1 //===-- DWARFExpression.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Expression/DWARFExpression.h" 10 11 #include <inttypes.h> 12 13 #include <vector> 14 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/Value.h" 17 #include "lldb/Core/dwarf.h" 18 #include "lldb/Utility/DataEncoder.h" 19 #include "lldb/Utility/Log.h" 20 #include "lldb/Utility/RegisterValue.h" 21 #include "lldb/Utility/Scalar.h" 22 #include "lldb/Utility/StreamString.h" 23 #include "lldb/Utility/VMRange.h" 24 25 #include "lldb/Host/Host.h" 26 #include "lldb/Utility/Endian.h" 27 28 #include "lldb/Symbol/Function.h" 29 30 #include "lldb/Target/ABI.h" 31 #include "lldb/Target/ExecutionContext.h" 32 #include "lldb/Target/Process.h" 33 #include "lldb/Target/RegisterContext.h" 34 #include "lldb/Target/StackFrame.h" 35 #include "lldb/Target/StackID.h" 36 #include "lldb/Target/Target.h" 37 #include "lldb/Target/Thread.h" 38 39 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h" 40 41 using namespace lldb; 42 using namespace lldb_private; 43 44 static lldb::addr_t 45 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu, 46 uint32_t index) { 47 uint32_t index_size = dwarf_cu->GetAddressByteSize(); 48 dw_offset_t addr_base = dwarf_cu->GetAddrBase(); 49 lldb::offset_t offset = addr_base + index * index_size; 50 const DWARFDataExtractor &data = 51 dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData(); 52 if (data.ValidOffsetForDataOfSize(offset, index_size)) 53 return data.GetMaxU64_unchecked(&offset, index_size); 54 return LLDB_INVALID_ADDRESS; 55 } 56 57 // DWARFExpression constructor 58 DWARFExpression::DWARFExpression() 59 : m_module_wp(), m_data(), m_dwarf_cu(nullptr), 60 m_reg_kind(eRegisterKindDWARF) {} 61 62 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp, 63 const DataExtractor &data, 64 const DWARFUnit *dwarf_cu) 65 : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu), 66 m_reg_kind(eRegisterKindDWARF) { 67 if (module_sp) 68 m_module_wp = module_sp; 69 } 70 71 // Destructor 72 DWARFExpression::~DWARFExpression() {} 73 74 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; } 75 76 void DWARFExpression::UpdateValue(uint64_t const_value, 77 lldb::offset_t const_value_byte_size, 78 uint8_t addr_byte_size) { 79 if (!const_value_byte_size) 80 return; 81 82 m_data.SetData( 83 DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size))); 84 m_data.SetByteOrder(endian::InlHostByteOrder()); 85 m_data.SetAddressByteSize(addr_byte_size); 86 } 87 88 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data, 89 lldb::DescriptionLevel level, 90 ABI *abi) const { 91 llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize()) 92 .print(s->AsRawOstream(), llvm::DIDumpOptions(), 93 abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr); 94 } 95 96 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr, 97 addr_t func_file_addr) { 98 m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr}; 99 } 100 101 int DWARFExpression::GetRegisterKind() { return m_reg_kind; } 102 103 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) { 104 m_reg_kind = reg_kind; 105 } 106 107 bool DWARFExpression::IsLocationList() const { 108 return bool(m_loclist_addresses); 109 } 110 111 namespace { 112 /// Implement enough of the DWARFObject interface in order to be able to call 113 /// DWARFLocationTable::dumpLocationList. We don't have access to a real 114 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too. 115 class DummyDWARFObject final: public llvm::DWARFObject { 116 public: 117 DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {} 118 119 bool isLittleEndian() const override { return IsLittleEndian; } 120 121 llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec, 122 uint64_t Pos) const override { 123 return llvm::None; 124 } 125 private: 126 bool IsLittleEndian; 127 }; 128 } 129 130 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level, 131 addr_t location_list_base_addr, 132 ABI *abi) const { 133 if (IsLocationList()) { 134 // We have a location list 135 lldb::offset_t offset = 0; 136 std::unique_ptr<llvm::DWARFLocationTable> loctable_up = 137 m_dwarf_cu->GetLocationTable(m_data); 138 139 llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr; 140 llvm::DIDumpOptions DumpOpts; 141 DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) { 142 s->AsRawOstream() << "error: " << toString(std::move(E)); 143 }; 144 loctable_up->dumpLocationList( 145 &offset, s->AsRawOstream(), 146 llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI, 147 DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr, 148 DumpOpts, s->GetIndentLevel() + 2); 149 } else { 150 // We have a normal location that contains DW_OP location opcodes 151 DumpLocation(s, m_data, level, abi); 152 } 153 } 154 155 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx, 156 lldb::RegisterKind reg_kind, 157 uint32_t reg_num, Status *error_ptr, 158 Value &value) { 159 if (reg_ctx == nullptr) { 160 if (error_ptr) 161 error_ptr->SetErrorString("No register context in frame.\n"); 162 } else { 163 uint32_t native_reg = 164 reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 165 if (native_reg == LLDB_INVALID_REGNUM) { 166 if (error_ptr) 167 error_ptr->SetErrorStringWithFormat("Unable to convert register " 168 "kind=%u reg_num=%u to a native " 169 "register number.\n", 170 reg_kind, reg_num); 171 } else { 172 const RegisterInfo *reg_info = 173 reg_ctx->GetRegisterInfoAtIndex(native_reg); 174 RegisterValue reg_value; 175 if (reg_ctx->ReadRegister(reg_info, reg_value)) { 176 if (reg_value.GetScalarValue(value.GetScalar())) { 177 value.SetValueType(Value::ValueType::Scalar); 178 value.SetContext(Value::ContextType::RegisterInfo, 179 const_cast<RegisterInfo *>(reg_info)); 180 if (error_ptr) 181 error_ptr->Clear(); 182 return true; 183 } else { 184 // If we get this error, then we need to implement a value buffer in 185 // the dwarf expression evaluation function... 186 if (error_ptr) 187 error_ptr->SetErrorStringWithFormat( 188 "register %s can't be converted to a scalar value", 189 reg_info->name); 190 } 191 } else { 192 if (error_ptr) 193 error_ptr->SetErrorStringWithFormat("register %s is not available", 194 reg_info->name); 195 } 196 } 197 } 198 return false; 199 } 200 201 /// Return the length in bytes of the set of operands for \p op. No guarantees 202 /// are made on the state of \p data after this call. 203 static offset_t GetOpcodeDataSize(const DataExtractor &data, 204 const lldb::offset_t data_offset, 205 const uint8_t op) { 206 lldb::offset_t offset = data_offset; 207 switch (op) { 208 case DW_OP_addr: 209 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) 210 return data.GetAddressByteSize(); 211 212 // Opcodes with no arguments 213 case DW_OP_deref: // 0x06 214 case DW_OP_dup: // 0x12 215 case DW_OP_drop: // 0x13 216 case DW_OP_over: // 0x14 217 case DW_OP_swap: // 0x16 218 case DW_OP_rot: // 0x17 219 case DW_OP_xderef: // 0x18 220 case DW_OP_abs: // 0x19 221 case DW_OP_and: // 0x1a 222 case DW_OP_div: // 0x1b 223 case DW_OP_minus: // 0x1c 224 case DW_OP_mod: // 0x1d 225 case DW_OP_mul: // 0x1e 226 case DW_OP_neg: // 0x1f 227 case DW_OP_not: // 0x20 228 case DW_OP_or: // 0x21 229 case DW_OP_plus: // 0x22 230 case DW_OP_shl: // 0x24 231 case DW_OP_shr: // 0x25 232 case DW_OP_shra: // 0x26 233 case DW_OP_xor: // 0x27 234 case DW_OP_eq: // 0x29 235 case DW_OP_ge: // 0x2a 236 case DW_OP_gt: // 0x2b 237 case DW_OP_le: // 0x2c 238 case DW_OP_lt: // 0x2d 239 case DW_OP_ne: // 0x2e 240 case DW_OP_lit0: // 0x30 241 case DW_OP_lit1: // 0x31 242 case DW_OP_lit2: // 0x32 243 case DW_OP_lit3: // 0x33 244 case DW_OP_lit4: // 0x34 245 case DW_OP_lit5: // 0x35 246 case DW_OP_lit6: // 0x36 247 case DW_OP_lit7: // 0x37 248 case DW_OP_lit8: // 0x38 249 case DW_OP_lit9: // 0x39 250 case DW_OP_lit10: // 0x3A 251 case DW_OP_lit11: // 0x3B 252 case DW_OP_lit12: // 0x3C 253 case DW_OP_lit13: // 0x3D 254 case DW_OP_lit14: // 0x3E 255 case DW_OP_lit15: // 0x3F 256 case DW_OP_lit16: // 0x40 257 case DW_OP_lit17: // 0x41 258 case DW_OP_lit18: // 0x42 259 case DW_OP_lit19: // 0x43 260 case DW_OP_lit20: // 0x44 261 case DW_OP_lit21: // 0x45 262 case DW_OP_lit22: // 0x46 263 case DW_OP_lit23: // 0x47 264 case DW_OP_lit24: // 0x48 265 case DW_OP_lit25: // 0x49 266 case DW_OP_lit26: // 0x4A 267 case DW_OP_lit27: // 0x4B 268 case DW_OP_lit28: // 0x4C 269 case DW_OP_lit29: // 0x4D 270 case DW_OP_lit30: // 0x4E 271 case DW_OP_lit31: // 0x4f 272 case DW_OP_reg0: // 0x50 273 case DW_OP_reg1: // 0x51 274 case DW_OP_reg2: // 0x52 275 case DW_OP_reg3: // 0x53 276 case DW_OP_reg4: // 0x54 277 case DW_OP_reg5: // 0x55 278 case