1 //===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Expression/DWARFExpression.h" 11 12 // C Includes 13 #include <inttypes.h> 14 15 // C++ Includes 16 #include <vector> 17 18 #include "lldb/Core/DataEncoder.h" 19 #include "lldb/Core/dwarf.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/RegisterValue.h" 22 #include "lldb/Core/StreamString.h" 23 #include "lldb/Core/Scalar.h" 24 #include "lldb/Core/Value.h" 25 #include "lldb/Core/VMRange.h" 26 27 #include "lldb/Expression/ClangExpressionDeclMap.h" 28 #include "lldb/Expression/ClangExpressionVariable.h" 29 30 #include "lldb/Host/Endian.h" 31 #include "lldb/Host/Host.h" 32 33 #include "lldb/lldb-private-log.h" 34 35 #include "lldb/Target/ABI.h" 36 #include "lldb/Target/ExecutionContext.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/RegisterContext.h" 39 #include "lldb/Target/StackFrame.h" 40 #include "lldb/Target/StackID.h" 41 #include "lldb/Target/Thread.h" 42 43 using namespace lldb; 44 using namespace lldb_private; 45 46 // TODO- why is this also defined (in a better way) in DWARFDefines.cpp? 47 const char * 48 DW_OP_value_to_name (uint32_t val) 49 { 50 static char invalid[100]; 51 switch (val) { 52 case 0x03: return "DW_OP_addr"; 53 case 0x06: return "DW_OP_deref"; 54 case 0x08: return "DW_OP_const1u"; 55 case 0x09: return "DW_OP_const1s"; 56 case 0x0a: return "DW_OP_const2u"; 57 case 0x0b: return "DW_OP_const2s"; 58 case 0x0c: return "DW_OP_const4u"; 59 case 0x0d: return "DW_OP_const4s"; 60 case 0x0e: return "DW_OP_const8u"; 61 case 0x0f: return "DW_OP_const8s"; 62 case 0x10: return "DW_OP_constu"; 63 case 0x11: return "DW_OP_consts"; 64 case 0x12: return "DW_OP_dup"; 65 case 0x13: return "DW_OP_drop"; 66 case 0x14: return "DW_OP_over"; 67 case 0x15: return "DW_OP_pick"; 68 case 0x16: return "DW_OP_swap"; 69 case 0x17: return "DW_OP_rot"; 70 case 0x18: return "DW_OP_xderef"; 71 case 0x19: return "DW_OP_abs"; 72 case 0x1a: return "DW_OP_and"; 73 case 0x1b: return "DW_OP_div"; 74 case 0x1c: return "DW_OP_minus"; 75 case 0x1d: return "DW_OP_mod"; 76 case 0x1e: return "DW_OP_mul"; 77 case 0x1f: return "DW_OP_neg"; 78 case 0x20: return "DW_OP_not"; 79 case 0x21: return "DW_OP_or"; 80 case 0x22: return "DW_OP_plus"; 81 case 0x23: return "DW_OP_plus_uconst"; 82 case 0x24: return "DW_OP_shl"; 83 case 0x25: return "DW_OP_shr"; 84 case 0x26: return "DW_OP_shra"; 85 case 0x27: return "DW_OP_xor"; 86 case 0x2f: return "DW_OP_skip"; 87 case 0x28: return "DW_OP_bra"; 88 case 0x29: return "DW_OP_eq"; 89 case 0x2a: return "DW_OP_ge"; 90 case 0x2b: return "DW_OP_gt"; 91 case 0x2c: return "DW_OP_le"; 92 case 0x2d: return "DW_OP_lt"; 93 case 0x2e: return "DW_OP_ne"; 94 case 0x30: return "DW_OP_lit0"; 95 case 0x31: return "DW_OP_lit1"; 96 case 0x32: return "DW_OP_lit2"; 97 case 0x33: return "DW_OP_lit3"; 98 case 0x34: return "DW_OP_lit4"; 99 case 0x35: return "DW_OP_lit5"; 100 case 0x36: return "DW_OP_lit6"; 101 case 0x37: return "DW_OP_lit7"; 102 case 0x38: return "DW_OP_lit8"; 103 case 0x39: return "DW_OP_lit9"; 104 case 0x3a: return "DW_OP_lit10"; 105 case 0x3b: return "DW_OP_lit11"; 106 case 0x3c: return "DW_OP_lit12"; 107 case 0x3d: return "DW_OP_lit13"; 108 case 0x3e: return "DW_OP_lit14"; 109 case 0x3f: return "DW_OP_lit15"; 110 case 0x40: return "DW_OP_lit16"; 111 case 0x41: return "DW_OP_lit17"; 112 case 0x42: return "DW_OP_lit18"; 113 case 0x43: return "DW_OP_lit19"; 114 case 0x44: return "DW_OP_lit20"; 115 case 0x45: return "DW_OP_lit21"; 116 case 0x46: return "DW_OP_lit22"; 117 case 0x47: return "DW_OP_lit23"; 118 case 0x48: return "DW_OP_lit24"; 119 case 0x49: return "DW_OP_lit25"; 120 case 0x4a: return "DW_OP_lit26"; 121 case 0x4b: return "DW_OP_lit27"; 122 case 0x4c: return "DW_OP_lit28"; 123 case 0x4d: return "DW_OP_lit29"; 124 case 0x4e: return "DW_OP_lit30"; 125 case 0x4f: return "DW_OP_lit31"; 126 case 0x50: return "DW_OP_reg0"; 127 case 0x51: return "DW_OP_reg1"; 128 case 0x52: return "DW_OP_reg2"; 129 case 0x53: return "DW_OP_reg3"; 130 case 0x54: return "DW_OP_reg4"; 131 case 0x55: return "DW_OP_reg5"; 132 case 0x56: return "DW_OP_reg6"; 133 case 0x57: return "DW_OP_reg7"; 134 case 0x58: return "DW_OP_reg8"; 135 case 0x59: return "DW_OP_reg9"; 136 case 0x5a: return "DW_OP_reg10"; 137 case 0x5b: return "DW_OP_reg11"; 138 case 0x5c: return "DW_OP_reg12"; 139 case 0x5d: return "DW_OP_reg13"; 140 case 0x5e: return "DW_OP_reg14"; 141 case 0x5f: return "DW_OP_reg15"; 142 case 0x60: return "DW_OP_reg16"; 143 case 0x61: return "DW_OP_reg17"; 144 case 0x62: return "DW_OP_reg18"; 145 case 0x63: return "DW_OP_reg19"; 146 case 0x64: return "DW_OP_reg20"; 147 case 0x65: return "DW_OP_reg21"; 148 case 0x66: return "DW_OP_reg22"; 149 case 0x67: return "DW_OP_reg23"; 150 case 0x68: return "DW_OP_reg24"; 151 case 0x69: return "DW_OP_reg25"; 152 case 0x6a: return "DW_OP_reg26"; 153 case 0x6b: return "DW_OP_reg27"; 154 case 0x6c: return "DW_OP_reg28"; 155 case 0x6d: return "DW_OP_reg29"; 156 case 0x6e: return "DW_OP_reg30"; 157 case 0x6f: return "DW_OP_reg31"; 158 case 0x70: return "DW_OP_breg0"; 159 case 0x71: return "DW_OP_breg1"; 160 case 0x72: return "DW_OP_breg2"; 161 case 0x73: return "DW_OP_breg3"; 162 case 0x74: return "DW_OP_breg4"; 163 case 0x75: return "DW_OP_breg5"; 164 case 0x76: return "DW_OP_breg6"; 165 case 0x77: return "DW_OP_breg7"; 166 case 0x78: return "DW_OP_breg8"; 167 case 0x79: return "DW_OP_breg9"; 168 case 0x7a: return "DW_OP_breg10"; 169 case 0x7b: return "DW_OP_breg11"; 170 case 0x7c: return "DW_OP_breg12"; 171 case 0x7d: return "DW_OP_breg13"; 172 case 0x7e: return "DW_OP_breg14"; 173 case 0x7f: return "DW_OP_breg15"; 174 case 0x80: return "DW_OP_breg16"; 175 case 0x81: return "DW_OP_breg17"; 176 case 0x82: return "DW_OP_breg18"; 177 case 0x83: return "DW_OP_breg19"; 178 case 0x84: return "DW_OP_breg20"; 179 case 0x85: return "DW_OP_breg21"; 180 case 0x86: return "DW_OP_breg22"; 181 case 0x87: return "DW_OP_breg23"; 182 case 0x88: return "DW_OP_breg24"; 183 case 0x89: return "DW_OP_breg25"; 184 case 0x8a: return "DW_OP_breg26"; 185 case 0x8b: return "DW_OP_breg27"; 186 case 0x8c: return "DW_OP_breg28"; 187 case 0x8d: return "DW_OP_breg29"; 188 case 0x8e: return "DW_OP_breg30"; 189 case 0x8f: return "DW_OP_breg31"; 190 case 0x90: return "DW_OP_regx"; 191 case 0x91: return "DW_OP_fbreg"; 192 case 0x92: return "DW_OP_bregx"; 193 case 0x93: return "DW_OP_piece"; 194 case 0x94: return "DW_OP_deref_size"; 195 case 0x95: return "DW_OP_xderef_size"; 196 case 0x96: return "DW_OP_nop"; 197 case 0x97: return "DW_OP_push_object_address"; 198 case 0x98: return "DW_OP_call2"; 199 case 0x99: return "DW_OP_call4"; 200 case 0x9a: return "DW_OP_call_ref"; 201 // case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; 202 // case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; 203 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; 204 // case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; 205 // case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; 206 // case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; 207 // case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; 208 // case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; 209 // case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; 210 // case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; 211 // case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; 212 // case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; 213 // case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; 214 default: 215 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); 216 return invalid; 217 } 218 } 219 220 221 //---------------------------------------------------------------------- 222 // DWARFExpression constructor 223 //---------------------------------------------------------------------- 224 DWARFExpression::DWARFExpression() : 225 m_module_wp(), 226 m_data(), 227 m_reg_kind (eRegisterKindDWARF), 228 m_loclist_slide (LLDB_INVALID_ADDRESS) 229 { 230 } 231 232 DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : 233 m_module_wp(rhs.m_module_wp), 234 m_data(rhs.m_data), 235 m_reg_kind (rhs.m_reg_kind), 236 m_loclist_slide(rhs.m_loclist_slide) 237 { 238 } 239 240 241 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp, const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) : 242 m_module_wp(), 243 m_data(data, data_offset, data_length), 244 m_reg_kind (eRegisterKindDWARF), 245 m_loclist_slide(LLDB_INVALID_ADDRESS) 246 { 247 if (module_sp) 248 m_module_wp = module_sp; 249 } 250 251 //---------------------------------------------------------------------- 252 // Destructor 253 //---------------------------------------------------------------------- 254 DWARFExpression::~DWARFExpression() 255 { 256 } 257 258 259 bool 260 DWARFExpression::IsValid() const 261 { 262 return m_data.GetByteSize() > 0; 263 } 264 265 void 266 DWARFExpression::SetOpcodeData (const DataExtractor& data) 267 { 268 m_data = data; 269 } 270 271 void 272 DWARFExpression::CopyOpcodeData (lldb::ModuleSP module_sp, const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) 273 { 274 const uint8_t *bytes = data.PeekData(data_offset, data_length); 275 if (bytes) 276 { 277 m_module_wp = module_sp; 278 m_data.SetData(DataBufferSP(new DataBufferHeap(bytes, data_length))); 279 m_data.SetByteOrder(data.GetByteOrder()); 280 m_data.SetAddressByteSize(data.GetAddressByteSize()); 281 } 282 } 283 284 void 285 DWARFExpression::CopyOpcodeData (const void *data, 286 lldb::offset_t data_length, 287 ByteOrder byte_order, 288 uint8_t addr_byte_size) 289 { 290 if (data && data_length) 291 { 292 m_data.SetData(DataBufferSP(new DataBufferHeap(data, data_length))); 293 m_data.SetByteOrder(byte_order); 294 m_data.SetAddressByteSize(addr_byte_size); 295 } 296 } 297 298 void 299 DWARFExpression::CopyOpcodeData (uint64_t const_value, 300 lldb::offset_t const_value_byte_size, 301 uint8_t addr_byte_size) 302 { 303 if (const_value_byte_size) 304 { 305 m_data.SetData(DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size))); 306 m_data.SetByteOrder(endian::InlHostByteOrder()); 307 m_data.SetAddressByteSize(addr_byte_size); 308 } 309 } 310 311 void 312 DWARFExpression::SetOpcodeData (lldb::ModuleSP module_sp, const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) 313 { 314 m_module_wp = module_sp; 315 m_data.SetData(data, data_offset, data_length); 316 } 317 318 void 319 DWARFExpression::DumpLocation (Stream *s, lldb::offset_t offset, lldb::offset_t length, lldb::DescriptionLevel level, ABI *abi) const 320 { 321 if (!m_data.ValidOffsetForDataOfSize(offset, length)) 322 return; 323 const lldb::offset_t start_offset = offset; 324 const lldb::offset_t end_offset = offset + length; 325 while (m_data.ValidOffset(offset) && offset < end_offset) 326 { 327 const lldb::offset_t op_offset = offset; 328 const uint8_t op = m_data.GetU8(&offset); 329 330 switch (level) 331 { 332 default: 333 break; 334 335 case lldb::eDescriptionLevelBrief: 336 if (offset > start_offset) 337 s->PutChar(' '); 338 break; 339 340 case lldb::eDescriptionLevelFull: 341 case lldb::eDescriptionLevelVerbose: 342 if (offset > start_offset) 343 s->EOL(); 344 s->Indent(); 345 if (level == lldb::eDescriptionLevelFull) 346 break; 347 // Fall through for verbose and print offset and DW_OP prefix.. 