1 //===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Expression/DWARFExpression.h" 11 12 #include <vector> 13 14 #include "lldb/Core/DataEncoder.h" 15 #include "lldb/Core/dwarf.h" 16 #include "lldb/Core/Log.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/StreamString.h" 19 #include "lldb/Core/Scalar.h" 20 #include "lldb/Core/Value.h" 21 #include "lldb/Core/VMRange.h" 22 23 #include "lldb/Expression/ClangExpressionDeclMap.h" 24 #include "lldb/Expression/ClangExpressionVariable.h" 25 26 #include "lldb/Host/Endian.h" 27 #include "lldb/Host/Host.h" 28 29 #include "lldb/lldb-private-log.h" 30 31 #include "lldb/Symbol/ClangASTType.h" 32 #include "lldb/Symbol/ClangASTContext.h" 33 #include "lldb/Symbol/Type.h" 34 35 #include "lldb/Target/ABI.h" 36 #include "lldb/Target/ExecutionContext.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/RegisterContext.h" 39 #include "lldb/Target/StackFrame.h" 40 41 using namespace lldb; 42 using namespace lldb_private; 43 44 const char * 45 DW_OP_value_to_name (uint32_t val) 46 { 47 static char invalid[100]; 48 switch (val) { 49 case 0x03: return "DW_OP_addr"; 50 case 0x06: return "DW_OP_deref"; 51 case 0x08: return "DW_OP_const1u"; 52 case 0x09: return "DW_OP_const1s"; 53 case 0x0a: return "DW_OP_const2u"; 54 case 0x0b: return "DW_OP_const2s"; 55 case 0x0c: return "DW_OP_const4u"; 56 case 0x0d: return "DW_OP_const4s"; 57 case 0x0e: return "DW_OP_const8u"; 58 case 0x0f: return "DW_OP_const8s"; 59 case 0x10: return "DW_OP_constu"; 60 case 0x11: return "DW_OP_consts"; 61 case 0x12: return "DW_OP_dup"; 62 case 0x13: return "DW_OP_drop"; 63 case 0x14: return "DW_OP_over"; 64 case 0x15: return "DW_OP_pick"; 65 case 0x16: return "DW_OP_swap"; 66 case 0x17: return "DW_OP_rot"; 67 case 0x18: return "DW_OP_xderef"; 68 case 0x19: return "DW_OP_abs"; 69 case 0x1a: return "DW_OP_and"; 70 case 0x1b: return "DW_OP_div"; 71 case 0x1c: return "DW_OP_minus"; 72 case 0x1d: return "DW_OP_mod"; 73 case 0x1e: return "DW_OP_mul"; 74 case 0x1f: return "DW_OP_neg"; 75 case 0x20: return "DW_OP_not"; 76 case 0x21: return "DW_OP_or"; 77 case 0x22: return "DW_OP_plus"; 78 case 0x23: return "DW_OP_plus_uconst"; 79 case 0x24: return "DW_OP_shl"; 80 case 0x25: return "DW_OP_shr"; 81 case 0x26: return "DW_OP_shra"; 82 case 0x27: return "DW_OP_xor"; 83 case 0x2f: return "DW_OP_skip"; 84 case 0x28: return "DW_OP_bra"; 85 case 0x29: return "DW_OP_eq"; 86 case 0x2a: return "DW_OP_ge"; 87 case 0x2b: return "DW_OP_gt"; 88 case 0x2c: return "DW_OP_le"; 89 case 0x2d: return "DW_OP_lt"; 90 case 0x2e: return "DW_OP_ne"; 91 case 0x30: return "DW_OP_lit0"; 92 case 0x31: return "DW_OP_lit1"; 93 case 0x32: return "DW_OP_lit2"; 94 case 0x33: return "DW_OP_lit3"; 95 case 0x34: return "DW_OP_lit4"; 96 case 0x35: return "DW_OP_lit5"; 97 case 0x36: return "DW_OP_lit6"; 98 case 0x37: return "DW_OP_lit7"; 99 case 0x38: return "DW_OP_lit8"; 100 case 0x39: return "DW_OP_lit9"; 101 case 0x3a: return "DW_OP_lit10"; 102 case 0x3b: return "DW_OP_lit11"; 103 case 0x3c: return "DW_OP_lit12"; 104 case 0x3d: return "DW_OP_lit13"; 105 case 0x3e: return "DW_OP_lit14"; 106 case 0x3f: return "DW_OP_lit15"; 107 case 0x40: return "DW_OP_lit16"; 108 case 0x41: return "DW_OP_lit17"; 109 case 0x42: return "DW_OP_lit18"; 110 case 0x43: return "DW_OP_lit19"; 111 case 0x44: return "DW_OP_lit20"; 112 case 0x45: return "DW_OP_lit21"; 113 case 0x46: return "DW_OP_lit22"; 114 case 0x47: return "DW_OP_lit23"; 115 case 0x48: return "DW_OP_lit24"; 116 case 0x49: return "DW_OP_lit25"; 117 case 0x4a: return "DW_OP_lit26"; 118 case 0x4b: return "DW_OP_lit27"; 119 case 0x4c: return "DW_OP_lit28"; 120 case 0x4d: return "DW_OP_lit29"; 121 case 0x4e: return "DW_OP_lit30"; 122 case 0x4f: return "DW_OP_lit31"; 123 case 0x50: return "DW_OP_reg0"; 124 case 0x51: return "DW_OP_reg1"; 125 case 0x52: return "DW_OP_reg2"; 126 case 0x53: return "DW_OP_reg3"; 127 case 0x54: return "DW_OP_reg4"; 128 case 0x55: return "DW_OP_reg5"; 129 case 0x56: return "DW_OP_reg6"; 130 case 0x57: return "DW_OP_reg7"; 131 case 0x58: return "DW_OP_reg8"; 132 case 0x59: return "DW_OP_reg9"; 133 case 0x5a: return "DW_OP_reg10"; 134 case 0x5b: return "DW_OP_reg11"; 135 case 0x5c: return "DW_OP_reg12"; 136 case 0x5d: return "DW_OP_reg13"; 137 case 0x5e: return "DW_OP_reg14"; 138 case 0x5f: return "DW_OP_reg15"; 139 case 0x60: return "DW_OP_reg16"; 140 case 0x61: return "DW_OP_reg17"; 141 case 0x62: return "DW_OP_reg18"; 142 case 0x63: return "DW_OP_reg19"; 143 case 0x64: return "DW_OP_reg20"; 144 case 0x65: return "DW_OP_reg21"; 145 case 0x66: return "DW_OP_reg22"; 146 case 0x67: return "DW_OP_reg23"; 147 case 0x68: return "DW_OP_reg24"; 148 case 0x69: return "DW_OP_reg25"; 149 case 0x6a: return "DW_OP_reg26"; 150 case 0x6b: return "DW_OP_reg27"; 151 case 0x6c: return "DW_OP_reg28"; 152 case 0x6d: return "DW_OP_reg29"; 153 case 0x6e: return "DW_OP_reg30"; 154 case 0x6f: return "DW_OP_reg31"; 155 case 0x70: return "DW_OP_breg0"; 156 case 0x71: return "DW_OP_breg1"; 157 case 0x72: return "DW_OP_breg2"; 158 case 0x73: return "DW_OP_breg3"; 159 case 0x74: return "DW_OP_breg4"; 160 case 0x75: return "DW_OP_breg5"; 161 case 0x76: return "DW_OP_breg6"; 162 case 0x77: return "DW_OP_breg7"; 163 case 0x78: return "DW_OP_breg8"; 164 case 0x79: return "DW_OP_breg9"; 165 case 0x7a: return "DW_OP_breg10"; 166 case 0x7b: return "DW_OP_breg11"; 167 case 0x7c: return "DW_OP_breg12"; 168 case 0x7d: return "DW_OP_breg13"; 169 case 0x7e: return "DW_OP_breg14"; 170 case 0x7f: return "DW_OP_breg15"; 171 case 0x80: return "DW_OP_breg16"; 172 case 0x81: return "DW_OP_breg17"; 173 case 0x82: return "DW_OP_breg18"; 174 case 0x83: return "DW_OP_breg19"; 175 case 0x84: return "DW_OP_breg20"; 176 case 0x85: return "DW_OP_breg21"; 177 case 0x86: return "DW_OP_breg22"; 178 case 0x87: return "DW_OP_breg23"; 179 case 0x88: return "DW_OP_breg24"; 180 case 0x89: return "DW_OP_breg25"; 181 case 0x8a: return "DW_OP_breg26"; 182 case 0x8b: return "DW_OP_breg27"; 183 case 0x8c: return "DW_OP_breg28"; 184 case 0x8d: return "DW_OP_breg29"; 185 case 0x8e: return "DW_OP_breg30"; 186 case 0x8f: return "DW_OP_breg31"; 187 case 0x90: return "DW_OP_regx"; 188 case 0x91: return "DW_OP_fbreg"; 189 case 0x92: return "DW_OP_bregx"; 190 case 0x93: return "DW_OP_piece"; 191 case 0x94: return "DW_OP_deref_size"; 192 case 0x95: return "DW_OP_xderef_size"; 193 case 0x96: return "DW_OP_nop"; 194 case 0x97: return "DW_OP_push_object_address"; 195 case 0x98: return "DW_OP_call2"; 196 case 0x99: return "DW_OP_call4"; 197 case 0x9a: return "DW_OP_call_ref"; 198 // case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; 199 // case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; 200 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; 201 // case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; 202 // case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; 203 // case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; 204 // case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; 205 // case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; 206 // case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; 207 // case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; 208 // case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; 209 // case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; 210 // case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; 211 default: 212 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); 213 return invalid; 214 } 215 } 216 217 218 //---------------------------------------------------------------------- 219 // DWARFExpression constructor 220 //---------------------------------------------------------------------- 221 DWARFExpression::DWARFExpression() : 222 m_data(), 223 m_reg_kind (eRegisterKindDWARF), 224 m_loclist_slide (LLDB_INVALID_ADDRESS) 225 { 226 } 227 228 DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : 229 m_data(rhs.m_data), 230 m_reg_kind (rhs.m_reg_kind), 231 m_loclist_slide(rhs.m_loclist_slide) 232 { 233 } 234 235 236 DWARFExpression::DWARFExpression(const DataExtractor& data, uint32_t data_offset, uint32_t data_length) : 237 m_data(data, data_offset, data_length), 238 m_reg_kind (eRegisterKindDWARF), 239 m_loclist_slide(LLDB_INVALID_ADDRESS) 240 { 241 } 242 243 //---------------------------------------------------------------------- 244 // Destructor 245 //---------------------------------------------------------------------- 246 DWARFExpression::~DWARFExpression() 247 { 248 } 249 250 251 bool 252 DWARFExpression::IsValid() const 253 { 254 return m_data.GetByteSize() > 0; 255 } 256 257 void 258 DWARFExpression::SetOpcodeData (const DataExtractor& data) 259 { 260 m_data = data; 261 } 262 263 void 264 DWARFExpression::SetOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length) 265 { 266 m_data.SetData(data, data_offset, data_length); 267 } 268 269 void 270 DWARFExpression::DumpLocation (Stream *s, uint32_t offset, uint32_t length, lldb::DescriptionLevel level, ABI *abi) const 271 { 272 if (!m_data.ValidOffsetForDataOfSize(offset, length)) 273 return; 274 const uint32_t start_offset = offset; 275 const uint32_t end_offset = offset + length; 276 while (m_data.ValidOffset(offset) && offset < end_offset) 277 { 278 const uint32_t op_offset = offset; 279 const uint8_t op = m_data.GetU8(&offset); 280 281 switch (level) 282 { 283 default: 284 break; 285 286 case lldb::eDescriptionLevelBrief: 287 if (offset > start_offset) 288 s->PutChar(' '); 289 break; 290 291 case lldb::eDescriptionLevelFull: 292 case lldb::eDescriptionLevelVerbose: 293 if (offset > start_offset) 294 s->EOL(); 295 s->Indent(); 296 if (level == lldb::eDescriptionLevelFull) 297 break; 298 // Fall through for verbose and print offset and DW_OP prefix.. 299 s->Printf("0x%8.8x: %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); 300 break; 301 } 302 303 switch (op) 304 { 305 case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address 306 case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 307 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant 308 case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant 309 case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant 310 case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant 311 case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant 312 case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant 313 case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant 314 case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant 315 case DW_OP_constu: s->Printf("DW_OP_constu(0x%llx) ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant 316 case DW_OP_consts: s->Printf("DW_OP_consts(0x%lld) ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant 317 case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 318 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 319 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 320 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index 321 case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 322 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 323 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 324 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 325 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a 326 case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b 327 case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c 328 case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d 329 case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e 330 case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f 331 case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 332 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 333 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 334 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 335 s->Printf("DW_OP_plus_uconst(0x%llx) ", m_data.GetULEB128(&offset)); 336 break; 337 338 case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 339 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 340 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 341 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 342 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant 343 case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant 344 case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 345 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a 346 case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b 347 case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c 348 case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d 349 case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e 350 351 case DW_OP_lit0: // 0x30 352 case DW_OP_lit1: // 0x31 353 case DW_OP_lit2: // 0x32 354 case DW_OP_lit3: // 0x33 355 case DW_OP_lit4: // 0x34 356 case DW_OP_lit5: // 0x35 357 case DW_OP_lit6: // 0x36 