint32_t length = 0; 886 887 if (GetLocation (base_addr, address, offset, length)) 888 { 889 if (length > 0) 890 { 891 DumpLocation(s, offset, length, level, abi); 892 return true; 893 } 894 } 895 return false; 896 } 897 898 bool 899 DWARFExpression::Evaluate 900 ( 901 ExecutionContextScope *exe_scope, 902 clang::ASTContext *ast_context, 903 ClangExpressionVariableList *expr_locals, 904 ClangExpressionDeclMap *decl_map, 905 lldb::addr_t loclist_base_load_addr, 906 const Value* initial_value_ptr, 907 Value& result, 908 Error *error_ptr 909 ) const 910 { 911 ExecutionContext exe_ctx (exe_scope); 912 return Evaluate(&exe_ctx, ast_context, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); 913 } 914 915 bool 916 DWARFExpression::Evaluate 917 ( 918 ExecutionContext *exe_ctx, 919 clang::ASTContext *ast_context, 920 ClangExpressionVariableList *expr_locals, 921 ClangExpressionDeclMap *decl_map, 922 RegisterContext *reg_ctx, 923 lldb::addr_t loclist_base_load_addr, 924 const Value* initial_value_ptr, 925 Value& result, 926 Error *error_ptr 927 ) const 928 { 929 if (IsLocationList()) 930 { 931 uint32_t offset = 0; 932 addr_t pc; 933 if (reg_ctx) 934 pc = reg_ctx->GetPC(); 935 else 936 pc = exe_ctx->frame->GetRegisterContext()->GetPC(); 937 938 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) 939 { 940 if (pc == LLDB_INVALID_ADDRESS) 941 { 942 if (error_ptr) 943 error_ptr->SetErrorString("Invalid PC in frame."); 944 return false; 945 } 946 947 addr_t curr_loclist_base_load_addr = loclist_base_load_addr; 948 949 while (m_data.ValidOffset(offset)) 950 { 951 // We need to figure out what the value is for the location. 952 addr_t lo_pc = m_data.GetAddress(&offset); 953 addr_t hi_pc = m_data.GetAddress(&offset); 954 if (lo_pc == 0 && hi_pc == 0) 955 { 956 break; 957 } 958 else 959 { 960 lo_pc += curr_loclist_base_load_addr - m_loclist_slide; 961 hi_pc += curr_loclist_base_load_addr - m_loclist_slide; 962 963 uint16_t length = m_data.GetU16(&offset); 964 965 if (length > 0 && lo_pc <= pc && pc < hi_pc) 966 { 967 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); 968 } 969 offset += length; 970 } 971 } 972 } 973 if (error_ptr) 974 error_ptr->SetErrorString ("variable not available"); 975 return false; 976 } 977 978 // Not a location list, just a single expression. 979 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); 980 } 981 982 983 984 bool 985 DWARFExpression::Evaluate 986 ( 987 ExecutionContext *exe_ctx, 988 clang::ASTContext *ast_context, 989 ClangExpressionVariableList *expr_locals, 990 ClangExpressionDeclMap *decl_map, 991 RegisterContext *reg_ctx, 992 const DataExtractor& opcodes, 993 const uint32_t opcodes_offset, 994 const uint32_t opcodes_length, 995 const uint32_t reg_kind, 996 const Value* initial_value_ptr, 997 Value& result, 998 Error *error_ptr 999 ) 1000 { 1001 std::vector<Value> stack; 1002 1003 if (reg_ctx == NULL && exe_ctx && exe_ctx->frame) 1004 reg_ctx = exe_ctx->frame->GetRegisterContext().get(); 1005 1006 if (initial_value_ptr) 1007 stack.push_back(*initial_value_ptr); 1008 1009 uint32_t offset = opcodes_offset; 1010 const uint32_t end_offset = opcodes_offset + opcodes_length; 1011 Value tmp; 1012 uint32_t reg_num; 1013 1014 // Make sure all of the data is available in opcodes. 1015 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) 1016 { 1017 if (error_ptr) 1018 error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer."); 1019 return false; 1020 } 1021 LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1022 1023 1024 while (opcodes.ValidOffset(offset) && offset < end_offset) 1025 { 1026 const uint32_t op_offset = offset; 1027 const uint8_t op = opcodes.GetU8(&offset); 1028 1029 if (log) 1030 { 1031 size_t count = stack.size(); 1032 log->Printf("Stack before operation has %d values:", count); 1033 for (size_t i=0; i<count; ++i) 1034 { 1035 StreamString new_value; 1036 new_value.Printf("[%zu]", i); 1037 stack[i].Dump(&new_value); 1038 log->Printf(" %s", new_value.GetData()); 1039 } 1040 log->Printf("0x%8.8x: %s", op_offset, DW_OP_value_to_name(op)); 1041 } 1042 switch (op) 1043 { 1044 //---------------------------------------------------------------------- 1045 // The DW_OP_addr operation has a single operand that encodes a machine 1046 // address and whose size is the size of an address on the target machine. 1047 //---------------------------------------------------------------------- 1048 case DW_OP_addr: 1049 stack.push_back(Scalar(opcodes.GetAddress(&offset))); 1050 stack.back().SetValueType (Value::eValueTypeFileAddress); 1051 break; 1052 1053 //---------------------------------------------------------------------- 1054 // The DW_OP_addr_sect_offset4 is used for any location expressions in 1055 // shared libraries that have a location like: 1056 // DW_OP_addr(0x1000) 1057 // If this address resides in a shared library, then this virtual 1058 // address won't make sense when it is evaluated in the context of a 1059 // running process where shared libraries have been slid. To account for 1060 // this, this new address type where we can store the section pointer 1061 // and a 4 byte offset. 1062 //---------------------------------------------------------------------- 1063 // case DW_OP_addr_sect_offset4: 1064 // { 1065 // result_type = eResultTypeFileAddress; 1066 // lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); 1067 // lldb::addr_t sect_offset = opcodes.GetU32(&offset); 1068 // 1069 // Address so_addr (sect, sect_offset); 1070 // lldb::addr_t load_addr = so_addr.GetLoadAddress(); 1071 // if (load_addr != LLDB_INVALID_ADDRESS) 1072 // { 1073 // // We successfully resolve a file address to a load 1074 // // address. 1075 // stack.push_back(load_addr); 1076 // break; 1077 // } 1078 // else 1079 // { 1080 // // We were able 1081 // if (error_ptr) 1082 // error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 1083 // return false; 1084 // } 1085 // } 1086 // break; 1087 1088 //---------------------------------------------------------------------- 1089 // OPCODE: DW_OP_deref 1090 // OPERANDS: none 1091 // DESCRIPTION: Pops the top stack entry and treats it as an address. 1092 // The value retrieved from that address is pushed. The size of the 1093 // data retrieved from the dereferenced address is the size of an 1094 // address on the target machine. 1095 //---------------------------------------------------------------------- 1096 case DW_OP_deref: 1097 { 1098 Value::ValueType value_type = stack.back().GetValueType(); 1099 switch (value_type) 1100 { 1101 case Value::eValueTypeHostAddress: 1102 { 1103 void *src = (void *)stack.back().GetScalar().ULongLong(); 1104 intptr_t ptr; 1105 ::memcpy (&ptr, src, sizeof(void *)); 1106 stack.back().GetScalar() = ptr; 1107 stack.back().ClearContext(); 1108 } 1109 break; 1110 case Value::eValueTypeLoadAddress: 1111 if (exe_ctx) 1112 { 1113 if (exe_ctx->process) 1114 { 1115 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1116 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1117 uint32_t addr_size = exe_ctx->process->GetAddressByteSize(); 1118 Error error; 1119 if (exe_ctx->process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size) 1120 { 1121 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), exe_ctx->process->GetByteOrder(), addr_size); 1122 uint32_t addr_data_offset = 0; 1123 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1124 stack.back().ClearContext(); 1125 } 1126 else 1127 { 1128 if (error_ptr) 1129 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1130 pointer_addr, 1131 error.AsCString()); 1132 return false; 1133 } 1134 } 1135 else 1136 { 1137 if (error_ptr) 1138 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1139 return false; 1140 } 1141 } 1142 else 1143 { 1144 if (error_ptr) 1145 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1146 return false; 1147 } 1148 break; 1149 1150 default: 1151 break; 1152 } 1153 1154 } 1155 break; 1156 1157 //---------------------------------------------------------------------- 1158 // OPCODE: DW_OP_deref_size 1159 // OPERANDS: 1 1160 // 1 - uint8_t that specifies the size of the data to dereference. 