1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <cinttypes>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/LLDBLog.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/RegisterValue.h"
22 #include "lldb/Utility/Scalar.h"
23 #include "lldb/Utility/StreamString.h"
24 #include "lldb/Utility/VMRange.h"
25 
26 #include "lldb/Host/Host.h"
27 #include "lldb/Utility/Endian.h"
28 
29 #include "lldb/Symbol/Function.h"
30 
31 #include "lldb/Target/ABI.h"
32 #include "lldb/Target/ExecutionContext.h"
33 #include "lldb/Target/Process.h"
34 #include "lldb/Target/RegisterContext.h"
35 #include "lldb/Target/StackFrame.h"
36 #include "lldb/Target/StackID.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
40 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
41 
42 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
43 
44 using namespace lldb;
45 using namespace lldb_private;
46 using namespace lldb_private::dwarf;
47 
48 static lldb::addr_t
49 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
50                                 uint32_t index) {
51   uint32_t index_size = dwarf_cu->GetAddressByteSize();
52   dw_offset_t addr_base = dwarf_cu->GetAddrBase();
53   lldb::offset_t offset = addr_base + index * index_size;
54   const DWARFDataExtractor &data =
55       dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
56   if (data.ValidOffsetForDataOfSize(offset, index_size))
57     return data.GetMaxU64_unchecked(&offset, index_size);
58   return LLDB_INVALID_ADDRESS;
59 }
60 
61 // DWARFExpression constructor
62 DWARFExpression::DWARFExpression() : m_module_wp(), m_data() {}
63 
64 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
65                                  const DataExtractor &data,
66                                  const DWARFUnit *dwarf_cu)
67     : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu),
68       m_reg_kind(eRegisterKindDWARF) {
69   if (module_sp)
70     m_module_wp = module_sp;
71 }
72 
73 // Destructor
74 DWARFExpression::~DWARFExpression() = default;
75 
76 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
77 
78 void DWARFExpression::UpdateValue(uint64_t const_value,
79                                   lldb::offset_t const_value_byte_size,
80                                   uint8_t addr_byte_size) {
81   if (!const_value_byte_size)
82     return;
83 
84   m_data.SetData(
85       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
86   m_data.SetByteOrder(endian::InlHostByteOrder());
87   m_data.SetAddressByteSize(addr_byte_size);
88 }
89 
90 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
91                                    lldb::DescriptionLevel level,
92                                    ABI *abi) const {
93   llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
94       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
95              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
96 }
97 
98 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
99                                                addr_t func_file_addr) {
100   m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
101 }
102 
103 int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
104 
105 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
106   m_reg_kind = reg_kind;
107 }
108 
109 bool DWARFExpression::IsLocationList() const {
110   return bool(m_loclist_addresses);
111 }
112 
113 namespace {
114 /// Implement enough of the DWARFObject interface in order to be able to call
115 /// DWARFLocationTable::dumpLocationList. We don't have access to a real
116 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
117 class DummyDWARFObject final: public llvm::DWARFObject {
118 public:
119   DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}
120 
121   bool isLittleEndian() const override { return IsLittleEndian; }
122 
123   llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
124                                             uint64_t Pos) const override {
125     return llvm::None;
126   }
127 private:
128   bool IsLittleEndian;
129 };
130 }
131 
132 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
133                                      ABI *abi) const {
134   if (IsLocationList()) {
135     // We have a location list
136     lldb::offset_t offset = 0;
137     std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
138         m_dwarf_cu->GetLocationTable(m_data);
139 
140     llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
141     llvm::DIDumpOptions DumpOpts;
142     DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) {
143       s->AsRawOstream() << "error: " << toString(std::move(E));
144     };
145     loctable_up->dumpLocationList(
146         &offset, s->AsRawOstream(),
147         llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
148         DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
149         DumpOpts, s->GetIndentLevel() + 2);
150   } else {
151     // We have a normal location that contains DW_OP location opcodes
152     DumpLocation(s, m_data, level, abi);
153   }
154 }
155 
156 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
157                                       lldb::RegisterKind reg_kind,
158                                       uint32_t reg_num, Status *error_ptr,
159                                       Value &value) {
160   if (reg_ctx == nullptr) {
161     if (error_ptr)
162       error_ptr->SetErrorString("No register context in frame.\n");
163   } else {
164     uint32_t native_reg =
165         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
166     if (native_reg == LLDB_INVALID_REGNUM) {
167       if (error_ptr)
168         error_ptr->SetErrorStringWithFormat("Unable to convert register "
169                                             "kind=%u reg_num=%u to a native "
170                                             "register number.\n",
171                                             reg_kind, reg_num);
172     } else {
173       const RegisterInfo *reg_info =
174           reg_ctx->GetRegisterInfoAtIndex(native_reg);
175       RegisterValue reg_value;
176       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
177         if (reg_value.GetScalarValue(value.GetScalar())) {
178           value.SetValueType(Value::ValueType::Scalar);
179           value.SetContext(Value::ContextType::RegisterInfo,
180                            const_cast<RegisterInfo *>(reg_info));
181           if (error_ptr)
182             error_ptr->Clear();
183           return true;
184         } else {
185           // If we get this error, then we need to implement a value buffer in
186           // the dwarf expression evaluation function...
187           if (error_ptr)
188             error_ptr->SetErrorStringWithFormat(
189                 "register %s can't be converted to a scalar value",
190                 reg_info->name);
191         }
192       } else {
193         if (error_ptr)
194           error_ptr->SetErrorStringWithFormat("register %s is not available",
195                                               reg_info->name);
196       }
197     }
198   }
199   return false;
200 }
201 
202 /// Return the length in bytes of the set of operands for \p op. No guarantees
203 /// are made on the state of \p data after this call.
204 static offset_t GetOpcodeDataSize(const DataExtractor &data,
205                                   const lldb::offset_t data_offset,
206                                   const uint8_t op) {
207   lldb::offset_t offset = data_offset;
208   switch (op) {
209   case DW_OP_addr:
210   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
211     return data.GetAddressByteSize();
212 
213   // Opcodes with no arguments
214   case DW_OP_deref:                // 0x06
215   case DW_OP_dup:                  // 0x12
216   case DW_OP_drop:                 // 0x13
217   case DW_OP_over:                 // 0x14
218   case DW_OP_swap:                 // 0x16
219   case DW_OP_rot:                  // 0x17
220   case DW_OP_xderef:               // 0x18
221   case DW_OP_abs:                  // 0x19
222   case DW_OP_and:                  // 0x1a
223   case DW_OP_div:                  // 0x1b
224   case DW_OP_minus:                // 0x1c
225   case DW_OP_mod:                  // 0x1d
226   case DW_OP_mul:                  // 0x1e
227   case DW_OP_neg:                  // 0x1f
228   case DW_OP_not:                  // 0x20
229   case DW_OP_or:                   // 0x21
230   case DW_OP_plus:                 // 0x22
231   case DW_OP_shl:                  // 0x24
232   case DW_OP_shr:                  // 0x25
233   case DW_OP_shra:                 // 0x26
234   case DW_OP_xor:                  // 0x27
235   case DW_OP_eq:                   // 0x29
236   case DW_OP_ge:                   // 0x2a
237   case DW_OP_gt:                   // 0x2b
238   case DW_OP_le:                   // 0x2c
239   case DW_OP_lt:                   // 0x2d
240   case DW_OP_ne:                   // 0x2e
241   case DW_OP_lit0:                 // 0x30
242   case DW_OP_lit1:                 // 0x31
243   case DW_OP_lit2:                 // 0x32
244   case DW_OP_lit3:                 // 0x33
245   case DW_OP_lit4:                 // 0x34
246   case DW_OP_lit5:                 // 0x35
247   case DW_OP_lit6:                 // 0x36
248   case DW_OP_lit7:                 // 0x37
249   case DW_OP_lit8:                 // 0x38
250   case DW_OP_lit9:                 // 0x39
251   case DW_OP_lit10:                // 0x3A
252   case DW_OP_lit11:                // 0x3B
253   case DW_OP_lit12:                // 0x3C
254   case DW_OP_lit13:                // 0x3D
255   case DW_OP_lit14:                // 0x3E
256   case DW_OP_lit15:                // 0x3F
257   case DW_OP_lit16:                // 0x40
258   case DW_OP_lit17:                // 0x41
259   case DW_OP_lit18:                // 0x42
260   case DW_OP_lit19:                // 0x43
261   case DW_OP_lit20:                // 0x44
262   case DW_OP_lit21:                // 0x45
263   case DW_OP_lit22:                // 0x46
264   case DW_OP_lit23:                // 0x47
265   case DW_OP_lit24:                // 0x48
266   case DW_OP_lit25:                // 0x49
267   case DW_OP_lit26:                // 0x4A
268   case DW_OP_lit27:                // 0x4B
269   case DW_OP_lit28:                // 0x4C
270   case DW_OP_lit29:                // 0x4D
271   case DW_OP_lit30:                // 0x4E
272   case DW_OP_lit31:                // 0x4f
273   case DW_OP_reg0:                 // 0x50
274   case DW_OP_reg1:                 // 0x51
275   case DW_OP_reg2:                 // 0x52
276   case DW_OP_reg3:                 // 0x53
277   case DW_OP_reg4:                 // 0x54
278   case DW_OP_reg5:                 // 0x55
279   case DW_OP_reg6:                 // 0x56
280   case DW_OP_reg7:                 // 0x57
281   case DW_OP_reg8:                 // 0x58
282   case DW_OP_reg9:                 // 0x59
283   case DW_OP_reg10:                // 0x5A
284   case DW_OP_reg11:                // 0x5B
285   case DW_OP_reg12:                // 0x5C
286   case DW_OP_reg13:                // 0x5D
287   case DW_OP_reg14:                // 0x5E
288   case DW_OP_reg15:                // 0x5F
289   case DW_OP_reg16:                // 0x60
290   case DW_OP_reg17:                // 0x61
291   case DW_OP_reg18:                // 0x62
292   case DW_OP_reg19:                // 0x63
293   case DW_OP_reg20:                // 0x64
294   case DW_OP_reg21:                // 0x65
295   case DW_OP_reg22:                // 0x66
296   case DW_OP_reg23:                // 0x67
297   case DW_OP_reg24:                // 0x68
298   case DW_OP_reg25:                // 0x69
299   case DW_OP_reg26:                // 0x6A
300   case DW_OP_reg27:                // 0x6B
301   case DW_OP_reg28:                // 0x6C
302   case DW_OP_reg29:                // 0x6D
303   case DW_OP_reg30:                // 0x6E
304   case DW_OP_reg31:                // 0x6F
305   case DW_OP_nop:                  // 0x96
306   case DW_OP_push_object_address:  // 0x97 DWARF3
307   case DW_OP_form_tls_address:     // 0x9b DWARF3
308   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
309   case DW_OP_stack_value:          // 0x9f DWARF4
310   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
311     return 0;
312 
313   // Opcodes with a single 1 byte arguments
314   case DW_OP_const1u:     // 0x08 1 1-byte constant
315   case DW_OP_const1s:     // 0x09 1 1-byte constant
316   case DW_OP_pick:        // 0x15 1 1-byte stack index
317   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
318   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
319     return 1;
320 
321   // Opcodes with a single 2 byte arguments
322   case DW_OP_const2u: // 0x0a 1 2-byte constant
323   case DW_OP_const2s: // 0x0b 1 2-byte constant
324   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
325   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
326   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
327     return 2;
328 
329   // Opcodes with a single 4 byte arguments
330   case DW_OP_const4u: // 0x0c 1 4-byte constant
331   case DW_OP_const4s: // 0x0d 1 4-byte constant
332   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
333     return 4;
334 
335   // Opcodes with a single 8 byte arguments
336   case DW_OP_const8u: // 0x0e 1 8-byte constant
337   case DW_OP_const8s: // 0x0f 1 8-byte constant
338     return 8;
339 
340   // All opcodes that have a single ULEB (signed or unsigned) argument
341   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
342   case DW_OP_constu:          // 0x10 1 ULEB128 constant
343   case DW_OP_consts:          // 0x11 1 SLEB128 constant
344   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
345   case DW_OP_breg0:           // 0x70 1 ULEB128 register
346   case DW_OP_breg1:           // 0x71 1 ULEB128 register
347   case DW_OP_breg2:           // 0x72 1 ULEB128 register
348   case DW_OP_breg3:           // 0x73 1 ULEB128 register
349   case DW_OP_breg4:           // 0x74 1 ULEB128 register
350   case DW_OP_breg5:           // 0x75 1 ULEB128 register
351   case DW_OP_breg6:           // 0x76 1 ULEB128 register
352   case DW_OP_breg7:           // 0x77 1 ULEB128 register
353   case DW_OP_breg8:           // 0x78 1 ULEB128 register
354   case DW_OP_breg9:           // 0x79 1 ULEB128 register
355   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
356   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