DW_OP_reg6: // 0x56 279 case DW_OP_reg7: // 0x57 280 case DW_OP_reg8: // 0x58 281 case DW_OP_reg9: // 0x59 282 case DW_OP_reg10: // 0x5A 283 case DW_OP_reg11: // 0x5B 284 case DW_OP_reg12: // 0x5C 285 case DW_OP_reg13: // 0x5D 286 case DW_OP_reg14: // 0x5E 287 case DW_OP_reg15: // 0x5F 288 case DW_OP_reg16: // 0x60 289 case DW_OP_reg17: // 0x61 290 case DW_OP_reg18: // 0x62 291 case DW_OP_reg19: // 0x63 292 case DW_OP_reg20: // 0x64 293 case DW_OP_reg21: // 0x65 294 case DW_OP_reg22: // 0x66 295 case DW_OP_reg23: // 0x67 296 case DW_OP_reg24: // 0x68 297 case DW_OP_reg25: // 0x69 298 case DW_OP_reg26: // 0x6A 299 case DW_OP_reg27: // 0x6B 300 case DW_OP_reg28: // 0x6C 301 case DW_OP_reg29: // 0x6D 302 case DW_OP_reg30: // 0x6E 303 case DW_OP_reg31: // 0x6F 304 case DW_OP_nop: // 0x96 305 case DW_OP_push_object_address: // 0x97 DWARF3 306 case DW_OP_form_tls_address: // 0x9b DWARF3 307 case DW_OP_call_frame_cfa: // 0x9c DWARF3 308 case DW_OP_stack_value: // 0x9f DWARF4 309 case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension 310 return 0; 311 312 // Opcodes with a single 1 byte arguments 313 case DW_OP_const1u: // 0x08 1 1-byte constant 314 case DW_OP_const1s: // 0x09 1 1-byte constant 315 case DW_OP_pick: // 0x15 1 1-byte stack index 316 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 317 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 318 return 1; 319 320 // Opcodes with a single 2 byte arguments 321 case DW_OP_const2u: // 0x0a 1 2-byte constant 322 case DW_OP_const2s: // 0x0b 1 2-byte constant 323 case DW_OP_skip: // 0x2f 1 signed 2-byte constant 324 case DW_OP_bra: // 0x28 1 signed 2-byte constant 325 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) 326 return 2; 327 328 // Opcodes with a single 4 byte arguments 329 case DW_OP_const4u: // 0x0c 1 4-byte constant 330 case DW_OP_const4s: // 0x0d 1 4-byte constant 331 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) 332 return 4; 333 334 // Opcodes with a single 8 byte arguments 335 case DW_OP_const8u: // 0x0e 1 8-byte constant 336 case DW_OP_const8s: // 0x0f 1 8-byte constant 337 return 8; 338 339 // All opcodes that have a single ULEB (signed or unsigned) argument 340 case DW_OP_addrx: // 0xa1 1 ULEB128 index 341 case DW_OP_constu: // 0x10 1 ULEB128 constant 342 case DW_OP_consts: // 0x11 1 SLEB128 constant 343 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 344 case DW_OP_breg0: // 0x70 1 ULEB128 register 345 case DW_OP_breg1: // 0x71 1 ULEB128 register 346 case DW_OP_breg2: // 0x72 1 ULEB128 register 347 case DW_OP_breg3: // 0x73 1 ULEB128 register 348 case DW_OP_breg4: // 0x74 1 ULEB128 register 349 case DW_OP_breg5: // 0x75 1 ULEB128 register 350 case DW_OP_breg6: // 0x76 1 ULEB128 register 351 case DW_OP_breg7: // 0x77 1 ULEB128 register 352 case DW_OP_breg8: // 0x78 1 ULEB128 register 353 case DW_OP_breg9: // 0x79 1 ULEB128 register 354 case DW_OP_breg10: // 0x7a 1 ULEB128 register 355 case DW_OP_breg11: // 0x7b 1 ULEB128 register 356 case DW_OP_breg12: // 0x7c 1 ULEB128 register 357 case DW_OP_breg13: // 0x7d 1 ULEB128 register 358 case DW_OP_breg14: // 0x7e 1 ULEB128 register 359 case DW_OP_breg15: // 0x7f 1 ULEB128 register 360 case DW_OP_breg16: // 0x80 1 ULEB128 register 361 case DW_OP_breg17: // 0x81 1 ULEB128 register 362 case DW_OP_breg18: // 0x82 1 ULEB128 register 363 case DW_OP_breg19: // 0x83 1 ULEB128 register 364 case DW_OP_breg20: // 0x84 1 ULEB128 register 365 case DW_OP_breg21: // 0x85 1 ULEB128 register 366 case DW_OP_breg22: // 0x86 1 ULEB128 register 367 case DW_OP_breg23: // 0x87 1 ULEB128 register 368 case DW_OP_breg24: // 0x88 1 ULEB128 register 369 case DW_OP_breg25: // 0x89 1 ULEB128 register 370 case DW_OP_breg26: // 0x8a 1 ULEB128 register 371 case DW_OP_breg27: // 0x8b 1 ULEB128 register 372 case DW_OP_breg28: // 0x8c 1 ULEB128 register 373 case DW_OP_breg29: // 0x8d 1 ULEB128 register 374 case DW_OP_breg30: // 0x8e 1 ULEB128 register 375 case DW_OP_breg31: // 0x8f 1 ULEB128 register 376 case DW_OP_regx: // 0x90 1 ULEB128 register 377 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 378 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 379 case DW_OP_GNU_addr_index: // 0xfb 1 ULEB128 index 380 case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index 381 data.Skip_LEB128(&offset); 382 return offset - data_offset; 383 384 // All opcodes that have a 2 ULEB (signed or unsigned) arguments 385 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 386 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); 387 data.Skip_LEB128(&offset); 388 data.Skip_LEB128(&offset); 389 return offset - data_offset; 390 391 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size 392 // (DWARF4) 393 { 394 uint64_t block_len = data.Skip_LEB128(&offset); 395 offset += block_len; 396 return offset - data_offset; 397 } 398 399 case DW_OP_GNU_entry_value: 400 case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block 401 { 402 uint64_t subexpr_len = data.GetULEB128(&offset); 403 return (offset - data_offset) + subexpr_len; 404 } 405 406 default: 407 break; 408 } 409 return LLDB_INVALID_OFFSET; 410 } 411 412 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx, 413 bool &error) const { 414 error = false; 415 if (IsLocationList()) 416 return LLDB_INVALID_ADDRESS; 417 lldb::offset_t offset = 0; 418 uint32_t curr_op_addr_idx = 0; 419 while (m_data.ValidOffset(offset)) { 420 const uint8_t op = m_data.GetU8(&offset); 421 422 if (op == DW_OP_addr) { 423 const lldb::addr_t op_file_addr = m_data.GetAddress(&offset); 424 if (curr_op_addr_idx == op_addr_idx) 425 return op_file_addr; 426 else 427 ++curr_op_addr_idx; 428 } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) { 429 uint64_t index = m_data.GetULEB128(&offset); 430 if (curr_op_addr_idx == op_addr_idx) { 431 if (!m_dwarf_cu) { 432 error = true; 433 break; 434 } 435 436 return ReadAddressFromDebugAddrSection(m_dwarf_cu, index); 437 } else 438 ++curr_op_addr_idx; 439 } else { 440 const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); 441 if (op_arg_size == LLDB_INVALID_OFFSET) { 442 error = true; 443 break; 444 } 445 offset += op_arg_size; 446 } 447 } 448 return LLDB_INVALID_ADDRESS; 449 } 450 451 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) { 452 if (IsLocationList()) 453 return false; 454 lldb::offset_t offset = 0; 455 while (m_data.ValidOffset(offset)) { 456 const uint8_t op = m_data.GetU8(&offset); 457 458 if (op == DW_OP_addr) { 459 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 460 // We have to make a copy of the data as we don't know if this data is 461 // from a read only memory mapped buffer, so we duplicate all of the data 462 // first, then modify it, and if all goes well, we then replace the data 463 // for this expression 464 465 // So first we copy the data into a heap buffer 466 std::unique_ptr<DataBufferHeap> head_data_up( 467 new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize())); 468 469 // Make en encoder so we can write the address into the buffer using the 470 // correct byte order (endianness) 471 DataEncoder encoder(head_data_up->GetBytes(), head_data_up->GetByteSize(), 472 m_data.GetByteOrder(), addr_byte_size); 473 474 // Replace the address in the new buffer 475 if (encoder.PutUnsigned(offset, addr_byte_size, file_addr) == UINT32_MAX) 476 return false; 477 478 // All went well, so now we can reset the data using a shared pointer to 479 // the heap data so "m_data" will now correctly manage the heap data. 480 m_data.SetData(DataBufferSP(head_data_up.release())); 481 return true; 482 } else { 483 const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); 484 if (op_arg_size == LLDB_INVALID_OFFSET) 485 break; 486 offset += op_arg_size; 487 } 488 } 489 return false; 490 } 491 492 bool DWARFExpression::ContainsThreadLocalStorage() const { 493 // We are assuming for now that any thread local variable will not have a 494 // location list. This has been true for all thread local variables we have 495 // seen so far produced by any compiler. 496 if (IsLocationList()) 497 return false; 498 lldb::offset_t offset = 0; 499 while (m_data.ValidOffset(offset)) { 500 const uint8_t op = m_data.GetU8(&offset); 501 502 if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address) 503 return true; 504 const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); 505 if (op_arg_size == LLDB_INVALID_OFFSET) 506 return false; 507 else 508 offset += op_arg_size; 509 } 510 return false; 511 } 512 bool DWARFExpression::LinkThreadLocalStorage( 513 lldb::ModuleSP new_module_sp, 514 std::function<lldb::addr_t(lldb::addr_t file_addr)> const 515 &link_address_callback) { 516 // We are assuming for now that any thread local variable will not have a 517 // location list. This has been true for all thread local variables we have 518 // seen so far produced by any compiler. 