1161 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 1162 // stack entry and treats it as an address. The value retrieved from that 1163 // address is pushed. In the DW_OP_deref_size operation, however, the 1164 // size in bytes of the data retrieved from the dereferenced address is 1165 // specified by the single operand. This operand is a 1-byte unsigned 1166 // integral constant whose value may not be larger than the size of an 1167 // address on the target machine. The data retrieved is zero extended 1168 // to the size of an address on the target machine before being pushed 1169 // on the expression stack. 1170 //---------------------------------------------------------------------- 1171 case DW_OP_deref_size: 1172 { 1173 uint8_t size = opcodes.GetU8(&offset); 1174 Value::ValueType value_type = stack.back().GetValueType(); 1175 switch (value_type) 1176 { 1177 case Value::eValueTypeHostAddress: 1178 { 1179 void *src = (void *)stack.back().GetScalar().ULongLong(); 1180 intptr_t ptr; 1181 ::memcpy (&ptr, src, sizeof(void *)); 1182 // I can't decide whether the size operand should apply to the bytes in their 1183 // lldb-host endianness or the target endianness.. I doubt this'll ever come up 1184 // but I'll opt for assuming big endian regardless. 1185 switch (size) 1186 { 1187 case 1: ptr = ptr & 0xff; break; 1188 case 2: ptr = ptr & 0xffff; break; 1189 case 3: ptr = ptr & 0xffffff; break; 1190 case 4: ptr = ptr & 0xffffffff; break; 1191 // the casts are added to work around the case where intptr_t is a 32 bit quantity; 1192 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. 1193 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; 1194 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; 1195 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; 1196 default: break; 1197 } 1198 stack.back().GetScalar() = ptr; 1199 stack.back().ClearContext(); 1200 } 1201 break; 1202 case Value::eValueTypeLoadAddress: 1203 if (exe_ctx) 1204 { 1205 if (exe_ctx->process) 1206 { 1207 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1208 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1209 Error error; 1210 if (exe_ctx->process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) 1211 { 1212 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), exe_ctx->process->GetByteOrder(), size); 1213 uint32_t addr_data_offset = 0; 1214 switch (size) 1215 { 1216 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; 1217 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; 1218 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; 1219 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; 1220 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1221 } 1222 stack.back().ClearContext(); 1223 } 1224 else 1225 { 1226 if (error_ptr) 1227 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1228 pointer_addr, 1229 error.AsCString()); 1230 return false; 1231 } 1232 } 1233 else 1234 { 1235 if (error_ptr) 1236 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1237 return false; 1238 } 1239 } 1240 else 1241 { 1242 if (error_ptr) 1243 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1244 return false; 1245 } 1246 break; 1247 1248 default: 1249 break; 1250 } 1251 1252 } 1253 break; 1254 1255 //---------------------------------------------------------------------- 1256 // OPCODE: DW_OP_xderef_size 1257 // OPERANDS: 1 1258 // 1 - uint8_t that specifies the size of the data to dereference. 1259 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1260 // the top of the stack is treated as an address. The second stack 1261 // entry is treated as an "address space identifier" for those 1262 // architectures that support multiple address spaces. The top two 1263 // stack elements are popped, a data item is retrieved through an 1264 // implementation-defined address calculation and pushed as the new 1265 // stack top. In the DW_OP_xderef_size operation, however, the size in 1266 // bytes of the data retrieved from the dereferenced address is 1267 // specified by the single operand. This operand is a 1-byte unsigned 1268 // integral constant whose value may not be larger than the size of an 1269 // address on the target machine. The data retrieved is zero extended 1270 // to the size of an address on the target machine before being pushed 1271 // on the expression stack. 1272 //---------------------------------------------------------------------- 1273 case DW_OP_xderef_size: 1274 if (error_ptr) 1275 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1276 return false; 1277 //---------------------------------------------------------------------- 1278 // OPCODE: DW_OP_xderef 1279 // OPERANDS: none 1280 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1281 // the top of the stack is treated as an address. The second stack entry 1282 // is treated as an "address space identifier" for those architectures 1283 // that support multiple address spaces. The top two stack elements are 1284 // popped, a data item is retrieved through an implementation-defined 1285 // address calculation and pushed as the new stack top. The size of the 1286 // data retrieved from the dereferenced address is the size of an address 1287 // on the target machine. 1288 //---------------------------------------------------------------------- 1289 case DW_OP_xderef: 1290 if (error_ptr) 1291 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1292 return false; 1293 1294 //---------------------------------------------------------------------- 1295 // All DW_OP_constXXX opcodes have a single operand as noted below: 1296 // 1297 // Opcode Operand 1 1298 // --------------- ---------------------------------------------------- 1299 // DW_OP_const1u 1-byte unsigned integer constant 1300 // DW_OP_const1s 1-byte signed integer constant 1301 // DW_OP_const2u 2-byte unsigned integer constant 1302 // DW_OP_const2s 2-byte signed integer constant 1303 // DW_OP_const4u 4-byte unsigned integer constant 1304 // DW_OP_const4s 4-byte signed integer constant 1305 // DW_OP_const8u 8-byte unsigned integer constant 1306 // DW_OP_const8s 8-byte signed integer constant 1307 // DW_OP_constu unsigned LEB128 integer constant 1308 // DW_OP_consts signed LEB128 integer constant 1309 //---------------------------------------------------------------------- 1310 case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break; 1311 case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break; 1312 case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break; 1313 case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break; 1314 case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break; 1315 case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break; 1316 case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break; 1317 case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break; 1318 case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break; 1319 case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break; 1320 1321 //---------------------------------------------------------------------- 1322 // OPCODE: DW_OP_dup 1323 // OPERANDS: none 1324 // DESCRIPTION: duplicates the value at the top of the stack 1325 //---------------------------------------------------------------------- 1326 case DW_OP_dup: 1327 if (stack.empty()) 1328 { 1329 if (error_ptr) 1330 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1331 return false; 1332 } 1333 else 1334 stack.push_back(stack.back()); 1335 break; 1336 1337 //---------------------------------------------------------------------- 1338 // OPCODE: DW_OP_drop 1339 // OPERANDS: none 1340 // DESCRIPTION: pops the value at the top of the stack 1341 //---------------------------------------------------------------------- 1342 case DW_OP_drop: 1343 if (stack.empty()) 1344 { 1345 if (error_ptr) 1346 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1347 return false; 1348 } 1349 else 1350 stack.pop_back(); 1351 break; 1352 1353 //---------------------------------------------------------------------- 1354 // OPCODE: DW_OP_over 1355 // OPERANDS: none 1356 // DESCRIPTION: Duplicates the entry currently second in the stack at 1357 // the top of the stack. 