358 case DW_OP_lit7: // 0x37 359 case DW_OP_lit8: // 0x38 360 case DW_OP_lit9: // 0x39 361 case DW_OP_lit10: // 0x3A 362 case DW_OP_lit11: // 0x3B 363 case DW_OP_lit12: // 0x3C 364 case DW_OP_lit13: // 0x3D 365 case DW_OP_lit14: // 0x3E 366 case DW_OP_lit15: // 0x3F 367 case DW_OP_lit16: // 0x40 368 case DW_OP_lit17: // 0x41 369 case DW_OP_lit18: // 0x42 370 case DW_OP_lit19: // 0x43 371 case DW_OP_lit20: // 0x44 372 case DW_OP_lit21: // 0x45 373 case DW_OP_lit22: // 0x46 374 case DW_OP_lit23: // 0x47 375 case DW_OP_lit24: // 0x48 376 case DW_OP_lit25: // 0x49 377 case DW_OP_lit26: // 0x4A 378 case DW_OP_lit27: // 0x4B 379 case DW_OP_lit28: // 0x4C 380 case DW_OP_lit29: // 0x4D 381 case DW_OP_lit30: // 0x4E 382 case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f 383 384 case DW_OP_reg0: // 0x50 385 case DW_OP_reg1: // 0x51 386 case DW_OP_reg2: // 0x52 387 case DW_OP_reg3: // 0x53 388 case DW_OP_reg4: // 0x54 389 case DW_OP_reg5: // 0x55 390 case DW_OP_reg6: // 0x56 391 case DW_OP_reg7: // 0x57 392 case DW_OP_reg8: // 0x58 393 case DW_OP_reg9: // 0x59 394 case DW_OP_reg10: // 0x5A 395 case DW_OP_reg11: // 0x5B 396 case DW_OP_reg12: // 0x5C 397 case DW_OP_reg13: // 0x5D 398 case DW_OP_reg14: // 0x5E 399 case DW_OP_reg15: // 0x5F 400 case DW_OP_reg16: // 0x60 401 case DW_OP_reg17: // 0x61 402 case DW_OP_reg18: // 0x62 403 case DW_OP_reg19: // 0x63 404 case DW_OP_reg20: // 0x64 405 case DW_OP_reg21: // 0x65 406 case DW_OP_reg22: // 0x66 407 case DW_OP_reg23: // 0x67 408 case DW_OP_reg24: // 0x68 409 case DW_OP_reg25: // 0x69 410 case DW_OP_reg26: // 0x6A 411 case DW_OP_reg27: // 0x6B 412 case DW_OP_reg28: // 0x6C 413 case DW_OP_reg29: // 0x6D 414 case DW_OP_reg30: // 0x6E 415 case DW_OP_reg31: // 0x6F 416 { 417 uint32_t reg_num = op - DW_OP_reg0; 418 if (abi) 419 { 420 RegisterInfo reg_info; 421 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 422 { 423 if (reg_info.name) 424 { 425 s->PutCString (reg_info.name); 426 break; 427 } 428 else if (reg_info.alt_name) 429 { 430 s->PutCString (reg_info.alt_name); 431 break; 432 } 433 } 434 } 435 s->Printf("DW_OP_reg%u", reg_num); break; 436 } 437 break; 438 439 case DW_OP_breg0: 440 case DW_OP_breg1: 441 case DW_OP_breg2: 442 case DW_OP_breg3: 443 case DW_OP_breg4: 444 case DW_OP_breg5: 445 case DW_OP_breg6: 446 case DW_OP_breg7: 447 case DW_OP_breg8: 448 case DW_OP_breg9: 449 case DW_OP_breg10: 450 case DW_OP_breg11: 451 case DW_OP_breg12: 452 case DW_OP_breg13: 453 case DW_OP_breg14: 454 case DW_OP_breg15: 455 case DW_OP_breg16: 456 case DW_OP_breg17: 457 case DW_OP_breg18: 458 case DW_OP_breg19: 459 case DW_OP_breg20: 460 case DW_OP_breg21: 461 case DW_OP_breg22: 462 case DW_OP_breg23: 463 case DW_OP_breg24: 464 case DW_OP_breg25: 465 case DW_OP_breg26: 466 case DW_OP_breg27: 467 case DW_OP_breg28: 468 case DW_OP_breg29: 469 case DW_OP_breg30: 470 case DW_OP_breg31: 471 { 472 uint32_t reg_num = op - DW_OP_breg0; 473 int64_t reg_offset = m_data.GetSLEB128(&offset); 474 if (abi) 475 { 476 RegisterInfo reg_info; 477 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 478 { 479 if (reg_info.name) 480 { 481 s->Printf("[%s%+lli]", reg_info.name, reg_offset); 482 break; 483 } 484 else if (reg_info.alt_name) 485 { 486 s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); 487 break; 488 } 489 } 490 } 491 s->Printf("DW_OP_breg%i(0x%llx)", reg_num, reg_offset); 492 } 493 break; 494 495 case DW_OP_regx: // 0x90 1 ULEB128 register 496 { 497 uint64_t reg_num = m_data.GetULEB128(&offset); 498 if (abi) 499 { 500 RegisterInfo reg_info; 501 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 502 { 503 if (reg_info.name) 504 { 505 s->PutCString (reg_info.name); 506 break; 507 } 508 else if (reg_info.alt_name) 509 { 510 s->PutCString (reg_info.alt_name); 511 break; 512 } 513 } 514 } 515 s->Printf("DW_OP_regx(%llu)", reg_num); break; 516 } 517 break; 518 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 519 s->Printf("DW_OP_fbreg(%lli)",m_data.GetSLEB128(&offset)); 520 break; 521 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 522 { 523 uint32_t reg_num = m_data.GetULEB128(&offset); 524 int64_t reg_offset = m_data.GetSLEB128(&offset); 525 if (abi) 526 { 527 RegisterInfo reg_info; 528 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 529 { 530 if (reg_info.name) 531 { 532 s->Printf("[%s%+lli]", reg_info.name, reg_offset); 533 break; 534 } 535 else if (reg_info.alt_name) 536 { 537 s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); 538 break; 539 } 540 } 541 } 542 s->Printf("DW_OP_bregx(reg=%u,offset=%lli)", reg_num, reg_offset); 543 } 544 break; 545 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 546 s->Printf("DW_OP_piece(0x%llx)", m_data.GetULEB128(&offset)); 547 break; 548 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 549 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); 550 break; 551 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 552 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); 553 break; 554 case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 555 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 556 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE 557 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); 558 break; 559 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE 560 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); 561 break; 562 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE 563 s->Printf("DW_OP_call_ref(0x%8.8llx)", m_data.GetAddress(&offset)); 564 break; 565 // case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3 566 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 567 // case DW_OP_bit_piece: // 0x9d DWARF3 2 568 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); 569 // break; 570 // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0 571 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff 572 // case DW_OP_APPLE_extern: 573 // s->Printf("DW_OP_APPLE_extern(%llu)", m_data.GetULEB128(&offset)); 574 // break; 575 // case DW_OP_APPLE_array_ref: 576 // s->PutCString("DW_OP_APPLE_array_ref"); 577 // break; 578 case DW_OP_APPLE_uninit: 579 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 580 break; 581 // case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) 582 // s->PutCString("DW_OP_APPLE_assign"); 583 // break; 584 // case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) 585 // s->PutCString("DW_OP_APPLE_address_of"); 586 // break; 587 // case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) 588 // s->PutCString("DW_OP_APPLE_value_of"); 589 // break; 590 // case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) 591 // s->PutCString("DW_OP_APPLE_deref_type"); 592 // break; 593 // case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index 594 // s->Printf("DW_OP_APPLE_expr_local(%llu)", m_data.GetULEB128(&offset)); 595 // break; 596 // case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 597 // { 598 // uint8_t float_length = m_data.GetU8(&offset); 599 // s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); 600 // m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 601 // s->PutChar(')'); 602 // // Consume the float data 603 // m_data.GetData(&offset, float_length); 604 // } 605 // break; 606 // case DW_OP_APPLE_scalar_cast: 607 // s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); 608 // break; 609 // case DW_OP_APPLE_clang_cast: 610 // { 611 // clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); 612 // s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); 613 // } 614 // break; 615 // case DW_OP_APPLE_clear: 616 // s->PutCString("DW_OP_APPLE_clear"); 617 // break; 618 // case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 619 // s->PutCString("DW_OP_APPLE_error"); 620 // break; 621 } 622 } 623 } 624 625 void 626 DWARFExpression::SetLocationListSlide (addr_t slide) 627 { 628 m_loclist_slide = slide; 629 } 630 631 int 632 DWARFExpression::GetRegisterKind () 633 { 634 return m_reg_kind; 635 } 636 637 void 638 DWARFExpression::SetRegisterKind (RegisterKind reg_kind) 639 { 640 m_reg_kind = reg_kind; 641 } 642 643 bool 644 DWARFExpression::IsLocationList() const 645 { 646 return m_loclist_slide != LLDB_INVALID_ADDRESS; 647 } 648 649 void 650 DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const 651 { 652 if (IsLocationList()) 653 { 654 // We have a location list 655 uint32_t offset = 0; 656 uint32_t count = 0; 657 addr_t curr_base_addr = location_list_base_addr; 658 while (m_data.ValidOffset(offset)) 659 { 660 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); 661 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); 662 if (begin_addr_offset < end_addr_offset) 663 { 664 if (count > 0) 665 s->PutCString(", "); 666 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); 667 addr_range.Dump(s, 0, 8); 668 s->PutChar('{'); 669 uint32_t location_length = m_data.GetU16(&offset); 670 DumpLocation (s, offset, location_length, level, abi); 671 s->PutChar('}'); 672 offset += location_length; 673 } 674 else if (begin_addr_offset == 0 && end_addr_offset == 0) 675 { 676 // The end of the location list is marked by both the start and end offset being zero 677 break; 678 } 679 else 680 { 681 if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || 682 (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) 683 { 684 curr_base_addr = end_addr_offset + location_list_base_addr; 685 // We have a new base address 686 if (count > 0) 687 s->PutCString(", "); 688 *s << "base_addr = " << end_addr_offset; 689 } 690 } 691 692 count++; 693 } 694 } 695 else 696 { 697 // We have a normal location that contains DW_OP location opcodes 698 DumpLocation (s, 0, m_data.GetByteSize(), level, abi); 699 } 700 } 701 702 static bool 703 ReadRegisterValueAsScalar 704 ( 705 RegisterContext *reg_ctx, 706 uint32_t reg_kind, 707 uint32_t reg_num, 708 Error *error_ptr, 709 Value &value 710 ) 711 { 712 if (reg_ctx == NULL) 713 { 714 if (error_ptr) 715 error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); 716 } 717 else 718 { 719 uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 720 if (native_reg == LLDB_INVALID_REGNUM) 721 { 722 if (error_ptr) 723 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); 724 } 725 else 726 { 727 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); 728 RegisterValue reg_value; 729 if (reg_ctx->ReadRegister (reg_info, reg_value)) 730 { 731 if (reg_value.GetScalarValue(value.GetScalar())) 732 { 733 value.SetValueType (Value::eValueTypeScalar); 734 value.SetContext (Value::eContextTypeRegisterInfo, 735 const_cast<RegisterInfo *>(reg_info)); 736 if (error_ptr) 737 error_ptr->Clear(); 738 return true; 739 } 740 else 741 { 742 // If we get this error, then we need to implement a value 743 // buffer in the dwarf expression evaluation function... 744 if (error_ptr) 745 error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value", 746 reg_info->name); 747 } 748 } 749 else 750 { 751 if (error_ptr) 752 error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); 753 } 754 } 755 } 756 return false; 757 } 758 759 //bool 760 //DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const 761 //{ 762 // return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); 763 //} 764 // 765 //bool 766 //DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const 767 //{ 768 // if (load_addr == LLDB_INVALID_ADDRESS) 769 // return false; 770 // 771 // if (IsLocationList()) 772 // { 773 // uint32_t offset = 0; 774 // 775 // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); 776 // 777 // if (loc_list_base_addr == LLDB_INVALID_ADDRESS) 778 // return false; 779 // 780 // while (m_data.ValidOffset(offset)) 781 // { 782 // // We need to figure out what the value is for the location. 