519 if (IsLocationList()) 520 return false; 521 522 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 523 // We have to make a copy of the data as we don't know if this data is from a 524 // read only memory mapped buffer, so we duplicate all of the data first, 525 // then modify it, and if all goes well, we then replace the data for this 526 // expression 527 528 // So first we copy the data into a heap buffer 529 std::shared_ptr<DataBufferHeap> heap_data_sp( 530 new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize())); 531 532 // Make en encoder so we can write the address into the buffer using the 533 // correct byte order (endianness) 534 DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(), 535 m_data.GetByteOrder(), addr_byte_size); 536 537 lldb::offset_t offset = 0; 538 lldb::offset_t const_offset = 0; 539 lldb::addr_t const_value = 0; 540 size_t const_byte_size = 0; 541 while (m_data.ValidOffset(offset)) { 542 const uint8_t op = m_data.GetU8(&offset); 543 544 bool decoded_data = false; 545 switch (op) { 546 case DW_OP_const4u: 547 // Remember the const offset in case we later have a 548 // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address 549 const_offset = offset; 550 const_value = m_data.GetU32(&offset); 551 decoded_data = true; 552 const_byte_size = 4; 553 break; 554 555 case DW_OP_const8u: 556 // Remember the const offset in case we later have a 557 // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address 558 const_offset = offset; 559 const_value = m_data.GetU64(&offset); 560 decoded_data = true; 561 const_byte_size = 8; 562 break; 563 564 case DW_OP_form_tls_address: 565 case DW_OP_GNU_push_tls_address: 566 // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded 567 // by a file address on the stack. We assume that DW_OP_const4u or 568 // DW_OP_const8u is used for these values, and we check that the last 569 // opcode we got before either of these was DW_OP_const4u or 570 // DW_OP_const8u. If so, then we can link the value accodingly. For 571 // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file 572 // address of a structure that contains a function pointer, the pthread 573 // key and the offset into the data pointed to by the pthread key. So we 574 // must link this address and also set the module of this expression to 575 // the new_module_sp so we can resolve the file address correctly 576 if (const_byte_size > 0) { 577 lldb::addr_t linked_file_addr = link_address_callback(const_value); 578 if (linked_file_addr == LLDB_INVALID_ADDRESS) 579 return false; 580 // Replace the address in the new buffer 581 if (encoder.PutUnsigned(const_offset, const_byte_size, 582 linked_file_addr) == UINT32_MAX) 583 return false; 584 } 585 break; 586 587 default: 588 const_offset = 0; 589 const_value = 0; 590 const_byte_size = 0; 591 break; 592 } 593 594 if (!decoded_data) { 595 const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); 596 if (op_arg_size == LLDB_INVALID_OFFSET) 597 return false; 598 else 599 offset += op_arg_size; 600 } 601 } 602 603 // If we linked the TLS address correctly, update the module so that when the 604 // expression is evaluated it can resolve the file address to a load address 605 // and read the 606 // TLS data 607 m_module_wp = new_module_sp; 608 m_data.SetData(heap_data_sp); 609 return true; 610 } 611 612 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr, 613 lldb::addr_t addr) const { 614 if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS) 615 return false; 616 617 if (!IsLocationList()) 618 return false; 619 620 return GetLocationExpression(func_load_addr, addr) != llvm::None; 621 } 622 623 bool DWARFExpression::DumpLocationForAddress(Stream *s, 624 lldb::DescriptionLevel level, 625 addr_t func_load_addr, 626 addr_t address, ABI *abi) { 627 if (!IsLocationList()) { 628 DumpLocation(s, m_data, level, abi); 629 return true; 630 } 631 if (llvm::Optional<DataExtractor> expr = 632 GetLocationExpression(func_load_addr, address)) { 633 DumpLocation(s, *expr, level, abi); 634 return true; 635 } 636 return false; 637 } 638 639 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack, 640 ExecutionContext *exe_ctx, 641 RegisterContext *reg_ctx, 642 const DataExtractor &opcodes, 643 lldb::offset_t &opcode_offset, 644 Status *error_ptr, Log *log) { 645 // DW_OP_entry_value(sub-expr) describes the location a variable had upon 646 // function entry: this variable location is presumed to be optimized out at 647 // the current PC value. The caller of the function may have call site 648 // information that describes an alternate location for the variable (e.g. a 649 // constant literal, or a spilled stack value) in the parent frame. 650 // 651 // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative): 652 // 653 // void child(int &sink, int x) { 654 // ... 655 // /* "x" gets optimized out. */ 656 // 657 // /* The location of "x" here is: DW_OP_entry_value($reg2). */ 658 // ++sink; 659 // } 660 // 661 // void parent() { 662 // int sink; 663 // 664 // /* 665 // * The callsite information emitted here is: 666 // * 667 // * DW_TAG_call_site 668 // * DW_AT_return_pc ... (for "child(sink, 123);") 669 // * DW_TAG_call_site_parameter (for "sink") 670 // * DW_AT_location ($reg1) 671 // * DW_AT_call_value ($SP - 8) 672 // * DW_TAG_call_site_parameter (for "x") 673 // * DW_AT_location ($reg2) 674 // * DW_AT_call_value ($literal 123) 675 // * 676 // * DW_TAG_call_site 677 // * DW_AT_return_pc ... (for "child(sink, 456);") 678 // * ... 679 // */ 680 // child(sink, 123); 681 // child(sink, 456); 682 // } 683 // 684 // When the program stops at "++sink" within `child`, the debugger determines 685 // the call site by analyzing the return address. Once the call site is found, 686 // the debugger determines which parameter is referenced by DW_OP_entry_value 687 // and evaluates the corresponding location for that parameter in `parent`. 688 689 // 1. Find the function which pushed the current frame onto the stack. 690 if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) { 691 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context"); 692 return false; 693 } 694 695 StackFrame *current_frame = exe_ctx->GetFramePtr(); 696 Thread *thread = exe_ctx->GetThreadPtr(); 697 if (!current_frame || !thread) { 698 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread"); 699 return false; 700 } 701 702 Target &target = exe_ctx->GetTargetRef(); 703 StackFrameSP parent_frame = nullptr; 704 addr_t return_pc = LLDB_INVALID_ADDRESS; 705 uint32_t current_frame_idx = current_frame->GetFrameIndex(); 706 uint32_t num_frames = thread->GetStackFrameCount(); 707 for (uint32_t parent_frame_idx = current_frame_idx + 1; 708 parent_frame_idx < num_frames; ++parent_frame_idx) { 709 parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx); 710 // Require a valid sequence of frames. 711 if (!parent_frame) 712 break; 713 714 // Record the first valid return address, even if this is an inlined frame, 715 // in order to look up the associated call edge in the first non-inlined 716 // parent frame. 717 if (return_pc == LLDB_INVALID_ADDRESS) { 718 return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target); 719 LLDB_LOG(log, 720 "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}", 721 return_pc); 722 } 723 724 // If we've found an inlined frame, skip it (these have no call site 725 // parameters). 726 if (parent_frame->IsInlined()) 727 continue; 728 729 // We've found the first non-inlined parent frame. 730 break; 731 } 732 if (!parent_frame || !parent_frame->GetRegisterContext()) { 733 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx"); 734 return false; 735 } 736 737 Function *parent_func = 738 parent_frame->GetSymbolContext(eSymbolContextFunction).function; 739 if (!parent_func) { 740 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function"); 741 return false; 742 } 743 744 // 2. Find the call edge in the parent function responsible for creating the 745 // current activation. 746 Function *current_func = 747 current_frame->GetSymbolContext(eSymbolContextFunction).function; 748 if (!current_func) { 749 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function"); 750 return false; 751 } 752 753 CallEdge *call_edge = nullptr; 754 ModuleList &modlist = target.GetImages(); 755 ExecutionContext parent_exe_ctx = *exe_ctx; 756 parent_exe_ctx.SetFrameSP(parent_frame); 757 if (!parent_frame->IsArtificial()) { 758 // If the parent frame is not artificial, the current activation may be 759 // produced by an ambiguous tail call. In this case, refuse to proceed. 