348 s->Printf("0x%8.8" PRIx64 ": %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); 349 break; 350 } 351 352 switch (op) 353 { 354 case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address 355 case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 356 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant 357 case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant 358 case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant 359 case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant 360 case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant 361 case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant 362 case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant 363 case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant 364 case DW_OP_constu: s->Printf("DW_OP_constu(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant 365 case DW_OP_consts: s->Printf("DW_OP_consts(0x%" PRId64 ") ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant 366 case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 367 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 368 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 369 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index 370 case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 371 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 372 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 373 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 374 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a 375 case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b 376 case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c 377 case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d 378 case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e 379 case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f 380 case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 381 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 382 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 383 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 384 s->Printf("DW_OP_plus_uconst(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); 385 break; 386 387 case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 388 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 389 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 390 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 391 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant 392 case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant 393 case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 394 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a 395 case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b 396 case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c 397 case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d 398 case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e 399 400 case DW_OP_lit0: // 0x30 401 case DW_OP_lit1: // 0x31 402 case DW_OP_lit2: // 0x32 403 case DW_OP_lit3: // 0x33 404 case DW_OP_lit4: // 0x34 405 case DW_OP_lit5: // 0x35 406 case DW_OP_lit6: // 0x36 407 case DW_OP_lit7: // 0x37 408 case DW_OP_lit8: // 0x38 409 case DW_OP_lit9: // 0x39 410 case DW_OP_lit10: // 0x3A 411 case DW_OP_lit11: // 0x3B 412 case DW_OP_lit12: // 0x3C 413 case DW_OP_lit13: // 0x3D 414 case DW_OP_lit14: // 0x3E 415 case DW_OP_lit15: // 0x3F 416 case DW_OP_lit16: // 0x40 417 case DW_OP_lit17: // 0x41 418 case DW_OP_lit18: // 0x42 419 case DW_OP_lit19: // 0x43 420 case DW_OP_lit20: // 0x44 421 case DW_OP_lit21: // 0x45 422 case DW_OP_lit22: // 0x46 423 case DW_OP_lit23: // 0x47 424 case DW_OP_lit24: // 0x48 425 case DW_OP_lit25: // 0x49 426 case DW_OP_lit26: // 0x4A 427 case DW_OP_lit27: // 0x4B 428 case DW_OP_lit28: // 0x4C 429 case DW_OP_lit29: // 0x4D 430 case DW_OP_lit30: // 0x4E 431 case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f 432 433 case DW_OP_reg0: // 0x50 434 case DW_OP_reg1: // 0x51 435 case DW_OP_reg2: // 0x52 436 case DW_OP_reg3: // 0x53 437 case DW_OP_reg4: // 0x54 438 case DW_OP_reg5: // 0x55 439 case DW_OP_reg6: // 0x56 440 case DW_OP_reg7: // 0x57 441 case DW_OP_reg8: // 0x58 442 case DW_OP_reg9: // 0x59 443 case DW_OP_reg10: // 0x5A 444 case DW_OP_reg11: // 0x5B 445 case DW_OP_reg12: // 0x5C 446 case DW_OP_reg13: // 0x5D 447 case DW_OP_reg14: // 0x5E 448 case DW_OP_reg15: // 0x5F 449 case DW_OP_reg16: // 0x60 450 case DW_OP_reg17: // 0x61 451 case DW_OP_reg18: // 0x62 452 case DW_OP_reg19: // 0x63 453 case DW_OP_reg20: // 0x64 454 case DW_OP_reg21: // 0x65 455 case DW_OP_reg22: // 0x66 456 case DW_OP_reg23: // 0x67 457 case DW_OP_reg24: // 0x68 458 case DW_OP_reg25: // 0x69 459 case DW_OP_reg26: // 0x6A 460 case DW_OP_reg27: // 0x6B 461 case DW_OP_reg28: // 0x6C 462 case DW_OP_reg29: // 0x6D 463 case DW_OP_reg30: // 0x6E 464 case DW_OP_reg31: // 0x6F 465 { 466 uint32_t reg_num = op - DW_OP_reg0; 467 if (abi) 468 { 469 RegisterInfo reg_info; 470 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 471 { 472 if (reg_info.name) 473 { 474 s->PutCString (reg_info.name); 475 break; 476 } 477 else if (reg_info.alt_name) 478 { 479 s->PutCString (reg_info.alt_name); 480 break; 481 } 482 } 483 } 484 s->Printf("DW_OP_reg%u", reg_num); break; 485 } 486 break; 487 488 case DW_OP_breg0: 489 case DW_OP_breg1: 490 case DW_OP_breg2: 491 case DW_OP_breg3: 492 case DW_OP_breg4: 493 case DW_OP_breg5: 494 case DW_OP_breg6: 495 case DW_OP_breg7: 496 case DW_OP_breg8: 497 case DW_OP_breg9: 498 case DW_OP_breg10: 499 case DW_OP_breg11: 500 case DW_OP_breg12: 501 case DW_OP_breg13: 502 case DW_OP_breg14: 503 case DW_OP_breg15: 504 case DW_OP_breg16: 505 case DW_OP_breg17: 506 case DW_OP_breg18: 507 case DW_OP_breg19: 508 case DW_OP_breg20: 509 case DW_OP_breg21: 510 case DW_OP_breg22: 511 case DW_OP_breg23: 512 case DW_OP_breg24: 513 case DW_OP_breg25: 514 case DW_OP_breg26: 515 case DW_OP_breg27: 516 case DW_OP_breg28: 517 case DW_OP_breg29: 518 case DW_OP_breg30: 519 case DW_OP_breg31: 520 { 521 uint32_t reg_num = op - DW_OP_breg0; 522 int64_t reg_offset = m_data.GetSLEB128(&offset); 523 if (abi) 524 { 525 RegisterInfo reg_info; 526 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 527 { 528 if (reg_info.name) 529 { 530 s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset); 531 break; 532 } 533 else if (reg_info.alt_name) 534 { 535 s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset); 536 break; 537 } 538 } 539 } 540 s->Printf("DW_OP_breg%i(0x%" PRIx64 ")", reg_num, reg_offset); 541 } 542 break; 543 544 case DW_OP_regx: // 0x90 1 ULEB128 register 545 { 546 uint32_t reg_num = m_data.GetULEB128(&offset); 547 if (abi) 548 { 549 RegisterInfo reg_info; 550 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 551 { 552 if (reg_info.name) 553 { 554 s->PutCString (reg_info.name); 555 break; 556 } 557 else if (reg_info.alt_name) 558 { 559 s->PutCString (reg_info.alt_name); 560 break; 561 } 562 } 563 } 564 s->Printf("DW_OP_regx(%" PRIu32 ")", reg_num); break; 565 } 566 break; 567 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 568 s->Printf("DW_OP_fbreg(%" PRIi64 ")",m_data.GetSLEB128(&offset)); 569 break; 570 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 571 { 572 uint32_t reg_num = m_data.GetULEB128(&offset); 573 int64_t reg_offset = m_data.GetSLEB128(&offset); 574 if (abi) 575 { 576 RegisterInfo reg_info; 577 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 578 { 579 if (reg_info.name) 580 { 581 s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset); 582 break; 583 } 584 else if (reg_info.alt_name) 585 { 586 s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset); 587 break; 588 } 589 } 590 } 591 s->Printf("DW_OP_bregx(reg=%" PRIu32 ",offset=%" PRIi64 ")", reg_num, reg_offset); 592 } 593 break; 594 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 595 s->Printf("DW_OP_piece(0x%" PRIx64 ")", m_data.GetULEB128(&offset)); 596 break; 597 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 598 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); 599 break; 600 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 601 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); 602 break; 603 case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 604 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 605 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE 606 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); 607 break; 608 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE 609 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); 610 break; 611 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE 612 s->Printf("DW_OP_call_ref(0x%8.8" PRIx64 ")", m_data.GetAddress(&offset)); 613 break; 614 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 615 // case DW_OP_bit_piece: // 0x9d DWARF3 2 616 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); 617 // break; 618 // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0 619 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff 620 // case DW_OP_APPLE_extern: 621 // s->Printf("DW_OP_APPLE_extern(%" PRIu64 ")", m_data.GetULEB128(&offset)); 622 // break; 623 // case DW_OP_APPLE_array_ref: 624 // s->PutCString("DW_OP_APPLE_array_ref"); 625 // break; 626 case DW_OP_form_tls_address: 627 s->PutCString("DW_OP_form_tls_address"); // 0x9b 628 break; 629 case DW_OP_GNU_push_tls_address: 630 s->PutCString("DW_OP_GNU_push_tls_address"); // 0xe0 631 break; 632 case DW_OP_APPLE_uninit: 633 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 634 break; 635 // case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) 636 // s->PutCString("DW_OP_APPLE_assign"); 637 // break; 638 // case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) 639 // s->PutCString("DW_OP_APPLE_address_of"); 640 // break; 641 // case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) 642 // s->PutCString("DW_OP_APPLE_value_of"); 643 // break; 644 // case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) 645 // s->PutCString("DW_OP_APPLE_deref_type"); 646 // break; 647 // case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index 648 // s->Printf("DW_OP_APPLE_expr_local(%" PRIu64 ")", m_data.GetULEB128(&offset)); 649 // break; 650 // case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 651 // { 652 // uint8_t float_length = m_data.GetU8(&offset); 653 // s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); 654 // m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 655 // s->PutChar(')'); 656 // // Consume the float data 657 // m_data.GetData(&offset, float_length); 658 // } 659 // break; 660 // case DW_OP_APPLE_scalar_cast: 661 // s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); 662 // break; 663 // case DW_OP_APPLE_clang_cast: 664 // { 665 // clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); 666 // s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); 667 // } 668 // break; 669 // case DW_OP_APPLE_clear: 670 // s->PutCString("DW_OP_APPLE_clear"); 671 // break; 672 // case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 673 // s->PutCString("DW_OP_APPLE_error"); 674 // break; 675 } 676 } 677 } 678 679 void 680 DWARFExpression::SetLocationListSlide (addr_t slide) 681 { 682 m_loclist_slide = slide; 683 } 684 685 int 686 DWARFExpression::GetRegisterKind () 687 { 688 return m_reg_kind; 689 } 690 691 void 692 DWARFExpression::SetRegisterKind (RegisterKind reg_kind) 693 { 694 m_reg_kind = reg_kind; 695 } 696 697 bool 698 DWARFExpression::IsLocationList() const 699 { 700 return m_loclist_slide != LLDB_INVALID_ADDRESS; 701 } 702 703 void 704 DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const 705 { 706 if (IsLocationList()) 707 { 708 // We have a location list 709 lldb::offset_t offset = 0; 710 uint32_t count = 0; 711 addr_t curr_base_addr = location_list_base_addr; 712 while (m_data.ValidOffset(offset)) 713 { 714 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); 715 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); 716 if (begin_addr_offset < end_addr_offset) 717 { 718 if (count > 0) 719 s->PutCString(", "); 720 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); 721 addr_range.Dump(s, 0, 8); 722 s->PutChar('{'); 723 lldb::offset_t location_length = m_data.GetU16(&offset); 724 DumpLocation (s, offset, location_length, level, abi); 725 s->PutChar('}'); 726 offset += location_length; 727 } 728 else if (begin_addr_offset == 0 && end_addr_offset == 0) 729 { 730 // The end of the location list is marked by both the start and end offset being zero 731 break; 732 } 733 else 734 { 735 if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || 736 (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) 737 { 738 curr_base_addr = end_addr_offset + location_list_base_addr; 739 // We have a new base address 740 if (count > 0) 741 s->PutCString(", "); 742 *s << "base_addr = " << end_addr_offset; 743 } 744 } 745 746 count++; 747 } 748 } 749 else 750 { 751 // We have a normal location that contains DW_OP location opcodes 752 DumpLocation (s, 0, m_data.GetByteSize(), level, abi); 753 } 754 } 755 756 static bool 757 ReadRegisterValueAsScalar 758 ( 759 RegisterContext *reg_ctx, 760 lldb::RegisterKind reg_kind, 761 uint32_t reg_num, 762 Error *error_ptr, 763 Value &value 764 ) 765 { 766 if (reg_ctx == NULL) 767 { 768 if (error_ptr) 769 error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); 770 } 771 else 772 { 773 uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 774 if (native_reg == LLDB_INVALID_REGNUM) 775 { 776 if (error_ptr) 777 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); 778 } 779 else 780 { 781 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); 782 RegisterValue reg_value; 783 if (reg_ctx->ReadRegister (reg_info, reg_value)) 784 { 785 if (reg_value.GetScalarValue(value.GetScalar())) 786 { 787 value.SetValueType (Value::eValueTypeScalar); 788 value.SetContext (Value::eContextTypeRegisterInfo, 789 const_cast<RegisterInfo *>(reg_info)); 790 if (error_ptr) 791 error_ptr->Clear(); 792 return true; 793 } 794 else 795 { 796 // If we get this error, then we need to implement a value 797 // buffer in the dwarf expression evaluation function... 