357   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
358   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
359   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
360   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
361   case DW_OP_breg16:          // 0x80 1 ULEB128 register
362   case DW_OP_breg17:          // 0x81 1 ULEB128 register
363   case DW_OP_breg18:          // 0x82 1 ULEB128 register
364   case DW_OP_breg19:          // 0x83 1 ULEB128 register
365   case DW_OP_breg20:          // 0x84 1 ULEB128 register
366   case DW_OP_breg21:          // 0x85 1 ULEB128 register
367   case DW_OP_breg22:          // 0x86 1 ULEB128 register
368   case DW_OP_breg23:          // 0x87 1 ULEB128 register
369   case DW_OP_breg24:          // 0x88 1 ULEB128 register
370   case DW_OP_breg25:          // 0x89 1 ULEB128 register
371   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
372   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
373   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
374   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
375   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
376   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
377   case DW_OP_regx:            // 0x90 1 ULEB128 register
378   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
379   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
380   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
381   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
382     data.Skip_LEB128(&offset);
383     return offset - data_offset;
384 
385   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
386   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
387   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
388     data.Skip_LEB128(&offset);
389     data.Skip_LEB128(&offset);
390     return offset - data_offset;
391 
392   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
393                              // (DWARF4)
394   {
395     uint64_t block_len = data.Skip_LEB128(&offset);
396     offset += block_len;
397     return offset - data_offset;
398   }
399 
400   case DW_OP_GNU_entry_value:
401   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
402   {
403     uint64_t subexpr_len = data.GetULEB128(&offset);
404     return (offset - data_offset) + subexpr_len;
405   }
406 
407   default:
408     break;
409   }
410   return LLDB_INVALID_OFFSET;
411 }
412 
413 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
414                                                      bool &error) const {
415   error = false;
416   if (IsLocationList())
417     return LLDB_INVALID_ADDRESS;
418   lldb::offset_t offset = 0;
419   uint32_t curr_op_addr_idx = 0;
420   while (m_data.ValidOffset(offset)) {
421     const uint8_t op = m_data.GetU8(&offset);
422 
423     if (op == DW_OP_addr) {
424       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
425       if (curr_op_addr_idx == op_addr_idx)
426         return op_file_addr;
427       else
428         ++curr_op_addr_idx;
429     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
430       uint64_t index = m_data.GetULEB128(&offset);
431       if (curr_op_addr_idx == op_addr_idx) {
432         if (!m_dwarf_cu) {
433           error = true;
434           break;
435         }
436 
437         return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
438       } else
439         ++curr_op_addr_idx;
440     } else {
441       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
442       if (op_arg_size == LLDB_INVALID_OFFSET) {
443         error = true;
444         break;
445       }
446       offset += op_arg_size;
447     }
448   }
449   return LLDB_INVALID_ADDRESS;
450 }
451 
452 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
453   if (IsLocationList())
454     return false;
455   lldb::offset_t offset = 0;
456   while (m_data.ValidOffset(offset)) {
457     const uint8_t op = m_data.GetU8(&offset);
458 
459     if (op == DW_OP_addr) {
460       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
461       // We have to make a copy of the data as we don't know if this data is
462       // from a read only memory mapped buffer, so we duplicate all of the data
463       // first, then modify it, and if all goes well, we then replace the data
464       // for this expression
465 
466       // Make en encoder that contains a copy of the location expression data
467       // so we can write the address into the buffer using the correct byte
468       // order.
469       DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
470                           m_data.GetByteOrder(), addr_byte_size);
471 
472       // Replace the address in the new buffer
473       if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
474         return false;
475 
476       // All went well, so now we can reset the data using a shared pointer to
477       // the heap data so "m_data" will now correctly manage the heap data.
478       m_data.SetData(encoder.GetDataBuffer());
479       return true;
480     } else {
481       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
482       if (op_arg_size == LLDB_INVALID_OFFSET)
483         break;
484       offset += op_arg_size;
485     }
486   }
487   return false;
488 }
489 
490 bool DWARFExpression::ContainsThreadLocalStorage() const {
491   // We are assuming for now that any thread local variable will not have a
492   // location list. This has been true for all thread local variables we have
493   // seen so far produced by any compiler.
494   if (IsLocationList())
495     return false;
496   lldb::offset_t offset = 0;
497   while (m_data.ValidOffset(offset)) {
498     const uint8_t op = m_data.GetU8(&offset);
499 
500     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
501       return true;
502     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
503     if (op_arg_size == LLDB_INVALID_OFFSET)
504       return false;
505     else
506       offset += op_arg_size;
507   }
508   return false;
509 }
510 bool DWARFExpression::LinkThreadLocalStorage(
511     lldb::ModuleSP new_module_sp,
512     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
513         &link_address_callback) {
514   // We are assuming for now that any thread local variable will not have a
515   // location list. This has been true for all thread local variables we have
516   // seen so far produced by any compiler.
517   if (IsLocationList())
518     return false;
519 
520   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
521   // We have to make a copy of the data as we don't know if this data is from a
522   // read only memory mapped buffer, so we duplicate all of the data first,
523   // then modify it, and if all goes well, we then replace the data for this
524   // expression.
525 
526   // Make en encoder that contains a copy of the location expression data so we
527   // can write the address into the buffer using the correct byte order.
528   DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
529                       m_data.GetByteOrder(), addr_byte_size);
530 
531   lldb::offset_t offset = 0;
532   lldb::offset_t const_offset = 0;
533   lldb::addr_t const_value = 0;
534   size_t const_byte_size = 0;
535   while (m_data.ValidOffset(offset)) {
536     const uint8_t op = m_data.GetU8(&offset);
537 
538     bool decoded_data = false;
539     switch (op) {
540     case DW_OP_const4u:
541       // Remember the const offset in case we later have a
542       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
543       const_offset = offset;
544       const_value = m_data.GetU32(&offset);
545       decoded_data = true;
546       const_byte_size = 4;
547       break;
548 
549     case DW_OP_const8u:
550       // Remember the const offset in case we later have a
551       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
552       const_offset = offset;
553       const_value = m_data.GetU64(&offset);
554       decoded_data = true;
555       const_byte_size = 8;
556       break;
557 
558     case DW_OP_form_tls_address:
559     case DW_OP_GNU_push_tls_address:
560       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
561       // by a file address on the stack. We assume that DW_OP_const4u or
562       // DW_OP_const8u is used for these values, and we check that the last
563       // opcode we got before either of these was DW_OP_const4u or
564       // DW_OP_const8u. If so, then we can link the value accodingly. For
565       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
566       // address of a structure that contains a function pointer, the pthread
567       // key and the offset into the data pointed to by the pthread key. So we
568       // must link this address and also set the module of this expression to
569       // the new_module_sp so we can resolve the file address correctly
570       if (const_byte_size > 0) {
571         lldb::addr_t linked_file_addr = link_address_callback(const_value);
572         if (linked_file_addr == LLDB_INVALID_ADDRESS)
573           return false;
574         // Replace the address in the new buffer
575         if (encoder.PutUnsigned(const_offset, const_byte_size,
576                                 linked_file_addr) == UINT32_MAX)
577           return false;
578       }
579       break;
580 
581     default:
582       const_offset = 0;
583       const_value = 0;
584       const_byte_size = 0;
585       break;
586     }
587 
588     if (!decoded_data) {
589       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
590       if (op_arg_size == LLDB_INVALID_OFFSET)
591         return false;
592       else
593         offset += op_arg_size;
594     }
595   }
596 
597   // If we linked the TLS address correctly, update the module so that when the
598   // expression is evaluated it can resolve the file address to a load address
599   // and read the
600   // TLS data
601   m_module_wp = new_module_sp;
602   m_data.SetData(encoder.GetDataBuffer());
603   return true;
604 }
605 
606 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
607                                                   lldb::addr_t addr) const {
608   if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
609     return false;
610 
611   if (!IsLocationList())
612     return false;
613 
614   return GetLocationExpression(func_load_addr, addr) != llvm::None;
615 }
616 
617 bool DWARFExpression::DumpLocationForAddress(Stream *s,
618                                              lldb::DescriptionLevel level,
619                                              addr_t func_load_addr,
620                                              addr_t address, ABI *abi) {
621   if (!IsLocationList()) {
622     DumpLocation(s, m_data, level, abi);
623     return true;
624   }
625   if (llvm::Optional<DataExtractor> expr =
626           GetLocationExpression(func_load_addr, address)) {
627     DumpLocation(s, *expr, level, abi);
628     return true;
629   }
630   return false;
631 }
632 
633 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
634                                        ExecutionContext *exe_ctx,
635                                        RegisterContext *reg_ctx,
636                                        const DataExtractor &opcodes,
637                                        lldb::offset_t &opcode_offset,
638                                        Status *error_ptr, Log *log) {
639   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
640   // function entry: this variable location is presumed to be optimized out at
641   // the current PC value.  The caller of the function may have call site
642   // information that describes an alternate location for the variable (e.g. a
643   // constant literal, or a spilled stack value) in the parent frame.
644   //
645   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
646   //
647   //     void child(int &sink, int x) {
648   //       ...
649   //       /* "x" gets optimized out. */
650   //
651   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
652   //       ++sink;
653   //     }
654   //
655   //     void parent() {
656   //       int sink;
657   //
658   //       /*
659   //        * The callsite information emitted here is:
660   //        *
661   //        * DW_TAG_call_site
662   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
663   //        *   DW_TAG_call_site_parameter (for "sink")
664   //        *     DW_AT_location   ($reg1)
665   //        *     DW_AT_call_value ($SP - 8)
666   //        *   DW_TAG_call_site_parameter (for "x")
667   //        *     DW_AT_location   ($reg2)
668   //        *     DW_AT_call_value ($literal 123)
669   //        *
670   //        * DW_TAG_call_site
671   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
672   //        *   ...
673   //        */
674   //       child(sink, 123);
675   //       child(sink, 456);
676   //     }
677   //
678   // When the program stops at "++sink" within `child`, the debugger determines
679   // the call site by analyzing the return address. Once the call site is found,
680   // the debugger determines which parameter is referenced by DW_OP_entry_value
681   // and evaluates the corresponding location for that parameter in `parent`.
682 
683   // 1. Find the function which pushed the current frame onto the stack.
684   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
685     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
686     return false;
687   }
688 
689   StackFrame *current_frame = exe_ctx->GetFramePtr();
690   Thread *thread = exe_ctx->GetThreadPtr();
691   if (!current_frame || !thread) {
692     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
693     return false;
694   }
695 
696   Target &target = exe_ctx->GetTargetRef();
697   StackFrameSP parent_frame = nullptr;
698   addr_t return_pc = LLDB_INVALID_ADDRESS;
699   uint32_t current_frame_idx = current_frame->GetFrameIndex();
700   uint32_t num_frames = thread->GetStackFrameCount();
701   for (uint32_t parent_frame_idx = current_frame_idx + 1;
702        parent_frame_idx < num_frames; ++parent_frame_idx) {
703     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
704     // Require a valid sequence of frames.
705     if (!parent_frame)
706       break;
707 
708     // Record the first valid return address, even if this is an inlined frame,
709     // in order to look up the associated call edge in the first non-inlined
710     // parent frame.