760 call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target); 761 if (!call_edge) { 762 LLDB_LOG(log, 763 "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} " 764 "in parent frame {1}", 765 return_pc, parent_func->GetName()); 766 return false; 767 } 768 Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx); 769 if (callee_func != current_func) { 770 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, " 771 "can't find real parent frame"); 772 return false; 773 } 774 } else { 775 // The StackFrameList solver machinery has deduced that an unambiguous tail 776 // call sequence that produced the current activation. The first edge in 777 // the parent that points to the current function must be valid. 778 for (auto &edge : parent_func->GetTailCallingEdges()) { 779 if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) { 780 call_edge = edge.get(); 781 break; 782 } 783 } 784 } 785 if (!call_edge) { 786 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent " 787 "to current function"); 788 return false; 789 } 790 791 // 3. Attempt to locate the DW_OP_entry_value expression in the set of 792 // available call site parameters. If found, evaluate the corresponding 793 // parameter in the context of the parent frame. 794 const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset); 795 const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len); 796 if (!subexpr_data) { 797 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read"); 798 return false; 799 } 800 801 const CallSiteParameter *matched_param = nullptr; 802 for (const CallSiteParameter ¶m : call_edge->GetCallSiteParameters()) { 803 DataExtractor param_subexpr_extractor; 804 if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor)) 805 continue; 806 lldb::offset_t param_subexpr_offset = 0; 807 const void *param_subexpr_data = 808 param_subexpr_extractor.GetData(¶m_subexpr_offset, subexpr_len); 809 if (!param_subexpr_data || 810 param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0) 811 continue; 812 813 // At this point, the DW_OP_entry_value sub-expression and the callee-side 814 // expression in the call site parameter are known to have the same length. 815 // Check whether they are equal. 816 // 817 // Note that an equality check is sufficient: the contents of the 818 // DW_OP_entry_value subexpression are only used to identify the right call 819 // site parameter in the parent, and do not require any special handling. 820 if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) { 821 matched_param = ¶m; 822 break; 823 } 824 } 825 if (!matched_param) { 826 LLDB_LOG(log, 827 "Evaluate_DW_OP_entry_value: no matching call site param found"); 828 return false; 829 } 830 831 // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value 832 // subexpresion whenever llvm does. 833 Value result; 834 const DWARFExpression ¶m_expr = matched_param->LocationInCaller; 835 if (!param_expr.Evaluate(&parent_exe_ctx, 836 parent_frame->GetRegisterContext().get(), 837 /*loclist_base_addr=*/LLDB_INVALID_ADDRESS, 838 /*initial_value_ptr=*/nullptr, 839 /*object_address_ptr=*/nullptr, result, error_ptr)) { 840 LLDB_LOG(log, 841 "Evaluate_DW_OP_entry_value: call site param evaluation failed"); 842 return false; 843 } 844 845 stack.push_back(result); 846 return true; 847 } 848 849 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope, 850 lldb::addr_t loclist_base_load_addr, 851 const Value *initial_value_ptr, 852 const Value *object_address_ptr, Value &result, 853 Status *error_ptr) const { 854 ExecutionContext exe_ctx(exe_scope); 855 return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr, 856 object_address_ptr, result, error_ptr); 857 } 858 859 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx, 860 RegisterContext *reg_ctx, 861 lldb::addr_t func_load_addr, 862 const Value *initial_value_ptr, 863 const Value *object_address_ptr, Value &result, 864 Status *error_ptr) const { 865 ModuleSP module_sp = m_module_wp.lock(); 866 867 if (IsLocationList()) { 868 addr_t pc; 869 StackFrame *frame = nullptr; 870 if (reg_ctx) 871 pc = reg_ctx->GetPC(); 872 else { 873 frame = exe_ctx->GetFramePtr(); 874 if (!frame) 875 return false; 876 RegisterContextSP reg_ctx_sp = frame->GetRegisterContext(); 877 if (!reg_ctx_sp) 878 return false; 879 pc = reg_ctx_sp->GetPC(); 880 } 881 882 if (func_load_addr != LLDB_INVALID_ADDRESS) { 883 if (pc == LLDB_INVALID_ADDRESS) { 884 if (error_ptr) 885 error_ptr->SetErrorString("Invalid PC in frame."); 886 return false; 887 } 888 889 if (llvm::Optional<DataExtractor> expr = 890 GetLocationExpression(func_load_addr, pc)) { 891 return DWARFExpression::Evaluate( 892 exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind, 893 initial_value_ptr, object_address_ptr, result, error_ptr); 894 } 895 } 896 if (error_ptr) 897 error_ptr->SetErrorString("variable not available"); 898 return false; 899 } 900 901 // Not a location list, just a single expression. 902 return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data, 903 m_dwarf_cu, m_reg_kind, initial_value_ptr, 904 object_address_ptr, result, error_ptr); 905 } 906 907 bool DWARFExpression::Evaluate( 908 ExecutionContext *exe_ctx, RegisterContext *reg_ctx, 909 lldb::ModuleSP module_sp, const DataExtractor &opcodes, 910 const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind, 911 const Value *initial_value_ptr, const Value *object_address_ptr, 912 Value &result, Status *error_ptr) { 913 914 if (opcodes.GetByteSize() == 0) { 915 if (error_ptr) 916 error_ptr->SetErrorString( 917 "no location, value may have been optimized out"); 918 return false; 919 } 920 std::vector<Value> stack; 921 922 Process *process = nullptr; 923 StackFrame *frame = nullptr; 924 925 if (exe_ctx) { 926 process = exe_ctx->GetProcessPtr(); 927 frame = exe_ctx->GetFramePtr(); 928 } 929 if (reg_ctx == nullptr && frame) 930 reg_ctx = frame->GetRegisterContext().get(); 931 932 if (initial_value_ptr) 933 stack.push_back(*initial_value_ptr); 934 935 lldb::offset_t offset = 0; 936 Value tmp; 937 uint32_t reg_num; 938 939 /// Insertion point for evaluating multi-piece expression. 940 uint64_t op_piece_offset = 0; 941 Value pieces; // Used for DW_OP_piece 942 943 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 944 // A generic type is "an integral type that has the size of an address and an 945 // unspecified signedness". For now, just use the signedness of the operand. 946 // TODO: Implement a real typed stack, and store the genericness of the value 947 // there. 948 auto to_generic = [&](auto v) { 949 bool is_signed = std::is_signed<decltype(v)>::value; 950 return Scalar(llvm::APSInt( 951 llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed), 952 !is_signed)); 953 }; 954 955 while (opcodes.ValidOffset(offset)) { 956 const lldb::offset_t op_offset = offset; 957 const uint8_t op = opcodes.GetU8(&offset); 958 959 if (log && log->GetVerbose()) { 960 size_t count = stack.size(); 961 LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:", 962 (uint64_t)count); 963 for (size_t i = 0; i < count; ++i) { 964 StreamString new_value; 965 new_value.Printf("[%" PRIu64 "]", (uint64_t)i); 966 stack[i].Dump(&new_value); 967 LLDB_LOGF(log, " %s", new_value.GetData()); 968 } 969 LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset, 970 DW_OP_value_to_name(op)); 971 } 972 973 switch (op) { 974 // The DW_OP_addr operation has a single operand that encodes a machine 975 // address and whose size is the size of an address on the target machine. 976 case DW_OP_addr: 977 stack.push_back(Scalar(opcodes.GetAddress(&offset))); 978 stack.back().SetValueType(Value::ValueType::FileAddress); 979 // Convert the file address to a load address, so subsequent 980 // DWARF operators can operate on it. 981 if (frame) 982 stack.back().ConvertToLoadAddress(module_sp.get(), 983 frame->CalculateTarget().get()); 984 break; 985 986 // The DW_OP_addr_sect_offset4 is used for any location expressions in 987 // shared libraries that have a location like: 988 // DW_OP_addr(0x1000) 989 // If this address resides in a shared library, then this virtual address 990 // won't make sense when it is evaluated in the context of a running 991 // process where shared libraries have been slid. To account for this, this 992 // new address type where we can store the section pointer and a 4 byte 993 // offset. 