1358 //---------------------------------------------------------------------- 1359 case DW_OP_over: 1360 if (stack.size() < 2) 1361 { 1362 if (error_ptr) 1363 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); 1364 return false; 1365 } 1366 else 1367 stack.push_back(stack[stack.size() - 2]); 1368 break; 1369 1370 1371 //---------------------------------------------------------------------- 1372 // OPCODE: DW_OP_pick 1373 // OPERANDS: uint8_t index into the current stack 1374 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1375 // inclusive) is pushed on the stack 1376 //---------------------------------------------------------------------- 1377 case DW_OP_pick: 1378 { 1379 uint8_t pick_idx = opcodes.GetU8(&offset); 1380 if (pick_idx < stack.size()) 1381 stack.push_back(stack[pick_idx]); 1382 else 1383 { 1384 if (error_ptr) 1385 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); 1386 return false; 1387 } 1388 } 1389 break; 1390 1391 //---------------------------------------------------------------------- 1392 // OPCODE: DW_OP_swap 1393 // OPERANDS: none 1394 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1395 // of the stack becomes the second stack entry, and the second entry 1396 // becomes the top of the stack 1397 //---------------------------------------------------------------------- 1398 case DW_OP_swap: 1399 if (stack.size() < 2) 1400 { 1401 if (error_ptr) 1402 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); 1403 return false; 1404 } 1405 else 1406 { 1407 tmp = stack.back(); 1408 stack.back() = stack[stack.size() - 2]; 1409 stack[stack.size() - 2] = tmp; 1410 } 1411 break; 1412 1413 //---------------------------------------------------------------------- 1414 // OPCODE: DW_OP_rot 1415 // OPERANDS: none 1416 // DESCRIPTION: Rotates the first three stack entries. The entry at 1417 // the top of the stack becomes the third stack entry, the second 1418 // entry becomes the top of the stack, and the third entry becomes 1419 // the second entry. 1420 //---------------------------------------------------------------------- 1421 case DW_OP_rot: 1422 if (stack.size() < 3) 1423 { 1424 if (error_ptr) 1425 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); 1426 return false; 1427 } 1428 else 1429 { 1430 size_t last_idx = stack.size() - 1; 1431 Value old_top = stack[last_idx]; 1432 stack[last_idx] = stack[last_idx - 1]; 1433 stack[last_idx - 1] = stack[last_idx - 2]; 1434 stack[last_idx - 2] = old_top; 1435 } 1436 break; 1437 1438 //---------------------------------------------------------------------- 1439 // OPCODE: DW_OP_abs 1440 // OPERANDS: none 1441 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1442 // value and pushes its absolute value. If the absolute value can not be 1443 // represented, the result is undefined. 1444 //---------------------------------------------------------------------- 1445 case DW_OP_abs: 1446 if (stack.empty()) 1447 { 1448 if (error_ptr) 1449 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); 1450 return false; 1451 } 1452 else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false) 1453 { 1454 if (error_ptr) 1455 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); 1456 return false; 1457 } 1458 break; 1459 1460 //---------------------------------------------------------------------- 1461 // OPCODE: DW_OP_and 1462 // OPERANDS: none 1463 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1464 // operation on the two, and pushes the result. 1465 //---------------------------------------------------------------------- 1466 case DW_OP_and: 1467 if (stack.size() < 2) 1468 { 1469 if (error_ptr) 1470 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); 1471 return false; 1472 } 1473 else 1474 { 1475 tmp = stack.back(); 1476 stack.pop_back(); 1477 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context); 1478 } 1479 break; 1480 1481 //---------------------------------------------------------------------- 1482 // OPCODE: DW_OP_div 1483 // OPERANDS: none 1484 // DESCRIPTION: pops the top two stack values, divides the former second 1485 // entry by the former top of the stack using signed division, and 1486 // pushes the result. 1487 //---------------------------------------------------------------------- 1488 case DW_OP_div: 1489 if (stack.size() < 2) 1490 { 1491 if (error_ptr) 1492 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); 1493 return false; 1494 } 1495 else 1496 { 1497 tmp = stack.back(); 1498 if (tmp.ResolveValue(exe_ctx, ast_context).IsZero()) 1499 { 1500 if (error_ptr) 1501 error_ptr->SetErrorString("Divide by zero."); 1502 return false; 1503 } 1504 else 1505 { 1506 stack.pop_back(); 1507 stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context); 1508 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1509 { 1510 if (error_ptr) 1511 error_ptr->SetErrorString("Divide failed."); 1512 return false; 1513 } 1514 } 1515 } 1516 break; 1517 1518 //---------------------------------------------------------------------- 1519 // OPCODE: DW_OP_minus 1520 // OPERANDS: none 1521 // DESCRIPTION: pops the top two stack values, subtracts the former top 1522 // of the stack from the former second entry, and pushes the result. 1523 //---------------------------------------------------------------------- 1524 case DW_OP_minus: 1525 if (stack.size() < 2) 1526 { 1527 if (error_ptr) 1528 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); 1529 return false; 1530 } 1531 else 1532 { 1533 tmp = stack.back(); 1534 stack.pop_back(); 1535 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context); 1536 } 1537 break; 1538 1539 //---------------------------------------------------------------------- 1540 // OPCODE: DW_OP_mod 1541 // OPERANDS: none 1542 // DESCRIPTION: pops the top two stack values and pushes the result of 1543 // the calculation: former second stack entry modulo the former top of 1544 // the stack. 1545 //---------------------------------------------------------------------- 1546 case DW_OP_mod: 1547 if (stack.size() < 2) 1548 { 1549 if (error_ptr) 1550 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); 1551 return false; 1552 } 1553 else 1554 { 1555 tmp = stack.back(); 1556 stack.pop_back(); 1557 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context); 1558 } 1559 break; 1560 1561 1562 //---------------------------------------------------------------------- 1563 // OPCODE: DW_OP_mul 1564 // OPERANDS: none 1565 // DESCRIPTION: pops the top two stack entries, multiplies them 1566 // together, and pushes the result. 1567 //---------------------------------------------------------------------- 1568 case DW_OP_mul: 1569 if (stack.size() < 2) 1570 { 1571 if (error_ptr) 1572 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); 1573 return false; 1574 } 1575 else 1576 { 1577 tmp = stack.back(); 1578 stack.pop_back(); 1579 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context); 1580 } 1581 break; 1582 1583 //---------------------------------------------------------------------- 1584 // OPCODE: DW_OP_neg 1585 // OPERANDS: none 1586 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1587 //---------------------------------------------------------------------- 1588 case DW_OP_neg: 1589 if (stack.empty()) 1590 { 1591 if (error_ptr) 1592 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); 1593 return false; 1594 } 1595 else 1596 { 1597 if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false) 1598 { 1599 if (error_ptr) 1600 error_ptr->SetErrorString("Unary negate failed."); 1601 return false; 1602 } 1603 } 1604 break; 1605 1606 //---------------------------------------------------------------------- 1607 // OPCODE: DW_OP_not 1608 // OPERANDS: none 1609 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1610 // complement 1611 //---------------------------------------------------------------------- 1612 case DW_OP_not: 1613 if (stack.empty()) 1614 { 1615 if (error_ptr) 1616 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); 1617 return false; 1618 } 1619 else 1620 { 1621 if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false) 1622 { 1623 if (error_ptr) 1624 error_ptr->SetErrorString("Logical NOT failed."); 1625 return false; 1626 } 1627 } 1628 break; 1629 1630 //---------------------------------------------------------------------- 1631 // OPCODE: DW_OP_or 1632 // OPERANDS: none 1633 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 1634 // operation on the two, and pushes the result. 