711     if (return_pc == LLDB_INVALID_ADDRESS) {
712       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
713       LLDB_LOG(log,
714                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
715                return_pc);
716     }
717 
718     // If we've found an inlined frame, skip it (these have no call site
719     // parameters).
720     if (parent_frame->IsInlined())
721       continue;
722 
723     // We've found the first non-inlined parent frame.
724     break;
725   }
726   if (!parent_frame || !parent_frame->GetRegisterContext()) {
727     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
728     return false;
729   }
730 
731   Function *parent_func =
732       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
733   if (!parent_func) {
734     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
735     return false;
736   }
737 
738   // 2. Find the call edge in the parent function responsible for creating the
739   //    current activation.
740   Function *current_func =
741       current_frame->GetSymbolContext(eSymbolContextFunction).function;
742   if (!current_func) {
743     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
744     return false;
745   }
746 
747   CallEdge *call_edge = nullptr;
748   ModuleList &modlist = target.GetImages();
749   ExecutionContext parent_exe_ctx = *exe_ctx;
750   parent_exe_ctx.SetFrameSP(parent_frame);
751   if (!parent_frame->IsArtificial()) {
752     // If the parent frame is not artificial, the current activation may be
753     // produced by an ambiguous tail call. In this case, refuse to proceed.
754     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
755     if (!call_edge) {
756       LLDB_LOG(log,
757                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
758                "in parent frame {1}",
759                return_pc, parent_func->GetName());
760       return false;
761     }
762     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
763     if (callee_func != current_func) {
764       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
765                     "can't find real parent frame");
766       return false;
767     }
768   } else {
769     // The StackFrameList solver machinery has deduced that an unambiguous tail
770     // call sequence that produced the current activation.  The first edge in
771     // the parent that points to the current function must be valid.
772     for (auto &edge : parent_func->GetTailCallingEdges()) {
773       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
774         call_edge = edge.get();
775         break;
776       }
777     }
778   }
779   if (!call_edge) {
780     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
781                   "to current function");
782     return false;
783   }
784 
785   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
786   //    available call site parameters. If found, evaluate the corresponding
787   //    parameter in the context of the parent frame.
788   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
789   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
790   if (!subexpr_data) {
791     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
792     return false;
793   }
794 
795   const CallSiteParameter *matched_param = nullptr;
796   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
797     DataExtractor param_subexpr_extractor;
798     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
799       continue;
800     lldb::offset_t param_subexpr_offset = 0;
801     const void *param_subexpr_data =
802         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
803     if (!param_subexpr_data ||
804         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
805       continue;
806 
807     // At this point, the DW_OP_entry_value sub-expression and the callee-side
808     // expression in the call site parameter are known to have the same length.
809     // Check whether they are equal.
810     //
811     // Note that an equality check is sufficient: the contents of the
812     // DW_OP_entry_value subexpression are only used to identify the right call
813     // site parameter in the parent, and do not require any special handling.
814     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
815       matched_param = &param;
816       break;
817     }
818   }
819   if (!matched_param) {
820     LLDB_LOG(log,
821              "Evaluate_DW_OP_entry_value: no matching call site param found");
822     return false;
823   }
824 
825   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
826   // subexpresion whenever llvm does.
827   Value result;
828   const DWARFExpression &param_expr = matched_param->LocationInCaller;
829   if (!param_expr.Evaluate(&parent_exe_ctx,
830                            parent_frame->GetRegisterContext().get(),
831                            /*loclist_base_load_addr=*/LLDB_INVALID_ADDRESS,
832                            /*initial_value_ptr=*/nullptr,
833                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
834     LLDB_LOG(log,
835              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
836     return false;
837   }
838 
839   stack.push_back(result);
840   return true;
841 }
842 
843 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
844                                lldb::addr_t loclist_base_load_addr,
845                                const Value *initial_value_ptr,
846                                const Value *object_address_ptr, Value &result,
847                                Status *error_ptr) const {
848   ExecutionContext exe_ctx(exe_scope);
849   return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
850                   object_address_ptr, result, error_ptr);
851 }
852 
853 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
854                                RegisterContext *reg_ctx,
855                                lldb::addr_t func_load_addr,
856                                const Value *initial_value_ptr,
857                                const Value *object_address_ptr, Value &result,
858                                Status *error_ptr) const {
859   ModuleSP module_sp = m_module_wp.lock();
860 
861   if (IsLocationList()) {
862     addr_t pc;
863     StackFrame *frame = nullptr;
864     if (reg_ctx)
865       pc = reg_ctx->GetPC();
866     else {
867       frame = exe_ctx->GetFramePtr();
868       if (!frame)
869         return false;
870       RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
871       if (!reg_ctx_sp)
872         return false;
873       pc = reg_ctx_sp->GetPC();
874     }
875 
876     if (func_load_addr != LLDB_INVALID_ADDRESS) {
877       if (pc == LLDB_INVALID_ADDRESS) {
878         if (error_ptr)
879           error_ptr->SetErrorString("Invalid PC in frame.");
880         return false;
881       }
882 
883       if (llvm::Optional<DataExtractor> expr =
884               GetLocationExpression(func_load_addr, pc)) {
885         return DWARFExpression::Evaluate(
886             exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
887             initial_value_ptr, object_address_ptr, result, error_ptr);
888       }
889     }
890     if (error_ptr)
891       error_ptr->SetErrorString("variable not available");
892     return false;
893   }
894 
895   // Not a location list, just a single expression.
896   return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
897                                    m_dwarf_cu, m_reg_kind, initial_value_ptr,
898                                    object_address_ptr, result, error_ptr);
899 }
900 
901 namespace {
902 /// The location description kinds described by the DWARF v5
903 /// specification.  Composite locations are handled out-of-band and
904 /// thus aren't part of the enum.
905 enum LocationDescriptionKind {
906   Empty,
907   Memory,
908   Register,
909   Implicit
910   /* Composite*/
911 };
912 /// Adjust value's ValueType according to the kind of location description.
913 void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
914                                             LocationDescriptionKind kind,
915                                             Value *value = nullptr) {
916   // Note that this function is conflating DWARF expressions with
917   // DWARF location descriptions. Perhaps it would be better to define
918   // a wrapper for DWARFExpresssion::Eval() that deals with DWARF
919   // location descriptions (which consist of one or more DWARF
920   // expressions). But doing this would mean we'd also need factor the
921   // handling of DW_OP_(bit_)piece out of this function.
922   if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
923     const char *log_msg = "DWARF location description kind: %s";
924     switch (kind) {
925     case Empty:
926       LLDB_LOGF(log, log_msg, "Empty");
927       break;
928     case Memory:
929       LLDB_LOGF(log, log_msg, "Memory");
930       if (value->GetValueType() == Value::ValueType::Scalar)
931         value->SetValueType(Value::ValueType::LoadAddress);
932       break;
933     case Register:
934       LLDB_LOGF(log, log_msg, "Register");
935       value->SetValueType(Value::ValueType::Scalar);
936       break;
937     case Implicit:
938       LLDB_LOGF(log, log_msg, "Implicit");
939       if (value->GetValueType() == Value::ValueType::LoadAddress)
940         value->SetValueType(Value::ValueType::Scalar);
941       break;
942     }
943   }
944 }
945 } // namespace
946 
947 bool DWARFExpression::Evaluate(
948     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
949     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
950     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
951     const Value *initial_value_ptr, const Value *object_address_ptr,
952     Value &result, Status *error_ptr) {
953 
954   if (opcodes.GetByteSize() == 0) {
955     if (error_ptr)
956       error_ptr->SetErrorString(
957           "no location, value may have been optimized out");
958     return false;
959   }
960   std::vector<Value> stack;
961 
962   Process *process = nullptr;
963   StackFrame *frame = nullptr;
964 
965   if (exe_ctx) {
966     process = exe_ctx->GetProcessPtr();
967     frame = exe_ctx->GetFramePtr();
968   }
969   if (reg_ctx == nullptr && frame)
970     reg_ctx = frame->GetRegisterContext().get();
971 
972   if (initial_value_ptr)
973     stack.push_back(*initial_value_ptr);
974 
975   lldb::offset_t offset = 0;
976   Value tmp;
977   uint32_t reg_num;
978 
979   /// Insertion point for evaluating multi-piece expression.
980   uint64_t op_piece_offset = 0;
981   Value pieces; // Used for DW_OP_piece
982 
983   Log *log = GetLog(LLDBLog::Expressions);
984   // A generic type is "an integral type that has the size of an address and an
985   // unspecified signedness". For now, just use the signedness of the operand.
986   // TODO: Implement a real typed stack, and store the genericness of the value
987   // there.
988   auto to_generic = [&](auto v) {
989     bool is_signed = std::is_signed<decltype(v)>::value;
990     return Scalar(llvm::APSInt(
991         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
992         !is_signed));
993   };
994 
995   // The default kind is a memory location. This is updated by any
996   // operation that changes this, such as DW_OP_stack_value, and reset
997   // by composition operations like DW_OP_piece.
998   LocationDescriptionKind dwarf4_location_description_kind = Memory;
999 
1000   while (opcodes.ValidOffset(offset)) {
1001     const lldb::offset_t op_offset = offset;
1002     const uint8_t op = opcodes.GetU8(&offset);
1003 
1004     if (log && log->GetVerbose()) {
1005       size_t count = stack.size();
1006       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
1007                 (uint64_t)count);
1008       for (size_t i = 0; i < count; ++i) {
1009         StreamString new_value;
1010         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
1011         stack[i].Dump(&new_value);
1012         LLDB_LOGF(log, "  %s", new_value.GetData());
1013       }
1014       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
1015                 DW_OP_value_to_name(op));
1016     }
1017 
1018     switch (op) {
1019     // The DW_OP_addr operation has a single operand that encodes a machine
1020     // address and whose size is the size of an address on the target machine.
1021     case DW_OP_addr:
1022       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
1023       stack.back().SetValueType(Value::ValueType::FileAddress);
1024       // Convert the file address to a load address, so subsequent
1025       // DWARF operators can operate on it.
1026       if (frame)
1027         stack.back().ConvertToLoadAddress(module_sp.get(),
1028                                           frame->CalculateTarget().get());
1029       break;
1030 
1031     // The DW_OP_addr_sect_offset4 is used for any location expressions in
1032     // shared libraries that have a location like:
1033     //  DW_OP_addr(0x1000)
1034     // If this address resides in a shared library, then this virtual address
1035     // won't make sense when it is evaluated in the context of a running
1036     // process where shared libraries have been slid. To account for this, this
1037     // new address type where we can store the section pointer and a 4 byte
1038     // offset.
1039     //      case DW_OP_addr_sect_offset4:
1040     //          {
1041     //              result_type = eResultTypeFileAddress;
1042     //              lldb::Section *sect = (lldb::Section
1043     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
1044     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1045     //
1046     //              Address so_addr (sect, sect_offset);
1047     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
1048     //              if (load_addr != LLDB_INVALID_ADDRESS)
1049     //              {
1050     //                  // We successfully resolve a file address to a load
1051     //                  // address.
1052     //                  stack.push_back(load_addr);
1053     //                  break;
1054     //              }
1055     //              else
1056     //              {
1057     //                  // We were able
1058     //                  if (error_ptr)
1059     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
1060     //                      %s is not currently loaded.\n",
1061     //                      sect->GetName().AsCString(),
1062     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1063     //                  return false;
1064     //              }
1065     //          }
1066     //          break;
1067 
1068     // OPCODE: DW_OP_deref
1069     // OPERANDS: none
1070     // DESCRIPTION: Pops the top stack entry and treats it as an address.
1071     // The value retrieved from that address is pushed. The size of the data
1072     // retrieved from the dereferenced address is the size of an address on the
1073     // target machine.