798 if (error_ptr) 799 error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value", 800 reg_info->name); 801 } 802 } 803 else 804 { 805 if (error_ptr) 806 error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); 807 } 808 } 809 } 810 return false; 811 } 812 813 //bool 814 //DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const 815 //{ 816 // return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); 817 //} 818 // 819 //bool 820 //DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const 821 //{ 822 // if (load_addr == LLDB_INVALID_ADDRESS) 823 // return false; 824 // 825 // if (IsLocationList()) 826 // { 827 // lldb::offset_t offset = 0; 828 // 829 // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); 830 // 831 // if (loc_list_base_addr == LLDB_INVALID_ADDRESS) 832 // return false; 833 // 834 // while (m_data.ValidOffset(offset)) 835 // { 836 // // We need to figure out what the value is for the location. 837 // addr_t lo_pc = m_data.GetAddress(&offset); 838 // addr_t hi_pc = m_data.GetAddress(&offset); 839 // if (lo_pc == 0 && hi_pc == 0) 840 // break; 841 // else 842 // { 843 // lo_pc += loc_list_base_addr; 844 // hi_pc += loc_list_base_addr; 845 // 846 // if (lo_pc <= load_addr && load_addr < hi_pc) 847 // return true; 848 // 849 // offset += m_data.GetU16(&offset); 850 // } 851 // } 852 // } 853 // return false; 854 //} 855 856 static offset_t 857 GetOpcodeDataSize (const DataExtractor &data, const lldb::offset_t data_offset, const uint8_t op) 858 { 859 lldb::offset_t offset = data_offset; 860 switch (op) 861 { 862 case DW_OP_addr: 863 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) 864 return data.GetAddressByteSize(); 865 866 // Opcodes with no arguments 867 case DW_OP_deref: // 0x06 868 case DW_OP_dup: // 0x12 869 case DW_OP_drop: // 0x13 870 case DW_OP_over: // 0x14 871 case DW_OP_swap: // 0x16 872 case DW_OP_rot: // 0x17 873 case DW_OP_xderef: // 0x18 874 case DW_OP_abs: // 0x19 875 case DW_OP_and: // 0x1a 876 case DW_OP_div: // 0x1b 877 case DW_OP_minus: // 0x1c 878 case DW_OP_mod: // 0x1d 879 case DW_OP_mul: // 0x1e 880 case DW_OP_neg: // 0x1f 881 case DW_OP_not: // 0x20 882 case DW_OP_or: // 0x21 883 case DW_OP_plus: // 0x22 884 case DW_OP_shl: // 0x24 885 case DW_OP_shr: // 0x25 886 case DW_OP_shra: // 0x26 887 case DW_OP_xor: // 0x27 888 case DW_OP_eq: // 0x29 889 case DW_OP_ge: // 0x2a 890 case DW_OP_gt: // 0x2b 891 case DW_OP_le: // 0x2c 892 case DW_OP_lt: // 0x2d 893 case DW_OP_ne: // 0x2e 894 case DW_OP_lit0: // 0x30 895 case DW_OP_lit1: // 0x31 896 case DW_OP_lit2: // 0x32 897 case DW_OP_lit3: // 0x33 898 case DW_OP_lit4: // 0x34 899 case DW_OP_lit5: // 0x35 900 case DW_OP_lit6: // 0x36 901 case DW_OP_lit7: // 0x37 902 case DW_OP_lit8: // 0x38 903 case DW_OP_lit9: // 0x39 904 case DW_OP_lit10: // 0x3A 905 case DW_OP_lit11: // 0x3B 906 case DW_OP_lit12: // 0x3C 907 case DW_OP_lit13: // 0x3D 908 case DW_OP_lit14: // 0x3E 909 case DW_OP_lit15: // 0x3F 910 case DW_OP_lit16: // 0x40 911 case DW_OP_lit17: // 0x41 912 case DW_OP_lit18: // 0x42 913 case DW_OP_lit19: // 0x43 914 case DW_OP_lit20: // 0x44 915 case DW_OP_lit21: // 0x45 916 case DW_OP_lit22: // 0x46 917 case DW_OP_lit23: // 0x47 918 case DW_OP_lit24: // 0x48 919 case DW_OP_lit25: // 0x49 920 case DW_OP_lit26: // 0x4A 921 case DW_OP_lit27: // 0x4B 922 case DW_OP_lit28: // 0x4C 923 case DW_OP_lit29: // 0x4D 924 case DW_OP_lit30: // 0x4E 925 case DW_OP_lit31: // 0x4f 926 case DW_OP_reg0: // 0x50 927 case DW_OP_reg1: // 0x51 928 case DW_OP_reg2: // 0x52 929 case DW_OP_reg3: // 0x53 930 case DW_OP_reg4: // 0x54 931 case DW_OP_reg5: // 0x55 932 case DW_OP_reg6: // 0x56 933 case DW_OP_reg7: // 0x57 934 case DW_OP_reg8: // 0x58 935 case DW_OP_reg9: // 0x59 936 case DW_OP_reg10: // 0x5A 937 case DW_OP_reg11: // 0x5B 938 case DW_OP_reg12: // 0x5C 939 case DW_OP_reg13: // 0x5D 940 case DW_OP_reg14: // 0x5E 941 case DW_OP_reg15: // 0x5F 942 case DW_OP_reg16: // 0x60 943 case DW_OP_reg17: // 0x61 944 case DW_OP_reg18: // 0x62 945 case DW_OP_reg19: // 0x63 946 case DW_OP_reg20: // 0x64 947 case DW_OP_reg21: // 0x65 948 case DW_OP_reg22: // 0x66 949 case DW_OP_reg23: // 0x67 950 case DW_OP_reg24: // 0x68 951 case DW_OP_reg25: // 0x69 952 case DW_OP_reg26: // 0x6A 953 case DW_OP_reg27: // 0x6B 954 case DW_OP_reg28: // 0x6C 955 case DW_OP_reg29: // 0x6D 956 case DW_OP_reg30: // 0x6E 957 case DW_OP_reg31: // 0x6F 958 case DW_OP_nop: // 0x96 959 case DW_OP_push_object_address: // 0x97 DWARF3 960 case DW_OP_form_tls_address: // 0x9b DWARF3 961 case DW_OP_call_frame_cfa: // 0x9c DWARF3 962 case DW_OP_stack_value: // 0x9f DWARF4 963 case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension 964 return 0; 965 966 // Opcodes with a single 1 byte arguments 967 case DW_OP_const1u: // 0x08 1 1-byte constant 968 case DW_OP_const1s: // 0x09 1 1-byte constant 969 case DW_OP_pick: // 0x15 1 1-byte stack index 970 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 971 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 972 return 1; 973 974 // Opcodes with a single 2 byte arguments 975 case DW_OP_const2u: // 0x0a 1 2-byte constant 976 case DW_OP_const2s: // 0x0b 1 2-byte constant 977 case DW_OP_skip: // 0x2f 1 signed 2-byte constant 978 case DW_OP_bra: // 0x28 1 signed 2-byte constant 979 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) 980 return 2; 981 982 // Opcodes with a single 4 byte arguments 983 case DW_OP_const4u: // 0x0c 1 4-byte constant 984 case DW_OP_const4s: // 0x0d 1 4-byte constant 985 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) 986 return 4; 987 988 // Opcodes with a single 8 byte arguments 989 case DW_OP_const8u: // 0x0e 1 8-byte constant 990 case DW_OP_const8s: // 0x0f 1 8-byte constant 991 return 8; 992 993 // All opcodes that have a single ULEB (signed or unsigned) argument 994 case DW_OP_constu: // 0x10 1 ULEB128 constant 995 case DW_OP_consts: // 0x11 1 SLEB128 constant 996 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 997 case DW_OP_breg0: // 0x70 1 ULEB128 register 998 case DW_OP_breg1: // 0x71 1 ULEB128 register 999 case DW_OP_breg2: // 0x72 1 ULEB128 register 1000 case DW_OP_breg3: // 0x73 1 ULEB128 register 1001 case DW_OP_breg4: // 0x74 1 ULEB128 register 1002 case DW_OP_breg5: // 0x75 1 ULEB128 register 1003 case DW_OP_breg6: // 0x76 1 ULEB128 register 1004 case DW_OP_breg7: // 0x77 1 ULEB128 register 1005 case DW_OP_breg8: // 0x78 1 ULEB128 register 1006 case DW_OP_breg9: // 0x79 1 ULEB128 register 1007 case DW_OP_breg10: // 0x7a 1 ULEB128 register 1008 case DW_OP_breg11: // 0x7b 1 ULEB128 register 1009 case DW_OP_breg12: // 0x7c 1 ULEB128 register 1010 case DW_OP_breg13: // 0x7d 1 ULEB128 register 1011 case DW_OP_breg14: // 0x7e 1 ULEB128 register 1012 case DW_OP_breg15: // 0x7f 1 ULEB128 register 1013 case DW_OP_breg16: // 0x80 1 ULEB128 register 1014 case DW_OP_breg17: // 0x81 1 ULEB128 register 1015 case DW_OP_breg18: // 0x82 1 ULEB128 register 1016 case DW_OP_breg19: // 0x83 1 ULEB128 register 1017 case DW_OP_breg20: // 0x84 1 ULEB128 register 1018 case DW_OP_breg21: // 0x85 1 ULEB128 register 1019 case DW_OP_breg22: // 0x86 1 ULEB128 register 1020 case DW_OP_breg23: // 0x87 1 ULEB128 register 1021 case DW_OP_breg24: // 0x88 1 ULEB128 register 1022 case DW_OP_breg25: // 0x89 1 ULEB128 register 1023 case DW_OP_breg26: // 0x8a 1 ULEB128 register 1024 case DW_OP_breg27: // 0x8b 1 ULEB128 register 1025 case DW_OP_breg28: // 0x8c 1 ULEB128 register 1026 case DW_OP_breg29: // 0x8d 1 ULEB128 register 1027 case DW_OP_breg30: // 0x8e 1 ULEB128 register 1028 case DW_OP_breg31: // 0x8f 1 ULEB128 register 1029 case DW_OP_regx: // 0x90 1 ULEB128 register 1030 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 1031 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 1032 data.Skip_LEB128(&offset); 1033 return offset - data_offset; 1034 1035 // All opcodes that have a 2 ULEB (signed or unsigned) arguments 1036 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 1037 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); 1038 data.Skip_LEB128(&offset); 1039 data.Skip_LEB128(&offset); 1040 return offset - data_offset; 1041 1042 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size (DWARF4) 1043 { 1044 uint64_t block_len = data.Skip_LEB128(&offset); 1045 offset += block_len; 1046 return offset - data_offset; 1047 } 1048 1049 default: 1050 break; 1051 } 1052 return LLDB_INVALID_OFFSET; 1053 } 1054 1055 lldb::addr_t 1056 DWARFExpression::GetLocation_DW_OP_addr (uint32_t op_addr_idx, bool &error) const 1057 { 1058 error = false; 1059 if (IsLocationList()) 1060 return LLDB_INVALID_ADDRESS; 1061 lldb::offset_t offset = 0; 1062 uint32_t curr_op_addr_idx = 0; 1063 while (m_data.ValidOffset(offset)) 1064 { 1065 const uint8_t op = m_data.GetU8(&offset); 1066 1067 if (op == DW_OP_addr) 1068 { 1069 const lldb::addr_t op_file_addr = m_data.GetAddress(&offset); 1070 if (curr_op_addr_idx == op_addr_idx) 1071 return op_file_addr; 1072 else 1073 ++curr_op_addr_idx; 1074 } 1075 else 1076 { 1077 const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1078 if (op_arg_size == LLDB_INVALID_OFFSET) 1079 { 1080 error = true; 1081 break; 1082 } 1083 offset += op_arg_size; 1084 } 1085 } 1086 return LLDB_INVALID_ADDRESS; 1087 } 1088 1089 bool 1090 DWARFExpression::Update_DW_OP_addr (lldb::addr_t file_addr) 1091 { 1092 if (IsLocationList()) 1093 return false; 1094 lldb::offset_t offset = 0; 1095 while (m_data.ValidOffset(offset)) 1096 { 1097 const uint8_t op = m_data.GetU8(&offset); 1098 1099 if (op == DW_OP_addr) 1100 { 1101 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 1102 // We have to make a copy of the data as we don't know if this 1103 // data is from a read only memory mapped buffer, so we duplicate 1104 // all of the data first, then modify it, and if all goes well, 1105 // we then replace the data for this expression 1106 1107 // So first we copy the data into a heap buffer 1108 std::unique_ptr<DataBufferHeap> head_data_ap (new DataBufferHeap (m_data.GetDataStart(), 1109 m_data.GetByteSize())); 1110 1111 // Make en encoder so we can write the address into the buffer using 1112 // the correct byte order (endianness) 1113 DataEncoder encoder (head_data_ap->GetBytes(), 1114 head_data_ap->GetByteSize(), 1115 m_data.GetByteOrder(), 1116 addr_byte_size); 1117 1118 // Replace the address in the new buffer 1119 if (encoder.PutMaxU64 (offset, addr_byte_size, file_addr) == UINT32_MAX) 1120 return false; 1121 1122 // All went well, so now we can reset the data using a shared 1123 // pointer to the heap data so "m_data" will now correctly 1124 // manage the heap data. 1125 m_data.SetData (DataBufferSP (head_data_ap.release())); 1126 return true; 1127 } 1128 else 1129 { 1130 const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1131 if (op_arg_size == LLDB_INVALID_OFFSET) 1132 break; 1133 offset += op_arg_size; 1134 } 1135 } 1136 return false; 1137 } 1138 1139 bool 1140 DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const 1141 { 1142 if (addr == LLDB_INVALID_ADDRESS) 1143 return false; 1144 1145 if (IsLocationList()) 1146 { 1147 lldb::offset_t offset = 0; 1148 1149 if (loclist_base_addr == LLDB_INVALID_ADDRESS) 1150 return false; 1151 1152 while (m_data.ValidOffset(offset)) 1153 { 1154 // We need to figure out what the value is for the location. 