783 // addr_t lo_pc = m_data.GetAddress(&offset); 784 // addr_t hi_pc = m_data.GetAddress(&offset); 785 // if (lo_pc == 0 && hi_pc == 0) 786 // break; 787 // else 788 // { 789 // lo_pc += loc_list_base_addr; 790 // hi_pc += loc_list_base_addr; 791 // 792 // if (lo_pc <= load_addr && load_addr < hi_pc) 793 // return true; 794 // 795 // offset += m_data.GetU16(&offset); 796 // } 797 // } 798 // } 799 // return false; 800 //} 801 802 static uint32_t 803 GetOpcodeDataSize (const DataExtractor &data, const uint32_t data_offset, const uint8_t op) 804 { 805 uint32_t offset = data_offset; 806 switch (op) 807 { 808 case DW_OP_addr: 809 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) 810 return data.GetAddressByteSize(); 811 812 // Opcodes with no arguments 813 case DW_OP_deref: // 0x06 814 case DW_OP_dup: // 0x12 815 case DW_OP_drop: // 0x13 816 case DW_OP_over: // 0x14 817 case DW_OP_swap: // 0x16 818 case DW_OP_rot: // 0x17 819 case DW_OP_xderef: // 0x18 820 case DW_OP_abs: // 0x19 821 case DW_OP_and: // 0x1a 822 case DW_OP_div: // 0x1b 823 case DW_OP_minus: // 0x1c 824 case DW_OP_mod: // 0x1d 825 case DW_OP_mul: // 0x1e 826 case DW_OP_neg: // 0x1f 827 case DW_OP_not: // 0x20 828 case DW_OP_or: // 0x21 829 case DW_OP_plus: // 0x22 830 case DW_OP_shl: // 0x24 831 case DW_OP_shr: // 0x25 832 case DW_OP_shra: // 0x26 833 case DW_OP_xor: // 0x27 834 case DW_OP_eq: // 0x29 835 case DW_OP_ge: // 0x2a 836 case DW_OP_gt: // 0x2b 837 case DW_OP_le: // 0x2c 838 case DW_OP_lt: // 0x2d 839 case DW_OP_ne: // 0x2e 840 case DW_OP_lit0: // 0x30 841 case DW_OP_lit1: // 0x31 842 case DW_OP_lit2: // 0x32 843 case DW_OP_lit3: // 0x33 844 case DW_OP_lit4: // 0x34 845 case DW_OP_lit5: // 0x35 846 case DW_OP_lit6: // 0x36 847 case DW_OP_lit7: // 0x37 848 case DW_OP_lit8: // 0x38 849 case DW_OP_lit9: // 0x39 850 case DW_OP_lit10: // 0x3A 851 case DW_OP_lit11: // 0x3B 852 case DW_OP_lit12: // 0x3C 853 case DW_OP_lit13: // 0x3D 854 case DW_OP_lit14: // 0x3E 855 case DW_OP_lit15: // 0x3F 856 case DW_OP_lit16: // 0x40 857 case DW_OP_lit17: // 0x41 858 case DW_OP_lit18: // 0x42 859 case DW_OP_lit19: // 0x43 860 case DW_OP_lit20: // 0x44 861 case DW_OP_lit21: // 0x45 862 case DW_OP_lit22: // 0x46 863 case DW_OP_lit23: // 0x47 864 case DW_OP_lit24: // 0x48 865 case DW_OP_lit25: // 0x49 866 case DW_OP_lit26: // 0x4A 867 case DW_OP_lit27: // 0x4B 868 case DW_OP_lit28: // 0x4C 869 case DW_OP_lit29: // 0x4D 870 case DW_OP_lit30: // 0x4E 871 case DW_OP_lit31: // 0x4f 872 case DW_OP_reg0: // 0x50 873 case DW_OP_reg1: // 0x51 874 case DW_OP_reg2: // 0x52 875 case DW_OP_reg3: // 0x53 876 case DW_OP_reg4: // 0x54 877 case DW_OP_reg5: // 0x55 878 case DW_OP_reg6: // 0x56 879 case DW_OP_reg7: // 0x57 880 case DW_OP_reg8: // 0x58 881 case DW_OP_reg9: // 0x59 882 case DW_OP_reg10: // 0x5A 883 case DW_OP_reg11: // 0x5B 884 case DW_OP_reg12: // 0x5C 885 case DW_OP_reg13: // 0x5D 886 case DW_OP_reg14: // 0x5E 887 case DW_OP_reg15: // 0x5F 888 case DW_OP_reg16: // 0x60 889 case DW_OP_reg17: // 0x61 890 case DW_OP_reg18: // 0x62 891 case DW_OP_reg19: // 0x63 892 case DW_OP_reg20: // 0x64 893 case DW_OP_reg21: // 0x65 894 case DW_OP_reg22: // 0x66 895 case DW_OP_reg23: // 0x67 896 case DW_OP_reg24: // 0x68 897 case DW_OP_reg25: // 0x69 898 case DW_OP_reg26: // 0x6A 899 case DW_OP_reg27: // 0x6B 900 case DW_OP_reg28: // 0x6C 901 case DW_OP_reg29: // 0x6D 902 case DW_OP_reg30: // 0x6E 903 case DW_OP_reg31: // 0x6F 904 case DW_OP_nop: // 0x96 905 case DW_OP_push_object_address: // 0x97 DWARF3 906 case DW_OP_form_tls_address: // 0x9b DWARF3 907 case DW_OP_call_frame_cfa: // 0x9c DWARF3 908 case DW_OP_stack_value: // 0x9f DWARF4 909 return 0; 910 911 // Opcodes with a single 1 byte arguments 912 case DW_OP_const1u: // 0x08 1 1-byte constant 913 case DW_OP_const1s: // 0x09 1 1-byte constant 914 case DW_OP_pick: // 0x15 1 1-byte stack index 915 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 916 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 917 return 1; 918 919 // Opcodes with a single 2 byte arguments 920 case DW_OP_const2u: // 0x0a 1 2-byte constant 921 case DW_OP_const2s: // 0x0b 1 2-byte constant 922 case DW_OP_skip: // 0x2f 1 signed 2-byte constant 923 case DW_OP_bra: // 0x28 1 signed 2-byte constant 924 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) 925 return 2; 926 927 // Opcodes with a single 4 byte arguments 928 case DW_OP_const4u: // 0x0c 1 4-byte constant 929 case DW_OP_const4s: // 0x0d 1 4-byte constant 930 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) 931 return 4; 932 933 // Opcodes with a single 8 byte arguments 934 case DW_OP_const8u: // 0x0e 1 8-byte constant 935 case DW_OP_const8s: // 0x0f 1 8-byte constant 936 return 8; 937 938 // All opcodes that have a single ULEB (signed or unsigned) argument 939 case DW_OP_constu: // 0x10 1 ULEB128 constant 940 case DW_OP_consts: // 0x11 1 SLEB128 constant 941 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 942 case DW_OP_breg0: // 0x70 1 ULEB128 register 943 case DW_OP_breg1: // 0x71 1 ULEB128 register 944 case DW_OP_breg2: // 0x72 1 ULEB128 register 945 case DW_OP_breg3: // 0x73 1 ULEB128 register 946 case DW_OP_breg4: // 0x74 1 ULEB128 register 947 case DW_OP_breg5: // 0x75 1 ULEB128 register 948 case DW_OP_breg6: // 0x76 1 ULEB128 register 949 case DW_OP_breg7: // 0x77 1 ULEB128 register 950 case DW_OP_breg8: // 0x78 1 ULEB128 register 951 case DW_OP_breg9: // 0x79 1 ULEB128 register 952 case DW_OP_breg10: // 0x7a 1 ULEB128 register 953 case DW_OP_breg11: // 0x7b 1 ULEB128 register 954 case DW_OP_breg12: // 0x7c 1 ULEB128 register 955 case DW_OP_breg13: // 0x7d 1 ULEB128 register 956 case DW_OP_breg14: // 0x7e 1 ULEB128 register 957 case DW_OP_breg15: // 0x7f 1 ULEB128 register 958 case DW_OP_breg16: // 0x80 1 ULEB128 register 959 case DW_OP_breg17: // 0x81 1 ULEB128 register 960 case DW_OP_breg18: // 0x82 1 ULEB128 register 961 case DW_OP_breg19: // 0x83 1 ULEB128 register 962 case DW_OP_breg20: // 0x84 1 ULEB128 register 963 case DW_OP_breg21: // 0x85 1 ULEB128 register 964 case DW_OP_breg22: // 0x86 1 ULEB128 register 965 case DW_OP_breg23: // 0x87 1 ULEB128 register 966 case DW_OP_breg24: // 0x88 1 ULEB128 register 967 case DW_OP_breg25: // 0x89 1 ULEB128 register 968 case DW_OP_breg26: // 0x8a 1 ULEB128 register 969 case DW_OP_breg27: // 0x8b 1 ULEB128 register 970 case DW_OP_breg28: // 0x8c 1 ULEB128 register 971 case DW_OP_breg29: // 0x8d 1 ULEB128 register 972 case DW_OP_breg30: // 0x8e 1 ULEB128 register 973 case DW_OP_breg31: // 0x8f 1 ULEB128 register 974 case DW_OP_regx: // 0x90 1 ULEB128 register 975 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 976 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 977 data.Skip_LEB128(&offset); 978 return offset - data_offset; 979 980 // All opcodes that have a 2 ULEB (signed or unsigned) arguments 981 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 982 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); 983 data.Skip_LEB128(&offset); 984 data.Skip_LEB128(&offset); 985 return offset - data_offset; 986 987 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size (DWARF4) 988 { 989 uint64_t block_len = data.Skip_LEB128(&offset); 990 offset += block_len; 991 return offset - data_offset; 992 } 993 994 default: 995 { 996 Host::SetCrashDescriptionWithFormat ("Unhandled DW_OP_XXX opcode: %d, add support for it.", op); 997 assert (!"Unhandled DW_OP_XXX opcode: %d, add support for it."); 998 } 999 break; 1000 } 1001 return UINT32_MAX; 1002 } 1003 1004 bool 1005 DWARFExpression::LocationContains_DW_OP_addr (lldb::addr_t file_addr) const 1006 { 1007 if (IsLocationList()) 1008 return false; 1009 uint32_t offset = 0; 1010 while (m_data.ValidOffset(offset)) 1011 { 1012 const uint8_t op = m_data.GetU8(&offset); 1013 1014 if (op == DW_OP_addr) 1015 { 1016 if (file_addr == LLDB_INVALID_ADDRESS) 1017 return true; 1018 addr_t op_file_addr = m_data.GetAddress(&offset); 1019 if (op_file_addr == file_addr) 1020 return true; 1021 } 1022 else 1023 { 1024 const uint32_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1025 if (op_arg_size == UINT32_MAX) 1026 break; 1027 offset += op_arg_size; 1028 } 1029 } 1030 return false; 1031 } 1032 1033 bool 1034 DWARFExpression::Update_DW_OP_addr (lldb::addr_t file_addr) 1035 { 1036 if (IsLocationList()) 1037 return false; 1038 uint32_t offset = 0; 1039 while (m_data.ValidOffset(offset)) 1040 { 1041 const uint8_t op = m_data.GetU8(&offset); 1042 1043 if (op == DW_OP_addr) 1044 { 1045 const uint8_t addr_byte_size = m_data.GetAddressByteSize(); 1046 // We have to make a copy of the data as we don't know if this 1047 // data is from a read only memory mapped buffer, so we duplicate 1048 // all of the data first, then modify it, and if all goes well, 1049 // we then replace the data for this expression 1050 1051 // So first we copy the data into a heap buffer 1052 std::auto_ptr<DataBufferHeap> head_data_ap (new DataBufferHeap (m_data.GetDataStart(), 1053 m_data.GetByteSize())); 1054 1055 // Make en encoder so we can write the address into the buffer using 1056 // the correct byte order (endianness) 1057 DataEncoder encoder (head_data_ap->GetBytes(), 1058 head_data_ap->GetByteSize(), 1059 m_data.GetByteOrder(), 1060 addr_byte_size); 1061 1062 // Replace the address in the new buffer 1063 if (encoder.PutMaxU64 (offset, addr_byte_size, file_addr) == UINT32_MAX) 1064 return false; 1065 1066 // All went well, so now we can reset the data using a shared 1067 // pointer to the heap data so "m_data" will now correctly 1068 // manage the heap data. 1069 m_data.SetData (DataBufferSP (head_data_ap.release())); 1070 return true; 1071 } 1072 else 1073 { 1074 const uint32_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1075 if (op_arg_size == UINT32_MAX) 1076 break; 1077 offset += op_arg_size; 1078 } 1079 } 1080 return false; 1081 } 1082 1083 bool 1084 DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const 1085 { 1086 if (addr == LLDB_INVALID_ADDRESS) 1087 return false; 1088 1089 if (IsLocationList()) 1090 { 1091 uint32_t offset = 0; 1092 1093 if (loclist_base_addr == LLDB_INVALID_ADDRESS) 1094 return false; 1095 1096 while (m_data.ValidOffset(offset)) 1097 { 1098 // We need to figure out what the value is for the location. 1099 addr_t lo_pc = m_data.GetAddress(&offset); 1100 addr_t hi_pc = m_data.GetAddress(&offset); 1101 if (lo_pc == 0 && hi_pc == 0) 1102 break; 1103 else 1104 { 1105 lo_pc += loclist_base_addr - m_loclist_slide; 1106 hi_pc += loclist_base_addr - m_loclist_slide; 1107 1108 if (lo_pc <= addr && addr < hi_pc) 1109 return true; 1110 1111 offset += m_data.GetU16(&offset); 1112 } 1113 } 1114 } 1115 return false; 1116 } 1117 1118 bool 1119 DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, uint32_t &offset, uint32_t &length) 1120 { 1121 offset = 0; 1122 if (!IsLocationList()) 1123 { 1124 length = m_data.GetByteSize(); 1125 return true; 1126 } 1127 1128 if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) 1129 { 1130 addr_t curr_base_addr = base_addr; 1131 1132 while (m_data.ValidOffset(offset)) 1133 { 1134 // We need to figure out what the value is for the location. 1135 addr_t lo_pc = m_data.GetAddress(&offset); 1136 addr_t hi_pc = m_data.GetAddress(&offset); 1137 if (lo_pc == 0 && hi_pc == 0) 1138 { 1139 break; 1140 } 1141 else 1142 { 1143 lo_pc += curr_base_addr - m_loclist_slide; 1144 hi_pc += curr_base_addr - m_loclist_slide; 1145 1146 length = m_data.GetU16(&offset); 1147 1148 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1149 return true; 1150 1151 offset += length; 1152 } 1153 } 1154 } 1155 offset = UINT32_MAX; 1156 length = 0; 1157 return false; 1158 } 1159 1160 bool 1161 DWARFExpression::DumpLocationForAddress (Stream *s, 1162 lldb::DescriptionLevel level, 1163 addr_t base_addr, 1164 addr_t address, 1165 ABI *abi) 1166 { 1167 uint32_t offset = 0; 1168 uint32_t length = 0; 1169 1170 if (GetLocation (base_addr, address, offset, length)) 1171 { 1172 if (length > 0) 1173 { 1174 DumpLocation(s, offset, length, level, abi); 1175 return true; 1176 } 1177 } 1178 return false; 1179 } 1180 1181 bool 1182 DWARFExpression::Evaluate 1183 ( 1184 ExecutionContextScope *exe_scope, 1185 clang::ASTContext *ast_context, 1186 ClangExpressionVariableList *expr_locals, 1187 ClangExpressionDeclMap *decl_map, 1188 lldb::addr_t loclist_base_load_addr, 1189 const Value* initial_value_ptr, 1190 Value& result, 1191 Error *error_ptr 1192 ) const 1193 { 1194 ExecutionContext exe_ctx (exe_scope); 1195 return Evaluate(&exe_ctx, ast_context, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); 1196 } 1197 1198 bool 1199 DWARFExpression::Evaluate 1200 ( 1201 ExecutionContext *exe_ctx, 1202 clang::ASTContext *ast_context, 1203 ClangExpressionVariableList *expr_locals, 1204 ClangExpressionDeclMap *decl_map, 1205 RegisterContext *reg_ctx, 1206 lldb::addr_t loclist_base_load_addr, 1207 const Value* initial_value_ptr, 1208 Value& result, 1209 Error *error_ptr 1210 ) const 1211 { 1212 if (IsLocationList()) 1213 { 1214 uint32_t offset = 0; 1215 addr_t pc; 1216 StackFrame *frame = NULL; 1217 if (reg_ctx) 1218 pc = reg_ctx->GetPC(); 1219 else 1220 { 1221 frame = exe_ctx->GetFramePtr(); 1222 pc = frame->GetRegisterContext()->GetPC(); 1223 } 1224 1225 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) 1226 { 1227 if (pc == LLDB_INVALID_ADDRESS) 1228 { 1229 if (error_ptr) 1230 error_ptr->SetErrorString("Invalid PC in frame."); 1231 return false; 1232 } 1233 1234 addr_t curr_loclist_base_load_addr = loclist_base_load_addr; 1235 1236 while (m_data.ValidOffset(offset)) 1237 { 1238 // We need to figure out what the value is for the location. 1239 addr_t lo_pc = m_data.GetAddress(&offset); 1240 addr_t hi_pc = m_data.GetAddress(&offset); 1241 if (lo_pc == 0 && hi_pc == 0) 1242 { 1243 break; 1244 } 1245 else 1246 { 1247 lo_pc += curr_loclist_base_load_addr - m_loclist_slide; 1248 hi_pc += curr_loclist_base_load_addr - m_loclist_slide; 1249 1250 uint16_t length = m_data.GetU16(&offset); 1251 1252 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1253 { 1254 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); 1255 } 1256 offset += length; 1257 } 1258 } 1259 } 1260 if (error_ptr) 1261 error_ptr->SetErrorString ("variable not available"); 1262 return false; 1263 } 1264 1265 // Not a location list, just a single expression. 