1074     case DW_OP_deref: {
1075       if (stack.empty()) {
1076         if (error_ptr)
1077           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1078         return false;
1079       }
1080       Value::ValueType value_type = stack.back().GetValueType();
1081       switch (value_type) {
1082       case Value::ValueType::HostAddress: {
1083         void *src = (void *)stack.back().GetScalar().ULongLong();
1084         intptr_t ptr;
1085         ::memcpy(&ptr, src, sizeof(void *));
1086         stack.back().GetScalar() = ptr;
1087         stack.back().ClearContext();
1088       } break;
1089       case Value::ValueType::FileAddress: {
1090         auto file_addr = stack.back().GetScalar().ULongLong(
1091             LLDB_INVALID_ADDRESS);
1092         if (!module_sp) {
1093           if (error_ptr)
1094             error_ptr->SetErrorString(
1095                 "need module to resolve file address for DW_OP_deref");
1096           return false;
1097         }
1098         Address so_addr;
1099         if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
1100           if (error_ptr)
1101             error_ptr->SetErrorString(
1102                 "failed to resolve file address in module");
1103           return false;
1104         }
1105         addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
1106         if (load_Addr == LLDB_INVALID_ADDRESS) {
1107           if (error_ptr)
1108             error_ptr->SetErrorString("failed to resolve load address");
1109           return false;
1110         }
1111         stack.back().GetScalar() = load_Addr;
1112         // Fall through to load address promotion code below.
1113       } LLVM_FALLTHROUGH;
1114       case Value::ValueType::Scalar:
1115         // Promote Scalar to LoadAddress and fall through.
1116         stack.back().SetValueType(Value::ValueType::LoadAddress);
1117         LLVM_FALLTHROUGH;
1118       case Value::ValueType::LoadAddress:
1119         if (exe_ctx) {
1120           if (process) {
1121             lldb::addr_t pointer_addr =
1122                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1123             Status error;
1124             lldb::addr_t pointer_value =
1125                 process->ReadPointerFromMemory(pointer_addr, error);
1126             if (pointer_value != LLDB_INVALID_ADDRESS) {
1127               if (ABISP abi_sp = process->GetABI())
1128                 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1129               stack.back().GetScalar() = pointer_value;
1130               stack.back().ClearContext();
1131             } else {
1132               if (error_ptr)
1133                 error_ptr->SetErrorStringWithFormat(
1134                     "Failed to dereference pointer from 0x%" PRIx64
1135                     " for DW_OP_deref: %s\n",
1136                     pointer_addr, error.AsCString());
1137               return false;
1138             }
1139           } else {
1140             if (error_ptr)
1141               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1142             return false;
1143           }
1144         } else {
1145           if (error_ptr)
1146             error_ptr->SetErrorString(
1147                 "NULL execution context for DW_OP_deref.\n");
1148           return false;
1149         }
1150         break;
1151 
1152       case Value::ValueType::Invalid:
1153         if (error_ptr)
1154           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1155         return false;
1156       }
1157 
1158     } break;
1159 
1160     // OPCODE: DW_OP_deref_size
1161     // OPERANDS: 1
1162     //  1 - uint8_t that specifies the size of the data to dereference.
1163     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1164     // stack entry and treats it as an address. The value retrieved from that
1165     // address is pushed. In the DW_OP_deref_size operation, however, the size
1166     // in bytes of the data retrieved from the dereferenced address is
1167     // specified by the single operand. This operand is a 1-byte unsigned
1168     // integral constant whose value may not be larger than the size of an
1169     // address on the target machine. The data retrieved is zero extended to
1170     // the size of an address on the target machine before being pushed on the
1171     // expression stack.
1172     case DW_OP_deref_size: {
1173       if (stack.empty()) {
1174         if (error_ptr)
1175           error_ptr->SetErrorString(
1176               "Expression stack empty for DW_OP_deref_size.");
1177         return false;
1178       }
1179       uint8_t size = opcodes.GetU8(&offset);
1180       Value::ValueType value_type = stack.back().GetValueType();
1181       switch (value_type) {
1182       case Value::ValueType::HostAddress: {
1183         void *src = (void *)stack.back().GetScalar().ULongLong();
1184         intptr_t ptr;
1185         ::memcpy(&ptr, src, sizeof(void *));
1186         // I can't decide whether the size operand should apply to the bytes in
1187         // their
1188         // lldb-host endianness or the target endianness.. I doubt this'll ever
1189         // come up but I'll opt for assuming big endian regardless.
1190         switch (size) {
1191         case 1:
1192           ptr = ptr & 0xff;
1193           break;
1194         case 2:
1195           ptr = ptr & 0xffff;
1196           break;
1197         case 3:
1198           ptr = ptr & 0xffffff;
1199           break;
1200         case 4:
1201           ptr = ptr & 0xffffffff;
1202           break;
1203         // the casts are added to work around the case where intptr_t is a 32
1204         // bit quantity;
1205         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1206         // program.
1207         case 5:
1208           ptr = (intptr_t)ptr & 0xffffffffffULL;
1209           break;
1210         case 6:
1211           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1212           break;
1213         case 7:
1214           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1215           break;
1216         default:
1217           break;
1218         }
1219         stack.back().GetScalar() = ptr;
1220         stack.back().ClearContext();
1221       } break;
1222       case Value::ValueType::Scalar:
1223       case Value::ValueType::LoadAddress:
1224         if (exe_ctx) {
1225           if (process) {
1226             lldb::addr_t pointer_addr =
1227                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1228             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1229             Status error;
1230             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1231                 size) {
1232               DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
1233                                       process->GetByteOrder(), size);
1234               lldb::offset_t addr_data_offset = 0;
1235               switch (size) {
1236               case 1:
1237                 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
1238                 break;
1239               case 2:
1240                 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
1241                 break;
1242               case 4:
1243                 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
1244                 break;
1245               case 8:
1246                 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
1247                 break;
1248               default:
1249                 stack.back().GetScalar() =
1250                     addr_data.GetAddress(&addr_data_offset);
1251               }
1252               stack.back().ClearContext();
1253             } else {
1254               if (error_ptr)
1255                 error_ptr->SetErrorStringWithFormat(
1256                     "Failed to dereference pointer from 0x%" PRIx64
1257                     " for DW_OP_deref: %s\n",
1258                     pointer_addr, error.AsCString());
1259               return false;
1260             }
1261           } else {
1262             if (error_ptr)
1263               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1264             return false;
1265           }
1266         } else {
1267           if (error_ptr)
1268             error_ptr->SetErrorString(
1269                 "NULL execution context for DW_OP_deref_size.\n");
1270           return false;
1271         }
1272         break;
1273 
1274       case Value::ValueType::FileAddress:
1275       case Value::ValueType::Invalid:
1276         if (error_ptr)
1277           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1278         return false;
1279       }
1280 
1281     } break;
1282 
1283     // OPCODE: DW_OP_xderef_size
1284     // OPERANDS: 1
1285     //  1 - uint8_t that specifies the size of the data to dereference.
1286     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1287     // the top of the stack is treated as an address. The second stack entry is
1288     // treated as an "address space identifier" for those architectures that
1289     // support multiple address spaces. The top two stack elements are popped,
1290     // a data item is retrieved through an implementation-defined address
1291     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1292     // operation, however, the size in bytes of the data retrieved from the
1293     // dereferenced address is specified by the single operand. This operand is
1294     // a 1-byte unsigned integral constant whose value may not be larger than
1295     // the size of an address on the target machine. The data retrieved is zero
1296     // extended to the size of an address on the target machine before being
1297     // pushed on the expression stack.
1298     case DW_OP_xderef_size:
1299       if (error_ptr)
1300         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1301       return false;
1302     // OPCODE: DW_OP_xderef
1303     // OPERANDS: none
1304     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1305     // the top of the stack is treated as an address. The second stack entry is
1306     // treated as an "address space identifier" for those architectures that
1307     // support multiple address spaces. The top two stack elements are popped,
1308     // a data item is retrieved through an implementation-defined address
1309     // calculation and pushed as the new stack top. The size of the data
1310     // retrieved from the dereferenced address is the size of an address on the
1311     // target machine.
1312     case DW_OP_xderef:
1313       if (error_ptr)
1314         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1315       return false;
1316 
1317     // All DW_OP_constXXX opcodes have a single operand as noted below:
1318     //
1319     // Opcode           Operand 1
1320     // DW_OP_const1u    1-byte unsigned integer constant
1321     // DW_OP_const1s    1-byte signed integer constant
1322     // DW_OP_const2u    2-byte unsigned integer constant
1323     // DW_OP_const2s    2-byte signed integer constant
1324     // DW_OP_const4u    4-byte unsigned integer constant
1325     // DW_OP_const4s    4-byte signed integer constant
1326     // DW_OP_const8u    8-byte unsigned integer constant
1327     // DW_OP_const8s    8-byte signed integer constant
1328     // DW_OP_constu     unsigned LEB128 integer constant
1329     // DW_OP_consts     signed LEB128 integer constant
1330     case DW_OP_const1u:
1331       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1332       break;
1333     case DW_OP_const1s:
1334       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1335       break;
1336     case DW_OP_const2u:
1337       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1338       break;
1339     case DW_OP_const2s:
1340       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1341       break;
1342     case DW_OP_const4u:
1343       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1344       break;
1345     case DW_OP_const4s:
1346       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1347       break;
1348     case DW_OP_const8u:
1349       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1350       break;
1351     case DW_OP_const8s:
1352       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1353       break;
1354     // These should also use to_generic, but we can't do that due to a
1355     // producer-side bug in llvm. See llvm.org/pr48087.
1356     case DW_OP_constu:
1357       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1358       break;
1359     case DW_OP_consts:
1360       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1361       break;
1362 
1363     // OPCODE: DW_OP_dup
1364     // OPERANDS: none
1365     // DESCRIPTION: duplicates the value at the top of the stack
1366     case DW_OP_dup:
1367       if (stack.empty()) {
1368         if (error_ptr)
1369           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1370         return false;
1371       } else
1372         stack.push_back(stack.back());
1373       break;
1374 
1375     // OPCODE: DW_OP_drop
1376     // OPERANDS: none
1377     // DESCRIPTION: pops the value at the top of the stack
1378     case DW_OP_drop:
1379       if (stack.empty()) {
1380         if (error_ptr)
1381           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1382         return false;
1383       } else
1384         stack.pop_back();
1385       break;
1386 
1387     // OPCODE: DW_OP_over
1388     // OPERANDS: none
1389     // DESCRIPTION: Duplicates the entry currently second in the stack at
1390     // the top of the stack.
1391     case DW_OP_over:
1392       if (stack.size() < 2) {
1393         if (error_ptr)
1394           error_ptr->SetErrorString(
1395               "Expression stack needs at least 2 items for DW_OP_over.");
1396         return false;
1397       } else
1398         stack.push_back(stack[stack.size() - 2]);
1399       break;
1400 
1401     // OPCODE: DW_OP_pick
1402     // OPERANDS: uint8_t index into the current stack
1403     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1404     // inclusive) is pushed on the stack
1405     case DW_OP_pick: {
1406       uint8_t pick_idx = opcodes.GetU8(&offset);
1407       if (pick_idx < stack.size())
1408         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1409       else {
1410         if (error_ptr)
1411           error_ptr->SetErrorStringWithFormat(
1412               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1413         return false;
1414       }
1415     } break;
1416 
1417     // OPCODE: DW_OP_swap
1418     // OPERANDS: none
1419     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1420     // of the stack becomes the second stack entry, and the second entry
1421     // becomes the top of the stack
1422     case DW_OP_swap:
1423       if (stack.size() < 2) {
1424         if (error_ptr)
1425           error_ptr->SetErrorString(
1426               "Expression stack needs at least 2 items for DW_OP_swap.");
1427         return false;
1428       } else {
1429         tmp = stack.back();
1430         stack.back() = stack[stack.size() - 2];
1431         stack[stack.size() - 2] = tmp;
1432       }
1433       break;
1434 
1435     // OPCODE: DW_OP_rot
1436     // OPERANDS: none
1437     // DESCRIPTION: Rotates the first three stack entries. The entry at
1438     // the top of the stack becomes the third stack entry, the second entry
1439     // becomes the top of the stack, and the third entry becomes the second
1440     // entry.