1155 addr_t lo_pc = m_data.GetAddress(&offset); 1156 addr_t hi_pc = m_data.GetAddress(&offset); 1157 if (lo_pc == 0 && hi_pc == 0) 1158 break; 1159 else 1160 { 1161 lo_pc += loclist_base_addr - m_loclist_slide; 1162 hi_pc += loclist_base_addr - m_loclist_slide; 1163 1164 if (lo_pc <= addr && addr < hi_pc) 1165 return true; 1166 1167 offset += m_data.GetU16(&offset); 1168 } 1169 } 1170 } 1171 return false; 1172 } 1173 1174 bool 1175 DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, lldb::offset_t &offset, lldb::offset_t &length) 1176 { 1177 offset = 0; 1178 if (!IsLocationList()) 1179 { 1180 length = m_data.GetByteSize(); 1181 return true; 1182 } 1183 1184 if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) 1185 { 1186 addr_t curr_base_addr = base_addr; 1187 1188 while (m_data.ValidOffset(offset)) 1189 { 1190 // We need to figure out what the value is for the location. 1191 addr_t lo_pc = m_data.GetAddress(&offset); 1192 addr_t hi_pc = m_data.GetAddress(&offset); 1193 if (lo_pc == 0 && hi_pc == 0) 1194 { 1195 break; 1196 } 1197 else 1198 { 1199 lo_pc += curr_base_addr - m_loclist_slide; 1200 hi_pc += curr_base_addr - m_loclist_slide; 1201 1202 length = m_data.GetU16(&offset); 1203 1204 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1205 return true; 1206 1207 offset += length; 1208 } 1209 } 1210 } 1211 offset = LLDB_INVALID_OFFSET; 1212 length = 0; 1213 return false; 1214 } 1215 1216 bool 1217 DWARFExpression::DumpLocationForAddress (Stream *s, 1218 lldb::DescriptionLevel level, 1219 addr_t base_addr, 1220 addr_t address, 1221 ABI *abi) 1222 { 1223 lldb::offset_t offset = 0; 1224 lldb::offset_t length = 0; 1225 1226 if (GetLocation (base_addr, address, offset, length)) 1227 { 1228 if (length > 0) 1229 { 1230 DumpLocation(s, offset, length, level, abi); 1231 return true; 1232 } 1233 } 1234 return false; 1235 } 1236 1237 bool 1238 DWARFExpression::Evaluate 1239 ( 1240 ExecutionContextScope *exe_scope, 1241 ClangExpressionVariableList *expr_locals, 1242 ClangExpressionDeclMap *decl_map, 1243 lldb::addr_t loclist_base_load_addr, 1244 const Value* initial_value_ptr, 1245 Value& result, 1246 Error *error_ptr 1247 ) const 1248 { 1249 ExecutionContext exe_ctx (exe_scope); 1250 return Evaluate(&exe_ctx, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); 1251 } 1252 1253 bool 1254 DWARFExpression::Evaluate 1255 ( 1256 ExecutionContext *exe_ctx, 1257 ClangExpressionVariableList *expr_locals, 1258 ClangExpressionDeclMap *decl_map, 1259 RegisterContext *reg_ctx, 1260 lldb::addr_t loclist_base_load_addr, 1261 const Value* initial_value_ptr, 1262 Value& result, 1263 Error *error_ptr 1264 ) const 1265 { 1266 ModuleSP module_sp = m_module_wp.lock(); 1267 1268 if (IsLocationList()) 1269 { 1270 lldb::offset_t offset = 0; 1271 addr_t pc; 1272 StackFrame *frame = NULL; 1273 if (reg_ctx) 1274 pc = reg_ctx->GetPC(); 1275 else 1276 { 1277 frame = exe_ctx->GetFramePtr(); 1278 if (!frame) 1279 return false; 1280 RegisterContextSP reg_ctx_sp = frame->GetRegisterContext(); 1281 if (!reg_ctx_sp) 1282 return false; 1283 pc = reg_ctx_sp->GetPC(); 1284 } 1285 1286 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) 1287 { 1288 if (pc == LLDB_INVALID_ADDRESS) 1289 { 1290 if (error_ptr) 1291 error_ptr->SetErrorString("Invalid PC in frame."); 1292 return false; 1293 } 1294 1295 addr_t curr_loclist_base_load_addr = loclist_base_load_addr; 1296 1297 while (m_data.ValidOffset(offset)) 1298 { 1299 // We need to figure out what the value is for the location. 1300 addr_t lo_pc = m_data.GetAddress(&offset); 1301 addr_t hi_pc = m_data.GetAddress(&offset); 1302 if (lo_pc == 0 && hi_pc == 0) 1303 { 1304 break; 1305 } 1306 else 1307 { 1308 lo_pc += curr_loclist_base_load_addr - m_loclist_slide; 1309 hi_pc += curr_loclist_base_load_addr - m_loclist_slide; 1310 1311 uint16_t length = m_data.GetU16(&offset); 1312 1313 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1314 { 1315 return DWARFExpression::Evaluate (exe_ctx, expr_locals, decl_map, reg_ctx, module_sp, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); 1316 } 1317 offset += length; 1318 } 1319 } 1320 } 1321 if (error_ptr) 1322 error_ptr->SetErrorString ("variable not available"); 1323 return false; 1324 } 1325 1326 // Not a location list, just a single expression. 1327 return DWARFExpression::Evaluate (exe_ctx, expr_locals, decl_map, reg_ctx, module_sp, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); 1328 } 1329 1330 1331 1332 bool 1333 DWARFExpression::Evaluate 1334 ( 1335 ExecutionContext *exe_ctx, 1336 ClangExpressionVariableList *expr_locals, 1337 ClangExpressionDeclMap *decl_map, 1338 RegisterContext *reg_ctx, 1339 lldb::ModuleSP module_sp, 1340 const DataExtractor& opcodes, 1341 const lldb::offset_t opcodes_offset, 1342 const lldb::offset_t opcodes_length, 1343 const lldb::RegisterKind reg_kind, 1344 const Value* initial_value_ptr, 1345 Value& result, 1346 Error *error_ptr 1347 ) 1348 { 1349 1350 if (opcodes_length == 0) 1351 { 1352 if (error_ptr) 1353 error_ptr->SetErrorString ("no location, value may have been optimized out"); 1354 return false; 1355 } 1356 std::vector<Value> stack; 1357 1358 Process *process = NULL; 1359 StackFrame *frame = NULL; 1360 1361 if (exe_ctx) 1362 { 1363 process = exe_ctx->GetProcessPtr(); 1364 frame = exe_ctx->GetFramePtr(); 1365 } 1366 if (reg_ctx == NULL && frame) 1367 reg_ctx = frame->GetRegisterContext().get(); 1368 1369 if (initial_value_ptr) 1370 stack.push_back(*initial_value_ptr); 1371 1372 lldb::offset_t offset = opcodes_offset; 1373 const lldb::offset_t end_offset = opcodes_offset + opcodes_length; 1374 Value tmp; 1375 uint32_t reg_num; 1376 1377 /// Insertion point for evaluating multi-piece expression. 1378 uint64_t op_piece_offset = 0; 1379 Value pieces; // Used for DW_OP_piece 1380 1381 // Make sure all of the data is available in opcodes. 1382 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) 1383 { 1384 if (error_ptr) 1385 error_ptr->SetErrorString ("invalid offset and/or length for opcodes buffer."); 1386 return false; 1387 } 1388 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1389 1390 1391 while (opcodes.ValidOffset(offset) && offset < end_offset) 1392 { 1393 const lldb::offset_t op_offset = offset; 1394 const uint8_t op = opcodes.GetU8(&offset); 1395 1396 if (log && log->GetVerbose()) 1397 { 1398 size_t count = stack.size(); 1399 log->Printf("Stack before operation has %" PRIu64 " values:", (uint64_t)count); 1400 for (size_t i=0; i<count; ++i) 1401 { 1402 StreamString new_value; 1403 new_value.Printf("[%" PRIu64 "]", (uint64_t)i); 1404 stack[i].Dump(&new_value); 1405 log->Printf(" %s", new_value.GetData()); 1406 } 1407 log->Printf("0x%8.8" PRIx64 ": %s", op_offset, DW_OP_value_to_name(op)); 1408 } 1409 switch (op) 1410 { 1411 //---------------------------------------------------------------------- 1412 // The DW_OP_addr operation has a single operand that encodes a machine 1413 // address and whose size is the size of an address on the target machine. 1414 //---------------------------------------------------------------------- 1415 case DW_OP_addr: 1416 stack.push_back(Scalar(opcodes.GetAddress(&offset))); 1417 stack.back().SetValueType (Value::eValueTypeFileAddress); 1418 break; 1419 1420 //---------------------------------------------------------------------- 1421 // The DW_OP_addr_sect_offset4 is used for any location expressions in 1422 // shared libraries that have a location like: 1423 // DW_OP_addr(0x1000) 1424 // If this address resides in a shared library, then this virtual 1425 // address won't make sense when it is evaluated in the context of a 1426 // running process where shared libraries have been slid. To account for 1427 // this, this new address type where we can store the section pointer 1428 // and a 4 byte offset. 1429 //---------------------------------------------------------------------- 1430 // case DW_OP_addr_sect_offset4: 1431 // { 1432 // result_type = eResultTypeFileAddress; 1433 // lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); 1434 // lldb::addr_t sect_offset = opcodes.GetU32(&offset); 1435 // 1436 // Address so_addr (sect, sect_offset); 1437 // lldb::addr_t load_addr = so_addr.GetLoadAddress(); 1438 // if (load_addr != LLDB_INVALID_ADDRESS) 1439 // { 1440 // // We successfully resolve a file address to a load 1441 // // address. 1442 // stack.push_back(load_addr); 1443 // break; 1444 // } 1445 // else 1446 // { 1447 // // We were able 1448 // if (error_ptr) 1449 // error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 1450 // return false; 1451 // } 1452 // } 1453 // break; 1454 1455 //---------------------------------------------------------------------- 1456 // OPCODE: DW_OP_deref 1457 // OPERANDS: none 1458 // DESCRIPTION: Pops the top stack entry and treats it as an address. 1459 // The value retrieved from that address is pushed. The size of the 1460 // data retrieved from the dereferenced address is the size of an 1461 // address on the target machine. 1462 //---------------------------------------------------------------------- 1463 case DW_OP_deref: 1464 { 1465 if (stack.empty()) 1466 { 1467 if (error_ptr) 1468 error_ptr->SetErrorString("Expression stack empty for DW_OP_deref."); 1469 return false; 1470 } 1471 Value::ValueType value_type = stack.back().GetValueType(); 1472 switch (value_type) 1473 { 1474 case Value::eValueTypeHostAddress: 1475 { 1476 void *src = (void *)stack.back().GetScalar().ULongLong(); 1477 intptr_t ptr; 1478 ::memcpy (&ptr, src, sizeof(void *)); 1479 stack.back().GetScalar() = ptr; 1480 stack.back().ClearContext(); 1481 } 1482 break; 1483 case Value::eValueTypeLoadAddress: 1484 if (exe_ctx) 1485 { 1486 if (process) 1487 { 1488 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1489 Error error; 1490 lldb::addr_t pointer_value = process->ReadPointerFromMemory(pointer_addr, error); 1491 if (pointer_value != LLDB_INVALID_ADDRESS) 1492 { 1493 stack.back().GetScalar() = pointer_value; 1494 stack.back().ClearContext(); 1495 } 1496 else 1497 { 1498 if (error_ptr) 1499 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n", 1500 pointer_addr, 1501 error.AsCString()); 1502 return false; 1503 } 1504 } 1505 else 1506 { 1507 if (error_ptr) 1508 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1509 return false; 1510 } 1511 } 1512 else 1513 { 1514 if (error_ptr) 1515 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1516 return false; 1517 } 1518 break; 1519 1520 default: 1521 break; 1522 } 1523 1524 } 1525 break; 1526 1527 //---------------------------------------------------------------------- 1528 // OPCODE: DW_OP_deref_size 1529 // OPERANDS: 1 1530 // 1 - uint8_t that specifies the size of the data to dereference. 1531 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 1532 // stack entry and treats it as an address. The value retrieved from that 1533 // address is pushed. In the DW_OP_deref_size operation, however, the 1534 // size in bytes of the data retrieved from the dereferenced address is 1535 // specified by the single operand. This operand is a 1-byte unsigned 1536 // integral constant whose value may not be larger than the size of an 1537 // address on the target machine. The data retrieved is zero extended 1538 // to the size of an address on the target machine before being pushed 1539 // on the expression stack. 