994 // case DW_OP_addr_sect_offset4: 995 // { 996 // result_type = eResultTypeFileAddress; 997 // lldb::Section *sect = (lldb::Section 998 // *)opcodes.GetMaxU64(&offset, sizeof(void *)); 999 // lldb::addr_t sect_offset = opcodes.GetU32(&offset); 1000 // 1001 // Address so_addr (sect, sect_offset); 1002 // lldb::addr_t load_addr = so_addr.GetLoadAddress(); 1003 // if (load_addr != LLDB_INVALID_ADDRESS) 1004 // { 1005 // // We successfully resolve a file address to a load 1006 // // address. 1007 // stack.push_back(load_addr); 1008 // break; 1009 // } 1010 // else 1011 // { 1012 // // We were able 1013 // if (error_ptr) 1014 // error_ptr->SetErrorStringWithFormat ("Section %s in 1015 // %s is not currently loaded.\n", 1016 // sect->GetName().AsCString(), 1017 // sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 1018 // return false; 1019 // } 1020 // } 1021 // break; 1022 1023 // OPCODE: DW_OP_deref 1024 // OPERANDS: none 1025 // DESCRIPTION: Pops the top stack entry and treats it as an address. 1026 // The value retrieved from that address is pushed. The size of the data 1027 // retrieved from the dereferenced address is the size of an address on the 1028 // target machine. 1029 case DW_OP_deref: { 1030 if (stack.empty()) { 1031 if (error_ptr) 1032 error_ptr->SetErrorString("Expression stack empty for DW_OP_deref."); 1033 return false; 1034 } 1035 Value::ValueType value_type = stack.back().GetValueType(); 1036 switch (value_type) { 1037 case Value::ValueType::HostAddress: { 1038 void *src = (void *)stack.back().GetScalar().ULongLong(); 1039 intptr_t ptr; 1040 ::memcpy(&ptr, src, sizeof(void *)); 1041 stack.back().GetScalar() = ptr; 1042 stack.back().ClearContext(); 1043 } break; 1044 case Value::ValueType::FileAddress: { 1045 auto file_addr = stack.back().GetScalar().ULongLong( 1046 LLDB_INVALID_ADDRESS); 1047 if (!module_sp) { 1048 if (error_ptr) 1049 error_ptr->SetErrorString( 1050 "need module to resolve file address for DW_OP_deref"); 1051 return false; 1052 } 1053 Address so_addr; 1054 if (!module_sp->ResolveFileAddress(file_addr, so_addr)) { 1055 if (error_ptr) 1056 error_ptr->SetErrorString( 1057 "failed to resolve file address in module"); 1058 return false; 1059 } 1060 addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr()); 1061 if (load_Addr == LLDB_INVALID_ADDRESS) { 1062 if (error_ptr) 1063 error_ptr->SetErrorString("failed to resolve load address"); 1064 return false; 1065 } 1066 stack.back().GetScalar() = load_Addr; 1067 stack.back().SetValueType(Value::ValueType::LoadAddress); 1068 // Fall through to load address code below... 1069 } LLVM_FALLTHROUGH; 1070 case Value::ValueType::Scalar: 1071 case Value::ValueType::LoadAddress: 1072 if (exe_ctx) { 1073 if (process) { 1074 lldb::addr_t pointer_addr = 1075 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1076 Status error; 1077 lldb::addr_t pointer_value = 1078 process->ReadPointerFromMemory(pointer_addr, error); 1079 if (pointer_value != LLDB_INVALID_ADDRESS) { 1080 stack.back().GetScalar() = pointer_value; 1081 stack.back().ClearContext(); 1082 } else { 1083 if (error_ptr) 1084 error_ptr->SetErrorStringWithFormat( 1085 "Failed to dereference pointer from 0x%" PRIx64 1086 " for DW_OP_deref: %s\n", 1087 pointer_addr, error.AsCString()); 1088 return false; 1089 } 1090 } else { 1091 if (error_ptr) 1092 error_ptr->SetErrorString("NULL process for DW_OP_deref.\n"); 1093 return false; 1094 } 1095 } else { 1096 if (error_ptr) 1097 error_ptr->SetErrorString( 1098 "NULL execution context for DW_OP_deref.\n"); 1099 return false; 1100 } 1101 break; 1102 1103 case Value::ValueType::Invalid: 1104 if (error_ptr) 1105 error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n"); 1106 return false; 1107 } 1108 1109 } break; 1110 1111 // OPCODE: DW_OP_deref_size 1112 // OPERANDS: 1 1113 // 1 - uint8_t that specifies the size of the data to dereference. 1114 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 1115 // stack entry and treats it as an address. The value retrieved from that 1116 // address is pushed. In the DW_OP_deref_size operation, however, the size 1117 // in bytes of the data retrieved from the dereferenced address is 1118 // specified by the single operand. This operand is a 1-byte unsigned 1119 // integral constant whose value may not be larger than the size of an 1120 // address on the target machine. The data retrieved is zero extended to 1121 // the size of an address on the target machine before being pushed on the 1122 // expression stack. 1123 case DW_OP_deref_size: { 1124 if (stack.empty()) { 1125 if (error_ptr) 1126 error_ptr->SetErrorString( 1127 "Expression stack empty for DW_OP_deref_size."); 1128 return false; 1129 } 1130 uint8_t size = opcodes.GetU8(&offset); 1131 Value::ValueType value_type = stack.back().GetValueType(); 1132 switch (value_type) { 1133 case Value::ValueType::HostAddress: { 1134 void *src = (void *)stack.back().GetScalar().ULongLong(); 1135 intptr_t ptr; 1136 ::memcpy(&ptr, src, sizeof(void *)); 1137 // I can't decide whether the size operand should apply to the bytes in 1138 // their 1139 // lldb-host endianness or the target endianness.. I doubt this'll ever 1140 // come up but I'll opt for assuming big endian regardless. 1141 switch (size) { 1142 case 1: 1143 ptr = ptr & 0xff; 1144 break; 1145 case 2: 1146 ptr = ptr & 0xffff; 1147 break; 1148 case 3: 1149 ptr = ptr & 0xffffff; 1150 break; 1151 case 4: 1152 ptr = ptr & 0xffffffff; 1153 break; 1154 // the casts are added to work around the case where intptr_t is a 32 1155 // bit quantity; 1156 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this 1157 // program. 1158 case 5: 1159 ptr = (intptr_t)ptr & 0xffffffffffULL; 1160 break; 1161 case 6: 1162 ptr = (intptr_t)ptr & 0xffffffffffffULL; 1163 break; 1164 case 7: 1165 ptr = (intptr_t)ptr & 0xffffffffffffffULL; 1166 break; 1167 default: 1168 break; 1169 } 1170 stack.back().GetScalar() = ptr; 1171 stack.back().ClearContext(); 1172 } break; 1173 case Value::ValueType::Scalar: 1174 case Value::ValueType::LoadAddress: 1175 if (exe_ctx) { 1176 if (process) { 1177 lldb::addr_t pointer_addr = 1178 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1179 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1180 Status error; 1181 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == 1182 size) { 1183 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), 1184 process->GetByteOrder(), size); 1185 lldb::offset_t addr_data_offset = 0; 1186 switch (size) { 1187 case 1: 1188 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); 1189 break; 1190 case 2: 1191 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); 1192 break; 1193 case 4: 1194 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); 1195 break; 1196 case 8: 1197 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); 1198 break; 1199 default: 1200 stack.back().GetScalar() = 1201 addr_data.GetAddress(&addr_data_offset); 1202 } 1203 stack.back().ClearContext(); 1204 } else { 1205 if (error_ptr) 1206 error_ptr->SetErrorStringWithFormat( 1207 "Failed to dereference pointer from 0x%" PRIx64 1208 " for DW_OP_deref: %s\n", 1209 pointer_addr, error.AsCString()); 1210 return false; 1211 } 1212 } else { 1213 if (error_ptr) 1214 error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n"); 1215 return false; 1216 } 1217 } else { 1218 if (error_ptr) 1219 error_ptr->SetErrorString( 1220 "NULL execution context for DW_OP_deref_size.\n"); 1221 return false; 1222 } 1223 break; 1224 1225 case Value::ValueType::FileAddress: 1226 case Value::ValueType::Invalid: 1227 if (error_ptr) 1228 error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n"); 1229 return false; 1230 } 1231 1232 } break; 1233 1234 // OPCODE: DW_OP_xderef_size 1235 // OPERANDS: 1 1236 // 1 - uint8_t that specifies the size of the data to dereference. 1237 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1238 // the top of the stack is treated as an address. The second stack entry is 1239 // treated as an "address space identifier" for those architectures that 1240 // support multiple address spaces. The top two stack elements are popped, 1241 // a data item is retrieved through an implementation-defined address 1242 // calculation and pushed as the new stack top. In the DW_OP_xderef_size 1243 // operation, however, the size in bytes of the data retrieved from the 1244 // dereferenced address is specified by the single operand. This operand is 1245 // a 1-byte unsigned integral constant whose value may not be larger than 1246 // the size of an address on the target machine. The data retrieved is zero 1247 // extended to the size of an address on the target machine before being 1248 // pushed on the expression stack. 