1441     case DW_OP_rot:
1442       if (stack.size() < 3) {
1443         if (error_ptr)
1444           error_ptr->SetErrorString(
1445               "Expression stack needs at least 3 items for DW_OP_rot.");
1446         return false;
1447       } else {
1448         size_t last_idx = stack.size() - 1;
1449         Value old_top = stack[last_idx];
1450         stack[last_idx] = stack[last_idx - 1];
1451         stack[last_idx - 1] = stack[last_idx - 2];
1452         stack[last_idx - 2] = old_top;
1453       }
1454       break;
1455 
1456     // OPCODE: DW_OP_abs
1457     // OPERANDS: none
1458     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1459     // value and pushes its absolute value. If the absolute value can not be
1460     // represented, the result is undefined.
1461     case DW_OP_abs:
1462       if (stack.empty()) {
1463         if (error_ptr)
1464           error_ptr->SetErrorString(
1465               "Expression stack needs at least 1 item for DW_OP_abs.");
1466         return false;
1467       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1468         if (error_ptr)
1469           error_ptr->SetErrorString(
1470               "Failed to take the absolute value of the first stack item.");
1471         return false;
1472       }
1473       break;
1474 
1475     // OPCODE: DW_OP_and
1476     // OPERANDS: none
1477     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1478     // operation on the two, and pushes the result.
1479     case DW_OP_and:
1480       if (stack.size() < 2) {
1481         if (error_ptr)
1482           error_ptr->SetErrorString(
1483               "Expression stack needs at least 2 items for DW_OP_and.");
1484         return false;
1485       } else {
1486         tmp = stack.back();
1487         stack.pop_back();
1488         stack.back().ResolveValue(exe_ctx) =
1489             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1490       }
1491       break;
1492 
1493     // OPCODE: DW_OP_div
1494     // OPERANDS: none
1495     // DESCRIPTION: pops the top two stack values, divides the former second
1496     // entry by the former top of the stack using signed division, and pushes
1497     // the result.
1498     case DW_OP_div:
1499       if (stack.size() < 2) {
1500         if (error_ptr)
1501           error_ptr->SetErrorString(
1502               "Expression stack needs at least 2 items for DW_OP_div.");
1503         return false;
1504       } else {
1505         tmp = stack.back();
1506         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1507           if (error_ptr)
1508             error_ptr->SetErrorString("Divide by zero.");
1509           return false;
1510         } else {
1511           stack.pop_back();
1512           stack.back() =
1513               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1514           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1515             if (error_ptr)
1516               error_ptr->SetErrorString("Divide failed.");
1517             return false;
1518           }
1519         }
1520       }
1521       break;
1522 
1523     // OPCODE: DW_OP_minus
1524     // OPERANDS: none
1525     // DESCRIPTION: pops the top two stack values, subtracts the former top
1526     // of the stack from the former second entry, and pushes the result.
1527     case DW_OP_minus:
1528       if (stack.size() < 2) {
1529         if (error_ptr)
1530           error_ptr->SetErrorString(
1531               "Expression stack needs at least 2 items for DW_OP_minus.");
1532         return false;
1533       } else {
1534         tmp = stack.back();
1535         stack.pop_back();
1536         stack.back().ResolveValue(exe_ctx) =
1537             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1538       }
1539       break;
1540 
1541     // OPCODE: DW_OP_mod
1542     // OPERANDS: none
1543     // DESCRIPTION: pops the top two stack values and pushes the result of
1544     // the calculation: former second stack entry modulo the former top of the
1545     // stack.
1546     case DW_OP_mod:
1547       if (stack.size() < 2) {
1548         if (error_ptr)
1549           error_ptr->SetErrorString(
1550               "Expression stack needs at least 2 items for DW_OP_mod.");
1551         return false;
1552       } else {
1553         tmp = stack.back();
1554         stack.pop_back();
1555         stack.back().ResolveValue(exe_ctx) =
1556             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1557       }
1558       break;
1559 
1560     // OPCODE: DW_OP_mul
1561     // OPERANDS: none
1562     // DESCRIPTION: pops the top two stack entries, multiplies them
1563     // together, and pushes the result.
1564     case DW_OP_mul:
1565       if (stack.size() < 2) {
1566         if (error_ptr)
1567           error_ptr->SetErrorString(
1568               "Expression stack needs at least 2 items for DW_OP_mul.");
1569         return false;
1570       } else {
1571         tmp = stack.back();
1572         stack.pop_back();
1573         stack.back().ResolveValue(exe_ctx) =
1574             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1575       }
1576       break;
1577 
1578     // OPCODE: DW_OP_neg
1579     // OPERANDS: none
1580     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1581     case DW_OP_neg:
1582       if (stack.empty()) {
1583         if (error_ptr)
1584           error_ptr->SetErrorString(
1585               "Expression stack needs at least 1 item for DW_OP_neg.");
1586         return false;
1587       } else {
1588         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1589           if (error_ptr)
1590             error_ptr->SetErrorString("Unary negate failed.");
1591           return false;
1592         }
1593       }
1594       break;
1595 
1596     // OPCODE: DW_OP_not
1597     // OPERANDS: none
1598     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1599     // complement
1600     case DW_OP_not:
1601       if (stack.empty()) {
1602         if (error_ptr)
1603           error_ptr->SetErrorString(
1604               "Expression stack needs at least 1 item for DW_OP_not.");
1605         return false;
1606       } else {
1607         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1608           if (error_ptr)
1609             error_ptr->SetErrorString("Logical NOT failed.");
1610           return false;
1611         }
1612       }
1613       break;
1614 
1615     // OPCODE: DW_OP_or
1616     // OPERANDS: none
1617     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1618     // operation on the two, and pushes the result.
1619     case DW_OP_or:
1620       if (stack.size() < 2) {
1621         if (error_ptr)
1622           error_ptr->SetErrorString(
1623               "Expression stack needs at least 2 items for DW_OP_or.");
1624         return false;
1625       } else {
1626         tmp = stack.back();
1627         stack.pop_back();
1628         stack.back().ResolveValue(exe_ctx) =
1629             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1630       }
1631       break;
1632 
1633     // OPCODE: DW_OP_plus
1634     // OPERANDS: none
1635     // DESCRIPTION: pops the top two stack entries, adds them together, and
1636     // pushes the result.
1637     case DW_OP_plus:
1638       if (stack.size() < 2) {
1639         if (error_ptr)
1640           error_ptr->SetErrorString(
1641               "Expression stack needs at least 2 items for DW_OP_plus.");
1642         return false;
1643       } else {
1644         tmp = stack.back();
1645         stack.pop_back();
1646         stack.back().GetScalar() += tmp.GetScalar();
1647       }
1648       break;
1649 
1650     // OPCODE: DW_OP_plus_uconst
1651     // OPERANDS: none
1652     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1653     // constant operand and pushes the result.
1654     case DW_OP_plus_uconst:
1655       if (stack.empty()) {
1656         if (error_ptr)
1657           error_ptr->SetErrorString(
1658               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1659         return false;
1660       } else {
1661         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1662         // Implicit conversion from a UINT to a Scalar...
1663         stack.back().GetScalar() += uconst_value;
1664         if (!stack.back().GetScalar().IsValid()) {
1665           if (error_ptr)
1666             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1667           return false;
1668         }
1669       }
1670       break;
1671 
1672     // OPCODE: DW_OP_shl
1673     // OPERANDS: none
1674     // DESCRIPTION:  pops the top two stack entries, shifts the former
1675     // second entry left by the number of bits specified by the former top of
1676     // the stack, and pushes the result.
1677     case DW_OP_shl:
1678       if (stack.size() < 2) {
1679         if (error_ptr)
1680           error_ptr->SetErrorString(
1681               "Expression stack needs at least 2 items for DW_OP_shl.");
1682         return false;
1683       } else {
1684         tmp = stack.back();
1685         stack.pop_back();
1686         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1687       }
1688       break;
1689 
1690     // OPCODE: DW_OP_shr
1691     // OPERANDS: none
1692     // DESCRIPTION: pops the top two stack entries, shifts the former second
1693     // entry right logically (filling with zero bits) by the number of bits
1694     // specified by the former top of the stack, and pushes the result.
1695     case DW_OP_shr:
1696       if (stack.size() < 2) {
1697         if (error_ptr)
1698           error_ptr->SetErrorString(
1699               "Expression stack needs at least 2 items for DW_OP_shr.");
1700         return false;
1701       } else {
1702         tmp = stack.back();
1703         stack.pop_back();
1704         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1705                 tmp.ResolveValue(exe_ctx))) {
1706           if (error_ptr)
1707             error_ptr->SetErrorString("DW_OP_shr failed.");
1708           return false;
1709         }
1710       }
1711       break;
1712 
1713     // OPCODE: DW_OP_shra
1714     // OPERANDS: none
1715     // DESCRIPTION: pops the top two stack entries, shifts the former second
1716     // entry right arithmetically (divide the magnitude by 2, keep the same
1717     // sign for the result) by the number of bits specified by the former top
1718     // of the stack, and pushes the result.
1719     case DW_OP_shra:
1720       if (stack.size() < 2) {
1721         if (error_ptr)
1722           error_ptr->SetErrorString(
1723               "Expression stack needs at least 2 items for DW_OP_shra.");
1724         return false;
1725       } else {
1726         tmp = stack.back();
1727         stack.pop_back();
1728         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1729       }
1730       break;
1731 
1732     // OPCODE: DW_OP_xor
1733     // OPERANDS: none
1734     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1735     // exclusive-or operation on the two, and pushes the result.
1736     case DW_OP_xor:
1737       if (stack.size() < 2) {
1738         if (error_ptr)
1739           error_ptr->SetErrorString(
1740               "Expression stack needs at least 2 items for DW_OP_xor.");
1741         return false;
1742       } else {
1743         tmp = stack.back();
1744         stack.pop_back();
1745         stack.back().ResolveValue(exe_ctx) =
1746             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1747       }
1748       break;
1749 
1750     // OPCODE: DW_OP_skip
1751     // OPERANDS: int16_t
1752     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1753     // signed integer constant. The 2-byte constant is the number of bytes of
1754     // the DWARF expression to skip forward or backward from the current
1755     // operation, beginning after the 2-byte constant.
1756     case DW_OP_skip: {
1757       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1758       lldb::offset_t new_offset = offset + skip_offset;
1759       if (opcodes.ValidOffset(new_offset))
1760         offset = new_offset;
1761       else {
1762         if (error_ptr)
1763           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1764         return false;
1765       }
1766     } break;
1767 
1768     // OPCODE: DW_OP_bra
1769     // OPERANDS: int16_t
1770     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1771     // signed integer constant. This operation pops the top of stack. If the
1772     // value popped is not the constant 0, the 2-byte constant operand is the
1773     // number of bytes of the DWARF expression to skip forward or backward from
1774     // the current operation, beginning after the 2-byte constant.
1775     case DW_OP_bra:
1776       if (stack.empty()) {
1777         if (error_ptr)
1778           error_ptr->SetErrorString(
1779               "Expression stack needs at least 1 item for DW_OP_bra.");
1780         return false;
1781       } else {
1782         tmp = stack.back();
1783         stack.pop_back();
1784         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1785         Scalar zero(0);
1786         if (tmp.ResolveValue(exe_ctx) != zero) {
1787           lldb::offset_t new_offset = offset + bra_offset;
1788           if (opcodes.ValidOffset(new_offset))
1789             offset = new_offset;
1790           else {
1791             if (error_ptr)
1792               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1793             return false;
1794           }
1795         }
1796       }
1797       break;
1798 
1799     // OPCODE: DW_OP_eq
1800     // OPERANDS: none
1801     // DESCRIPTION: pops the top two stack values, compares using the
1802     // equals (==) operator.
1803     // STACK RESULT: push the constant value 1 onto the stack if the result
1804     // of the operation is true or the constant value 0 if the result of the
1805     // operation is false.