1635 //---------------------------------------------------------------------- 1636 case DW_OP_or: 1637 if (stack.size() < 2) 1638 { 1639 if (error_ptr) 1640 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); 1641 return false; 1642 } 1643 else 1644 { 1645 tmp = stack.back(); 1646 stack.pop_back(); 1647 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context); 1648 } 1649 break; 1650 1651 //---------------------------------------------------------------------- 1652 // OPCODE: DW_OP_plus 1653 // OPERANDS: none 1654 // DESCRIPTION: pops the top two stack entries, adds them together, and 1655 // pushes the result. 1656 //---------------------------------------------------------------------- 1657 case DW_OP_plus: 1658 if (stack.size() < 2) 1659 { 1660 if (error_ptr) 1661 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); 1662 return false; 1663 } 1664 else 1665 { 1666 tmp = stack.back(); 1667 stack.pop_back(); 1668 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context); 1669 } 1670 break; 1671 1672 //---------------------------------------------------------------------- 1673 // OPCODE: DW_OP_plus_uconst 1674 // OPERANDS: none 1675 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 1676 // constant operand and pushes the result. 1677 //---------------------------------------------------------------------- 1678 case DW_OP_plus_uconst: 1679 if (stack.empty()) 1680 { 1681 if (error_ptr) 1682 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); 1683 return false; 1684 } 1685 else 1686 { 1687 uint32_t uconst_value = opcodes.GetULEB128(&offset); 1688 // Implicit conversion from a UINT to a Scalar... 1689 stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value; 1690 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1691 { 1692 if (error_ptr) 1693 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 1694 return false; 1695 } 1696 } 1697 break; 1698 1699 //---------------------------------------------------------------------- 1700 // OPCODE: DW_OP_shl 1701 // OPERANDS: none 1702 // DESCRIPTION: pops the top two stack entries, shifts the former 1703 // second entry left by the number of bits specified by the former top 1704 // of the stack, and pushes the result. 1705 //---------------------------------------------------------------------- 1706 case DW_OP_shl: 1707 if (stack.size() < 2) 1708 { 1709 if (error_ptr) 1710 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); 1711 return false; 1712 } 1713 else 1714 { 1715 tmp = stack.back(); 1716 stack.pop_back(); 1717 stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context); 1718 } 1719 break; 1720 1721 //---------------------------------------------------------------------- 1722 // OPCODE: DW_OP_shr 1723 // OPERANDS: none 1724 // DESCRIPTION: pops the top two stack entries, shifts the former second 1725 // entry right logically (filling with zero bits) by the number of bits 1726 // specified by the former top of the stack, and pushes the result. 1727 //---------------------------------------------------------------------- 1728 case DW_OP_shr: 1729 if (stack.size() < 2) 1730 { 1731 if (error_ptr) 1732 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); 1733 return false; 1734 } 1735 else 1736 { 1737 tmp = stack.back(); 1738 stack.pop_back(); 1739 if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false) 1740 { 1741 if (error_ptr) 1742 error_ptr->SetErrorString("DW_OP_shr failed."); 1743 return false; 1744 } 1745 } 1746 break; 1747 1748 //---------------------------------------------------------------------- 1749 // OPCODE: DW_OP_shra 1750 // OPERANDS: none 1751 // DESCRIPTION: pops the top two stack entries, shifts the former second 1752 // entry right arithmetically (divide the magnitude by 2, keep the same 1753 // sign for the result) by the number of bits specified by the former 1754 // top of the stack, and pushes the result. 1755 //---------------------------------------------------------------------- 1756 case DW_OP_shra: 1757 if (stack.size() < 2) 1758 { 1759 if (error_ptr) 1760 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); 1761 return false; 1762 } 1763 else 1764 { 1765 tmp = stack.back(); 1766 stack.pop_back(); 1767 stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context); 1768 } 1769 break; 1770 1771 //---------------------------------------------------------------------- 1772 // OPCODE: DW_OP_xor 1773 // OPERANDS: none 1774 // DESCRIPTION: pops the top two stack entries, performs the bitwise 1775 // exclusive-or operation on the two, and pushes the result. 1776 //---------------------------------------------------------------------- 1777 case DW_OP_xor: 1778 if (stack.size() < 2) 1779 { 1780 if (error_ptr) 1781 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); 1782 return false; 1783 } 1784 else 1785 { 1786 tmp = stack.back(); 1787 stack.pop_back(); 1788 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context); 1789 } 1790 break; 1791 1792 1793 //---------------------------------------------------------------------- 1794 // OPCODE: DW_OP_skip 1795 // OPERANDS: int16_t 1796 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 1797 // signed integer constant. The 2-byte constant is the number of bytes 1798 // of the DWARF expression to skip forward or backward from the current 1799 // operation, beginning after the 2-byte constant. 1800 //---------------------------------------------------------------------- 1801 case DW_OP_skip: 1802 { 1803 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 1804 uint32_t new_offset = offset + skip_offset; 1805 if (new_offset >= opcodes_offset && new_offset < end_offset) 1806 offset = new_offset; 1807 else 1808 { 1809 if (error_ptr) 1810 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 1811 return false; 1812 } 1813 } 1814 break; 1815 1816 //---------------------------------------------------------------------- 1817 // OPCODE: DW_OP_bra 1818 // OPERANDS: int16_t 1819 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 1820 // signed integer constant. This operation pops the top of stack. If 1821 // the value popped is not the constant 0, the 2-byte constant operand 1822 // is the number of bytes of the DWARF expression to skip forward or 1823 // backward from the current operation, beginning after the 2-byte 1824 // constant. 1825 //---------------------------------------------------------------------- 1826 case DW_OP_bra: 1827 { 1828 tmp = stack.back(); 1829 stack.pop_back(); 1830 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 1831 Scalar zero(0); 1832 if (tmp.ResolveValue(exe_ctx, ast_context) != zero) 1833 { 1834 uint32_t new_offset = offset + bra_offset; 1835 if (new_offset >= opcodes_offset && new_offset < end_offset) 1836 offset = new_offset; 1837 else 1838 { 1839 if (error_ptr) 1840 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 1841 return false; 1842 } 1843 } 1844 } 1845 break; 1846 1847 //---------------------------------------------------------------------- 1848 // OPCODE: DW_OP_eq 1849 // OPERANDS: none 1850 // DESCRIPTION: pops the top two stack values, compares using the 1851 // equals (==) operator. 1852 // STACK RESULT: push the constant value 1 onto the stack if the result 1853 // of the operation is true or the constant value 0 if the result of the 1854 // operation is false. 1855 //---------------------------------------------------------------------- 1856 case DW_OP_eq: 1857 if (stack.size() < 2) 1858 { 1859 if (error_ptr) 1860 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); 1861 return false; 1862 } 1863 else 1864 { 1865 tmp = stack.back(); 1866 stack.pop_back(); 1867 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context); 1868 } 1869 break; 1870 1871 //---------------------------------------------------------------------- 1872 // OPCODE: DW_OP_ge 1873 // OPERANDS: none 1874 // DESCRIPTION: pops the top two stack values, compares using the 1875 // greater than or equal to (>=) operator. 1876 // STACK RESULT: push the constant value 1 onto the stack if the result 1877 // of the operation is true or the constant value 0 if the result of the 1878 // operation is false. 