1540 //---------------------------------------------------------------------- 1541 case DW_OP_deref_size: 1542 { 1543 if (stack.empty()) 1544 { 1545 if (error_ptr) 1546 error_ptr->SetErrorString("Expression stack empty for DW_OP_deref_size."); 1547 return false; 1548 } 1549 uint8_t size = opcodes.GetU8(&offset); 1550 Value::ValueType value_type = stack.back().GetValueType(); 1551 switch (value_type) 1552 { 1553 case Value::eValueTypeHostAddress: 1554 { 1555 void *src = (void *)stack.back().GetScalar().ULongLong(); 1556 intptr_t ptr; 1557 ::memcpy (&ptr, src, sizeof(void *)); 1558 // I can't decide whether the size operand should apply to the bytes in their 1559 // lldb-host endianness or the target endianness.. I doubt this'll ever come up 1560 // but I'll opt for assuming big endian regardless. 1561 switch (size) 1562 { 1563 case 1: ptr = ptr & 0xff; break; 1564 case 2: ptr = ptr & 0xffff; break; 1565 case 3: ptr = ptr & 0xffffff; break; 1566 case 4: ptr = ptr & 0xffffffff; break; 1567 // the casts are added to work around the case where intptr_t is a 32 bit quantity; 1568 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. 1569 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; 1570 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; 1571 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; 1572 default: break; 1573 } 1574 stack.back().GetScalar() = ptr; 1575 stack.back().ClearContext(); 1576 } 1577 break; 1578 case Value::eValueTypeLoadAddress: 1579 if (exe_ctx) 1580 { 1581 if (process) 1582 { 1583 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1584 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1585 Error error; 1586 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) 1587 { 1588 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size); 1589 lldb::offset_t addr_data_offset = 0; 1590 switch (size) 1591 { 1592 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; 1593 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; 1594 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; 1595 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; 1596 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1597 } 1598 stack.back().ClearContext(); 1599 } 1600 else 1601 { 1602 if (error_ptr) 1603 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n", 1604 pointer_addr, 1605 error.AsCString()); 1606 return false; 1607 } 1608 } 1609 else 1610 { 1611 if (error_ptr) 1612 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1613 return false; 1614 } 1615 } 1616 else 1617 { 1618 if (error_ptr) 1619 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1620 return false; 1621 } 1622 break; 1623 1624 default: 1625 break; 1626 } 1627 1628 } 1629 break; 1630 1631 //---------------------------------------------------------------------- 1632 // OPCODE: DW_OP_xderef_size 1633 // OPERANDS: 1 1634 // 1 - uint8_t that specifies the size of the data to dereference. 1635 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1636 // the top of the stack is treated as an address. The second stack 1637 // entry is treated as an "address space identifier" for those 1638 // architectures that support multiple address spaces. The top two 1639 // stack elements are popped, a data item is retrieved through an 1640 // implementation-defined address calculation and pushed as the new 1641 // stack top. In the DW_OP_xderef_size operation, however, the size in 1642 // bytes of the data retrieved from the dereferenced address is 1643 // specified by the single operand. This operand is a 1-byte unsigned 1644 // integral constant whose value may not be larger than the size of an 1645 // address on the target machine. The data retrieved is zero extended 1646 // to the size of an address on the target machine before being pushed 1647 // on the expression stack. 1648 //---------------------------------------------------------------------- 1649 case DW_OP_xderef_size: 1650 if (error_ptr) 1651 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1652 return false; 1653 //---------------------------------------------------------------------- 1654 // OPCODE: DW_OP_xderef 1655 // OPERANDS: none 1656 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1657 // the top of the stack is treated as an address. The second stack entry 1658 // is treated as an "address space identifier" for those architectures 1659 // that support multiple address spaces. The top two stack elements are 1660 // popped, a data item is retrieved through an implementation-defined 1661 // address calculation and pushed as the new stack top. The size of the 1662 // data retrieved from the dereferenced address is the size of an address 1663 // on the target machine. 1664 //---------------------------------------------------------------------- 1665 case DW_OP_xderef: 1666 if (error_ptr) 1667 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1668 return false; 1669 1670 //---------------------------------------------------------------------- 1671 // All DW_OP_constXXX opcodes have a single operand as noted below: 1672 // 1673 // Opcode Operand 1 1674 // --------------- ---------------------------------------------------- 1675 // DW_OP_const1u 1-byte unsigned integer constant 1676 // DW_OP_const1s 1-byte signed integer constant 1677 // DW_OP_const2u 2-byte unsigned integer constant 1678 // DW_OP_const2s 2-byte signed integer constant 1679 // DW_OP_const4u 4-byte unsigned integer constant 1680 // DW_OP_const4s 4-byte signed integer constant 1681 // DW_OP_const8u 8-byte unsigned integer constant 1682 // DW_OP_const8s 8-byte signed integer constant 1683 // DW_OP_constu unsigned LEB128 integer constant 1684 // DW_OP_consts signed LEB128 integer constant 1685 //---------------------------------------------------------------------- 1686 case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break; 1687 case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break; 1688 case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break; 1689 case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break; 1690 case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break; 1691 case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break; 1692 case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break; 1693 case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break; 1694 case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break; 1695 case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break; 1696 1697 //---------------------------------------------------------------------- 1698 // OPCODE: DW_OP_dup 1699 // OPERANDS: none 1700 // DESCRIPTION: duplicates the value at the top of the stack 1701 //---------------------------------------------------------------------- 1702 case DW_OP_dup: 1703 if (stack.empty()) 1704 { 1705 if (error_ptr) 1706 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1707 return false; 1708 } 1709 else 1710 stack.push_back(stack.back()); 1711 break; 1712 1713 //---------------------------------------------------------------------- 1714 // OPCODE: DW_OP_drop 1715 // OPERANDS: none 1716 // DESCRIPTION: pops the value at the top of the stack 1717 //---------------------------------------------------------------------- 1718 case DW_OP_drop: 1719 if (stack.empty()) 1720 { 1721 if (error_ptr) 1722 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1723 return false; 1724 } 1725 else 1726 stack.pop_back(); 1727 break; 1728 1729 //---------------------------------------------------------------------- 1730 // OPCODE: DW_OP_over 1731 // OPERANDS: none 1732 // DESCRIPTION: Duplicates the entry currently second in the stack at 1733 // the top of the stack. 1734 //---------------------------------------------------------------------- 1735 case DW_OP_over: 1736 if (stack.size() < 2) 1737 { 1738 if (error_ptr) 1739 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); 1740 return false; 1741 } 1742 else 1743 stack.push_back(stack[stack.size() - 2]); 1744 break; 1745 1746 1747 //---------------------------------------------------------------------- 1748 // OPCODE: DW_OP_pick 1749 // OPERANDS: uint8_t index into the current stack 1750 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1751 // inclusive) is pushed on the stack 1752 //---------------------------------------------------------------------- 1753 case DW_OP_pick: 1754 { 1755 uint8_t pick_idx = opcodes.GetU8(&offset); 1756 if (pick_idx < stack.size()) 1757 stack.push_back(stack[pick_idx]); 1758 else 1759 { 1760 if (error_ptr) 1761 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); 1762 return false; 1763 } 1764 } 1765 break; 1766 1767 //---------------------------------------------------------------------- 1768 // OPCODE: DW_OP_swap 1769 // OPERANDS: none 1770 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1771 // of the stack becomes the second stack entry, and the second entry 1772 // becomes the top of the stack 1773 //---------------------------------------------------------------------- 1774 case DW_OP_swap: 1775 if (stack.size() < 2) 1776 { 1777 if (error_ptr) 1778 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); 1779 return false; 1780 } 1781 else 1782 { 1783 tmp = stack.back(); 1784 stack.back() = stack[stack.size() - 2]; 1785 stack[stack.size() - 2] = tmp; 1786 } 1787 break; 1788 1789 //---------------------------------------------------------------------- 1790 // OPCODE: DW_OP_rot 1791 // OPERANDS: none 1792 // DESCRIPTION: Rotates the first three stack entries. The entry at 1793 // the top of the stack becomes the third stack entry, the second 1794 // entry becomes the top of the stack, and the third entry becomes 1795 // the second entry. 1796 //---------------------------------------------------------------------- 1797 case DW_OP_rot: 1798 if (stack.size() < 3) 1799 { 1800 if (error_ptr) 1801 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); 1802 return false; 1803 } 1804 else 1805 { 1806 size_t last_idx = stack.size() - 1; 1807 Value old_top = stack[last_idx]; 1808 stack[last_idx] = stack[last_idx - 1]; 1809 stack[last_idx - 1] = stack[last_idx - 2]; 1810 stack[last_idx - 2] = old_top; 1811 } 1812 break; 1813 1814 //---------------------------------------------------------------------- 1815 // OPCODE: DW_OP_abs 1816 // OPERANDS: none 1817 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1818 // value and pushes its absolute value. If the absolute value can not be 1819 // represented, the result is undefined. 1820 //---------------------------------------------------------------------- 1821 case DW_OP_abs: 1822 if (stack.empty()) 1823 { 1824 if (error_ptr) 1825 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); 1826 return false; 1827 } 1828 else if (stack.back().ResolveValue(exe_ctx).AbsoluteValue() == false) 1829 { 1830 if (error_ptr) 1831 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); 1832 return false; 1833 } 1834 break; 1835 1836 //---------------------------------------------------------------------- 1837 // OPCODE: DW_OP_and 1838 // OPERANDS: none 1839 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1840 // operation on the two, and pushes the result. 1841 //---------------------------------------------------------------------- 1842 case DW_OP_and: 1843 if (stack.size() < 2) 1844 { 1845 if (error_ptr) 1846 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); 1847 return false; 1848 } 1849 else 1850 { 1851 tmp = stack.back(); 1852 stack.pop_back(); 1853 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx); 1854 } 1855 break; 1856 1857 //---------------------------------------------------------------------- 1858 // OPCODE: DW_OP_div 1859 // OPERANDS: none 1860 // DESCRIPTION: pops the top two stack values, divides the former second 1861 // entry by the former top of the stack using signed division, and 1862 // pushes the result. 1863 //---------------------------------------------------------------------- 1864 case DW_OP_div: 1865 if (stack.size() < 2) 1866 { 1867 if (error_ptr) 1868 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); 1869 return false; 1870 } 1871 else 1872 { 1873 tmp = stack.back(); 1874 if (tmp.ResolveValue(exe_ctx).IsZero()) 1875 { 1876 if (error_ptr) 1877 error_ptr->SetErrorString("Divide by zero."); 1878 return false; 1879 } 1880 else 1881 { 1882 stack.pop_back(); 1883 stack.back() = stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx); 1884 if (!stack.back().ResolveValue(exe_ctx).IsValid()) 1885 { 1886 if (error_ptr) 1887 error_ptr->SetErrorString("Divide failed."); 1888 return false; 1889 } 1890 } 1891 } 1892 break; 1893 1894 //---------------------------------------------------------------------- 1895 // OPCODE: DW_OP_minus 1896 // OPERANDS: none 1897 // DESCRIPTION: pops the top two stack values, subtracts the former top 1898 // of the stack from the former second entry, and pushes the result. 