1266 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); 1267 } 1268 1269 1270 1271 bool 1272 DWARFExpression::Evaluate 1273 ( 1274 ExecutionContext *exe_ctx, 1275 clang::ASTContext *ast_context, 1276 ClangExpressionVariableList *expr_locals, 1277 ClangExpressionDeclMap *decl_map, 1278 RegisterContext *reg_ctx, 1279 const DataExtractor& opcodes, 1280 const uint32_t opcodes_offset, 1281 const uint32_t opcodes_length, 1282 const uint32_t reg_kind, 1283 const Value* initial_value_ptr, 1284 Value& result, 1285 Error *error_ptr 1286 ) 1287 { 1288 std::vector<Value> stack; 1289 1290 Process *process = NULL; 1291 StackFrame *frame = NULL; 1292 1293 if (exe_ctx) 1294 { 1295 process = exe_ctx->GetProcessPtr(); 1296 frame = exe_ctx->GetFramePtr(); 1297 } 1298 if (reg_ctx == NULL && frame) 1299 reg_ctx = frame->GetRegisterContext().get(); 1300 1301 if (initial_value_ptr) 1302 stack.push_back(*initial_value_ptr); 1303 1304 uint32_t offset = opcodes_offset; 1305 const uint32_t end_offset = opcodes_offset + opcodes_length; 1306 Value tmp; 1307 uint32_t reg_num; 1308 1309 // Make sure all of the data is available in opcodes. 1310 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) 1311 { 1312 if (error_ptr) 1313 error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer."); 1314 return false; 1315 } 1316 LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1317 1318 1319 while (opcodes.ValidOffset(offset) && offset < end_offset) 1320 { 1321 const uint32_t op_offset = offset; 1322 const uint8_t op = opcodes.GetU8(&offset); 1323 1324 if (log && log->GetVerbose()) 1325 { 1326 size_t count = stack.size(); 1327 log->Printf("Stack before operation has %lu values:", count); 1328 for (size_t i=0; i<count; ++i) 1329 { 1330 StreamString new_value; 1331 new_value.Printf("[%zu]", i); 1332 stack[i].Dump(&new_value); 1333 log->Printf(" %s", new_value.GetData()); 1334 } 1335 log->Printf("0x%8.8x: %s", op_offset, DW_OP_value_to_name(op)); 1336 } 1337 switch (op) 1338 { 1339 //---------------------------------------------------------------------- 1340 // The DW_OP_addr operation has a single operand that encodes a machine 1341 // address and whose size is the size of an address on the target machine. 1342 //---------------------------------------------------------------------- 1343 case DW_OP_addr: 1344 stack.push_back(Scalar(opcodes.GetAddress(&offset))); 1345 stack.back().SetValueType (Value::eValueTypeFileAddress); 1346 break; 1347 1348 //---------------------------------------------------------------------- 1349 // The DW_OP_addr_sect_offset4 is used for any location expressions in 1350 // shared libraries that have a location like: 1351 // DW_OP_addr(0x1000) 1352 // If this address resides in a shared library, then this virtual 1353 // address won't make sense when it is evaluated in the context of a 1354 // running process where shared libraries have been slid. To account for 1355 // this, this new address type where we can store the section pointer 1356 // and a 4 byte offset. 1357 //---------------------------------------------------------------------- 1358 // case DW_OP_addr_sect_offset4: 1359 // { 1360 // result_type = eResultTypeFileAddress; 1361 // lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); 1362 // lldb::addr_t sect_offset = opcodes.GetU32(&offset); 1363 // 1364 // Address so_addr (sect, sect_offset); 1365 // lldb::addr_t load_addr = so_addr.GetLoadAddress(); 1366 // if (load_addr != LLDB_INVALID_ADDRESS) 1367 // { 1368 // // We successfully resolve a file address to a load 1369 // // address. 1370 // stack.push_back(load_addr); 1371 // break; 1372 // } 1373 // else 1374 // { 1375 // // We were able 1376 // if (error_ptr) 1377 // error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 1378 // return false; 1379 // } 1380 // } 1381 // break; 1382 1383 //---------------------------------------------------------------------- 1384 // OPCODE: DW_OP_deref 1385 // OPERANDS: none 1386 // DESCRIPTION: Pops the top stack entry and treats it as an address. 1387 // The value retrieved from that address is pushed. The size of the 1388 // data retrieved from the dereferenced address is the size of an 1389 // address on the target machine. 1390 //---------------------------------------------------------------------- 1391 case DW_OP_deref: 1392 { 1393 Value::ValueType value_type = stack.back().GetValueType(); 1394 switch (value_type) 1395 { 1396 case Value::eValueTypeHostAddress: 1397 { 1398 void *src = (void *)stack.back().GetScalar().ULongLong(); 1399 intptr_t ptr; 1400 ::memcpy (&ptr, src, sizeof(void *)); 1401 stack.back().GetScalar() = ptr; 1402 stack.back().ClearContext(); 1403 } 1404 break; 1405 case Value::eValueTypeLoadAddress: 1406 if (exe_ctx) 1407 { 1408 if (process) 1409 { 1410 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1411 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1412 uint32_t addr_size = process->GetAddressByteSize(); 1413 Error error; 1414 if (process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size) 1415 { 1416 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), addr_size); 1417 uint32_t addr_data_offset = 0; 1418 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1419 stack.back().ClearContext(); 1420 } 1421 else 1422 { 1423 if (error_ptr) 1424 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1425 pointer_addr, 1426 error.AsCString()); 1427 return false; 1428 } 1429 } 1430 else 1431 { 1432 if (error_ptr) 1433 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1434 return false; 1435 } 1436 } 1437 else 1438 { 1439 if (error_ptr) 1440 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1441 return false; 1442 } 1443 break; 1444 1445 default: 1446 break; 1447 } 1448 1449 } 1450 break; 1451 1452 //---------------------------------------------------------------------- 1453 // OPCODE: DW_OP_deref_size 1454 // OPERANDS: 1 1455 // 1 - uint8_t that specifies the size of the data to dereference. 1456 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 1457 // stack entry and treats it as an address. The value retrieved from that 1458 // address is pushed. In the DW_OP_deref_size operation, however, the 1459 // size in bytes of the data retrieved from the dereferenced address is 1460 // specified by the single operand. This operand is a 1-byte unsigned 1461 // integral constant whose value may not be larger than the size of an 1462 // address on the target machine. The data retrieved is zero extended 1463 // to the size of an address on the target machine before being pushed 1464 // on the expression stack. 1465 //---------------------------------------------------------------------- 1466 case DW_OP_deref_size: 1467 { 1468 uint8_t size = opcodes.GetU8(&offset); 1469 Value::ValueType value_type = stack.back().GetValueType(); 1470 switch (value_type) 1471 { 1472 case Value::eValueTypeHostAddress: 1473 { 1474 void *src = (void *)stack.back().GetScalar().ULongLong(); 1475 intptr_t ptr; 1476 ::memcpy (&ptr, src, sizeof(void *)); 1477 // I can't decide whether the size operand should apply to the bytes in their 1478 // lldb-host endianness or the target endianness.. I doubt this'll ever come up 1479 // but I'll opt for assuming big endian regardless. 1480 switch (size) 1481 { 1482 case 1: ptr = ptr & 0xff; break; 1483 case 2: ptr = ptr & 0xffff; break; 1484 case 3: ptr = ptr & 0xffffff; break; 1485 case 4: ptr = ptr & 0xffffffff; break; 1486 // the casts are added to work around the case where intptr_t is a 32 bit quantity; 1487 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. 1488 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; 1489 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; 1490 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; 1491 default: break; 1492 } 1493 stack.back().GetScalar() = ptr; 1494 stack.back().ClearContext(); 1495 } 1496 break; 1497 case Value::eValueTypeLoadAddress: 1498 if (exe_ctx) 1499 { 1500 if (process) 1501 { 1502 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1503 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1504 Error error; 1505 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) 1506 { 1507 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size); 1508 uint32_t addr_data_offset = 0; 1509 switch (size) 1510 { 1511 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; 1512 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; 1513 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; 1514 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; 1515 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1516 } 1517 stack.back().ClearContext(); 1518 } 1519 else 1520 { 1521 if (error_ptr) 1522 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1523 pointer_addr, 1524 error.AsCString()); 1525 return false; 1526 } 1527 } 1528 else 1529 { 1530 if (error_ptr) 1531 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1532 return false; 1533 } 1534 } 1535 else 1536 { 1537 if (error_ptr) 1538 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1539 return false; 1540 } 1541 break; 1542 1543 default: 1544 break; 1545 } 1546 1547 } 1548 break; 1549 1550 //---------------------------------------------------------------------- 1551 // OPCODE: DW_OP_xderef_size 1552 // OPERANDS: 1 1553 // 1 - uint8_t that specifies the size of the data to dereference. 1554 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1555 // the top of the stack is treated as an address. The second stack 1556 // entry is treated as an "address space identifier" for those 1557 // architectures that support multiple address spaces. The top two 1558 // stack elements are popped, a data item is retrieved through an 1559 // implementation-defined address calculation and pushed as the new 1560 // stack top. In the DW_OP_xderef_size operation, however, the size in 1561 // bytes of the data retrieved from the dereferenced address is 1562 // specified by the single operand. This operand is a 1-byte unsigned 1563 // integral constant whose value may not be larger than the size of an 1564 // address on the target machine. The data retrieved is zero extended 1565 // to the size of an address on the target machine before being pushed 1566 // on the expression stack. 1567 //---------------------------------------------------------------------- 1568 case DW_OP_xderef_size: 1569 if (error_ptr) 1570 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1571 return false; 1572 //---------------------------------------------------------------------- 1573 // OPCODE: DW_OP_xderef 1574 // OPERANDS: none 1575 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1576 // the top of the stack is treated as an address. The second stack entry 1577 // is treated as an "address space identifier" for those architectures 1578 // that support multiple address spaces. The top two stack elements are 1579 // popped, a data item is retrieved through an implementation-defined 1580 // address calculation and pushed as the new stack top. The size of the 1581 // data retrieved from the dereferenced address is the size of an address 1582 // on the target machine. 