1879 //---------------------------------------------------------------------- 1880 case DW_OP_ge: 1881 if (stack.size() < 2) 1882 { 1883 if (error_ptr) 1884 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); 1885 return false; 1886 } 1887 else 1888 { 1889 tmp = stack.back(); 1890 stack.pop_back(); 1891 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context); 1892 } 1893 break; 1894 1895 //---------------------------------------------------------------------- 1896 // OPCODE: DW_OP_gt 1897 // OPERANDS: none 1898 // DESCRIPTION: pops the top two stack values, compares using the 1899 // greater than (>) operator. 1900 // STACK RESULT: push the constant value 1 onto the stack if the result 1901 // of the operation is true or the constant value 0 if the result of the 1902 // operation is false. 1903 //---------------------------------------------------------------------- 1904 case DW_OP_gt: 1905 if (stack.size() < 2) 1906 { 1907 if (error_ptr) 1908 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); 1909 return false; 1910 } 1911 else 1912 { 1913 tmp = stack.back(); 1914 stack.pop_back(); 1915 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context); 1916 } 1917 break; 1918 1919 //---------------------------------------------------------------------- 1920 // OPCODE: DW_OP_le 1921 // OPERANDS: none 1922 // DESCRIPTION: pops the top two stack values, compares using the 1923 // less than or equal to (<=) operator. 1924 // STACK RESULT: push the constant value 1 onto the stack if the result 1925 // of the operation is true or the constant value 0 if the result of the 1926 // operation is false. 1927 //---------------------------------------------------------------------- 1928 case DW_OP_le: 1929 if (stack.size() < 2) 1930 { 1931 if (error_ptr) 1932 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); 1933 return false; 1934 } 1935 else 1936 { 1937 tmp = stack.back(); 1938 stack.pop_back(); 1939 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context); 1940 } 1941 break; 1942 1943 //---------------------------------------------------------------------- 1944 // OPCODE: DW_OP_lt 1945 // OPERANDS: none 1946 // DESCRIPTION: pops the top two stack values, compares using the 1947 // less than (<) operator. 1948 // STACK RESULT: push the constant value 1 onto the stack if the result 1949 // of the operation is true or the constant value 0 if the result of the 1950 // operation is false. 1951 //---------------------------------------------------------------------- 1952 case DW_OP_lt: 1953 if (stack.size() < 2) 1954 { 1955 if (error_ptr) 1956 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); 1957 return false; 1958 } 1959 else 1960 { 1961 tmp = stack.back(); 1962 stack.pop_back(); 1963 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context); 1964 } 1965 break; 1966 1967 //---------------------------------------------------------------------- 1968 // OPCODE: DW_OP_ne 1969 // OPERANDS: none 1970 // DESCRIPTION: pops the top two stack values, compares using the 1971 // not equal (!=) operator. 1972 // STACK RESULT: push the constant value 1 onto the stack if the result 1973 // of the operation is true or the constant value 0 if the result of the 1974 // operation is false. 1975 //---------------------------------------------------------------------- 1976 case DW_OP_ne: 1977 if (stack.size() < 2) 1978 { 1979 if (error_ptr) 1980 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); 1981 return false; 1982 } 1983 else 1984 { 1985 tmp = stack.back(); 1986 stack.pop_back(); 1987 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context); 1988 } 1989 break; 1990 1991 //---------------------------------------------------------------------- 1992 // OPCODE: DW_OP_litn 1993 // OPERANDS: none 1994 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 1995 // STACK RESULT: push the unsigned literal constant value onto the top 1996 // of the stack. 1997 //---------------------------------------------------------------------- 1998 case DW_OP_lit0: 1999 case DW_OP_lit1: 2000 case DW_OP_lit2: 2001 case DW_OP_lit3: 2002 case DW_OP_lit4: 2003 case DW_OP_lit5: 2004 case DW_OP_lit6: 2005 case DW_OP_lit7: 2006 case DW_OP_lit8: 2007 case DW_OP_lit9: 2008 case DW_OP_lit10: 2009 case DW_OP_lit11: 2010 case DW_OP_lit12: 2011 case DW_OP_lit13: 2012 case DW_OP_lit14: 2013 case DW_OP_lit15: 2014 case DW_OP_lit16: 2015 case DW_OP_lit17: 2016 case DW_OP_lit18: 2017 case DW_OP_lit19: 2018 case DW_OP_lit20: 2019 case DW_OP_lit21: 2020 case DW_OP_lit22: 2021 case DW_OP_lit23: 2022 case DW_OP_lit24: 2023 case DW_OP_lit25: 2024 case DW_OP_lit26: 2025 case DW_OP_lit27: 2026 case DW_OP_lit28: 2027 case DW_OP_lit29: 2028 case DW_OP_lit30: 2029 case DW_OP_lit31: 2030 stack.push_back(Scalar(op - DW_OP_lit0)); 2031 break; 2032 2033 //---------------------------------------------------------------------- 2034 // OPCODE: DW_OP_regN 2035 // OPERANDS: none 2036 // DESCRIPTION: Push the value in register n on the top of the stack. 2037 //---------------------------------------------------------------------- 2038 case DW_OP_reg0: 2039 case DW_OP_reg1: 2040 case DW_OP_reg2: 2041 case DW_OP_reg3: 2042 case DW_OP_reg4: 2043 case DW_OP_reg5: 2044 case DW_OP_reg6: 2045 case DW_OP_reg7: 2046 case DW_OP_reg8: 2047 case DW_OP_reg9: 2048 case DW_OP_reg10: 2049 case DW_OP_reg11: 2050 case DW_OP_reg12: 2051 case DW_OP_reg13: 2052 case DW_OP_reg14: 2053 case DW_OP_reg15: 2054 case DW_OP_reg16: 2055 case DW_OP_reg17: 2056 case DW_OP_reg18: 2057 case DW_OP_reg19: 2058 case DW_OP_reg20: 2059 case DW_OP_reg21: 2060 case DW_OP_reg22: 2061 case DW_OP_reg23: 2062 case DW_OP_reg24: 2063 case DW_OP_reg25: 2064 case DW_OP_reg26: 2065 case DW_OP_reg27: 2066 case DW_OP_reg28: 2067 case DW_OP_reg29: 2068 case DW_OP_reg30: 2069 case DW_OP_reg31: 2070 { 2071 reg_num = op - DW_OP_reg0; 2072 2073 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2074 stack.push_back(tmp); 2075 else 2076 return false; 2077 } 2078 break; 2079 //---------------------------------------------------------------------- 2080 // OPCODE: DW_OP_regx 2081 // OPERANDS: 2082 // ULEB128 literal operand that encodes the register. 2083 // DESCRIPTION: Push the value in register on the top of the stack. 2084 //---------------------------------------------------------------------- 2085 case DW_OP_regx: 2086 { 2087 reg_num = opcodes.GetULEB128(&offset); 2088 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2089 stack.push_back(tmp); 2090 else 2091 return false; 2092 } 2093 break; 2094 2095 //---------------------------------------------------------------------- 2096 // OPCODE: DW_OP_bregN 2097 // OPERANDS: 2098 // SLEB128 offset from register N 2099 // DESCRIPTION: Value is in memory at the address specified by register 2100 // N plus an offset. 2101 //---------------------------------------------------------------------- 2102 case DW_OP_breg0: 2103 case DW_OP_breg1: 2104 case DW_OP_breg2: 2105 case DW_OP_breg3: 2106 case DW_OP_breg4: 2107 case DW_OP_breg5: 2108 case DW_OP_breg6: 2109 case DW_OP_breg7: 2110 case DW_OP_breg8: 2111 case DW_OP_breg9: 2112 case DW_OP_breg10: 2113 case DW_OP_breg11: 2114 case DW_OP_breg12: 2115 case DW_OP_breg13: 2116 case DW_OP_breg14: 2117 case DW_OP_breg15: 2118 case DW_OP_breg16: 2119 case DW_OP_breg17: 2120 case DW_OP_breg18: 2121 case DW_OP_breg19: 2122 case DW_OP_breg20: 2123 case DW_OP_breg21: 2124 case DW_OP_breg22: 2125 case DW_OP_breg23: 2126 case DW_OP_breg24: 2127 case DW_OP_breg25: 2128 case DW_OP_breg26: 2129 case DW_OP_breg27: 2130 case DW_OP_breg28: 2131 case DW_OP_breg29: 2132 case DW_OP_breg30: 2133 case DW_OP_breg31: 2134 { 2135 reg_num = op - DW_OP_breg0; 2136 2137 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2138 { 2139 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2140 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2141 stack.push_back(tmp); 2142 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2143 } 2144 else 2145 return false; 2146 } 2147 break; 2148 //---------------------------------------------------------------------- 2149 // OPCODE: DW_OP_bregx 2150 // OPERANDS: 2 2151 // ULEB128 literal operand that encodes the register. 2152 // SLEB128 offset from register N 2153 // DESCRIPTION: Value is in memory at the address specified by register 2154 // N plus an offset. 