1899 //---------------------------------------------------------------------- 1900 case DW_OP_minus: 1901 if (stack.size() < 2) 1902 { 1903 if (error_ptr) 1904 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); 1905 return false; 1906 } 1907 else 1908 { 1909 tmp = stack.back(); 1910 stack.pop_back(); 1911 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx); 1912 } 1913 break; 1914 1915 //---------------------------------------------------------------------- 1916 // OPCODE: DW_OP_mod 1917 // OPERANDS: none 1918 // DESCRIPTION: pops the top two stack values and pushes the result of 1919 // the calculation: former second stack entry modulo the former top of 1920 // the stack. 1921 //---------------------------------------------------------------------- 1922 case DW_OP_mod: 1923 if (stack.size() < 2) 1924 { 1925 if (error_ptr) 1926 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); 1927 return false; 1928 } 1929 else 1930 { 1931 tmp = stack.back(); 1932 stack.pop_back(); 1933 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx); 1934 } 1935 break; 1936 1937 1938 //---------------------------------------------------------------------- 1939 // OPCODE: DW_OP_mul 1940 // OPERANDS: none 1941 // DESCRIPTION: pops the top two stack entries, multiplies them 1942 // together, and pushes the result. 1943 //---------------------------------------------------------------------- 1944 case DW_OP_mul: 1945 if (stack.size() < 2) 1946 { 1947 if (error_ptr) 1948 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); 1949 return false; 1950 } 1951 else 1952 { 1953 tmp = stack.back(); 1954 stack.pop_back(); 1955 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx); 1956 } 1957 break; 1958 1959 //---------------------------------------------------------------------- 1960 // OPCODE: DW_OP_neg 1961 // OPERANDS: none 1962 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1963 //---------------------------------------------------------------------- 1964 case DW_OP_neg: 1965 if (stack.empty()) 1966 { 1967 if (error_ptr) 1968 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); 1969 return false; 1970 } 1971 else 1972 { 1973 if (stack.back().ResolveValue(exe_ctx).UnaryNegate() == false) 1974 { 1975 if (error_ptr) 1976 error_ptr->SetErrorString("Unary negate failed."); 1977 return false; 1978 } 1979 } 1980 break; 1981 1982 //---------------------------------------------------------------------- 1983 // OPCODE: DW_OP_not 1984 // OPERANDS: none 1985 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1986 // complement 1987 //---------------------------------------------------------------------- 1988 case DW_OP_not: 1989 if (stack.empty()) 1990 { 1991 if (error_ptr) 1992 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); 1993 return false; 1994 } 1995 else 1996 { 1997 if (stack.back().ResolveValue(exe_ctx).OnesComplement() == false) 1998 { 1999 if (error_ptr) 2000 error_ptr->SetErrorString("Logical NOT failed."); 2001 return false; 2002 } 2003 } 2004 break; 2005 2006 //---------------------------------------------------------------------- 2007 // OPCODE: DW_OP_or 2008 // OPERANDS: none 2009 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 2010 // operation on the two, and pushes the result. 2011 //---------------------------------------------------------------------- 2012 case DW_OP_or: 2013 if (stack.size() < 2) 2014 { 2015 if (error_ptr) 2016 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); 2017 return false; 2018 } 2019 else 2020 { 2021 tmp = stack.back(); 2022 stack.pop_back(); 2023 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx); 2024 } 2025 break; 2026 2027 //---------------------------------------------------------------------- 2028 // OPCODE: DW_OP_plus 2029 // OPERANDS: none 2030 // DESCRIPTION: pops the top two stack entries, adds them together, and 2031 // pushes the result. 2032 //---------------------------------------------------------------------- 2033 case DW_OP_plus: 2034 if (stack.size() < 2) 2035 { 2036 if (error_ptr) 2037 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); 2038 return false; 2039 } 2040 else 2041 { 2042 tmp = stack.back(); 2043 stack.pop_back(); 2044 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) + tmp.ResolveValue(exe_ctx); 2045 } 2046 break; 2047 2048 //---------------------------------------------------------------------- 2049 // OPCODE: DW_OP_plus_uconst 2050 // OPERANDS: none 2051 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 2052 // constant operand and pushes the result. 2053 //---------------------------------------------------------------------- 2054 case DW_OP_plus_uconst: 2055 if (stack.empty()) 2056 { 2057 if (error_ptr) 2058 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); 2059 return false; 2060 } 2061 else 2062 { 2063 const uint64_t uconst_value = opcodes.GetULEB128(&offset); 2064 // Implicit conversion from a UINT to a Scalar... 2065 stack.back().ResolveValue(exe_ctx) += uconst_value; 2066 if (!stack.back().ResolveValue(exe_ctx).IsValid()) 2067 { 2068 if (error_ptr) 2069 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 2070 return false; 2071 } 2072 } 2073 break; 2074 2075 //---------------------------------------------------------------------- 2076 // OPCODE: DW_OP_shl 2077 // OPERANDS: none 2078 // DESCRIPTION: pops the top two stack entries, shifts the former 2079 // second entry left by the number of bits specified by the former top 2080 // of the stack, and pushes the result. 2081 //---------------------------------------------------------------------- 2082 case DW_OP_shl: 2083 if (stack.size() < 2) 2084 { 2085 if (error_ptr) 2086 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); 2087 return false; 2088 } 2089 else 2090 { 2091 tmp = stack.back(); 2092 stack.pop_back(); 2093 stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx); 2094 } 2095 break; 2096 2097 //---------------------------------------------------------------------- 2098 // OPCODE: DW_OP_shr 2099 // OPERANDS: none 2100 // DESCRIPTION: pops the top two stack entries, shifts the former second 2101 // entry right logically (filling with zero bits) by the number of bits 2102 // specified by the former top of the stack, and pushes the result. 2103 //---------------------------------------------------------------------- 2104 case DW_OP_shr: 2105 if (stack.size() < 2) 2106 { 2107 if (error_ptr) 2108 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); 2109 return false; 2110 } 2111 else 2112 { 2113 tmp = stack.back(); 2114 stack.pop_back(); 2115 if (stack.back().ResolveValue(exe_ctx).ShiftRightLogical(tmp.ResolveValue(exe_ctx)) == false) 2116 { 2117 if (error_ptr) 2118 error_ptr->SetErrorString("DW_OP_shr failed."); 2119 return false; 2120 } 2121 } 2122 break; 2123 2124 //---------------------------------------------------------------------- 2125 // OPCODE: DW_OP_shra 2126 // OPERANDS: none 2127 // DESCRIPTION: pops the top two stack entries, shifts the former second 2128 // entry right arithmetically (divide the magnitude by 2, keep the same 2129 // sign for the result) by the number of bits specified by the former 2130 // top of the stack, and pushes the result. 2131 //---------------------------------------------------------------------- 2132 case DW_OP_shra: 2133 if (stack.size() < 2) 2134 { 2135 if (error_ptr) 2136 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); 2137 return false; 2138 } 2139 else 2140 { 2141 tmp = stack.back(); 2142 stack.pop_back(); 2143 stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx); 2144 } 2145 break; 2146 2147 //---------------------------------------------------------------------- 2148 // OPCODE: DW_OP_xor 2149 // OPERANDS: none 2150 // DESCRIPTION: pops the top two stack entries, performs the bitwise 2151 // exclusive-or operation on the two, and pushes the result. 2152 //---------------------------------------------------------------------- 2153 case DW_OP_xor: 2154 if (stack.size() < 2) 2155 { 2156 if (error_ptr) 2157 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); 2158 return false; 2159 } 2160 else 2161 { 2162 tmp = stack.back(); 2163 stack.pop_back(); 2164 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx); 2165 } 2166 break; 2167 2168 2169 //---------------------------------------------------------------------- 2170 // OPCODE: DW_OP_skip 2171 // OPERANDS: int16_t 2172 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 2173 // signed integer constant. The 2-byte constant is the number of bytes 2174 // of the DWARF expression to skip forward or backward from the current 2175 // operation, beginning after the 2-byte constant. 2176 //---------------------------------------------------------------------- 2177 case DW_OP_skip: 2178 { 2179 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 2180 lldb::offset_t new_offset = offset + skip_offset; 2181 if (new_offset >= opcodes_offset && new_offset < end_offset) 2182 offset = new_offset; 2183 else 2184 { 2185 if (error_ptr) 2186 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 2187 return false; 2188 } 2189 } 2190 break; 2191 2192 //---------------------------------------------------------------------- 2193 // OPCODE: DW_OP_bra 2194 // OPERANDS: int16_t 2195 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 2196 // signed integer constant. This operation pops the top of stack. If 2197 // the value popped is not the constant 0, the 2-byte constant operand 2198 // is the number of bytes of the DWARF expression to skip forward or 2199 // backward from the current operation, beginning after the 2-byte 2200 // constant. 2201 //---------------------------------------------------------------------- 2202 case DW_OP_bra: 2203 if (stack.empty()) 2204 { 2205 if (error_ptr) 2206 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_bra."); 2207 return false; 2208 } 2209 else 2210 { 2211 tmp = stack.back(); 2212 stack.pop_back(); 2213 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 2214 Scalar zero(0); 2215 if (tmp.ResolveValue(exe_ctx) != zero) 2216 { 2217 lldb::offset_t new_offset = offset + bra_offset; 2218 if (new_offset >= opcodes_offset && new_offset < end_offset) 2219 offset = new_offset; 2220 else 2221 { 2222 if (error_ptr) 2223 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 2224 return false; 2225 } 2226 } 2227 } 2228 break; 2229 2230 //---------------------------------------------------------------------- 2231 // OPCODE: DW_OP_eq 2232 // OPERANDS: none 2233 // DESCRIPTION: pops the top two stack values, compares using the 2234 // equals (==) operator. 2235 // STACK RESULT: push the constant value 1 onto the stack if the result 2236 // of the operation is true or the constant value 0 if the result of the 2237 // operation is false. 2238 //---------------------------------------------------------------------- 2239 case DW_OP_eq: 2240 if (stack.size() < 2) 2241 { 2242 if (error_ptr) 2243 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); 2244 return false; 2245 } 2246 else 2247 { 2248 tmp = stack.back(); 2249 stack.pop_back(); 2250 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx); 2251 } 2252 break; 2253 2254 //---------------------------------------------------------------------- 2255 // OPCODE: DW_OP_ge 2256 // OPERANDS: none 2257 // DESCRIPTION: pops the top two stack values, compares using the 2258 // greater than or equal to (>=) operator. 2259 // STACK RESULT: push the constant value 1 onto the stack if the result 2260 // of the operation is true or the constant value 0 if the result of the 2261 // operation is false. 