1583 //---------------------------------------------------------------------- 1584 case DW_OP_xderef: 1585 if (error_ptr) 1586 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1587 return false; 1588 1589 //---------------------------------------------------------------------- 1590 // All DW_OP_constXXX opcodes have a single operand as noted below: 1591 // 1592 // Opcode Operand 1 1593 // --------------- ---------------------------------------------------- 1594 // DW_OP_const1u 1-byte unsigned integer constant 1595 // DW_OP_const1s 1-byte signed integer constant 1596 // DW_OP_const2u 2-byte unsigned integer constant 1597 // DW_OP_const2s 2-byte signed integer constant 1598 // DW_OP_const4u 4-byte unsigned integer constant 1599 // DW_OP_const4s 4-byte signed integer constant 1600 // DW_OP_const8u 8-byte unsigned integer constant 1601 // DW_OP_const8s 8-byte signed integer constant 1602 // DW_OP_constu unsigned LEB128 integer constant 1603 // DW_OP_consts signed LEB128 integer constant 1604 //---------------------------------------------------------------------- 1605 case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break; 1606 case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break; 1607 case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break; 1608 case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break; 1609 case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break; 1610 case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break; 1611 case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break; 1612 case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break; 1613 case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break; 1614 case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break; 1615 1616 //---------------------------------------------------------------------- 1617 // OPCODE: DW_OP_dup 1618 // OPERANDS: none 1619 // DESCRIPTION: duplicates the value at the top of the stack 1620 //---------------------------------------------------------------------- 1621 case DW_OP_dup: 1622 if (stack.empty()) 1623 { 1624 if (error_ptr) 1625 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1626 return false; 1627 } 1628 else 1629 stack.push_back(stack.back()); 1630 break; 1631 1632 //---------------------------------------------------------------------- 1633 // OPCODE: DW_OP_drop 1634 // OPERANDS: none 1635 // DESCRIPTION: pops the value at the top of the stack 1636 //---------------------------------------------------------------------- 1637 case DW_OP_drop: 1638 if (stack.empty()) 1639 { 1640 if (error_ptr) 1641 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1642 return false; 1643 } 1644 else 1645 stack.pop_back(); 1646 break; 1647 1648 //---------------------------------------------------------------------- 1649 // OPCODE: DW_OP_over 1650 // OPERANDS: none 1651 // DESCRIPTION: Duplicates the entry currently second in the stack at 1652 // the top of the stack. 1653 //---------------------------------------------------------------------- 1654 case DW_OP_over: 1655 if (stack.size() < 2) 1656 { 1657 if (error_ptr) 1658 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); 1659 return false; 1660 } 1661 else 1662 stack.push_back(stack[stack.size() - 2]); 1663 break; 1664 1665 1666 //---------------------------------------------------------------------- 1667 // OPCODE: DW_OP_pick 1668 // OPERANDS: uint8_t index into the current stack 1669 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1670 // inclusive) is pushed on the stack 1671 //---------------------------------------------------------------------- 1672 case DW_OP_pick: 1673 { 1674 uint8_t pick_idx = opcodes.GetU8(&offset); 1675 if (pick_idx < stack.size()) 1676 stack.push_back(stack[pick_idx]); 1677 else 1678 { 1679 if (error_ptr) 1680 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); 1681 return false; 1682 } 1683 } 1684 break; 1685 1686 //---------------------------------------------------------------------- 1687 // OPCODE: DW_OP_swap 1688 // OPERANDS: none 1689 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1690 // of the stack becomes the second stack entry, and the second entry 1691 // becomes the top of the stack 1692 //---------------------------------------------------------------------- 1693 case DW_OP_swap: 1694 if (stack.size() < 2) 1695 { 1696 if (error_ptr) 1697 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); 1698 return false; 1699 } 1700 else 1701 { 1702 tmp = stack.back(); 1703 stack.back() = stack[stack.size() - 2]; 1704 stack[stack.size() - 2] = tmp; 1705 } 1706 break; 1707 1708 //---------------------------------------------------------------------- 1709 // OPCODE: DW_OP_rot 1710 // OPERANDS: none 1711 // DESCRIPTION: Rotates the first three stack entries. The entry at 1712 // the top of the stack becomes the third stack entry, the second 1713 // entry becomes the top of the stack, and the third entry becomes 1714 // the second entry. 1715 //---------------------------------------------------------------------- 1716 case DW_OP_rot: 1717 if (stack.size() < 3) 1718 { 1719 if (error_ptr) 1720 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); 1721 return false; 1722 } 1723 else 1724 { 1725 size_t last_idx = stack.size() - 1; 1726 Value old_top = stack[last_idx]; 1727 stack[last_idx] = stack[last_idx - 1]; 1728 stack[last_idx - 1] = stack[last_idx - 2]; 1729 stack[last_idx - 2] = old_top; 1730 } 1731 break; 1732 1733 //---------------------------------------------------------------------- 1734 // OPCODE: DW_OP_abs 1735 // OPERANDS: none 1736 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1737 // value and pushes its absolute value. If the absolute value can not be 1738 // represented, the result is undefined. 1739 //---------------------------------------------------------------------- 1740 case DW_OP_abs: 1741 if (stack.empty()) 1742 { 1743 if (error_ptr) 1744 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); 1745 return false; 1746 } 1747 else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false) 1748 { 1749 if (error_ptr) 1750 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); 1751 return false; 1752 } 1753 break; 1754 1755 //---------------------------------------------------------------------- 1756 // OPCODE: DW_OP_and 1757 // OPERANDS: none 1758 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1759 // operation on the two, and pushes the result. 1760 //---------------------------------------------------------------------- 1761 case DW_OP_and: 1762 if (stack.size() < 2) 1763 { 1764 if (error_ptr) 1765 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); 1766 return false; 1767 } 1768 else 1769 { 1770 tmp = stack.back(); 1771 stack.pop_back(); 1772 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context); 1773 } 1774 break; 1775 1776 //---------------------------------------------------------------------- 1777 // OPCODE: DW_OP_div 1778 // OPERANDS: none 1779 // DESCRIPTION: pops the top two stack values, divides the former second 1780 // entry by the former top of the stack using signed division, and 1781 // pushes the result. 1782 //---------------------------------------------------------------------- 1783 case DW_OP_div: 1784 if (stack.size() < 2) 1785 { 1786 if (error_ptr) 1787 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); 1788 return false; 1789 } 1790 else 1791 { 1792 tmp = stack.back(); 1793 if (tmp.ResolveValue(exe_ctx, ast_context).IsZero()) 1794 { 1795 if (error_ptr) 1796 error_ptr->SetErrorString("Divide by zero."); 1797 return false; 1798 } 1799 else 1800 { 1801 stack.pop_back(); 1802 stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context); 1803 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1804 { 1805 if (error_ptr) 1806 error_ptr->SetErrorString("Divide failed."); 1807 return false; 1808 } 1809 } 1810 } 1811 break; 1812 1813 //---------------------------------------------------------------------- 1814 // OPCODE: DW_OP_minus 1815 // OPERANDS: none 1816 // DESCRIPTION: pops the top two stack values, subtracts the former top 1817 // of the stack from the former second entry, and pushes the result. 1818 //---------------------------------------------------------------------- 1819 case DW_OP_minus: 1820 if (stack.size() < 2) 1821 { 1822 if (error_ptr) 1823 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); 1824 return false; 1825 } 1826 else 1827 { 1828 tmp = stack.back(); 1829 stack.pop_back(); 1830 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context); 1831 } 1832 break; 1833 1834 //---------------------------------------------------------------------- 1835 // OPCODE: DW_OP_mod 1836 // OPERANDS: none 1837 // DESCRIPTION: pops the top two stack values and pushes the result of 1838 // the calculation: former second stack entry modulo the former top of 1839 // the stack. 1840 //---------------------------------------------------------------------- 1841 case DW_OP_mod: 1842 if (stack.size() < 2) 1843 { 1844 if (error_ptr) 1845 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); 1846 return false; 1847 } 1848 else 1849 { 1850 tmp = stack.back(); 1851 stack.pop_back(); 1852 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context); 1853 } 1854 break; 1855 1856 1857 //---------------------------------------------------------------------- 1858 // OPCODE: DW_OP_mul 1859 // OPERANDS: none 1860 // DESCRIPTION: pops the top two stack entries, multiplies them 1861 // together, and pushes the result. 1862 //---------------------------------------------------------------------- 1863 case DW_OP_mul: 1864 if (stack.size() < 2) 1865 { 1866 if (error_ptr) 1867 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); 1868 return false; 1869 } 1870 else 1871 { 1872 tmp = stack.back(); 1873 stack.pop_back(); 1874 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context); 1875 } 1876 break; 1877 1878 //---------------------------------------------------------------------- 1879 // OPCODE: DW_OP_neg 1880 // OPERANDS: none 1881 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1882 //---------------------------------------------------------------------- 1883 case DW_OP_neg: 1884 if (stack.empty()) 1885 { 1886 if (error_ptr) 1887 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); 1888 return false; 1889 } 1890 else 1891 { 1892 if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false) 1893 { 1894 if (error_ptr) 1895 error_ptr->SetErrorString("Unary negate failed."); 1896 return false; 1897 } 1898 } 1899 break; 1900 1901 //---------------------------------------------------------------------- 1902 // OPCODE: DW_OP_not 1903 // OPERANDS: none 1904 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1905 // complement 1906 //---------------------------------------------------------------------- 1907 case DW_OP_not: 1908 if (stack.empty()) 1909 { 1910 if (error_ptr) 1911 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); 1912 return false; 1913 } 1914 else 1915 { 1916 if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false) 1917 { 1918 if (error_ptr) 1919 error_ptr->SetErrorString("Logical NOT failed."); 1920 return false; 1921 } 1922 } 1923 break; 1924 1925 //---------------------------------------------------------------------- 1926 // OPCODE: DW_OP_or 1927 // OPERANDS: none 1928 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 1929 // operation on the two, and pushes the result. 1930 //---------------------------------------------------------------------- 1931 case DW_OP_or: 1932 if (stack.size() < 2) 1933 { 1934 if (error_ptr) 1935 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); 1936 return false; 1937 } 1938 else 1939 { 1940 tmp = stack.back(); 1941 stack.pop_back(); 1942 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context); 1943 } 1944 break; 1945 1946 //---------------------------------------------------------------------- 1947 // OPCODE: DW_OP_plus 1948 // OPERANDS: none 1949 // DESCRIPTION: pops the top two stack entries, adds them together, and 1950 // pushes the result. 1951 //---------------------------------------------------------------------- 1952 case DW_OP_plus: 1953 if (stack.size() < 2) 1954 { 1955 if (error_ptr) 1956 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); 1957 return false; 1958 } 1959 else 1960 { 1961 tmp = stack.back(); 1962 stack.pop_back(); 1963 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context); 1964 } 1965 break; 1966 1967 //---------------------------------------------------------------------- 1968 // OPCODE: DW_OP_plus_uconst 1969 // OPERANDS: none 1970 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 1971 // constant operand and pushes the result. 1972 //---------------------------------------------------------------------- 1973 case DW_OP_plus_uconst: 1974 if (stack.empty()) 1975 { 1976 if (error_ptr) 1977 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); 1978 return false; 1979 } 1980 else 1981 { 1982 uint32_t uconst_value = opcodes.GetULEB128(&offset); 1983 // Implicit conversion from a UINT to a Scalar... 1984 stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value; 1985 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1986 { 1987 if (error_ptr) 1988 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 1989 return false; 1990 } 1991 } 1992 break; 1993 1994 //---------------------------------------------------------------------- 1995 // OPCODE: DW_OP_shl 1996 // OPERANDS: none 1997 // DESCRIPTION: pops the top two stack entries, shifts the former 1998 // second entry left by the number of bits specified by the former top 1999 // of the stack, and pushes the result. 2000 //---------------------------------------------------------------------- 2001 case DW_OP_shl: 2002 if (stack.size() < 2) 2003 { 2004 if (error_ptr) 2005 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); 2006 return false; 2007 } 2008 else 2009 { 2010 tmp = stack.back(); 2011 stack.pop_back(); 2012 stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context); 2013 } 2014 break; 2015 2016 //---------------------------------------------------------------------- 2017 // OPCODE: DW_OP_shr 2018 // OPERANDS: none 2019 // DESCRIPTION: pops the top two stack entries, shifts the former second 2020 // entry right logically (filling with zero bits) by the number of bits 2021 // specified by the former top of the stack, and pushes the result. 