1249 case DW_OP_xderef_size: 1250 if (error_ptr) 1251 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1252 return false; 1253 // OPCODE: DW_OP_xderef 1254 // OPERANDS: none 1255 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1256 // the top of the stack is treated as an address. The second stack entry is 1257 // treated as an "address space identifier" for those architectures that 1258 // support multiple address spaces. The top two stack elements are popped, 1259 // a data item is retrieved through an implementation-defined address 1260 // calculation and pushed as the new stack top. The size of the data 1261 // retrieved from the dereferenced address is the size of an address on the 1262 // target machine. 1263 case DW_OP_xderef: 1264 if (error_ptr) 1265 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1266 return false; 1267 1268 // All DW_OP_constXXX opcodes have a single operand as noted below: 1269 // 1270 // Opcode Operand 1 1271 // DW_OP_const1u 1-byte unsigned integer constant 1272 // DW_OP_const1s 1-byte signed integer constant 1273 // DW_OP_const2u 2-byte unsigned integer constant 1274 // DW_OP_const2s 2-byte signed integer constant 1275 // DW_OP_const4u 4-byte unsigned integer constant 1276 // DW_OP_const4s 4-byte signed integer constant 1277 // DW_OP_const8u 8-byte unsigned integer constant 1278 // DW_OP_const8s 8-byte signed integer constant 1279 // DW_OP_constu unsigned LEB128 integer constant 1280 // DW_OP_consts signed LEB128 integer constant 1281 case DW_OP_const1u: 1282 stack.push_back(to_generic(opcodes.GetU8(&offset))); 1283 break; 1284 case DW_OP_const1s: 1285 stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset))); 1286 break; 1287 case DW_OP_const2u: 1288 stack.push_back(to_generic(opcodes.GetU16(&offset))); 1289 break; 1290 case DW_OP_const2s: 1291 stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset))); 1292 break; 1293 case DW_OP_const4u: 1294 stack.push_back(to_generic(opcodes.GetU32(&offset))); 1295 break; 1296 case DW_OP_const4s: 1297 stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset))); 1298 break; 1299 case DW_OP_const8u: 1300 stack.push_back(to_generic(opcodes.GetU64(&offset))); 1301 break; 1302 case DW_OP_const8s: 1303 stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset))); 1304 break; 1305 // These should also use to_generic, but we can't do that due to a 1306 // producer-side bug in llvm. See llvm.org/pr48087. 1307 case DW_OP_constu: 1308 stack.push_back(Scalar(opcodes.GetULEB128(&offset))); 1309 break; 1310 case DW_OP_consts: 1311 stack.push_back(Scalar(opcodes.GetSLEB128(&offset))); 1312 break; 1313 1314 // OPCODE: DW_OP_dup 1315 // OPERANDS: none 1316 // DESCRIPTION: duplicates the value at the top of the stack 1317 case DW_OP_dup: 1318 if (stack.empty()) { 1319 if (error_ptr) 1320 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1321 return false; 1322 } else 1323 stack.push_back(stack.back()); 1324 break; 1325 1326 // OPCODE: DW_OP_drop 1327 // OPERANDS: none 1328 // DESCRIPTION: pops the value at the top of the stack 1329 case DW_OP_drop: 1330 if (stack.empty()) { 1331 if (error_ptr) 1332 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1333 return false; 1334 } else 1335 stack.pop_back(); 1336 break; 1337 1338 // OPCODE: DW_OP_over 1339 // OPERANDS: none 1340 // DESCRIPTION: Duplicates the entry currently second in the stack at 1341 // the top of the stack. 1342 case DW_OP_over: 1343 if (stack.size() < 2) { 1344 if (error_ptr) 1345 error_ptr->SetErrorString( 1346 "Expression stack needs at least 2 items for DW_OP_over."); 1347 return false; 1348 } else 1349 stack.push_back(stack[stack.size() - 2]); 1350 break; 1351 1352 // OPCODE: DW_OP_pick 1353 // OPERANDS: uint8_t index into the current stack 1354 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1355 // inclusive) is pushed on the stack 1356 case DW_OP_pick: { 1357 uint8_t pick_idx = opcodes.GetU8(&offset); 1358 if (pick_idx < stack.size()) 1359 stack.push_back(stack[stack.size() - 1 - pick_idx]); 1360 else { 1361 if (error_ptr) 1362 error_ptr->SetErrorStringWithFormat( 1363 "Index %u out of range for DW_OP_pick.\n", pick_idx); 1364 return false; 1365 } 1366 } break; 1367 1368 // OPCODE: DW_OP_swap 1369 // OPERANDS: none 1370 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1371 // of the stack becomes the second stack entry, and the second entry 1372 // becomes the top of the stack 1373 case DW_OP_swap: 1374 if (stack.size() < 2) { 1375 if (error_ptr) 1376 error_ptr->SetErrorString( 1377 "Expression stack needs at least 2 items for DW_OP_swap."); 1378 return false; 1379 } else { 1380 tmp = stack.back(); 1381 stack.back() = stack[stack.size() - 2]; 1382 stack[stack.size() - 2] = tmp; 1383 } 1384 break; 1385 1386 // OPCODE: DW_OP_rot 1387 // OPERANDS: none 1388 // DESCRIPTION: Rotates the first three stack entries. The entry at 1389 // the top of the stack becomes the third stack entry, the second entry 1390 // becomes the top of the stack, and the third entry becomes the second 1391 // entry. 1392 case DW_OP_rot: 1393 if (stack.size() < 3) { 1394 if (error_ptr) 1395 error_ptr->SetErrorString( 1396 "Expression stack needs at least 3 items for DW_OP_rot."); 1397 return false; 1398 } else { 1399 size_t last_idx = stack.size() - 1; 1400 Value old_top = stack[last_idx]; 1401 stack[last_idx] = stack[last_idx - 1]; 1402 stack[last_idx - 1] = stack[last_idx - 2]; 1403 stack[last_idx - 2] = old_top; 1404 } 1405 break; 1406 1407 // OPCODE: DW_OP_abs 1408 // OPERANDS: none 1409 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1410 // value and pushes its absolute value. If the absolute value can not be 1411 // represented, the result is undefined. 1412 case DW_OP_abs: 1413 if (stack.empty()) { 1414 if (error_ptr) 1415 error_ptr->SetErrorString( 1416 "Expression stack needs at least 1 item for DW_OP_abs."); 1417 return false; 1418 } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) { 1419 if (error_ptr) 1420 error_ptr->SetErrorString( 1421 "Failed to take the absolute value of the first stack item."); 1422 return false; 1423 } 1424 break; 1425 1426 // OPCODE: DW_OP_and 1427 // OPERANDS: none 1428 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1429 // operation on the two, and pushes the result. 1430 case DW_OP_and: 1431 if (stack.size() < 2) { 1432 if (error_ptr) 1433 error_ptr->SetErrorString( 1434 "Expression stack needs at least 2 items for DW_OP_and."); 1435 return false; 1436 } else { 1437 tmp = stack.back(); 1438 stack.pop_back(); 1439 stack.back().ResolveValue(exe_ctx) = 1440 stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx); 1441 } 1442 break; 1443 1444 // OPCODE: DW_OP_div 1445 // OPERANDS: none 1446 // DESCRIPTION: pops the top two stack values, divides the former second 1447 // entry by the former top of the stack using signed division, and pushes 1448 // the result. 1449 case DW_OP_div: 1450 if (stack.size() < 2) { 1451 if (error_ptr) 1452 error_ptr->SetErrorString( 1453 "Expression stack needs at least 2 items for DW_OP_div."); 1454 return false; 1455 } else { 1456 tmp = stack.back(); 1457 if (tmp.ResolveValue(exe_ctx).IsZero()) { 1458 if (error_ptr) 1459 error_ptr->SetErrorString("Divide by zero."); 1460 return false; 1461 } else { 1462 stack.pop_back(); 1463 stack.back() = 1464 stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx); 1465 if (!stack.back().ResolveValue(exe_ctx).IsValid()) { 1466 if (error_ptr) 1467 error_ptr->SetErrorString("Divide failed."); 1468 return false; 1469 } 1470 } 1471 } 1472 break; 1473 1474 // OPCODE: DW_OP_minus 1475 // OPERANDS: none 1476 // DESCRIPTION: pops the top two stack values, subtracts the former top 1477 // of the stack from the former second entry, and pushes the result. 1478 case DW_OP_minus: 1479 if (stack.size() < 2) { 1480 if (error_ptr) 1481 error_ptr->SetErrorString( 1482 "Expression stack needs at least 2 items for DW_OP_minus."); 1483 return false; 1484 } else { 1485 tmp = stack.back(); 1486 stack.pop_back(); 1487 stack.back().ResolveValue(exe_ctx) = 1488 stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx); 1489 } 1490 break; 1491 1492 // OPCODE: DW_OP_mod 1493 // OPERANDS: none 1494 // DESCRIPTION: pops the top two stack values and pushes the result of 1495 // the calculation: former second stack entry modulo the former top of the 1496 // stack. 1497 case DW_OP_mod: 1498 if (stack.size() < 2) { 1499 if (error_ptr) 1500 error_ptr->SetErrorString( 1501 "Expression stack needs at least 2 items for DW_OP_mod."); 1502 return false; 1503 } else { 1504 tmp = stack.back(); 1505 stack.pop_back(); 1506 stack.back().ResolveValue(exe_ctx) = 1507 stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx); 1508 } 1509 break; 1510 1511 // OPCODE: DW_OP_mul 1512 // OPERANDS: none 1513 // DESCRIPTION: pops the top two stack entries, multiplies them 1514 // together, and pushes the result. 