1806     case DW_OP_eq:
1807       if (stack.size() < 2) {
1808         if (error_ptr)
1809           error_ptr->SetErrorString(
1810               "Expression stack needs at least 2 items for DW_OP_eq.");
1811         return false;
1812       } else {
1813         tmp = stack.back();
1814         stack.pop_back();
1815         stack.back().ResolveValue(exe_ctx) =
1816             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1817       }
1818       break;
1819 
1820     // OPCODE: DW_OP_ge
1821     // OPERANDS: none
1822     // DESCRIPTION: pops the top two stack values, compares using the
1823     // greater than or equal to (>=) operator.
1824     // STACK RESULT: push the constant value 1 onto the stack if the result
1825     // of the operation is true or the constant value 0 if the result of the
1826     // operation is false.
1827     case DW_OP_ge:
1828       if (stack.size() < 2) {
1829         if (error_ptr)
1830           error_ptr->SetErrorString(
1831               "Expression stack needs at least 2 items for DW_OP_ge.");
1832         return false;
1833       } else {
1834         tmp = stack.back();
1835         stack.pop_back();
1836         stack.back().ResolveValue(exe_ctx) =
1837             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1838       }
1839       break;
1840 
1841     // OPCODE: DW_OP_gt
1842     // OPERANDS: none
1843     // DESCRIPTION: pops the top two stack values, compares using the
1844     // greater than (>) operator.
1845     // STACK RESULT: push the constant value 1 onto the stack if the result
1846     // of the operation is true or the constant value 0 if the result of the
1847     // operation is false.
1848     case DW_OP_gt:
1849       if (stack.size() < 2) {
1850         if (error_ptr)
1851           error_ptr->SetErrorString(
1852               "Expression stack needs at least 2 items for DW_OP_gt.");
1853         return false;
1854       } else {
1855         tmp = stack.back();
1856         stack.pop_back();
1857         stack.back().ResolveValue(exe_ctx) =
1858             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1859       }
1860       break;
1861 
1862     // OPCODE: DW_OP_le
1863     // OPERANDS: none
1864     // DESCRIPTION: pops the top two stack values, compares using the
1865     // less than or equal to (<=) operator.
1866     // STACK RESULT: push the constant value 1 onto the stack if the result
1867     // of the operation is true or the constant value 0 if the result of the
1868     // operation is false.
1869     case DW_OP_le:
1870       if (stack.size() < 2) {
1871         if (error_ptr)
1872           error_ptr->SetErrorString(
1873               "Expression stack needs at least 2 items for DW_OP_le.");
1874         return false;
1875       } else {
1876         tmp = stack.back();
1877         stack.pop_back();
1878         stack.back().ResolveValue(exe_ctx) =
1879             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1880       }
1881       break;
1882 
1883     // OPCODE: DW_OP_lt
1884     // OPERANDS: none
1885     // DESCRIPTION: pops the top two stack values, compares using the
1886     // less than (<) operator.
1887     // STACK RESULT: push the constant value 1 onto the stack if the result
1888     // of the operation is true or the constant value 0 if the result of the
1889     // operation is false.
1890     case DW_OP_lt:
1891       if (stack.size() < 2) {
1892         if (error_ptr)
1893           error_ptr->SetErrorString(
1894               "Expression stack needs at least 2 items for DW_OP_lt.");
1895         return false;
1896       } else {
1897         tmp = stack.back();
1898         stack.pop_back();
1899         stack.back().ResolveValue(exe_ctx) =
1900             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1901       }
1902       break;
1903 
1904     // OPCODE: DW_OP_ne
1905     // OPERANDS: none
1906     // DESCRIPTION: pops the top two stack values, compares using the
1907     // not equal (!=) operator.
1908     // STACK RESULT: push the constant value 1 onto the stack if the result
1909     // of the operation is true or the constant value 0 if the result of the
1910     // operation is false.
1911     case DW_OP_ne:
1912       if (stack.size() < 2) {
1913         if (error_ptr)
1914           error_ptr->SetErrorString(
1915               "Expression stack needs at least 2 items for DW_OP_ne.");
1916         return false;
1917       } else {
1918         tmp = stack.back();
1919         stack.pop_back();
1920         stack.back().ResolveValue(exe_ctx) =
1921             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1922       }
1923       break;
1924 
1925     // OPCODE: DW_OP_litn
1926     // OPERANDS: none
1927     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1928     // STACK RESULT: push the unsigned literal constant value onto the top
1929     // of the stack.
1930     case DW_OP_lit0:
1931     case DW_OP_lit1:
1932     case DW_OP_lit2:
1933     case DW_OP_lit3:
1934     case DW_OP_lit4:
1935     case DW_OP_lit5:
1936     case DW_OP_lit6:
1937     case DW_OP_lit7:
1938     case DW_OP_lit8:
1939     case DW_OP_lit9:
1940     case DW_OP_lit10:
1941     case DW_OP_lit11:
1942     case DW_OP_lit12:
1943     case DW_OP_lit13:
1944     case DW_OP_lit14:
1945     case DW_OP_lit15:
1946     case DW_OP_lit16:
1947     case DW_OP_lit17:
1948     case DW_OP_lit18:
1949     case DW_OP_lit19:
1950     case DW_OP_lit20:
1951     case DW_OP_lit21:
1952     case DW_OP_lit22:
1953     case DW_OP_lit23:
1954     case DW_OP_lit24:
1955     case DW_OP_lit25:
1956     case DW_OP_lit26:
1957     case DW_OP_lit27:
1958     case DW_OP_lit28:
1959     case DW_OP_lit29:
1960     case DW_OP_lit30:
1961     case DW_OP_lit31:
1962       stack.push_back(to_generic(op - DW_OP_lit0));
1963       break;
1964 
1965     // OPCODE: DW_OP_regN
1966     // OPERANDS: none
1967     // DESCRIPTION: Push the value in register n on the top of the stack.
1968     case DW_OP_reg0:
1969     case DW_OP_reg1:
1970     case DW_OP_reg2:
1971     case DW_OP_reg3:
1972     case DW_OP_reg4:
1973     case DW_OP_reg5:
1974     case DW_OP_reg6:
1975     case DW_OP_reg7:
1976     case DW_OP_reg8:
1977     case DW_OP_reg9:
1978     case DW_OP_reg10:
1979     case DW_OP_reg11:
1980     case DW_OP_reg12:
1981     case DW_OP_reg13:
1982     case DW_OP_reg14:
1983     case DW_OP_reg15:
1984     case DW_OP_reg16:
1985     case DW_OP_reg17:
1986     case DW_OP_reg18:
1987     case DW_OP_reg19:
1988     case DW_OP_reg20:
1989     case DW_OP_reg21:
1990     case DW_OP_reg22:
1991     case DW_OP_reg23:
1992     case DW_OP_reg24:
1993     case DW_OP_reg25:
1994     case DW_OP_reg26:
1995     case DW_OP_reg27:
1996     case DW_OP_reg28:
1997     case DW_OP_reg29:
1998     case DW_OP_reg30:
1999     case DW_OP_reg31: {
2000       dwarf4_location_description_kind = Register;
2001       reg_num = op - DW_OP_reg0;
2002 
2003       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2004         stack.push_back(tmp);
2005       else
2006         return false;
2007     } break;
2008     // OPCODE: DW_OP_regx
2009     // OPERANDS:
2010     //      ULEB128 literal operand that encodes the register.
2011     // DESCRIPTION: Push the value in register on the top of the stack.
2012     case DW_OP_regx: {
2013       dwarf4_location_description_kind = Register;
2014       reg_num = opcodes.GetULEB128(&offset);
2015       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2016         stack.push_back(tmp);
2017       else
2018         return false;
2019     } break;
2020 
2021     // OPCODE: DW_OP_bregN
2022     // OPERANDS:
2023     //      SLEB128 offset from register N
2024     // DESCRIPTION: Value is in memory at the address specified by register
2025     // N plus an offset.
2026     case DW_OP_breg0:
2027     case DW_OP_breg1:
2028     case DW_OP_breg2:
2029     case DW_OP_breg3:
2030     case DW_OP_breg4:
2031     case DW_OP_breg5:
2032     case DW_OP_breg6:
2033     case DW_OP_breg7:
2034     case DW_OP_breg8:
2035     case DW_OP_breg9:
2036     case DW_OP_breg10:
2037     case DW_OP_breg11:
2038     case DW_OP_breg12:
2039     case DW_OP_breg13:
2040     case DW_OP_breg14:
2041     case DW_OP_breg15:
2042     case DW_OP_breg16:
2043     case DW_OP_breg17:
2044     case DW_OP_breg18:
2045     case DW_OP_breg19:
2046     case DW_OP_breg20:
2047     case DW_OP_breg21:
2048     case DW_OP_breg22:
2049     case DW_OP_breg23:
2050     case DW_OP_breg24:
2051     case DW_OP_breg25:
2052     case DW_OP_breg26:
2053     case DW_OP_breg27:
2054     case DW_OP_breg28:
2055     case DW_OP_breg29:
2056     case DW_OP_breg30:
2057     case DW_OP_breg31: {
2058       reg_num = op - DW_OP_breg0;
2059 
2060       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2061                                     tmp)) {
2062         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2063         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2064         tmp.ClearContext();
2065         stack.push_back(tmp);
2066         stack.back().SetValueType(Value::ValueType::LoadAddress);
2067       } else
2068         return false;
2069     } break;
2070     // OPCODE: DW_OP_bregx
2071     // OPERANDS: 2
2072     //      ULEB128 literal operand that encodes the register.
2073     //      SLEB128 offset from register N
2074     // DESCRIPTION: Value is in memory at the address specified by register
2075     // N plus an offset.
2076     case DW_OP_bregx: {
2077       reg_num = opcodes.GetULEB128(&offset);
2078 
2079       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2080                                     tmp)) {
2081         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2082         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2083         tmp.ClearContext();
2084         stack.push_back(tmp);
2085         stack.back().SetValueType(Value::ValueType::LoadAddress);
2086       } else
2087         return false;
2088     } break;
2089 
2090     case DW_OP_fbreg:
2091       if (exe_ctx) {
2092         if (frame) {
2093           Scalar value;
2094           if (frame->GetFrameBaseValue(value, error_ptr)) {
2095             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2096             value += fbreg_offset;
2097             stack.push_back(value);
2098             stack.back().SetValueType(Value::ValueType::LoadAddress);
2099           } else
2100             return false;
2101         } else {
2102           if (error_ptr)
2103             error_ptr->SetErrorString(
2104                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2105           return false;
2106         }
2107       } else {
2108         if (error_ptr)
2109           error_ptr->SetErrorString(
2110               "NULL execution context for DW_OP_fbreg.\n");
2111         return false;
2112       }
2113 
2114       break;
2115 
2116     // OPCODE: DW_OP_nop
2117     // OPERANDS: none
2118     // DESCRIPTION: A place holder. It has no effect on the location stack
2119     // or any of its values.
2120     case DW_OP_nop:
2121       break;
2122 
2123     // OPCODE: DW_OP_piece
2124     // OPERANDS: 1
2125     //      ULEB128: byte size of the piece
2126     // DESCRIPTION: The operand describes the size in bytes of the piece of
2127     // the object referenced by the DWARF expression whose result is at the top
2128     // of the stack. If the piece is located in a register, but does not occupy
2129     // the entire register, the placement of the piece within that register is
2130     // defined by the ABI.
2131     //
2132     // Many compilers store a single variable in sets of registers, or store a
2133     // variable partially in memory and partially in registers. DW_OP_piece
2134     // provides a way of describing how large a part of a variable a particular
2135     // DWARF expression refers to.
2136     case DW_OP_piece: {
2137       LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2138       // Reset for the next piece.
2139       dwarf4_location_description_kind = Memory;
2140 
2141       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2142 
2143       if (piece_byte_size > 0) {
2144         Value curr_piece;
2145 
2146         if (stack.empty()) {
2147           UpdateValueTypeFromLocationDescription(
2148               log, dwarf_cu, LocationDescriptionKind::Empty);
2149           // In a multi-piece expression, this means that the current piece is
2150           // not available. Fill with zeros for now by resizing the data and
2151           // appending it
2152           curr_piece.ResizeData(piece_byte_size);
2153           // Note that "0" is not a correct value for the unknown bits.