2022 //---------------------------------------------------------------------- 2023 case DW_OP_shr: 2024 if (stack.size() < 2) 2025 { 2026 if (error_ptr) 2027 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); 2028 return false; 2029 } 2030 else 2031 { 2032 tmp = stack.back(); 2033 stack.pop_back(); 2034 if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false) 2035 { 2036 if (error_ptr) 2037 error_ptr->SetErrorString("DW_OP_shr failed."); 2038 return false; 2039 } 2040 } 2041 break; 2042 2043 //---------------------------------------------------------------------- 2044 // OPCODE: DW_OP_shra 2045 // OPERANDS: none 2046 // DESCRIPTION: pops the top two stack entries, shifts the former second 2047 // entry right arithmetically (divide the magnitude by 2, keep the same 2048 // sign for the result) by the number of bits specified by the former 2049 // top of the stack, and pushes the result. 2050 //---------------------------------------------------------------------- 2051 case DW_OP_shra: 2052 if (stack.size() < 2) 2053 { 2054 if (error_ptr) 2055 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); 2056 return false; 2057 } 2058 else 2059 { 2060 tmp = stack.back(); 2061 stack.pop_back(); 2062 stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context); 2063 } 2064 break; 2065 2066 //---------------------------------------------------------------------- 2067 // OPCODE: DW_OP_xor 2068 // OPERANDS: none 2069 // DESCRIPTION: pops the top two stack entries, performs the bitwise 2070 // exclusive-or operation on the two, and pushes the result. 2071 //---------------------------------------------------------------------- 2072 case DW_OP_xor: 2073 if (stack.size() < 2) 2074 { 2075 if (error_ptr) 2076 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); 2077 return false; 2078 } 2079 else 2080 { 2081 tmp = stack.back(); 2082 stack.pop_back(); 2083 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context); 2084 } 2085 break; 2086 2087 2088 //---------------------------------------------------------------------- 2089 // OPCODE: DW_OP_skip 2090 // OPERANDS: int16_t 2091 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 2092 // signed integer constant. The 2-byte constant is the number of bytes 2093 // of the DWARF expression to skip forward or backward from the current 2094 // operation, beginning after the 2-byte constant. 2095 //---------------------------------------------------------------------- 2096 case DW_OP_skip: 2097 { 2098 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 2099 uint32_t new_offset = offset + skip_offset; 2100 if (new_offset >= opcodes_offset && new_offset < end_offset) 2101 offset = new_offset; 2102 else 2103 { 2104 if (error_ptr) 2105 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 2106 return false; 2107 } 2108 } 2109 break; 2110 2111 //---------------------------------------------------------------------- 2112 // OPCODE: DW_OP_bra 2113 // OPERANDS: int16_t 2114 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 2115 // signed integer constant. This operation pops the top of stack. If 2116 // the value popped is not the constant 0, the 2-byte constant operand 2117 // is the number of bytes of the DWARF expression to skip forward or 2118 // backward from the current operation, beginning after the 2-byte 2119 // constant. 2120 //---------------------------------------------------------------------- 2121 case DW_OP_bra: 2122 { 2123 tmp = stack.back(); 2124 stack.pop_back(); 2125 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 2126 Scalar zero(0); 2127 if (tmp.ResolveValue(exe_ctx, ast_context) != zero) 2128 { 2129 uint32_t new_offset = offset + bra_offset; 2130 if (new_offset >= opcodes_offset && new_offset < end_offset) 2131 offset = new_offset; 2132 else 2133 { 2134 if (error_ptr) 2135 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 2136 return false; 2137 } 2138 } 2139 } 2140 break; 2141 2142 //---------------------------------------------------------------------- 2143 // OPCODE: DW_OP_eq 2144 // OPERANDS: none 2145 // DESCRIPTION: pops the top two stack values, compares using the 2146 // equals (==) operator. 2147 // STACK RESULT: push the constant value 1 onto the stack if the result 2148 // of the operation is true or the constant value 0 if the result of the 2149 // operation is false. 2150 //---------------------------------------------------------------------- 2151 case DW_OP_eq: 2152 if (stack.size() < 2) 2153 { 2154 if (error_ptr) 2155 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); 2156 return false; 2157 } 2158 else 2159 { 2160 tmp = stack.back(); 2161 stack.pop_back(); 2162 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context); 2163 } 2164 break; 2165 2166 //---------------------------------------------------------------------- 2167 // OPCODE: DW_OP_ge 2168 // OPERANDS: none 2169 // DESCRIPTION: pops the top two stack values, compares using the 2170 // greater than or equal to (>=) operator. 2171 // STACK RESULT: push the constant value 1 onto the stack if the result 2172 // of the operation is true or the constant value 0 if the result of the 2173 // operation is false. 2174 //---------------------------------------------------------------------- 2175 case DW_OP_ge: 2176 if (stack.size() < 2) 2177 { 2178 if (error_ptr) 2179 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); 2180 return false; 2181 } 2182 else 2183 { 2184 tmp = stack.back(); 2185 stack.pop_back(); 2186 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context); 2187 } 2188 break; 2189 2190 //---------------------------------------------------------------------- 2191 // OPCODE: DW_OP_gt 2192 // OPERANDS: none 2193 // DESCRIPTION: pops the top two stack values, compares using the 2194 // greater than (>) operator. 2195 // STACK RESULT: push the constant value 1 onto the stack if the result 2196 // of the operation is true or the constant value 0 if the result of the 2197 // operation is false. 2198 //---------------------------------------------------------------------- 2199 case DW_OP_gt: 2200 if (stack.size() < 2) 2201 { 2202 if (error_ptr) 2203 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); 2204 return false; 2205 } 2206 else 2207 { 2208 tmp = stack.back(); 2209 stack.pop_back(); 2210 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context); 2211 } 2212 break; 2213 2214 //---------------------------------------------------------------------- 2215 // OPCODE: DW_OP_le 2216 // OPERANDS: none 2217 // DESCRIPTION: pops the top two stack values, compares using the 2218 // less than or equal to (<=) operator. 2219 // STACK RESULT: push the constant value 1 onto the stack if the result 2220 // of the operation is true or the constant value 0 if the result of the 2221 // operation is false. 2222 //---------------------------------------------------------------------- 2223 case DW_OP_le: 2224 if (stack.size() < 2) 2225 { 2226 if (error_ptr) 2227 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); 2228 return false; 2229 } 2230 else 2231 { 2232 tmp = stack.back(); 2233 stack.pop_back(); 2234 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context); 2235 } 2236 break; 2237 2238 //---------------------------------------------------------------------- 2239 // OPCODE: DW_OP_lt 2240 // OPERANDS: none 2241 // DESCRIPTION: pops the top two stack values, compares using the 2242 // less than (<) operator. 2243 // STACK RESULT: push the constant value 1 onto the stack if the result 2244 // of the operation is true or the constant value 0 if the result of the 2245 // operation is false. 2246 //---------------------------------------------------------------------- 2247 case DW_OP_lt: 2248 if (stack.size() < 2) 2249 { 2250 if (error_ptr) 2251 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); 2252 return false; 2253 } 2254 else 2255 { 2256 tmp = stack.back(); 2257 stack.pop_back(); 2258 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context); 2259 } 2260 break; 2261 2262 //---------------------------------------------------------------------- 2263 // OPCODE: DW_OP_ne 2264 // OPERANDS: none 2265 // DESCRIPTION: pops the top two stack values, compares using the 2266 // not equal (!=) operator. 2267 // STACK RESULT: push the constant value 1 onto the stack if the result 2268 // of the operation is true or the constant value 0 if the result of the 2269 // operation is false. 2270 //---------------------------------------------------------------------- 2271 case DW_OP_ne: 2272 if (stack.size() < 2) 2273 { 2274 if (error_ptr) 2275 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); 2276 return false; 2277 } 2278 else 2279 { 2280 tmp = stack.back(); 2281 stack.pop_back(); 2282 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context); 2283 } 2284 break; 2285 2286 //---------------------------------------------------------------------- 2287 // OPCODE: DW_OP_litn 2288 // OPERANDS: none 2289 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 2290 // STACK RESULT: push the unsigned literal constant value onto the top 2291 // of the stack. 2292 //---------------------------------------------------------------------- 2293 case DW_OP_lit0: 2294 case DW_OP_lit1: 2295 case DW_OP_lit2: 2296 case DW_OP_lit3: 2297 case DW_OP_lit4: 2298 case DW_OP_lit5: 2299 case DW_OP_lit6: 2300 case DW_OP_lit7: 2301 case DW_OP_lit8: 2302 case DW_OP_lit9: 2303 case DW_OP_lit10: 2304 case DW_OP_lit11: 2305 case DW_OP_lit12: 2306 case DW_OP_lit13: 2307 case DW_OP_lit14: 2308 case DW_OP_lit15: 2309 case DW_OP_lit16: 2310 case DW_OP_lit17: 2311 case DW_OP_lit18: 2312 case DW_OP_lit19: 2313 case DW_OP_lit20: 2314 case DW_OP_lit21: 2315 case DW_OP_lit22: 2316 case DW_OP_lit23: 2317 case DW_OP_lit24: 2318 case DW_OP_lit25: 2319 case DW_OP_lit26: 2320 case DW_OP_lit27: 2321 case DW_OP_lit28: 2322 case DW_OP_lit29: 2323 case DW_OP_lit30: 2324 case DW_OP_lit31: 2325 stack.push_back(Scalar(op - DW_OP_lit0)); 2326 break; 2327 2328 //---------------------------------------------------------------------- 2329 // OPCODE: DW_OP_regN 2330 // OPERANDS: none 2331 // DESCRIPTION: Push the value in register n on the top of the stack. 2332 //---------------------------------------------------------------------- 2333 case DW_OP_reg0: 2334 case DW_OP_reg1: 2335 case DW_OP_reg2: 2336 case DW_OP_reg3: 2337 case DW_OP_reg4: 2338 case DW_OP_reg5: 2339 case DW_OP_reg6: 2340 case DW_OP_reg7: 2341 case DW_OP_reg8: 2342 case DW_OP_reg9: 2343 case DW_OP_reg10: 2344 case DW_OP_reg11: 2345 case DW_OP_reg12: 2346 case DW_OP_reg13: 2347 case DW_OP_reg14: 2348 case DW_OP_reg15: 2349 case DW_OP_reg16: 2350 case DW_OP_reg17: 2351 case DW_OP_reg18: 2352 case DW_OP_reg19: 2353 case DW_OP_reg20: 2354 case DW_OP_reg21: 2355 case DW_OP_reg22: 2356 case DW_OP_reg23: 2357 case DW_OP_reg24: 2358 case DW_OP_reg25: 2359 case DW_OP_reg26: 2360 case DW_OP_reg27: 2361 case DW_OP_reg28: 2362 case DW_OP_reg29: 2363 case DW_OP_reg30: 2364 case DW_OP_reg31: 2365 { 2366 reg_num = op - DW_OP_reg0; 2367 2368 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2369 stack.push_back(tmp); 2370 else 2371 return false; 2372 } 2373 break; 2374 //---------------------------------------------------------------------- 2375 // OPCODE: DW_OP_regx 2376 // OPERANDS: 2377 // ULEB128 literal operand that encodes the register. 2378 // DESCRIPTION: Push the value in register on the top of the stack. 2379 //---------------------------------------------------------------------- 2380 case DW_OP_regx: 2381 { 2382 reg_num = opcodes.GetULEB128(&offset); 2383 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2384 stack.push_back(tmp); 2385 else 2386 return false; 2387 } 2388 break; 2389 2390 //---------------------------------------------------------------------- 2391 // OPCODE: DW_OP_bregN 2392 // OPERANDS: 2393 // SLEB128 offset from register N 2394 // DESCRIPTION: Value is in memory at the address specified by register 2395 // N plus an offset. 2396 //---------------------------------------------------------------------- 2397 case DW_OP_breg0: 2398 case DW_OP_breg1: 2399 case DW_OP_breg2: 2400 case DW_OP_breg3: 2401 case DW_OP_breg4: 2402 case DW_OP_breg5: 2403 case DW_OP_breg6: 2404 case DW_OP_breg7: 2405 case DW_OP_breg8: 2406 case DW_OP_breg9: 2407 case DW_OP_breg10: 2408 case DW_OP_breg11: 2409 case DW_OP_breg12: 2410 case DW_OP_breg13: 2411 case DW_OP_breg14: 2412 case DW_OP_breg15: 2413 case DW_OP_breg16: 2414 case DW_OP_breg17: 2415 case DW_OP_breg18: 2416 case DW_OP_breg19: 2417 case DW_OP_breg20: 2418 case DW_OP_breg21: 2419 case DW_OP_breg22: 2420 case DW_OP_breg23: 2421 case DW_OP_breg24: 2422 case DW_OP_breg25: 2423 case DW_OP_breg26: 2424 case DW_OP_breg27: 2425 case DW_OP_breg28: 2426 case DW_OP_breg29: 2427 case DW_OP_breg30: 2428 case DW_OP_breg31: 2429 { 2430 reg_num = op - DW_OP_breg0; 2431 2432 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2433 { 2434 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2435 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2436 stack.push_back(tmp); 2437 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2438 } 2439 else 2440 return false; 2441 } 2442 break; 2443 //---------------------------------------------------------------------- 2444 // OPCODE: DW_OP_bregx 2445 // OPERANDS: 2 2446 // ULEB128 literal operand that encodes the register. 