1515 case DW_OP_mul: 1516 if (stack.size() < 2) { 1517 if (error_ptr) 1518 error_ptr->SetErrorString( 1519 "Expression stack needs at least 2 items for DW_OP_mul."); 1520 return false; 1521 } else { 1522 tmp = stack.back(); 1523 stack.pop_back(); 1524 stack.back().ResolveValue(exe_ctx) = 1525 stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx); 1526 } 1527 break; 1528 1529 // OPCODE: DW_OP_neg 1530 // OPERANDS: none 1531 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1532 case DW_OP_neg: 1533 if (stack.empty()) { 1534 if (error_ptr) 1535 error_ptr->SetErrorString( 1536 "Expression stack needs at least 1 item for DW_OP_neg."); 1537 return false; 1538 } else { 1539 if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) { 1540 if (error_ptr) 1541 error_ptr->SetErrorString("Unary negate failed."); 1542 return false; 1543 } 1544 } 1545 break; 1546 1547 // OPCODE: DW_OP_not 1548 // OPERANDS: none 1549 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1550 // complement 1551 case DW_OP_not: 1552 if (stack.empty()) { 1553 if (error_ptr) 1554 error_ptr->SetErrorString( 1555 "Expression stack needs at least 1 item for DW_OP_not."); 1556 return false; 1557 } else { 1558 if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) { 1559 if (error_ptr) 1560 error_ptr->SetErrorString("Logical NOT failed."); 1561 return false; 1562 } 1563 } 1564 break; 1565 1566 // OPCODE: DW_OP_or 1567 // OPERANDS: none 1568 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 1569 // operation on the two, and pushes the result. 1570 case DW_OP_or: 1571 if (stack.size() < 2) { 1572 if (error_ptr) 1573 error_ptr->SetErrorString( 1574 "Expression stack needs at least 2 items for DW_OP_or."); 1575 return false; 1576 } else { 1577 tmp = stack.back(); 1578 stack.pop_back(); 1579 stack.back().ResolveValue(exe_ctx) = 1580 stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx); 1581 } 1582 break; 1583 1584 // OPCODE: DW_OP_plus 1585 // OPERANDS: none 1586 // DESCRIPTION: pops the top two stack entries, adds them together, and 1587 // pushes the result. 1588 case DW_OP_plus: 1589 if (stack.size() < 2) { 1590 if (error_ptr) 1591 error_ptr->SetErrorString( 1592 "Expression stack needs at least 2 items for DW_OP_plus."); 1593 return false; 1594 } else { 1595 tmp = stack.back(); 1596 stack.pop_back(); 1597 stack.back().GetScalar() += tmp.GetScalar(); 1598 } 1599 break; 1600 1601 // OPCODE: DW_OP_plus_uconst 1602 // OPERANDS: none 1603 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 1604 // constant operand and pushes the result. 1605 case DW_OP_plus_uconst: 1606 if (stack.empty()) { 1607 if (error_ptr) 1608 error_ptr->SetErrorString( 1609 "Expression stack needs at least 1 item for DW_OP_plus_uconst."); 1610 return false; 1611 } else { 1612 const uint64_t uconst_value = opcodes.GetULEB128(&offset); 1613 // Implicit conversion from a UINT to a Scalar... 1614 stack.back().GetScalar() += uconst_value; 1615 if (!stack.back().GetScalar().IsValid()) { 1616 if (error_ptr) 1617 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 1618 return false; 1619 } 1620 } 1621 break; 1622 1623 // OPCODE: DW_OP_shl 1624 // OPERANDS: none 1625 // DESCRIPTION: pops the top two stack entries, shifts the former 1626 // second entry left by the number of bits specified by the former top of 1627 // the stack, and pushes the result. 1628 case DW_OP_shl: 1629 if (stack.size() < 2) { 1630 if (error_ptr) 1631 error_ptr->SetErrorString( 1632 "Expression stack needs at least 2 items for DW_OP_shl."); 1633 return false; 1634 } else { 1635 tmp = stack.back(); 1636 stack.pop_back(); 1637 stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx); 1638 } 1639 break; 1640 1641 // OPCODE: DW_OP_shr 1642 // OPERANDS: none 1643 // DESCRIPTION: pops the top two stack entries, shifts the former second 1644 // entry right logically (filling with zero bits) by the number of bits 1645 // specified by the former top of the stack, and pushes the result. 1646 case DW_OP_shr: 1647 if (stack.size() < 2) { 1648 if (error_ptr) 1649 error_ptr->SetErrorString( 1650 "Expression stack needs at least 2 items for DW_OP_shr."); 1651 return false; 1652 } else { 1653 tmp = stack.back(); 1654 stack.pop_back(); 1655 if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical( 1656 tmp.ResolveValue(exe_ctx))) { 1657 if (error_ptr) 1658 error_ptr->SetErrorString("DW_OP_shr failed."); 1659 return false; 1660 } 1661 } 1662 break; 1663 1664 // OPCODE: DW_OP_shra 1665 // OPERANDS: none 1666 // DESCRIPTION: pops the top two stack entries, shifts the former second 1667 // entry right arithmetically (divide the magnitude by 2, keep the same 1668 // sign for the result) by the number of bits specified by the former top 1669 // of the stack, and pushes the result. 1670 case DW_OP_shra: 1671 if (stack.size() < 2) { 1672 if (error_ptr) 1673 error_ptr->SetErrorString( 1674 "Expression stack needs at least 2 items for DW_OP_shra."); 1675 return false; 1676 } else { 1677 tmp = stack.back(); 1678 stack.pop_back(); 1679 stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx); 1680 } 1681 break; 1682 1683 // OPCODE: DW_OP_xor 1684 // OPERANDS: none 1685 // DESCRIPTION: pops the top two stack entries, performs the bitwise 1686 // exclusive-or operation on the two, and pushes the result. 1687 case DW_OP_xor: 1688 if (stack.size() < 2) { 1689 if (error_ptr) 1690 error_ptr->SetErrorString( 1691 "Expression stack needs at least 2 items for DW_OP_xor."); 1692 return false; 1693 } else { 1694 tmp = stack.back(); 1695 stack.pop_back(); 1696 stack.back().ResolveValue(exe_ctx) = 1697 stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx); 1698 } 1699 break; 1700 1701 // OPCODE: DW_OP_skip 1702 // OPERANDS: int16_t 1703 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 1704 // signed integer constant. The 2-byte constant is the number of bytes of 1705 // the DWARF expression to skip forward or backward from the current 1706 // operation, beginning after the 2-byte constant. 1707 case DW_OP_skip: { 1708 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 1709 lldb::offset_t new_offset = offset + skip_offset; 1710 if (opcodes.ValidOffset(new_offset)) 1711 offset = new_offset; 1712 else { 1713 if (error_ptr) 1714 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 1715 return false; 1716 } 1717 } break; 1718 1719 // OPCODE: DW_OP_bra 1720 // OPERANDS: int16_t 1721 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 1722 // signed integer constant. This operation pops the top of stack. If the 1723 // value popped is not the constant 0, the 2-byte constant operand is the 1724 // number of bytes of the DWARF expression to skip forward or backward from 1725 // the current operation, beginning after the 2-byte constant. 1726 case DW_OP_bra: 1727 if (stack.empty()) { 1728 if (error_ptr) 1729 error_ptr->SetErrorString( 1730 "Expression stack needs at least 1 item for DW_OP_bra."); 1731 return false; 1732 } else { 1733 tmp = stack.back(); 1734 stack.pop_back(); 1735 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 1736 Scalar zero(0); 1737 if (tmp.ResolveValue(exe_ctx) != zero) { 1738 lldb::offset_t new_offset = offset + bra_offset; 1739 if (opcodes.ValidOffset(new_offset)) 1740 offset = new_offset; 1741 else { 1742 if (error_ptr) 1743 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 1744 return false; 1745 } 1746 } 1747 } 1748 break; 1749 1750 // OPCODE: DW_OP_eq 1751 // OPERANDS: none 1752 // DESCRIPTION: pops the top two stack values, compares using the 1753 // equals (==) operator. 1754 // STACK RESULT: push the constant value 1 onto the stack if the result 1755 // of the operation is true or the constant value 0 if the result of the 1756 // operation is false. 1757 case DW_OP_eq: 1758 if (stack.size() < 2) { 1759 if (error_ptr) 1760 error_ptr->SetErrorString( 1761 "Expression stack needs at least 2 items for DW_OP_eq."); 1762 return false; 1763 } else { 1764 tmp = stack.back(); 1765 stack.pop_back(); 1766 stack.back().ResolveValue(exe_ctx) = 1767 stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx); 1768 } 1769 break; 1770 1771 // OPCODE: DW_OP_ge 1772 // OPERANDS: none 1773 // DESCRIPTION: pops the top two stack values, compares using the 1774 // greater than or equal to (>=) operator. 1775 // STACK RESULT: push the constant value 1 onto the stack if the result 1776 // of the operation is true or the constant value 0 if the result of the 1777 // operation is false. 