2154           // It would be better to also return a mask of valid bits together
2155           // with the expression result, so the debugger can print missing
2156           // members as "<optimized out>" or something.
2157           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2158           pieces.AppendDataToHostBuffer(curr_piece);
2159         } else {
2160           Status error;
2161           // Extract the current piece into "curr_piece"
2162           Value curr_piece_source_value(stack.back());
2163           stack.pop_back();
2164           UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2165                                                  &curr_piece_source_value);
2166 
2167           const Value::ValueType curr_piece_source_value_type =
2168               curr_piece_source_value.GetValueType();
2169           switch (curr_piece_source_value_type) {
2170           case Value::ValueType::Invalid:
2171             return false;
2172           case Value::ValueType::LoadAddress:
2173             if (process) {
2174               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2175                 lldb::addr_t load_addr =
2176                     curr_piece_source_value.GetScalar().ULongLong(
2177                         LLDB_INVALID_ADDRESS);
2178                 if (process->ReadMemory(
2179                         load_addr, curr_piece.GetBuffer().GetBytes(),
2180                         piece_byte_size, error) != piece_byte_size) {
2181                   if (error_ptr)
2182                     error_ptr->SetErrorStringWithFormat(
2183                         "failed to read memory DW_OP_piece(%" PRIu64
2184                         ") from 0x%" PRIx64,
2185                         piece_byte_size, load_addr);
2186                   return false;
2187                 }
2188               } else {
2189                 if (error_ptr)
2190                   error_ptr->SetErrorStringWithFormat(
2191                       "failed to resize the piece memory buffer for "
2192                       "DW_OP_piece(%" PRIu64 ")",
2193                       piece_byte_size);
2194                 return false;
2195               }
2196             }
2197             break;
2198 
2199           case Value::ValueType::FileAddress:
2200           case Value::ValueType::HostAddress:
2201             if (error_ptr) {
2202               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2203                   LLDB_INVALID_ADDRESS);
2204               error_ptr->SetErrorStringWithFormat(
2205                   "failed to read memory DW_OP_piece(%" PRIu64
2206                   ") from %s address 0x%" PRIx64,
2207                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2208                                            Value::ValueType::FileAddress
2209                                        ? "file"
2210                                        : "host",
2211                   addr);
2212             }
2213             return false;
2214 
2215           case Value::ValueType::Scalar: {
2216             uint32_t bit_size = piece_byte_size * 8;
2217             uint32_t bit_offset = 0;
2218             Scalar &scalar = curr_piece_source_value.GetScalar();
2219             if (!scalar.ExtractBitfield(
2220                     bit_size, bit_offset)) {
2221               if (error_ptr)
2222                 error_ptr->SetErrorStringWithFormat(
2223                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2224                     " byte scalar value.",
2225                     piece_byte_size,
2226                     (uint64_t)curr_piece_source_value.GetScalar()
2227                         .GetByteSize());
2228               return false;
2229             }
2230             // Create curr_piece with bit_size. By default Scalar
2231             // grows to the nearest host integer type.
2232             llvm::APInt fail_value(1, 0, false);
2233             llvm::APInt ap_int = scalar.UInt128(fail_value);
2234             assert(ap_int.getBitWidth() >= bit_size);
2235             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2236                                          ap_int.getNumWords()};
2237             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2238           } break;
2239           }
2240 
2241           // Check if this is the first piece?
2242           if (op_piece_offset == 0) {
2243             // This is the first piece, we should push it back onto the stack
2244             // so subsequent pieces will be able to access this piece and add
2245             // to it.
2246             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2247               if (error_ptr)
2248                 error_ptr->SetErrorString("failed to append piece data");
2249               return false;
2250             }
2251           } else {
2252             // If this is the second or later piece there should be a value on
2253             // the stack.
2254             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2255               if (error_ptr)
2256                 error_ptr->SetErrorStringWithFormat(
2257                     "DW_OP_piece for offset %" PRIu64
2258                     " but top of stack is of size %" PRIu64,
2259                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2260               return false;
2261             }
2262 
2263             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2264               if (error_ptr)
2265                 error_ptr->SetErrorString("failed to append piece data");
2266               return false;
2267             }
2268           }
2269         }
2270         op_piece_offset += piece_byte_size;
2271       }
2272     } break;
2273 
2274     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2275       if (stack.size() < 1) {
2276         UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2277                                                LocationDescriptionKind::Empty);
2278         // Reset for the next piece.
2279         dwarf4_location_description_kind = Memory;
2280         if (error_ptr)
2281           error_ptr->SetErrorString(
2282               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2283         return false;
2284       } else {
2285         UpdateValueTypeFromLocationDescription(
2286             log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2287         // Reset for the next piece.
2288         dwarf4_location_description_kind = Memory;
2289         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2290         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2291         switch (stack.back().GetValueType()) {
2292         case Value::ValueType::Invalid:
2293           return false;
2294         case Value::ValueType::Scalar: {
2295           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2296                                                         piece_bit_offset)) {
2297             if (error_ptr)
2298               error_ptr->SetErrorStringWithFormat(
2299                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2300                   " bit offset from a %" PRIu64 " bit scalar value.",
2301                   piece_bit_size, piece_bit_offset,
2302                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2303             return false;
2304           }
2305         } break;
2306 
2307         case Value::ValueType::FileAddress:
2308         case Value::ValueType::LoadAddress:
2309         case Value::ValueType::HostAddress:
2310           if (error_ptr) {
2311             error_ptr->SetErrorStringWithFormat(
2312                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2313                 ", bit_offset = %" PRIu64 ") from an address value.",
2314                 piece_bit_size, piece_bit_offset);
2315           }
2316           return false;
2317         }
2318       }
2319       break;
2320 
2321     // OPCODE: DW_OP_implicit_value
2322     // OPERANDS: 2
2323     //      ULEB128  size of the value block in bytes
2324     //      uint8_t* block bytes encoding value in target's memory
2325     //      representation
2326     // DESCRIPTION: Value is immediately stored in block in the debug info with
2327     // the memory representation of the target.
2328     case DW_OP_implicit_value: {
2329       dwarf4_location_description_kind = Implicit;
2330 
2331       const uint32_t len = opcodes.GetULEB128(&offset);
2332       const void *data = opcodes.GetData(&offset, len);
2333 
2334       if (!data) {
2335         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2336         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2337                     DW_OP_value_to_name(op));
2338         return false;
2339       }
2340 
2341       Value result(data, len);
2342       stack.push_back(result);
2343       break;
2344     }
2345 
2346     case DW_OP_implicit_pointer: {
2347       dwarf4_location_description_kind = Implicit;
2348       LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2349       return false;
2350     }
2351 
2352     // OPCODE: DW_OP_push_object_address
2353     // OPERANDS: none
2354     // DESCRIPTION: Pushes the address of the object currently being
2355     // evaluated as part of evaluation of a user presented expression. This
2356     // object may correspond to an independent variable described by its own
2357     // DIE or it may be a component of an array, structure, or class whose
2358     // address has been dynamically determined by an earlier step during user
2359     // expression evaluation.
2360     case DW_OP_push_object_address:
2361       if (object_address_ptr)
2362         stack.push_back(*object_address_ptr);
2363       else {
2364         if (error_ptr)
2365           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2366                                     "specifying an object address");
2367         return false;
2368       }
2369       break;
2370 
2371     // OPCODE: DW_OP_call2
2372     // OPERANDS:
2373     //      uint16_t compile unit relative offset of a DIE
2374     // DESCRIPTION: Performs subroutine calls during evaluation
2375     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2376     // debugging information entry in the current compilation unit.
2377     //
2378     // Operand interpretation is exactly like that for DW_FORM_ref2.
2379     //
2380     // This operation transfers control of DWARF expression evaluation to the
2381     // DW_AT_location attribute of the referenced DIE. If there is no such
2382     // attribute, then there is no effect. Execution of the DWARF expression of
2383     // a DW_AT_location attribute may add to and/or remove from values on the
2384     // stack. Execution returns to the point following the call when the end of
2385     // the attribute is reached. Values on the stack at the time of the call
2386     // may be used as parameters by the called expression and values left on
2387     // the stack by the called expression may be used as return values by prior
2388     // agreement between the calling and called expressions.
2389     case DW_OP_call2:
2390       if (error_ptr)
2391         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2392       return false;
2393     // OPCODE: DW_OP_call4
2394     // OPERANDS: 1
2395     //      uint32_t compile unit relative offset of a DIE
2396     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2397     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2398     // a debugging information entry in  the current compilation unit.
2399     //
2400     // Operand interpretation DW_OP_call4 is exactly like that for
2401     // DW_FORM_ref4.
2402     //
2403     // This operation transfers control of DWARF expression evaluation to the
2404     // DW_AT_location attribute of the referenced DIE. If there is no such
2405     // attribute, then there is no effect. Execution of the DWARF expression of
2406     // a DW_AT_location attribute may add to and/or remove from values on the
2407     // stack. Execution returns to the point following the call when the end of
2408     // the attribute is reached. Values on the stack at the time of the call
2409     // may be used as parameters by the called expression and values left on
2410     // the stack by the called expression may be used as return values by prior
2411     // agreement between the calling and called expressions.
2412     case DW_OP_call4:
2413       if (error_ptr)
2414         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2415       return false;
2416 
2417     // OPCODE: DW_OP_stack_value
2418     // OPERANDS: None
2419     // DESCRIPTION: Specifies that the object does not exist in memory but
2420     // rather is a constant value.  The value from the top of the stack is the
2421     // value to be used.  This is the actual object value and not the location.
2422     case DW_OP_stack_value:
2423       dwarf4_location_description_kind = Implicit;
2424       if (stack.empty()) {
2425         if (error_ptr)
2426           error_ptr->SetErrorString(
2427               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2428         return false;
2429       }
2430       stack.back().SetValueType(Value::ValueType::Scalar);
2431       break;
2432 
2433     // OPCODE: DW_OP_convert
2434     // OPERANDS: 1
2435     //      A ULEB128 that is either a DIE offset of a
2436     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2437     //
2438     // DESCRIPTION: Pop the top stack element, convert it to a
2439     // different type, and push the result.
2440     case DW_OP_convert: {
2441       if (stack.size() < 1) {
2442         if (error_ptr)
2443           error_ptr->SetErrorString(
2444               "Expression stack needs at least 1 item for DW_OP_convert.");
2445         return false;
2446       }
2447       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2448       uint64_t bit_size;
2449       bool sign;
2450       if (die_offset == 0) {
2451         // The generic type has the size of an address on the target
2452         // machine and an unspecified signedness. Scalar has no
2453         // "unspecified signedness", so we use unsigned types.
2454         if (!module_sp) {
2455           if (error_ptr)
2456             error_ptr->SetErrorString("No module");
2457           return false;
2458         }
2459         sign = false;
2460         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2461         if (!bit_size) {
2462           if (error_ptr)
2463             error_ptr->SetErrorString("unspecified architecture");
2464           return false;
2465         }
2466       } else {
2467         // Retrieve the type DIE that the value is being converted to.
2468         // FIXME: the constness has annoying ripple effects.
2469         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2470         if (!die) {
2471           if (error_ptr)
2472             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2473           return false;
2474         }
2475         uint64_t encoding =
2476             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2477         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2478         if (!bit_size)
2479           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2480         if (!bit_size) {
2481           if (error_ptr)
2482             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2483           return false;
2484         }
2485         switch (encoding) {
2486         case DW_ATE_signed:
2487         case DW_ATE_signed_char:
2488           sign = true;
2489           break;
2490         case DW_ATE_unsigned:
2491         case DW_ATE_unsigned_char:
2492           sign = false;
2493           break;
2494         default:
2495           if (error_ptr)
2496             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2497           return false;
2498         }
2499       }
2500       Scalar &top = stack.back().ResolveValue(exe_ctx);
2501       top.TruncOrExtendTo(bit_size, sign);
2502       break;
2503     }
2504 
2505     // OPCODE: DW_OP_call_frame_cfa
2506     // OPERANDS: None
2507     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2508     // the canonical frame address consistent with the call frame information
2509     // located in .debug_frame (or in the FDEs of the eh_frame section).