2447 // SLEB128 offset from register N 2448 // DESCRIPTION: Value is in memory at the address specified by register 2449 // N plus an offset. 2450 //---------------------------------------------------------------------- 2451 case DW_OP_bregx: 2452 { 2453 reg_num = opcodes.GetULEB128(&offset); 2454 2455 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2456 { 2457 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2458 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2459 stack.push_back(tmp); 2460 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2461 } 2462 else 2463 return false; 2464 } 2465 break; 2466 2467 case DW_OP_fbreg: 2468 if (exe_ctx) 2469 { 2470 if (frame) 2471 { 2472 Scalar value; 2473 if (frame->GetFrameBaseValue(value, error_ptr)) 2474 { 2475 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2476 value += fbreg_offset; 2477 stack.push_back(value); 2478 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2479 } 2480 else 2481 return false; 2482 } 2483 else 2484 { 2485 if (error_ptr) 2486 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); 2487 return false; 2488 } 2489 } 2490 else 2491 { 2492 if (error_ptr) 2493 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_fbreg.\n"); 2494 return false; 2495 } 2496 2497 break; 2498 2499 //---------------------------------------------------------------------- 2500 // OPCODE: DW_OP_nop 2501 // OPERANDS: none 2502 // DESCRIPTION: A place holder. It has no effect on the location stack 2503 // or any of its values. 2504 //---------------------------------------------------------------------- 2505 case DW_OP_nop: 2506 break; 2507 2508 //---------------------------------------------------------------------- 2509 // OPCODE: DW_OP_piece 2510 // OPERANDS: 1 2511 // ULEB128: byte size of the piece 2512 // DESCRIPTION: The operand describes the size in bytes of the piece of 2513 // the object referenced by the DWARF expression whose result is at the 2514 // top of the stack. If the piece is located in a register, but does not 2515 // occupy the entire register, the placement of the piece within that 2516 // register is defined by the ABI. 2517 // 2518 // Many compilers store a single variable in sets of registers, or store 2519 // a variable partially in memory and partially in registers. 2520 // DW_OP_piece provides a way of describing how large a part of a 2521 // variable a particular DWARF expression refers to. 2522 //---------------------------------------------------------------------- 2523 case DW_OP_piece: 2524 if (error_ptr) 2525 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece."); 2526 return false; 2527 2528 //---------------------------------------------------------------------- 2529 // OPCODE: DW_OP_push_object_address 2530 // OPERANDS: none 2531 // DESCRIPTION: Pushes the address of the object currently being 2532 // evaluated as part of evaluation of a user presented expression. 2533 // This object may correspond to an independent variable described by 2534 // its own DIE or it may be a component of an array, structure, or class 2535 // whose address has been dynamically determined by an earlier step 2536 // during user expression evaluation. 2537 //---------------------------------------------------------------------- 2538 case DW_OP_push_object_address: 2539 if (error_ptr) 2540 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); 2541 return false; 2542 2543 //---------------------------------------------------------------------- 2544 // OPCODE: DW_OP_call2 2545 // OPERANDS: 2546 // uint16_t compile unit relative offset of a DIE 2547 // DESCRIPTION: Performs subroutine calls during evaluation 2548 // of a DWARF expression. The operand is the 2-byte unsigned offset 2549 // of a debugging information entry in the current compilation unit. 2550 // 2551 // Operand interpretation is exactly like that for DW_FORM_ref2. 2552 // 2553 // This operation transfers control of DWARF expression evaluation 2554 // to the DW_AT_location attribute of the referenced DIE. If there is 2555 // no such attribute, then there is no effect. Execution of the DWARF 2556 // expression of a DW_AT_location attribute may add to and/or remove from 2557 // values on the stack. Execution returns to the point following the call 2558 // when the end of the attribute is reached. Values on the stack at the 2559 // time of the call may be used as parameters by the called expression 2560 // and values left on the stack by the called expression may be used as 2561 // return values by prior agreement between the calling and called 2562 // expressions. 2563 //---------------------------------------------------------------------- 2564 case DW_OP_call2: 2565 if (error_ptr) 2566 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); 2567 return false; 2568 //---------------------------------------------------------------------- 2569 // OPCODE: DW_OP_call4 2570 // OPERANDS: 1 2571 // uint32_t compile unit relative offset of a DIE 2572 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2573 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset 2574 // of a debugging information entry in the current compilation unit. 2575 // 2576 // Operand interpretation DW_OP_call4 is exactly like that for 2577 // DW_FORM_ref4. 2578 // 2579 // This operation transfers control of DWARF expression evaluation 2580 // to the DW_AT_location attribute of the referenced DIE. If there is 2581 // no such attribute, then there is no effect. Execution of the DWARF 2582 // expression of a DW_AT_location attribute may add to and/or remove from 2583 // values on the stack. Execution returns to the point following the call 2584 // when the end of the attribute is reached. Values on the stack at the 2585 // time of the call may be used as parameters by the called expression 2586 // and values left on the stack by the called expression may be used as 2587 // return values by prior agreement between the calling and called 2588 // expressions. 2589 //---------------------------------------------------------------------- 2590 case DW_OP_call4: 2591 if (error_ptr) 2592 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); 2593 return false; 2594 2595 #if 0 2596 //---------------------------------------------------------------------- 2597 // OPCODE: DW_OP_call_ref 2598 // OPERANDS: 2599 // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t 2600 // absolute DIE offset for 64 bit DWARF. 2601 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2602 // expression. Takes a single operand. In the 32-bit DWARF format, the 2603 // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it 2604 // is an 8-byte unsigned value. The operand is used as the offset of a 2605 // debugging information entry in a .debug_info section which may be 2606 // contained in a shared object for executable other than that 2607 // containing the operator. For references from one shared object or 2608 // executable to another, the relocation must be performed by the 2609 // consumer. 2610 // 2611 // Operand interpretation of DW_OP_call_ref is exactly like that for 2612 // DW_FORM_ref_addr. 2613 // 2614 // This operation transfers control of DWARF expression evaluation 2615 // to the DW_AT_location attribute of the referenced DIE. If there is 2616 // no such attribute, then there is no effect. Execution of the DWARF 2617 // expression of a DW_AT_location attribute may add to and/or remove from 2618 // values on the stack. Execution returns to the point following the call 2619 // when the end of the attribute is reached. Values on the stack at the 2620 // time of the call may be used as parameters by the called expression 2621 // and values left on the stack by the called expression may be used as 2622 // return values by prior agreement between the calling and called 2623 // expressions. 2624 //---------------------------------------------------------------------- 2625 case DW_OP_call_ref: 2626 if (error_ptr) 2627 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref."); 2628 return false; 2629 2630 //---------------------------------------------------------------------- 2631 // OPCODE: DW_OP_APPLE_array_ref 2632 // OPERANDS: none 2633 // DESCRIPTION: Pops a value off the stack and uses it as the array 2634 // index. Pops a second value off the stack and uses it as the array 2635 // itself. Pushes a value onto the stack representing the element of 2636 // the array specified by the index. 2637 //---------------------------------------------------------------------- 2638 case DW_OP_APPLE_array_ref: 2639 { 2640 if (stack.size() < 2) 2641 { 2642 if (error_ptr) 2643 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref."); 2644 return false; 2645 } 2646 2647 Value index_val = stack.back(); 2648 stack.pop_back(); 2649 Value array_val = stack.back(); 2650 stack.pop_back(); 2651 2652 Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context); 2653 int64_t index = index_scalar.SLongLong(LLONG_MAX); 2654 2655 if (index == LLONG_MAX) 2656 { 2657 if (error_ptr) 2658 error_ptr->SetErrorString("Invalid array index."); 2659 return false; 2660 } 2661 2662 if (array_val.GetContextType() != Value::eContextTypeClangType) 2663 { 2664 if (error_ptr) 2665 error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time."); 2666 return false; 2667 } 2668 2669 if (array_val.GetValueType() != Value::eValueTypeLoadAddress && 2670 array_val.GetValueType() != Value::eValueTypeHostAddress) 2671 { 2672 if (error_ptr) 2673 error_ptr->SetErrorString("Array must be stored in memory."); 2674 return false; 2675 } 2676 2677 void *array_type = array_val.GetClangType(); 2678 2679 void *member_type; 2680 uint64_t size = 0; 2681 2682 if ((!ClangASTContext::IsPointerType(array_type, &member_type)) && 2683 (!ClangASTContext::IsArrayType(array_type, &member_type, &size))) 2684 { 2685 if (error_ptr) 2686 error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array."); 2687 return false; 2688 } 2689 2690 if (size && (index >= size || index < 0)) 2691 { 2692 if (error_ptr) 2693 error_ptr->SetErrorStringWithFormat("Out of bounds array access. %lld is not in [0, %llu]", index, size); 2694 return false; 2695 } 2696 2697 uint64_t member_bit_size = ClangASTType::GetClangTypeBitWidth(ast_context, member_type); 2698 uint64_t member_bit_align = ClangASTType::GetTypeBitAlign(ast_context, member_type); 2699 uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align; 2700 if (member_bit_incr % 8) 2701 { 2702 if (error_ptr) 2703 error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned"); 2704 return false; 2705 } 2706 int64_t member_offset = (int64_t)(member_bit_incr / 8) * index; 2707 2708 Value member; 2709 2710 member.SetContext(Value::eContextTypeClangType, member_type); 2711 member.SetValueType(array_val.GetValueType()); 2712 2713 addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2714 addr_t member_loc = array_base + member_offset; 2715 member.GetScalar() = (uint64_t)member_loc; 2716 2717 stack.push_back(member); 2718 } 2719 break; 2720 2721 //---------------------------------------------------------------------- 2722 // OPCODE: DW_OP_APPLE_uninit 2723 // OPERANDS: none 2724 // DESCRIPTION: Lets us know that the value is currently not initialized 2725 //---------------------------------------------------------------------- 2726 case DW_OP_APPLE_uninit: 2727 //return eResultTypeErrorUninitialized; 2728 break; // Ignore this as we have seen cases where this value is incorrectly added 2729 2730 //---------------------------------------------------------------------- 2731 // OPCODE: DW_OP_APPLE_assign 2732 // OPERANDS: none 2733 // DESCRIPTION: Pops a value off of the stack and assigns it to the next 2734 // item on the stack which must be something assignable (inferior 2735 // Variable, inferior Type with address, inferior register, or 2736 // expression local variable. 