2155 //---------------------------------------------------------------------- 2156 case DW_OP_bregx: 2157 { 2158 reg_num = opcodes.GetULEB128(&offset); 2159 2160 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2161 { 2162 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2163 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2164 stack.push_back(tmp); 2165 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2166 } 2167 else 2168 return false; 2169 } 2170 break; 2171 2172 case DW_OP_fbreg: 2173 if (exe_ctx && exe_ctx->frame) 2174 { 2175 Scalar value; 2176 if (exe_ctx->frame->GetFrameBaseValue(value, error_ptr)) 2177 { 2178 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2179 value += fbreg_offset; 2180 stack.push_back(value); 2181 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2182 } 2183 else 2184 return false; 2185 } 2186 else 2187 { 2188 if (error_ptr) 2189 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); 2190 return false; 2191 } 2192 break; 2193 2194 //---------------------------------------------------------------------- 2195 // OPCODE: DW_OP_nop 2196 // OPERANDS: none 2197 // DESCRIPTION: A place holder. It has no effect on the location stack 2198 // or any of its values. 2199 //---------------------------------------------------------------------- 2200 case DW_OP_nop: 2201 break; 2202 2203 //---------------------------------------------------------------------- 2204 // OPCODE: DW_OP_piece 2205 // OPERANDS: 1 2206 // ULEB128: byte size of the piece 2207 // DESCRIPTION: The operand describes the size in bytes of the piece of 2208 // the object referenced by the DWARF expression whose result is at the 2209 // top of the stack. If the piece is located in a register, but does not 2210 // occupy the entire register, the placement of the piece within that 2211 // register is defined by the ABI. 2212 // 2213 // Many compilers store a single variable in sets of registers, or store 2214 // a variable partially in memory and partially in registers. 2215 // DW_OP_piece provides a way of describing how large a part of a 2216 // variable a particular DWARF expression refers to. 2217 //---------------------------------------------------------------------- 2218 case DW_OP_piece: 2219 if (error_ptr) 2220 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece."); 2221 return false; 2222 2223 //---------------------------------------------------------------------- 2224 // OPCODE: DW_OP_push_object_address 2225 // OPERANDS: none 2226 // DESCRIPTION: Pushes the address of the object currently being 2227 // evaluated as part of evaluation of a user presented expression. 2228 // This object may correspond to an independent variable described by 2229 // its own DIE or it may be a component of an array, structure, or class 2230 // whose address has been dynamically determined by an earlier step 2231 // during user expression evaluation. 2232 //---------------------------------------------------------------------- 2233 case DW_OP_push_object_address: 2234 if (error_ptr) 2235 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); 2236 return false; 2237 2238 //---------------------------------------------------------------------- 2239 // OPCODE: DW_OP_call2 2240 // OPERANDS: 2241 // uint16_t compile unit relative offset of a DIE 2242 // DESCRIPTION: Performs subroutine calls during evaluation 2243 // of a DWARF expression. The operand is the 2-byte unsigned offset 2244 // of a debugging information entry in the current compilation unit. 2245 // 2246 // Operand interpretation is exactly like that for DW_FORM_ref2. 2247 // 2248 // This operation transfers control of DWARF expression evaluation 2249 // to the DW_AT_location attribute of the referenced DIE. If there is 2250 // no such attribute, then there is no effect. Execution of the DWARF 2251 // expression of a DW_AT_location attribute may add to and/or remove from 2252 // values on the stack. Execution returns to the point following the call 2253 // when the end of the attribute is reached. Values on the stack at the 2254 // time of the call may be used as parameters by the called expression 2255 // and values left on the stack by the called expression may be used as 2256 // return values by prior agreement between the calling and called 2257 // expressions. 2258 //---------------------------------------------------------------------- 2259 case DW_OP_call2: 2260 if (error_ptr) 2261 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); 2262 return false; 2263 //---------------------------------------------------------------------- 2264 // OPCODE: DW_OP_call4 2265 // OPERANDS: 1 2266 // uint32_t compile unit relative offset of a DIE 2267 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2268 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset 2269 // of a debugging information entry in the current compilation unit. 2270 // 2271 // Operand interpretation DW_OP_call4 is exactly like that for 2272 // DW_FORM_ref4. 2273 // 2274 // This operation transfers control of DWARF expression evaluation 2275 // to the DW_AT_location attribute of the referenced DIE. If there is 2276 // no such attribute, then there is no effect. Execution of the DWARF 2277 // expression of a DW_AT_location attribute may add to and/or remove from 2278 // values on the stack. Execution returns to the point following the call 2279 // when the end of the attribute is reached. Values on the stack at the 2280 // time of the call may be used as parameters by the called expression 2281 // and values left on the stack by the called expression may be used as 2282 // return values by prior agreement between the calling and called 2283 // expressions. 2284 //---------------------------------------------------------------------- 2285 case DW_OP_call4: 2286 if (error_ptr) 2287 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); 2288 return false; 2289 2290 2291 //---------------------------------------------------------------------- 2292 // OPCODE: DW_OP_call_ref 2293 // OPERANDS: 2294 // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t 2295 // absolute DIE offset for 64 bit DWARF. 2296 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2297 // expression. Takes a single operand. In the 32-bit DWARF format, the 2298 // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it 2299 // is an 8-byte unsigned value. The operand is used as the offset of a 2300 // debugging information entry in a .debug_info section which may be 2301 // contained in a shared object for executable other than that 2302 // containing the operator. For references from one shared object or 2303 // executable to another, the relocation must be performed by the 2304 // consumer. 2305 // 2306 // Operand interpretation of DW_OP_call_ref is exactly like that for 2307 // DW_FORM_ref_addr. 2308 // 2309 // This operation transfers control of DWARF expression evaluation 2310 // to the DW_AT_location attribute of the referenced DIE. If there is 2311 // no such attribute, then there is no effect. Execution of the DWARF 2312 // expression of a DW_AT_location attribute may add to and/or remove from 2313 // values on the stack. Execution returns to the point following the call 2314 // when the end of the attribute is reached. Values on the stack at the 2315 // time of the call may be used as parameters by the called expression 2316 // and values left on the stack by the called expression may be used as 2317 // return values by prior agreement between the calling and called 2318 // expressions. 2319 //---------------------------------------------------------------------- 2320 case DW_OP_call_ref: 2321 if (error_ptr) 2322 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref."); 2323 return false; 2324 2325 //---------------------------------------------------------------------- 2326 // OPCODE: DW_OP_APPLE_array_ref 2327 // OPERANDS: none 2328 // DESCRIPTION: Pops a value off the stack and uses it as the array 2329 // index. Pops a second value off the stack and uses it as the array 2330 // itself. Pushes a value onto the stack representing the element of 2331 // the array specified by the index. 