2262 //---------------------------------------------------------------------- 2263 case DW_OP_ge: 2264 if (stack.size() < 2) 2265 { 2266 if (error_ptr) 2267 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); 2268 return false; 2269 } 2270 else 2271 { 2272 tmp = stack.back(); 2273 stack.pop_back(); 2274 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx); 2275 } 2276 break; 2277 2278 //---------------------------------------------------------------------- 2279 // OPCODE: DW_OP_gt 2280 // OPERANDS: none 2281 // DESCRIPTION: pops the top two stack values, compares using the 2282 // greater than (>) operator. 2283 // STACK RESULT: push the constant value 1 onto the stack if the result 2284 // of the operation is true or the constant value 0 if the result of the 2285 // operation is false. 2286 //---------------------------------------------------------------------- 2287 case DW_OP_gt: 2288 if (stack.size() < 2) 2289 { 2290 if (error_ptr) 2291 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); 2292 return false; 2293 } 2294 else 2295 { 2296 tmp = stack.back(); 2297 stack.pop_back(); 2298 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx); 2299 } 2300 break; 2301 2302 //---------------------------------------------------------------------- 2303 // OPCODE: DW_OP_le 2304 // OPERANDS: none 2305 // DESCRIPTION: pops the top two stack values, compares using the 2306 // less than or equal to (<=) operator. 2307 // STACK RESULT: push the constant value 1 onto the stack if the result 2308 // of the operation is true or the constant value 0 if the result of the 2309 // operation is false. 2310 //---------------------------------------------------------------------- 2311 case DW_OP_le: 2312 if (stack.size() < 2) 2313 { 2314 if (error_ptr) 2315 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); 2316 return false; 2317 } 2318 else 2319 { 2320 tmp = stack.back(); 2321 stack.pop_back(); 2322 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx); 2323 } 2324 break; 2325 2326 //---------------------------------------------------------------------- 2327 // OPCODE: DW_OP_lt 2328 // OPERANDS: none 2329 // DESCRIPTION: pops the top two stack values, compares using the 2330 // less than (<) operator. 2331 // STACK RESULT: push the constant value 1 onto the stack if the result 2332 // of the operation is true or the constant value 0 if the result of the 2333 // operation is false. 2334 //---------------------------------------------------------------------- 2335 case DW_OP_lt: 2336 if (stack.size() < 2) 2337 { 2338 if (error_ptr) 2339 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); 2340 return false; 2341 } 2342 else 2343 { 2344 tmp = stack.back(); 2345 stack.pop_back(); 2346 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx); 2347 } 2348 break; 2349 2350 //---------------------------------------------------------------------- 2351 // OPCODE: DW_OP_ne 2352 // OPERANDS: none 2353 // DESCRIPTION: pops the top two stack values, compares using the 2354 // not equal (!=) operator. 2355 // STACK RESULT: push the constant value 1 onto the stack if the result 2356 // of the operation is true or the constant value 0 if the result of the 2357 // operation is false. 2358 //---------------------------------------------------------------------- 2359 case DW_OP_ne: 2360 if (stack.size() < 2) 2361 { 2362 if (error_ptr) 2363 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); 2364 return false; 2365 } 2366 else 2367 { 2368 tmp = stack.back(); 2369 stack.pop_back(); 2370 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx); 2371 } 2372 break; 2373 2374 //---------------------------------------------------------------------- 2375 // OPCODE: DW_OP_litn 2376 // OPERANDS: none 2377 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 2378 // STACK RESULT: push the unsigned literal constant value onto the top 2379 // of the stack. 2380 //---------------------------------------------------------------------- 2381 case DW_OP_lit0: 2382 case DW_OP_lit1: 2383 case DW_OP_lit2: 2384 case DW_OP_lit3: 2385 case DW_OP_lit4: 2386 case DW_OP_lit5: 2387 case DW_OP_lit6: 2388 case DW_OP_lit7: 2389 case DW_OP_lit8: 2390 case DW_OP_lit9: 2391 case DW_OP_lit10: 2392 case DW_OP_lit11: 2393 case DW_OP_lit12: 2394 case DW_OP_lit13: 2395 case DW_OP_lit14: 2396 case DW_OP_lit15: 2397 case DW_OP_lit16: 2398 case DW_OP_lit17: 2399 case DW_OP_lit18: 2400 case DW_OP_lit19: 2401 case DW_OP_lit20: 2402 case DW_OP_lit21: 2403 case DW_OP_lit22: 2404 case DW_OP_lit23: 2405 case DW_OP_lit24: 2406 case DW_OP_lit25: 2407 case DW_OP_lit26: 2408 case DW_OP_lit27: 2409 case DW_OP_lit28: 2410 case DW_OP_lit29: 2411 case DW_OP_lit30: 2412 case DW_OP_lit31: 2413 stack.push_back(Scalar(op - DW_OP_lit0)); 2414 break; 2415 2416 //---------------------------------------------------------------------- 2417 // OPCODE: DW_OP_regN 2418 // OPERANDS: none 2419 // DESCRIPTION: Push the value in register n on the top of the stack. 2420 //---------------------------------------------------------------------- 2421 case DW_OP_reg0: 2422 case DW_OP_reg1: 2423 case DW_OP_reg2: 2424 case DW_OP_reg3: 2425 case DW_OP_reg4: 2426 case DW_OP_reg5: 2427 case DW_OP_reg6: 2428 case DW_OP_reg7: 2429 case DW_OP_reg8: 2430 case DW_OP_reg9: 2431 case DW_OP_reg10: 2432 case DW_OP_reg11: 2433 case DW_OP_reg12: 2434 case DW_OP_reg13: 2435 case DW_OP_reg14: 2436 case DW_OP_reg15: 2437 case DW_OP_reg16: 2438 case DW_OP_reg17: 2439 case DW_OP_reg18: 2440 case DW_OP_reg19: 2441 case DW_OP_reg20: 2442 case DW_OP_reg21: 2443 case DW_OP_reg22: 2444 case DW_OP_reg23: 2445 case DW_OP_reg24: 2446 case DW_OP_reg25: 2447 case DW_OP_reg26: 2448 case DW_OP_reg27: 2449 case DW_OP_reg28: 2450 case DW_OP_reg29: 2451 case DW_OP_reg30: 2452 case DW_OP_reg31: 2453 { 2454 reg_num = op - DW_OP_reg0; 2455 2456 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2457 stack.push_back(tmp); 2458 else 2459 return false; 2460 } 2461 break; 2462 //---------------------------------------------------------------------- 2463 // OPCODE: DW_OP_regx 2464 // OPERANDS: 2465 // ULEB128 literal operand that encodes the register. 2466 // DESCRIPTION: Push the value in register on the top of the stack. 2467 //---------------------------------------------------------------------- 2468 case DW_OP_regx: 2469 { 2470 reg_num = opcodes.GetULEB128(&offset); 2471 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2472 stack.push_back(tmp); 2473 else 2474 return false; 2475 } 2476 break; 2477 2478 //---------------------------------------------------------------------- 2479 // OPCODE: DW_OP_bregN 2480 // OPERANDS: 2481 // SLEB128 offset from register N 2482 // DESCRIPTION: Value is in memory at the address specified by register 2483 // N plus an offset. 2484 //---------------------------------------------------------------------- 2485 case DW_OP_breg0: 2486 case DW_OP_breg1: 2487 case DW_OP_breg2: 2488 case DW_OP_breg3: 2489 case DW_OP_breg4: 2490 case DW_OP_breg5: 2491 case DW_OP_breg6: 2492 case DW_OP_breg7: 2493 case DW_OP_breg8: 2494 case DW_OP_breg9: 2495 case DW_OP_breg10: 2496 case DW_OP_breg11: 2497 case DW_OP_breg12: 2498 case DW_OP_breg13: 2499 case DW_OP_breg14: 2500 case DW_OP_breg15: 2501 case DW_OP_breg16: 2502 case DW_OP_breg17: 2503 case DW_OP_breg18: 2504 case DW_OP_breg19: 2505 case DW_OP_breg20: 2506 case DW_OP_breg21: 2507 case DW_OP_breg22: 2508 case DW_OP_breg23: 2509 case DW_OP_breg24: 2510 case DW_OP_breg25: 2511 case DW_OP_breg26: 2512 case DW_OP_breg27: 2513 case DW_OP_breg28: 2514 case DW_OP_breg29: 2515 case DW_OP_breg30: 2516 case DW_OP_breg31: 2517 { 2518 reg_num = op - DW_OP_breg0; 2519 2520 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2521 { 2522 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2523 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; 2524 tmp.ClearContext(); 2525 stack.push_back(tmp); 2526 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2527 } 2528 else 2529 return false; 2530 } 2531 break; 2532 //---------------------------------------------------------------------- 2533 // OPCODE: DW_OP_bregx 2534 // OPERANDS: 2 2535 // ULEB128 literal operand that encodes the register. 2536 // SLEB128 offset from register N 2537 // DESCRIPTION: Value is in memory at the address specified by register 2538 // N plus an offset. 2539 //---------------------------------------------------------------------- 2540 case DW_OP_bregx: 2541 { 2542 reg_num = opcodes.GetULEB128(&offset); 2543 2544 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2545 { 2546 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2547 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; 2548 tmp.ClearContext(); 2549 stack.push_back(tmp); 2550 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2551 } 2552 else 2553 return false; 2554 } 2555 break; 2556 2557 case DW_OP_fbreg: 2558 if (exe_ctx) 2559 { 2560 if (frame) 2561 { 2562 Scalar value; 2563 if (frame->GetFrameBaseValue(value, error_ptr)) 2564 { 2565 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2566 value += fbreg_offset; 2567 stack.push_back(value); 2568 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2569 } 2570 else 2571 return false; 2572 } 2573 else 2574 { 2575 if (error_ptr) 2576 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); 2577 return false; 2578 } 2579 } 2580 else 2581 { 2582 if (error_ptr) 2583 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_fbreg.\n"); 2584 return false; 2585 } 2586 2587 break; 2588 2589 //---------------------------------------------------------------------- 2590 // OPCODE: DW_OP_nop 2591 // OPERANDS: none 2592 // DESCRIPTION: A place holder. It has no effect on the location stack 2593 // or any of its values. 2594 //---------------------------------------------------------------------- 2595 case DW_OP_nop: 2596 break; 2597 2598 //---------------------------------------------------------------------- 2599 // OPCODE: DW_OP_piece 2600 // OPERANDS: 1 2601 // ULEB128: byte size of the piece 2602 // DESCRIPTION: The operand describes the size in bytes of the piece of 2603 // the object referenced by the DWARF expression whose result is at the 2604 // top of the stack. If the piece is located in a register, but does not 2605 // occupy the entire register, the placement of the piece within that 2606 // register is defined by the ABI. 2607 // 2608 // Many compilers store a single variable in sets of registers, or store 2609 // a variable partially in memory and partially in registers. 2610 // DW_OP_piece provides a way of describing how large a part of a 2611 // variable a particular DWARF expression refers to. 2612 //---------------------------------------------------------------------- 2613 case DW_OP_piece: 2614 { 2615 const uint64_t piece_byte_size = opcodes.GetULEB128(&offset); 2616 2617 if (piece_byte_size > 0) 2618 { 2619 Value curr_piece; 2620 2621 if (stack.empty()) 2622 { 2623 // In a multi-piece expression, this means that the current piece is not available. 