2737 //---------------------------------------------------------------------- 2738 case DW_OP_APPLE_assign: 2739 if (stack.size() < 2) 2740 { 2741 if (error_ptr) 2742 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign."); 2743 return false; 2744 } 2745 else 2746 { 2747 tmp = stack.back(); 2748 stack.pop_back(); 2749 Value::ContextType context_type = stack.back().GetContextType(); 2750 StreamString new_value(Stream::eBinary, 4, lldb::endian::InlHostByteOrder()); 2751 switch (context_type) 2752 { 2753 case Value::eContextTypeClangType: 2754 { 2755 void *clang_type = stack.back().GetClangType(); 2756 2757 if (ClangASTContext::IsAggregateType (clang_type)) 2758 { 2759 Value::ValueType source_value_type = tmp.GetValueType(); 2760 Value::ValueType target_value_type = stack.back().GetValueType(); 2761 2762 addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong(); 2763 addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong(); 2764 2765 size_t byte_size = (ClangASTType::GetClangTypeBitWidth(ast_context, clang_type) + 7) / 8; 2766 2767 switch (source_value_type) 2768 { 2769 case Value::eValueTypeScalar: 2770 case Value::eValueTypeFileAddress: 2771 break; 2772 2773 case Value::eValueTypeLoadAddress: 2774 switch (target_value_type) 2775 { 2776 case Value::eValueTypeLoadAddress: 2777 { 2778 DataBufferHeap data; 2779 data.SetByteSize(byte_size); 2780 2781 Error error; 2782 if (process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size) 2783 { 2784 if (error_ptr) 2785 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2786 return false; 2787 } 2788 2789 if (process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size) 2790 { 2791 if (error_ptr) 2792 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2793 return false; 2794 } 2795 } 2796 break; 2797 case Value::eValueTypeHostAddress: 2798 if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2799 { 2800 if (error_ptr) 2801 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2802 return false; 2803 } 2804 else 2805 { 2806 Error error; 2807 if (process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size) 2808 { 2809 if (error_ptr) 2810 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2811 return false; 2812 } 2813 } 2814 break; 2815 default: 2816 return false; 2817 } 2818 break; 2819 case Value::eValueTypeHostAddress: 2820 switch (target_value_type) 2821 { 2822 case Value::eValueTypeLoadAddress: 2823 if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2824 { 2825 if (error_ptr) 2826 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2827 return false; 2828 } 2829 else 2830 { 2831 Error error; 2832 if (process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size) 2833 { 2834 if (error_ptr) 2835 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2836 return false; 2837 } 2838 } 2839 case Value::eValueTypeHostAddress: 2840 memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size); 2841 break; 2842 default: 2843 return false; 2844 } 2845 } 2846 } 2847 else 2848 { 2849 if (!ClangASTType::SetValueFromScalar (ast_context, 2850 clang_type, 2851 tmp.ResolveValue(exe_ctx, ast_context), 2852 new_value)) 2853 { 2854 if (error_ptr) 2855 error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n"); 2856 return false; 2857 } 2858 2859 Value::ValueType value_type = stack.back().GetValueType(); 2860 2861 switch (value_type) 2862 { 2863 case Value::eValueTypeLoadAddress: 2864 case Value::eValueTypeHostAddress: 2865 { 2866 AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost); 2867 lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2868 if (!ClangASTType::WriteToMemory (ast_context, 2869 clang_type, 2870 exe_ctx, 2871 addr, 2872 address_type, 2873 new_value)) 2874 { 2875 if (error_ptr) 2876 error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%llx.\n", addr); 2877 return false; 2878 } 2879 } 2880 break; 2881 2882 default: 2883 break; 2884 } 2885 } 2886 } 2887 break; 2888 2889 default: 2890 if (error_ptr) 2891 error_ptr->SetErrorString ("Assign failed."); 2892 return false; 2893 } 2894 } 2895 break; 2896 2897 //---------------------------------------------------------------------- 2898 // OPCODE: DW_OP_APPLE_address_of 2899 // OPERANDS: none 2900 // DESCRIPTION: Pops a value off of the stack and pushed its address. 2901 // The top item on the stack must be a variable, or already be a memory 2902 // location. 2903 //---------------------------------------------------------------------- 2904 case DW_OP_APPLE_address_of: 2905 if (stack.empty()) 2906 { 2907 if (error_ptr) 2908 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of."); 2909 return false; 2910 } 2911 else 2912 { 2913 Value::ValueType value_type = stack.back().GetValueType(); 2914 switch (value_type) 2915 { 2916 default: 2917 case Value::eValueTypeScalar: // raw scalar value 2918 if (error_ptr) 2919 error_ptr->SetErrorString("Top stack item isn't a memory based object."); 2920 return false; 2921 2922 case Value::eValueTypeLoadAddress: // load address value 2923 case Value::eValueTypeFileAddress: // file address value 2924 case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb) 2925 // Taking the address of an object reduces it to the address 2926 // of the value and removes any extra context it had. 2927 //stack.back().SetValueType(Value::eValueTypeScalar); 2928 stack.back().ClearContext(); 2929 break; 2930 } 2931 } 2932 break; 2933 2934 //---------------------------------------------------------------------- 2935 // OPCODE: DW_OP_APPLE_value_of 2936 // OPERANDS: none 2937 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2938 // The top item on the stack must be a variable, expression variable. 2939 //---------------------------------------------------------------------- 2940 case DW_OP_APPLE_value_of: 2941 if (stack.empty()) 2942 { 2943 if (error_ptr) 2944 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of."); 2945 return false; 2946 } 2947 else if (!stack.back().ValueOf(exe_ctx, ast_context)) 2948 { 2949 if (error_ptr) 2950 error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of."); 2951 return false; 2952 } 2953 break; 2954 2955 //---------------------------------------------------------------------- 2956 // OPCODE: DW_OP_APPLE_deref_type 2957 // OPERANDS: none 2958 // DESCRIPTION: gets the value pointed to by the top stack item 2959 //---------------------------------------------------------------------- 2960 case DW_OP_APPLE_deref_type: 2961 { 2962 if (stack.empty()) 2963 { 2964 if (error_ptr) 2965 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type."); 2966 return false; 2967 } 2968 2969 tmp = stack.back(); 2970 stack.pop_back(); 2971 2972 if (tmp.GetContextType() != Value::eContextTypeClangType) 2973 { 2974 if (error_ptr) 2975 error_ptr->SetErrorString("Item at top of expression stack must have a Clang type"); 2976 return false; 2977 } 2978 2979 void *ptr_type = tmp.GetClangType(); 2980 void *target_type; 2981 2982 if (!ClangASTContext::IsPointerType(ptr_type, &target_type)) 2983 { 2984 if (error_ptr) 2985 error_ptr->SetErrorString("Dereferencing a non-pointer type"); 2986 return false; 2987 } 2988 2989 // TODO do we want all pointers to be dereferenced as load addresses? 2990 Value::ValueType value_type = tmp.GetValueType(); 2991 2992 tmp.ResolveValue(exe_ctx, ast_context); 2993 2994 tmp.SetValueType(value_type); 2995 tmp.SetContext(Value::eContextTypeClangType, target_type); 2996 2997 stack.push_back(tmp); 2998 } 2999 break; 3000 3001 //---------------------------------------------------------------------- 3002 // OPCODE: DW_OP_APPLE_expr_local 3003 // OPERANDS: ULEB128 3004 // DESCRIPTION: pushes the expression local variable index onto the 3005 // stack and set the appropriate context so we know the stack item is 3006 // an expression local variable index. 3007 //---------------------------------------------------------------------- 3008 case DW_OP_APPLE_expr_local: 3009 { 3010 /* 3011 uint32_t idx = opcodes.GetULEB128(&offset); 3012 if (expr_locals == NULL) 3013 { 3014 if (error_ptr) 3015 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx); 3016 return false; 3017 } 3018 Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx); 3019 if (expr_local_variable == NULL) 3020 { 3021 if (error_ptr) 3022 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx); 3023 return false; 3024 } 3025 // The proxy code has been removed. If it is ever re-added, please 3026 // use shared pointers or return by value to avoid possible memory 3027 // leak (there is no leak here, but in general, no returning pointers 3028 // that must be manually freed please. 3029 Value *proxy = expr_local_variable->CreateProxy(); 3030 stack.push_back(*proxy); 3031 delete proxy; 3032 //stack.back().SetContext (Value::eContextTypeClangType, expr_local_variable->GetClangType()); 3033 */ 3034 } 3035 break; 3036 3037 //---------------------------------------------------------------------- 3038 // OPCODE: DW_OP_APPLE_extern 3039 // OPERANDS: ULEB128 3040 // DESCRIPTION: pushes a proxy for the extern object index onto the 3041 // stack. 3042 //---------------------------------------------------------------------- 3043 case DW_OP_APPLE_extern: 3044 { 3045 /* 3046 uint32_t idx = opcodes.GetULEB128(&offset); 3047 if (!decl_map) 3048 { 3049 if (error_ptr) 3050 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx); 3051 return false; 3052 } 3053 Value *extern_var = decl_map->GetValueForIndex(idx); 3054 if (!extern_var) 3055 { 3056 if (error_ptr) 3057 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx); 3058 return false; 3059 } 3060 // The proxy code has been removed. If it is ever re-added, please 3061 // use shared pointers or return by value to avoid possible memory 3062 // leak (there is no leak here, but in general, no returning pointers 3063 // that must be manually freed please. 3064 Value *proxy = extern_var->CreateProxy(); 3065 stack.push_back(*proxy); 3066 delete proxy; 3067 */ 3068 } 3069 break; 3070 3071 case DW_OP_APPLE_scalar_cast: 3072 if (stack.empty()) 3073 { 3074 if (error_ptr) 3075 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast."); 3076 return false; 3077 } 3078 else 3079 { 3080 // Simple scalar cast 3081 if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset))) 3082 { 3083 if (error_ptr) 3084 error_ptr->SetErrorString("Cast failed."); 3085 return false; 3086 } 3087 } 3088 break; 3089 3090 3091 case DW_OP_APPLE_clang_cast: 3092 if (stack.empty()) 3093 { 3094 if (error_ptr) 3095 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast."); 3096 return false; 3097 } 3098 else 3099 { 3100 void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*)); 3101 stack.back().SetContext (Value::eContextTypeClangType, clang_type); 3102 } 3103 break; 3104 //---------------------------------------------------------------------- 3105 // OPCODE: DW_OP_APPLE_constf 3106 // OPERANDS: 1 byte float length, followed by that many bytes containing 3107 // the constant float data. 3108 // DESCRIPTION: Push a float value onto the expression stack. 3109 //---------------------------------------------------------------------- 3110 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 3111 { 3112 uint8_t float_length = opcodes.GetU8(&offset); 3113 if (sizeof(float) == float_length) 3114 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset); 3115 else if (sizeof(double) == float_length) 3116 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset); 3117 else if (sizeof(long double) == float_length) 3118 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset); 3119 else 3120 { 3121 StreamString new_value; 3122 opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 3123 3124 if (error_ptr) 3125 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData()); 3126 return false; 3127 } 3128 tmp.SetValueType(Value::eValueTypeScalar); 3129 tmp.ClearContext(); 3130 stack.push_back(tmp); 3131 } 3132 break; 3133 //---------------------------------------------------------------------- 3134 // OPCODE: DW_OP_APPLE_clear 3135 // OPERANDS: none 3136 // DESCRIPTION: Clears the expression stack. 3137 //---------------------------------------------------------------------- 3138 case DW_OP_APPLE_clear: 3139 stack.clear(); 3140 break; 3141 3142 //---------------------------------------------------------------------- 3143 // OPCODE: DW_OP_APPLE_error 3144 // OPERANDS: none 3145 // DESCRIPTION: Pops a value off of the stack and pushed its value. 3146 // The top item on the stack must be a variable, expression variable. 3147 //---------------------------------------------------------------------- 3148 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 3149 if (error_ptr) 3150 error_ptr->SetErrorString ("Generic error."); 3151 return false; 3152 #endif // #if 0 3153 3154 } 3155 } 3156 3157 if (stack.empty()) 3158 { 3159 if (error_ptr) 3160 error_ptr->SetErrorString ("Stack empty after evaluation."); 3161 return false; 3162 } 3163 else if (log && log->GetVerbose()) 3164 { 3165 size_t count = stack.size(); 3166 log->Printf("Stack after operation has %lu values:", count); 3167 for (size_t i=0; i<count; ++i) 3168 { 3169 StreamString new_value; 3170 new_value.Printf("[%zu]", i); 3171 stack[i].Dump(&new_value); 3172 log->Printf(" %s", new_value.GetData()); 3173 } 3174 } 3175 3176 result = stack.back(); 3177 return true; // Return true on success 3178 } 3179 3180