2332 //---------------------------------------------------------------------- 2333 case DW_OP_APPLE_array_ref: 2334 { 2335 if (stack.size() < 2) 2336 { 2337 if (error_ptr) 2338 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref."); 2339 return false; 2340 } 2341 2342 Value index_val = stack.back(); 2343 stack.pop_back(); 2344 Value array_val = stack.back(); 2345 stack.pop_back(); 2346 2347 Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context); 2348 int64_t index = index_scalar.SLongLong(LLONG_MAX); 2349 2350 if (index == LLONG_MAX) 2351 { 2352 if (error_ptr) 2353 error_ptr->SetErrorString("Invalid array index."); 2354 return false; 2355 } 2356 2357 if (array_val.GetContextType() != Value::eContextTypeClangType) 2358 { 2359 if (error_ptr) 2360 error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time."); 2361 return false; 2362 } 2363 2364 if (array_val.GetValueType() != Value::eValueTypeLoadAddress && 2365 array_val.GetValueType() != Value::eValueTypeHostAddress) 2366 { 2367 if (error_ptr) 2368 error_ptr->SetErrorString("Array must be stored in memory."); 2369 return false; 2370 } 2371 2372 void *array_type = array_val.GetClangType(); 2373 2374 void *member_type; 2375 uint64_t size = 0; 2376 2377 if ((!ClangASTContext::IsPointerType(array_type, &member_type)) && 2378 (!ClangASTContext::IsArrayType(array_type, &member_type, &size))) 2379 { 2380 if (error_ptr) 2381 error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array."); 2382 return false; 2383 } 2384 2385 if (size && (index >= size || index < 0)) 2386 { 2387 if (error_ptr) 2388 error_ptr->SetErrorStringWithFormat("Out of bounds array access. %lld is not in [0, %llu]", index, size); 2389 return false; 2390 } 2391 2392 uint64_t member_bit_size = ClangASTType::GetClangTypeBitWidth(ast_context, member_type); 2393 uint64_t member_bit_align = ClangASTType::GetTypeBitAlign(ast_context, member_type); 2394 uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align; 2395 if (member_bit_incr % 8) 2396 { 2397 if (error_ptr) 2398 error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned", index, size); 2399 return false; 2400 } 2401 int64_t member_offset = (int64_t)(member_bit_incr / 8) * index; 2402 2403 Value member; 2404 2405 member.SetContext(Value::eContextTypeClangType, member_type); 2406 member.SetValueType(array_val.GetValueType()); 2407 2408 addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2409 addr_t member_loc = array_base + member_offset; 2410 member.GetScalar() = (uint64_t)member_loc; 2411 2412 stack.push_back(member); 2413 } 2414 break; 2415 2416 //---------------------------------------------------------------------- 2417 // OPCODE: DW_OP_APPLE_uninit 2418 // OPERANDS: none 2419 // DESCRIPTION: Lets us know that the value is currently not initialized 2420 //---------------------------------------------------------------------- 2421 case DW_OP_APPLE_uninit: 2422 //return eResultTypeErrorUninitialized; 2423 break; // Ignore this as we have seen cases where this value is incorrectly added 2424 2425 //---------------------------------------------------------------------- 2426 // OPCODE: DW_OP_APPLE_assign 2427 // OPERANDS: none 2428 // DESCRIPTION: Pops a value off of the stack and assigns it to the next 2429 // item on the stack which must be something assignable (inferior 2430 // Variable, inferior Type with address, inferior register, or 2431 // expression local variable. 2432 //---------------------------------------------------------------------- 2433 case DW_OP_APPLE_assign: 2434 if (stack.size() < 2) 2435 { 2436 if (error_ptr) 2437 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign."); 2438 return false; 2439 } 2440 else 2441 { 2442 tmp = stack.back(); 2443 stack.pop_back(); 2444 Value::ContextType context_type = stack.back().GetContextType(); 2445 StreamString new_value(Stream::eBinary, 4, lldb::endian::InlHostByteOrder()); 2446 switch (context_type) 2447 { 2448 case Value::eContextTypeClangType: 2449 { 2450 void *clang_type = stack.back().GetClangType(); 2451 2452 if (ClangASTContext::IsAggregateType (clang_type)) 2453 { 2454 Value::ValueType source_value_type = tmp.GetValueType(); 2455 Value::ValueType target_value_type = stack.back().GetValueType(); 2456 2457 addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong(); 2458 addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong(); 2459 2460 size_t byte_size = (ClangASTType::GetClangTypeBitWidth(ast_context, clang_type) + 7) / 8; 2461 2462 switch (source_value_type) 2463 { 2464 case Value::eValueTypeScalar: 2465 case Value::eValueTypeFileAddress: 2466 break; 2467 2468 case Value::eValueTypeLoadAddress: 2469 switch (target_value_type) 2470 { 2471 case Value::eValueTypeLoadAddress: 2472 { 2473 DataBufferHeap data; 2474 data.SetByteSize(byte_size); 2475 2476 Error error; 2477 if (exe_ctx->process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size) 2478 { 2479 if (error_ptr) 2480 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2481 return false; 2482 } 2483 2484 if (exe_ctx->process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size) 2485 { 2486 if (error_ptr) 2487 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2488 return false; 2489 } 2490 } 2491 break; 2492 case Value::eValueTypeHostAddress: 2493 if (exe_ctx->process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2494 { 2495 if (error_ptr) 2496 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2497 return false; 2498 } 2499 else 2500 { 2501 Error error; 2502 if (exe_ctx->process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size) 2503 { 2504 if (error_ptr) 2505 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2506 return false; 2507 } 2508 } 2509 break; 2510 default: 2511 return false; 2512 } 2513 break; 2514 case Value::eValueTypeHostAddress: 2515 switch (target_value_type) 2516 { 2517 case Value::eValueTypeLoadAddress: 2518 if (exe_ctx->process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2519 { 2520 if (error_ptr) 2521 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2522 return false; 2523 } 2524 else 2525 { 2526 Error error; 2527 if (exe_ctx->process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size) 2528 { 2529 if (error_ptr) 2530 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2531 return false; 2532 } 2533 } 2534 case Value::eValueTypeHostAddress: 2535 memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size); 2536 break; 2537 default: 2538 return false; 2539 } 2540 } 2541 } 2542 else 2543 { 2544 if (!ClangASTType::SetValueFromScalar (ast_context, 2545 clang_type, 2546 tmp.ResolveValue(exe_ctx, ast_context), 2547 new_value)) 2548 { 2549 if (error_ptr) 2550 error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n"); 2551 return false; 2552 } 2553 2554 Value::ValueType value_type = stack.back().GetValueType(); 2555 2556 switch (value_type) 2557 { 2558 case Value::eValueTypeLoadAddress: 2559 case Value::eValueTypeHostAddress: 2560 { 2561 AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost); 2562 lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2563 if (!ClangASTType::WriteToMemory (ast_context, 2564 clang_type, 2565 exe_ctx, 2566 addr, 2567 address_type, 2568 new_value)) 2569 { 2570 if (error_ptr) 2571 error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%llx.\n", addr); 2572 return false; 2573 } 2574 } 2575 break; 2576 2577 default: 2578 break; 2579 } 2580 } 2581 } 2582 break; 2583 2584 default: 2585 if (error_ptr) 2586 error_ptr->SetErrorString ("Assign failed."); 2587 return false; 2588 } 2589 } 2590 break; 2591 2592 //---------------------------------------------------------------------- 2593 // OPCODE: DW_OP_APPLE_address_of 2594 // OPERANDS: none 2595 // DESCRIPTION: Pops a value off of the stack and pushed its address. 2596 // The top item on the stack must be a variable, or already be a memory 2597 // location. 