2624 // Fill with zeros for now by resizing the data and appending it 2625 curr_piece.ResizeData(piece_byte_size); 2626 ::memset (curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size); 2627 pieces.AppendDataToHostBuffer(curr_piece); 2628 } 2629 else 2630 { 2631 Error error; 2632 // Extract the current piece into "curr_piece" 2633 Value curr_piece_source_value(stack.back()); 2634 stack.pop_back(); 2635 2636 const Value::ValueType curr_piece_source_value_type = curr_piece_source_value.GetValueType(); 2637 switch (curr_piece_source_value_type) 2638 { 2639 case Value::eValueTypeLoadAddress: 2640 if (process) 2641 { 2642 if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) 2643 { 2644 lldb::addr_t load_addr = curr_piece_source_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2645 if (process->ReadMemory(load_addr, curr_piece.GetBuffer().GetBytes(), piece_byte_size, error) != piece_byte_size) 2646 { 2647 if (error_ptr) 2648 error_ptr->SetErrorStringWithFormat ("failed to read memory DW_OP_piece(%" PRIu64 ") from 0x%" PRIx64, 2649 piece_byte_size, 2650 load_addr); 2651 return false; 2652 } 2653 } 2654 else 2655 { 2656 if (error_ptr) 2657 error_ptr->SetErrorStringWithFormat ("failed to resize the piece memory buffer for DW_OP_piece(%" PRIu64 ")", piece_byte_size); 2658 return false; 2659 } 2660 } 2661 break; 2662 2663 case Value::eValueTypeFileAddress: 2664 case Value::eValueTypeHostAddress: 2665 if (error_ptr) 2666 { 2667 lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2668 error_ptr->SetErrorStringWithFormat ("failed to read memory DW_OP_piece(%" PRIu64 ") from %s address 0x%" PRIx64, 2669 piece_byte_size, 2670 curr_piece_source_value.GetValueType() == Value::eValueTypeFileAddress ? "file" : "host", 2671 addr); 2672 } 2673 return false; 2674 2675 case Value::eValueTypeScalar: 2676 { 2677 uint32_t bit_size = piece_byte_size * 8; 2678 uint32_t bit_offset = 0; 2679 if (!curr_piece_source_value.GetScalar().ExtractBitfield (bit_size, bit_offset)) 2680 { 2681 if (error_ptr) 2682 error_ptr->SetErrorStringWithFormat("unable to extract %" PRIu64 " bytes from a %" PRIu64 " byte scalar value.", piece_byte_size, (uint64_t)curr_piece_source_value.GetScalar().GetByteSize()); 2683 return false; 2684 } 2685 curr_piece = curr_piece_source_value; 2686 } 2687 break; 2688 2689 case Value::eValueTypeVector: 2690 { 2691 if (curr_piece_source_value.GetVector().length >= piece_byte_size) 2692 curr_piece_source_value.GetVector().length = piece_byte_size; 2693 else 2694 { 2695 if (error_ptr) 2696 error_ptr->SetErrorStringWithFormat("unable to extract %" PRIu64 " bytes from a %" PRIu64 " byte vector value.", piece_byte_size, (uint64_t)curr_piece_source_value.GetVector().length); 2697 return false; 2698 } 2699 } 2700 break; 2701 2702 } 2703 2704 // Check if this is the first piece? 2705 if (op_piece_offset == 0) 2706 { 2707 // This is the first piece, we should push it back onto the stack so subsequent 2708 // pieces will be able to access this piece and add to it 2709 if (pieces.AppendDataToHostBuffer(curr_piece) == 0) 2710 { 2711 if (error_ptr) 2712 error_ptr->SetErrorString("failed to append piece data"); 2713 return false; 2714 } 2715 } 2716 else if (!stack.empty()) 2717 { 2718 // If this is the second or later piece there should be a value on the stack 2719 if (pieces.GetBuffer().GetByteSize() != op_piece_offset) 2720 { 2721 if (error_ptr) 2722 error_ptr->SetErrorStringWithFormat ("DW_OP_piece for offset %" PRIu64 " but top of stack is of size %" PRIu64, 2723 op_piece_offset, 2724 pieces.GetBuffer().GetByteSize()); 2725 return false; 2726 } 2727 2728 if (pieces.AppendDataToHostBuffer(curr_piece) == 0) 2729 { 2730 if (error_ptr) 2731 error_ptr->SetErrorString("failed to append piece data"); 2732 return false; 2733 } 2734 } 2735 op_piece_offset += piece_byte_size; 2736 } 2737 } 2738 } 2739 break; 2740 2741 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); 2742 if (stack.size() < 1) 2743 { 2744 if (error_ptr) 2745 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_bit_piece."); 2746 return false; 2747 } 2748 else 2749 { 2750 const uint64_t piece_bit_size = opcodes.GetULEB128(&offset); 2751 const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset); 2752 switch (stack.back().GetValueType()) 2753 { 2754 case Value::eValueTypeScalar: 2755 { 2756 if (!stack.back().GetScalar().ExtractBitfield (piece_bit_size, piece_bit_offset)) 2757 { 2758 if (error_ptr) 2759 error_ptr->SetErrorStringWithFormat("unable to extract %" PRIu64 " bit value with %" PRIu64 " bit offset from a %" PRIu64 " bit scalar value.", 2760 piece_bit_size, 2761 piece_bit_offset, 2762 (uint64_t)(stack.back().GetScalar().GetByteSize()*8)); 2763 return false; 2764 } 2765 } 2766 break; 2767 2768 case Value::eValueTypeFileAddress: 2769 case Value::eValueTypeLoadAddress: 2770 case Value::eValueTypeHostAddress: 2771 if (error_ptr) 2772 { 2773 error_ptr->SetErrorStringWithFormat ("unable to extract DW_OP_bit_piece(bit_size = %" PRIu64 ", bit_offset = %" PRIu64 ") from an addresss value.", 2774 piece_bit_size, 2775 piece_bit_offset); 2776 } 2777 return false; 2778 2779 case Value::eValueTypeVector: 2780 if (error_ptr) 2781 { 2782 error_ptr->SetErrorStringWithFormat ("unable to extract DW_OP_bit_piece(bit_size = %" PRIu64 ", bit_offset = %" PRIu64 ") from a vector value.", 2783 piece_bit_size, 2784 piece_bit_offset); 2785 } 2786 return false; 2787 } 2788 } 2789 break; 2790 2791 //---------------------------------------------------------------------- 2792 // OPCODE: DW_OP_push_object_address 2793 // OPERANDS: none 2794 // DESCRIPTION: Pushes the address of the object currently being 2795 // evaluated as part of evaluation of a user presented expression. 2796 // This object may correspond to an independent variable described by 2797 // its own DIE or it may be a component of an array, structure, or class 2798 // whose address has been dynamically determined by an earlier step 2799 // during user expression evaluation. 2800 //---------------------------------------------------------------------- 2801 case DW_OP_push_object_address: 2802 if (error_ptr) 2803 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); 2804 return false; 2805 2806 //---------------------------------------------------------------------- 2807 // OPCODE: DW_OP_call2 2808 // OPERANDS: 2809 // uint16_t compile unit relative offset of a DIE 2810 // DESCRIPTION: Performs subroutine calls during evaluation 2811 // of a DWARF expression. The operand is the 2-byte unsigned offset 2812 // of a debugging information entry in the current compilation unit. 2813 // 2814 // Operand interpretation is exactly like that for DW_FORM_ref2. 2815 // 2816 // This operation transfers control of DWARF expression evaluation 2817 // to the DW_AT_location attribute of the referenced DIE. If there is 2818 // no such attribute, then there is no effect. Execution of the DWARF 2819 // expression of a DW_AT_location attribute may add to and/or remove from 2820 // values on the stack. Execution returns to the point following the call 2821 // when the end of the attribute is reached. Values on the stack at the 2822 // time of the call may be used as parameters by the called expression 2823 // and values left on the stack by the called expression may be used as 2824 // return values by prior agreement between the calling and called 2825 // expressions. 2826 //---------------------------------------------------------------------- 2827 case DW_OP_call2: 2828 if (error_ptr) 2829 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); 2830 return false; 2831 //---------------------------------------------------------------------- 2832 // OPCODE: DW_OP_call4 2833 // OPERANDS: 1 2834 // uint32_t compile unit relative offset of a DIE 2835 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2836 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset 2837 // of a debugging information entry in the current compilation unit. 2838 // 2839 // Operand interpretation DW_OP_call4 is exactly like that for 2840 // DW_FORM_ref4. 2841 // 2842 // This operation transfers control of DWARF expression evaluation 2843 // to the DW_AT_location attribute of the referenced DIE. If there is 2844 // no such attribute, then there is no effect. Execution of the DWARF 2845 // expression of a DW_AT_location attribute may add to and/or remove from 2846 // values on the stack. Execution returns to the point following the call 2847 // when the end of the attribute is reached. Values on the stack at the 2848 // time of the call may be used as parameters by the called expression 2849 // and values left on the stack by the called expression may be used as 2850 // return values by prior agreement between the calling and called 2851 // expressions. 2852 //---------------------------------------------------------------------- 2853 case DW_OP_call4: 2854 if (error_ptr) 2855 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); 2856 return false; 2857 2858 //---------------------------------------------------------------------- 2859 // OPCODE: DW_OP_stack_value 2860 // OPERANDS: None 2861 // DESCRIPTION: Specifies that the object does not exist in memory but 2862 // rather is a constant value. The value from the top of the stack is 2863 // the value to be used. This is the actual object value and not the 2864 // location. 2865 //---------------------------------------------------------------------- 2866 case DW_OP_stack_value: 2867 stack.back().SetValueType(Value::eValueTypeScalar); 2868 break; 2869 2870 //---------------------------------------------------------------------- 2871 // OPCODE: DW_OP_call_frame_cfa 2872 // OPERANDS: None 2873 // DESCRIPTION: Specifies a DWARF expression that pushes the value of 2874 // the canonical frame address consistent with the call frame information 2875 // located in .debug_frame (or in the FDEs of the eh_frame section). 2876 //---------------------------------------------------------------------- 2877 case DW_OP_call_frame_cfa: 2878 if (frame) 2879 { 2880 // Note that we don't have to parse FDEs because this DWARF expression 2881 // is commonly evaluated with a valid stack frame. 2882 StackID id = frame->GetStackID(); 2883 addr_t cfa = id.GetCallFrameAddress(); 2884 if (cfa != LLDB_INVALID_ADDRESS) 2885 { 2886 stack.push_back(Scalar(cfa)); 2887 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2888 } 2889 else 2890 if (error_ptr) 2891 error_ptr->SetErrorString ("Stack frame does not include a canonical frame address for DW_OP_call_frame_cfa opcode."); 2892 } 2893 else 2894 { 2895 if (error_ptr) 2896 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_call_frame_cfa opcode."); 2897 return false; 2898 } 2899 break; 2900 2901 //---------------------------------------------------------------------- 2902 // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension opcode, DW_OP_GNU_push_tls_address) 2903 // OPERANDS: none 2904 // DESCRIPTION: Pops a TLS offset from the stack, converts it to 2905 // an address in the current thread's thread-local storage block, 2906 // and pushes it on the stack. 2907 //---------------------------------------------------------------------- 2908 case DW_OP_form_tls_address: 2909 case DW_OP_GNU_push_tls_address: 2910 { 2911 if (stack.size() < 1) 2912 { 2913 if (error_ptr) 2914 { 2915 if (op == DW_OP_form_tls_address) 2916 error_ptr->SetErrorString("DW_OP_form_tls_address needs an argument."); 2917 else 2918 error_ptr->SetErrorString("DW_OP_GNU_push_tls_address needs an argument."); 2919 } 2920 return false; 2921 } 2922 2923 if (!exe_ctx || !module_sp) 2924 { 2925 if (error_ptr) 2926 error_ptr->SetErrorString("No context to evaluate TLS within."); 2927 return false; 2928 } 2929 2930 Thread *thread = exe_ctx->GetThreadPtr(); 2931 if (!thread) 2932 { 2933 if (error_ptr) 2934 error_ptr->SetErrorString("No thread to evaluate TLS within."); 2935 return false; 2936 } 2937 2938 // Lookup the TLS block address for this thread and module. 2939 addr_t tls_addr = thread->GetThreadLocalData (module_sp); 2940 2941 if (tls_addr == LLDB_INVALID_ADDRESS) 2942 { 2943 if (error_ptr) 2944 error_ptr->SetErrorString ("No TLS data currently exists for this thread."); 2945 return false; 2946 } 2947 2948 // Convert the TLS offset into the absolute address. 2949 Scalar tmp = stack.back().ResolveValue(exe_ctx); 2950 stack.back() = tmp + tls_addr; 2951 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2952 } 2953 break; 2954 2955 default: 2956 if (log) 2957 log->Printf("Unhandled opcode %s in DWARFExpression.", DW_OP_value_to_name(op)); 2958 break; 2959 } 2960 } 2961 2962 if (stack.empty()) 2963 { 2964 // Nothing on the stack, check if we created a piece value from DW_OP_piece or DW_OP_bit_piece opcodes 2965 if (pieces.GetBuffer().GetByteSize()) 2966 { 2967 result = pieces; 2968 } 2969 else 2970 { 2971 if (error_ptr) 2972 error_ptr->SetErrorString ("Stack empty after evaluation."); 2973 return false; 2974 } 2975 } 2976 else 2977 { 2978 if (log && log->GetVerbose()) 2979 { 2980 size_t count = stack.size(); 2981 log->Printf("Stack after operation has %" PRIu64 " values:", (uint64_t)count); 2982 for (size_t i=0; i<count; ++i) 2983 { 2984 StreamString new_value; 2985 new_value.Printf("[%" PRIu64 "]", (uint64_t)i); 2986 stack[i].Dump(&new_value); 2987 log->Printf(" %s", new_value.GetData()); 2988 } 2989 } 2990 result = stack.back(); 2991 } 2992 return true; // Return true on success 2993 } 2994 2995