2510     case DW_OP_call_frame_cfa:
2511       if (frame) {
2512         // Note that we don't have to parse FDEs because this DWARF expression
2513         // is commonly evaluated with a valid stack frame.
2514         StackID id = frame->GetStackID();
2515         addr_t cfa = id.GetCallFrameAddress();
2516         if (cfa != LLDB_INVALID_ADDRESS) {
2517           stack.push_back(Scalar(cfa));
2518           stack.back().SetValueType(Value::ValueType::LoadAddress);
2519         } else if (error_ptr)
2520           error_ptr->SetErrorString("Stack frame does not include a canonical "
2521                                     "frame address for DW_OP_call_frame_cfa "
2522                                     "opcode.");
2523       } else {
2524         if (error_ptr)
2525           error_ptr->SetErrorString("Invalid stack frame in context for "
2526                                     "DW_OP_call_frame_cfa opcode.");
2527         return false;
2528       }
2529       break;
2530 
2531     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2532     // opcode, DW_OP_GNU_push_tls_address)
2533     // OPERANDS: none
2534     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2535     // an address in the current thread's thread-local storage block, and
2536     // pushes it on the stack.
2537     case DW_OP_form_tls_address:
2538     case DW_OP_GNU_push_tls_address: {
2539       if (stack.size() < 1) {
2540         if (error_ptr) {
2541           if (op == DW_OP_form_tls_address)
2542             error_ptr->SetErrorString(
2543                 "DW_OP_form_tls_address needs an argument.");
2544           else
2545             error_ptr->SetErrorString(
2546                 "DW_OP_GNU_push_tls_address needs an argument.");
2547         }
2548         return false;
2549       }
2550 
2551       if (!exe_ctx || !module_sp) {
2552         if (error_ptr)
2553           error_ptr->SetErrorString("No context to evaluate TLS within.");
2554         return false;
2555       }
2556 
2557       Thread *thread = exe_ctx->GetThreadPtr();
2558       if (!thread) {
2559         if (error_ptr)
2560           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2561         return false;
2562       }
2563 
2564       // Lookup the TLS block address for this thread and module.
2565       const addr_t tls_file_addr =
2566           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2567       const addr_t tls_load_addr =
2568           thread->GetThreadLocalData(module_sp, tls_file_addr);
2569 
2570       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2571         if (error_ptr)
2572           error_ptr->SetErrorString(
2573               "No TLS data currently exists for this thread.");
2574         return false;
2575       }
2576 
2577       stack.back().GetScalar() = tls_load_addr;
2578       stack.back().SetValueType(Value::ValueType::LoadAddress);
2579     } break;
2580 
2581     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2582     // OPERANDS: 1
2583     //      ULEB128: index to the .debug_addr section
2584     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2585     // section with the base address specified by the DW_AT_addr_base attribute
2586     // and the 0 based index is the ULEB128 encoded index.
2587     case DW_OP_addrx:
2588     case DW_OP_GNU_addr_index: {
2589       if (!dwarf_cu) {
2590         if (error_ptr)
2591           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2592                                     "compile unit being specified");
2593         return false;
2594       }
2595       uint64_t index = opcodes.GetULEB128(&offset);
2596       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2597       stack.push_back(Scalar(value));
2598       stack.back().SetValueType(Value::ValueType::FileAddress);
2599     } break;
2600 
2601     // OPCODE: DW_OP_GNU_const_index
2602     // OPERANDS: 1
2603     //      ULEB128: index to the .debug_addr section
2604     // DESCRIPTION: Pushes an constant with the size of a machine address to
2605     // the stack from the .debug_addr section with the base address specified
2606     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2607     // encoded index.
2608     case DW_OP_GNU_const_index: {
2609       if (!dwarf_cu) {
2610         if (error_ptr)
2611           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2612                                     "compile unit being specified");
2613         return false;
2614       }
2615       uint64_t index = opcodes.GetULEB128(&offset);
2616       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2617       stack.push_back(Scalar(value));
2618     } break;
2619 
2620     case DW_OP_GNU_entry_value:
2621     case DW_OP_entry_value: {
2622       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2623                                       error_ptr, log)) {
2624         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2625                     DW_OP_value_to_name(op));
2626         return false;
2627       }
2628       break;
2629     }
2630 
2631     default:
2632       if (error_ptr)
2633         error_ptr->SetErrorStringWithFormatv(
2634             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2635       return false;
2636     }
2637   }
2638 
2639   if (stack.empty()) {
2640     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2641     // or DW_OP_bit_piece opcodes
2642     if (pieces.GetBuffer().GetByteSize()) {
2643       result = pieces;
2644       return true;
2645     }
2646     if (error_ptr)
2647       error_ptr->SetErrorString("Stack empty after evaluation.");
2648     return false;
2649   }
2650 
2651   UpdateValueTypeFromLocationDescription(
2652       log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2653 
2654   if (log && log->GetVerbose()) {
2655     size_t count = stack.size();
2656     LLDB_LOGF(log,
2657               "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2658     for (size_t i = 0; i < count; ++i) {
2659       StreamString new_value;
2660       new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2661       stack[i].Dump(&new_value);
2662       LLDB_LOGF(log, "  %s", new_value.GetData());
2663     }
2664   }
2665   result = stack.back();
2666   return true; // Return true on success
2667 }
2668 
2669 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
2670                                      ByteOrder byte_order, uint32_t addr_size) {
2671   auto buffer_sp =
2672       std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
2673   return DataExtractor(buffer_sp, byte_order, addr_size);
2674 }
2675 
2676 bool DWARFExpression::DumpLocations(Stream *s, lldb::DescriptionLevel level,
2677                                     addr_t load_function_start, addr_t addr,
2678                                     ABI *abi) {
2679   if (!IsLocationList()) {
2680     DumpLocation(s, m_data, level, abi);
2681     return true;
2682   }
2683   bool dump_all = addr == LLDB_INVALID_ADDRESS;
2684   llvm::ListSeparator separator;
2685   auto callback = [&](llvm::DWARFLocationExpression loc) -> bool {
2686     if (loc.Range &&
2687         (dump_all || (loc.Range->LowPC <= addr && addr < loc.Range->HighPC))) {
2688       uint32_t addr_size = m_data.GetAddressByteSize();
2689       DataExtractor data = ToDataExtractor(loc, m_data.GetByteOrder(),
2690                                            m_data.GetAddressByteSize());
2691       s->AsRawOstream() << separator;
2692       s->PutCString("[");
2693       s->AsRawOstream() << llvm::format_hex(loc.Range->LowPC,
2694                                             2 + 2 * addr_size);
2695       s->PutCString(", ");
2696       s->AsRawOstream() << llvm::format_hex(loc.Range->HighPC,
2697                                             2 + 2 * addr_size);
2698       s->PutCString(") -> ");
2699       DumpLocation(s, data, level, abi);
2700       return dump_all;
2701     }
2702     return true;
2703   };
2704   if (!GetLocationExpressions(load_function_start, callback))
2705     return false;
2706   return true;
2707 }
2708 
2709 bool DWARFExpression::GetLocationExpressions(
2710     addr_t load_function_start,
2711     llvm::function_ref<bool(llvm::DWARFLocationExpression)> callback) const {
2712   if (load_function_start == LLDB_INVALID_ADDRESS)
2713     return false;
2714 
2715   Log *log = GetLog(LLDBLog::Expressions);
2716 
2717   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2718       m_dwarf_cu->GetLocationTable(m_data);
2719 
2720   uint64_t offset = 0;
2721   auto lookup_addr =
2722       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2723     addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
2724     if (address == LLDB_INVALID_ADDRESS)
2725       return llvm::None;
2726     return llvm::object::SectionedAddress{address};
2727   };
2728   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2729     if (!loc) {
2730       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2731       return true;
2732     }
2733     if (loc->Range) {
2734       // This relocates low_pc and high_pc by adding the difference between the
2735       // function file address, and the actual address it is loaded in memory.
2736       addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
2737       loc->Range->LowPC += slide;
2738       loc->Range->HighPC += slide;
2739     }
2740     return callback(*loc);
2741   };
2742   llvm::Error error = loctable_up->visitAbsoluteLocationList(
2743       offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
2744       lookup_addr, process_list);
2745   if (error) {
2746     LLDB_LOG_ERROR(log, std::move(error), "{0}");
2747     return false;
2748   }
2749   return true;
2750 }
2751 
2752 llvm::Optional<DataExtractor>
2753 DWARFExpression::GetLocationExpression(addr_t load_function_start,
2754                                        addr_t addr) const {
2755   llvm::Optional<DataExtractor> data;
2756   auto callback = [&](llvm::DWARFLocationExpression loc) {
2757     if (loc.Range && loc.Range->LowPC <= addr && addr < loc.Range->HighPC) {
2758       data = ToDataExtractor(loc, m_data.GetByteOrder(),
2759                              m_data.GetAddressByteSize());
2760     }
2761     return !data;
2762   };
2763   GetLocationExpressions(load_function_start, callback);
2764   return data;
2765 }
2766 
2767 bool DWARFExpression::MatchesOperand(StackFrame &frame,
2768                                      const Instruction::Operand &operand) {
2769   using namespace OperandMatchers;
2770 
2771   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2772   if (!reg_ctx_sp) {
2773     return false;
2774   }
2775 
2776   DataExtractor opcodes;
2777   if (IsLocationList()) {
2778     SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
2779     if (!sc.function)
2780       return false;
2781 
2782     addr_t load_function_start =
2783         sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
2784     if (load_function_start == LLDB_INVALID_ADDRESS)
2785       return false;
2786 
2787     addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
2788         frame.CalculateTarget().get());
2789 
2790     if (llvm::Optional<DataExtractor> expr =
2791             GetLocationExpression(load_function_start, pc))
2792       opcodes = std::move(*expr);
2793     else
2794       return false;
2795   } else
2796     opcodes = m_data;
2797 
2798 
2799   lldb::offset_t op_offset = 0;
2800   uint8_t opcode = opcodes.GetU8(&op_offset);
2801 
2802   if (opcode == DW_OP_fbreg) {
2803     int64_t offset = opcodes.GetSLEB128(&op_offset);
2804 
2805     DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
2806     if (!fb_expr) {
2807       return false;
2808     }
2809 
2810     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2811       return fb_expr->MatchesOperand(frame, child);
2812     };
2813 
2814     if (!offset &&
2815         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2816                      recurse)(operand)) {
2817       return true;
2818     }
2819 
2820     return MatchUnaryOp(
2821         MatchOpType(Instruction::Operand::Type::Dereference),
2822         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2823                       MatchImmOp(offset), recurse))(operand);
2824   }
2825 
2826   bool dereference = false;
2827   const RegisterInfo *reg = nullptr;
2828   int64_t offset = 0;
2829 
2830   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2831     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2832   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2833     offset = opcodes.GetSLEB128(&op_offset);
2834     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2835   } else if (opcode == DW_OP_regx) {
2836     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2837     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2838   } else if (opcode == DW_OP_bregx) {
2839     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2840     offset = opcodes.GetSLEB128(&op_offset);
2841     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2842   } else {
2843     return false;
2844   }
2845 
2846   if (!reg) {
2847     return false;
2848   }
2849 
2850   if (dereference) {
2851     if (!offset &&
2852         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2853                      MatchRegOp(*reg))(operand)) {
2854       return true;
2855     }
2856 
2857     return MatchUnaryOp(
2858         MatchOpType(Instruction::Operand::Type::Dereference),
2859         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2860                       MatchRegOp(*reg),
2861                       MatchImmOp(offset)))(operand);
2862   } else {
2863     return MatchRegOp(*reg)(operand);
2864   }
2865 }
2866