2598 //---------------------------------------------------------------------- 2599 case DW_OP_APPLE_address_of: 2600 if (stack.empty()) 2601 { 2602 if (error_ptr) 2603 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of."); 2604 return false; 2605 } 2606 else 2607 { 2608 Value::ValueType value_type = stack.back().GetValueType(); 2609 switch (value_type) 2610 { 2611 default: 2612 case Value::eValueTypeScalar: // raw scalar value 2613 if (error_ptr) 2614 error_ptr->SetErrorString("Top stack item isn't a memory based object."); 2615 return false; 2616 2617 case Value::eValueTypeLoadAddress: // load address value 2618 case Value::eValueTypeFileAddress: // file address value 2619 case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb) 2620 // Taking the address of an object reduces it to the address 2621 // of the value and removes any extra context it had. 2622 //stack.back().SetValueType(Value::eValueTypeScalar); 2623 stack.back().ClearContext(); 2624 break; 2625 } 2626 } 2627 break; 2628 2629 //---------------------------------------------------------------------- 2630 // OPCODE: DW_OP_APPLE_value_of 2631 // OPERANDS: none 2632 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2633 // The top item on the stack must be a variable, expression variable. 2634 //---------------------------------------------------------------------- 2635 case DW_OP_APPLE_value_of: 2636 if (stack.empty()) 2637 { 2638 if (error_ptr) 2639 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of."); 2640 return false; 2641 } 2642 else if (!stack.back().ValueOf(exe_ctx, ast_context)) 2643 { 2644 if (error_ptr) 2645 error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of."); 2646 return false; 2647 } 2648 break; 2649 2650 //---------------------------------------------------------------------- 2651 // OPCODE: DW_OP_APPLE_deref_type 2652 // OPERANDS: none 2653 // DESCRIPTION: gets the value pointed to by the top stack item 2654 //---------------------------------------------------------------------- 2655 case DW_OP_APPLE_deref_type: 2656 { 2657 if (stack.empty()) 2658 { 2659 if (error_ptr) 2660 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type."); 2661 return false; 2662 } 2663 2664 tmp = stack.back(); 2665 stack.pop_back(); 2666 2667 if (tmp.GetContextType() != Value::eContextTypeClangType) 2668 { 2669 if (error_ptr) 2670 error_ptr->SetErrorString("Item at top of expression stack must have a Clang type"); 2671 return false; 2672 } 2673 2674 void *ptr_type = tmp.GetClangType(); 2675 void *target_type; 2676 2677 if (!ClangASTContext::IsPointerType(ptr_type, &target_type)) 2678 { 2679 if (error_ptr) 2680 error_ptr->SetErrorString("Dereferencing a non-pointer type"); 2681 return false; 2682 } 2683 2684 // TODO do we want all pointers to be dereferenced as load addresses? 2685 Value::ValueType value_type = tmp.GetValueType(); 2686 2687 tmp.ResolveValue(exe_ctx, ast_context); 2688 2689 tmp.SetValueType(value_type); 2690 tmp.SetContext(Value::eContextTypeClangType, target_type); 2691 2692 stack.push_back(tmp); 2693 } 2694 break; 2695 2696 //---------------------------------------------------------------------- 2697 // OPCODE: DW_OP_APPLE_expr_local 2698 // OPERANDS: ULEB128 2699 // DESCRIPTION: pushes the expression local variable index onto the 2700 // stack and set the appropriate context so we know the stack item is 2701 // an expression local variable index. 2702 //---------------------------------------------------------------------- 2703 case DW_OP_APPLE_expr_local: 2704 { 2705 /* 2706 uint32_t idx = opcodes.GetULEB128(&offset); 2707 if (expr_locals == NULL) 2708 { 2709 if (error_ptr) 2710 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx); 2711 return false; 2712 } 2713 Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx); 2714 if (expr_local_variable == NULL) 2715 { 2716 if (error_ptr) 2717 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx); 2718 return false; 2719 } 2720 // The proxy code has been removed. If it is ever re-added, please 2721 // use shared pointers or return by value to avoid possible memory 2722 // leak (there is no leak here, but in general, no returning pointers 2723 // that must be manually freed please. 2724 Value *proxy = expr_local_variable->CreateProxy(); 2725 stack.push_back(*proxy); 2726 delete proxy; 2727 //stack.back().SetContext (Value::eContextTypeClangType, expr_local_variable->GetClangType()); 2728 */ 2729 } 2730 break; 2731 2732 //---------------------------------------------------------------------- 2733 // OPCODE: DW_OP_APPLE_extern 2734 // OPERANDS: ULEB128 2735 // DESCRIPTION: pushes a proxy for the extern object index onto the 2736 // stack. 2737 //---------------------------------------------------------------------- 2738 case DW_OP_APPLE_extern: 2739 { 2740 /* 2741 uint32_t idx = opcodes.GetULEB128(&offset); 2742 if (!decl_map) 2743 { 2744 if (error_ptr) 2745 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx); 2746 return false; 2747 } 2748 Value *extern_var = decl_map->GetValueForIndex(idx); 2749 if (!extern_var) 2750 { 2751 if (error_ptr) 2752 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx); 2753 return false; 2754 } 2755 // The proxy code has been removed. If it is ever re-added, please 2756 // use shared pointers or return by value to avoid possible memory 2757 // leak (there is no leak here, but in general, no returning pointers 2758 // that must be manually freed please. 2759 Value *proxy = extern_var->CreateProxy(); 2760 stack.push_back(*proxy); 2761 delete proxy; 2762 */ 2763 } 2764 break; 2765 2766 case DW_OP_APPLE_scalar_cast: 2767 if (stack.empty()) 2768 { 2769 if (error_ptr) 2770 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast."); 2771 return false; 2772 } 2773 else 2774 { 2775 // Simple scalar cast 2776 if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset))) 2777 { 2778 if (error_ptr) 2779 error_ptr->SetErrorString("Cast failed."); 2780 return false; 2781 } 2782 } 2783 break; 2784 2785 2786 case DW_OP_APPLE_clang_cast: 2787 if (stack.empty()) 2788 { 2789 if (error_ptr) 2790 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast."); 2791 return false; 2792 } 2793 else 2794 { 2795 void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*)); 2796 stack.back().SetContext (Value::eContextTypeClangType, clang_type); 2797 } 2798 break; 2799 //---------------------------------------------------------------------- 2800 // OPCODE: DW_OP_APPLE_constf 2801 // OPERANDS: 1 byte float length, followed by that many bytes containing 2802 // the constant float data. 2803 // DESCRIPTION: Push a float value onto the expression stack. 2804 //---------------------------------------------------------------------- 2805 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 2806 { 2807 uint8_t float_length = opcodes.GetU8(&offset); 2808 if (sizeof(float) == float_length) 2809 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset); 2810 else if (sizeof(double) == float_length) 2811 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset); 2812 else if (sizeof(long double) == float_length) 2813 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset); 2814 else 2815 { 2816 StreamString new_value; 2817 opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 2818 2819 if (error_ptr) 2820 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData()); 2821 return false; 2822 } 2823 tmp.SetValueType(Value::eValueTypeScalar); 2824 tmp.ClearContext(); 2825 stack.push_back(tmp); 2826 } 2827 break; 2828 //---------------------------------------------------------------------- 2829 // OPCODE: DW_OP_APPLE_clear 2830 // OPERANDS: none 2831 // DESCRIPTION: Clears the expression stack. 2832 //---------------------------------------------------------------------- 2833 case DW_OP_APPLE_clear: 2834 stack.clear(); 2835 break; 2836 2837 //---------------------------------------------------------------------- 2838 // OPCODE: DW_OP_APPLE_error 2839 // OPERANDS: none 2840 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2841 // The top item on the stack must be a variable, expression variable. 2842 //---------------------------------------------------------------------- 2843 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 2844 if (error_ptr) 2845 error_ptr->SetErrorString ("Generic error."); 2846 return false; 2847 } 2848 } 2849 2850 if (stack.empty()) 2851 { 2852 if (error_ptr) 2853 error_ptr->SetErrorString ("Stack empty after evaluation."); 2854 return false; 2855 } 2856 else if (log) 2857 { 2858 size_t count = stack.size(); 2859 log->Printf("Stack after operation has %d values:", count); 2860 for (size_t i=0; i<count; ++i) 2861 { 2862 StreamString new_value; 2863 new_value.Printf("[%zu]", i); 2864 stack[i].Dump(&new_value); 2865 log->Printf(" %s", new_value.GetData()); 2866 } 2867 } 2868 2869 result = stack.back(); 2870 return true; // Return true on success 2871 } 2872 2873