1778 case DW_OP_ge: 1779 if (stack.size() < 2) { 1780 if (error_ptr) 1781 error_ptr->SetErrorString( 1782 "Expression stack needs at least 2 items for DW_OP_ge."); 1783 return false; 1784 } else { 1785 tmp = stack.back(); 1786 stack.pop_back(); 1787 stack.back().ResolveValue(exe_ctx) = 1788 stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx); 1789 } 1790 break; 1791 1792 // OPCODE: DW_OP_gt 1793 // OPERANDS: none 1794 // DESCRIPTION: pops the top two stack values, compares using the 1795 // greater than (>) operator. 1796 // STACK RESULT: push the constant value 1 onto the stack if the result 1797 // of the operation is true or the constant value 0 if the result of the 1798 // operation is false. 1799 case DW_OP_gt: 1800 if (stack.size() < 2) { 1801 if (error_ptr) 1802 error_ptr->SetErrorString( 1803 "Expression stack needs at least 2 items for DW_OP_gt."); 1804 return false; 1805 } else { 1806 tmp = stack.back(); 1807 stack.pop_back(); 1808 stack.back().ResolveValue(exe_ctx) = 1809 stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx); 1810 } 1811 break; 1812 1813 // OPCODE: DW_OP_le 1814 // OPERANDS: none 1815 // DESCRIPTION: pops the top two stack values, compares using the 1816 // less than or equal to (<=) operator. 1817 // STACK RESULT: push the constant value 1 onto the stack if the result 1818 // of the operation is true or the constant value 0 if the result of the 1819 // operation is false. 1820 case DW_OP_le: 1821 if (stack.size() < 2) { 1822 if (error_ptr) 1823 error_ptr->SetErrorString( 1824 "Expression stack needs at least 2 items for DW_OP_le."); 1825 return false; 1826 } else { 1827 tmp = stack.back(); 1828 stack.pop_back(); 1829 stack.back().ResolveValue(exe_ctx) = 1830 stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx); 1831 } 1832 break; 1833 1834 // OPCODE: DW_OP_lt 1835 // OPERANDS: none 1836 // DESCRIPTION: pops the top two stack values, compares using the 1837 // less than (<) operator. 1838 // STACK RESULT: push the constant value 1 onto the stack if the result 1839 // of the operation is true or the constant value 0 if the result of the 1840 // operation is false. 1841 case DW_OP_lt: 1842 if (stack.size() < 2) { 1843 if (error_ptr) 1844 error_ptr->SetErrorString( 1845 "Expression stack needs at least 2 items for DW_OP_lt."); 1846 return false; 1847 } else { 1848 tmp = stack.back(); 1849 stack.pop_back(); 1850 stack.back().ResolveValue(exe_ctx) = 1851 stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx); 1852 } 1853 break; 1854 1855 // OPCODE: DW_OP_ne 1856 // OPERANDS: none 1857 // DESCRIPTION: pops the top two stack values, compares using the 1858 // not equal (!=) operator. 1859 // STACK RESULT: push the constant value 1 onto the stack if the result 1860 // of the operation is true or the constant value 0 if the result of the 1861 // operation is false. 1862 case DW_OP_ne: 1863 if (stack.size() < 2) { 1864 if (error_ptr) 1865 error_ptr->SetErrorString( 1866 "Expression stack needs at least 2 items for DW_OP_ne."); 1867 return false; 1868 } else { 1869 tmp = stack.back(); 1870 stack.pop_back(); 1871 stack.back().ResolveValue(exe_ctx) = 1872 stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx); 1873 } 1874 break; 1875 1876 // OPCODE: DW_OP_litn 1877 // OPERANDS: none 1878 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 1879 // STACK RESULT: push the unsigned literal constant value onto the top 1880 // of the stack. 1881 case DW_OP_lit0: 1882 case DW_OP_lit1: 1883 case DW_OP_lit2: 1884 case DW_OP_lit3: 1885 case DW_OP_lit4: 1886 case DW_OP_lit5: 1887 case DW_OP_lit6: 1888 case DW_OP_lit7: 1889 case DW_OP_lit8: 1890 case DW_OP_lit9: 1891 case DW_OP_lit10: 1892 case DW_OP_lit11: 1893 case DW_OP_lit12: 1894 case DW_OP_lit13: 1895 case DW_OP_lit14: 1896 case DW_OP_lit15: 1897 case DW_OP_lit16: 1898 case DW_OP_lit17: 1899 case DW_OP_lit18: 1900 case DW_OP_lit19: 1901 case DW_OP_lit20: 1902 case DW_OP_lit21: 1903 case DW_OP_lit22: 1904 case DW_OP_lit23: 1905 case DW_OP_lit24: 1906 case DW_OP_lit25: 1907 case DW_OP_lit26: 1908 case DW_OP_lit27: 1909 case DW_OP_lit28: 1910 case DW_OP_lit29: 1911 case DW_OP_lit30: 1912 case DW_OP_lit31: 1913 stack.push_back(to_generic(op - DW_OP_lit0)); 1914 break; 1915 1916 // OPCODE: DW_OP_regN 1917 // OPERANDS: none 1918 // DESCRIPTION: Push the value in register n on the top of the stack. 1919 case DW_OP_reg0: 1920 case DW_OP_reg1: 1921 case DW_OP_reg2: 1922 case DW_OP_reg3: 1923 case DW_OP_reg4: 1924 case DW_OP_reg5: 1925 case DW_OP_reg6: 1926 case DW_OP_reg7: 1927 case DW_OP_reg8: 1928 case DW_OP_reg9: 1929 case DW_OP_reg10: 1930 case DW_OP_reg11: 1931 case DW_OP_reg12: 1932 case DW_OP_reg13: 1933 case DW_OP_reg14: 1934 case DW_OP_reg15: 1935 case DW_OP_reg16: 1936 case DW_OP_reg17: 1937 case DW_OP_reg18: 1938 case DW_OP_reg19: 1939 case DW_OP_reg20: 1940 case DW_OP_reg21: 1941 case DW_OP_reg22: 1942 case DW_OP_reg23: 1943 case DW_OP_reg24: 1944 case DW_OP_reg25: 1945 case DW_OP_reg26: 1946 case DW_OP_reg27: 1947 case DW_OP_reg28: 1948 case DW_OP_reg29: 1949 case DW_OP_reg30: 1950 case DW_OP_reg31: { 1951 reg_num = op - DW_OP_reg0; 1952 1953 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 1954 stack.push_back(tmp); 1955 else 1956 return false; 1957 } break; 1958 // OPCODE: DW_OP_regx 1959 // OPERANDS: 1960 // ULEB128 literal operand that encodes the register. 1961 // DESCRIPTION: Push the value in register on the top of the stack. 1962 case DW_OP_regx: { 1963 reg_num = opcodes.GetULEB128(&offset); 1964 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 1965 stack.push_back(tmp); 1966 else 1967 return false; 1968 } break; 1969 1970 // OPCODE: DW_OP_bregN 1971 // OPERANDS: 1972 // SLEB128 offset from register N 1973 // DESCRIPTION: Value is in memory at the address specified by register 1974 // N plus an offset. 1975 case DW_OP_breg0: 1976 case DW_OP_breg1: 1977 case DW_OP_breg2: 1978 case DW_OP_breg3: 1979 case DW_OP_breg4: 1980 case DW_OP_breg5: 1981 case DW_OP_breg6: 1982 case DW_OP_breg7: 1983 case DW_OP_breg8: 1984 case DW_OP_breg9: 1985 case DW_OP_breg10: 1986 case DW_OP_breg11: 1987 case DW_OP_breg12: 1988 case DW_OP_breg13: 1989 case DW_OP_breg14: 1990 case DW_OP_breg15: 1991 case DW_OP_breg16: 1992 case DW_OP_breg17: 1993 case DW_OP_breg18: 1994 case DW_OP_breg19: 1995 case DW_OP_breg20: 1996 case DW_OP_breg21: 1997 case DW_OP_breg22: 1998 case DW_OP_breg23: 1999 case DW_OP_breg24: 2000 case DW_OP_breg25: 2001 case DW_OP_breg26: 2002 case DW_OP_breg27: 2003 case DW_OP_breg28: 2004 case DW_OP_breg29: 2005 case DW_OP_breg30: 2006 case DW_OP_breg31: { 2007 reg_num = op - DW_OP_breg0; 2008 2009 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, 2010 tmp)) { 2011 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2012 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; 2013 tmp.ClearContext(); 2014 stack.push_back(tmp); 2015 stack.back().SetValueType(Value::ValueType::LoadAddress); 2016 } else 2017 return false; 2018 } break; 2019 // OPCODE: DW_OP_bregx 2020 // OPERANDS: 2 2021 // ULEB128 literal operand that encodes the register. 2022 // SLEB128 offset from register N 2023 // DESCRIPTION: Value is in memory at the address specified by register 2024 // N plus an offset. 2025 case DW_OP_bregx: { 2026 reg_num = opcodes.GetULEB128(&offset); 2027 2028 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, 2029 tmp)) { 2030 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2031 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; 2032 tmp.ClearContext(); 2033 stack.push_back(tmp); 2034 stack.back().SetValueType(Value::ValueType::LoadAddress); 2035 } else 2036 return false; 2037 } break; 2038 2039 case DW_OP_fbreg: 2040 if (exe_ctx) { 2041 if (frame) { 2042 Scalar value; 2043 if (frame->GetFrameBaseValue(value, error_ptr)) { 2044 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2045 value += fbreg_offset; 2046 stack.push_back(value); 2047 stack.back().SetValueType(Value::ValueType::LoadAddress); 2048 } else 2049 return false; 2050 } else { 2051 if (error_ptr) 2052 error_ptr->SetErrorString( 2053 "Invalid stack frame in context for DW_OP_fbreg opcode."); 2054 return false; 2055 } 2056 } else { 2057 if (error_ptr) 2058 error_ptr->SetErrorString( 2059 "NULL execution context for DW_OP_fbreg.\n"); 2060 return false; 2061 } 2062 2063 break; 2064 2065 // OPCODE: DW_OP_nop 2066 // OPERANDS: none 2067 // DESCRIPTION: A place holder. It has no effect on the location stack 2068 // or any of its values. 2069 case DW_OP_nop: 2070 break; 2071 2072 // OPCODE: DW_OP_piece 2073 // OPERANDS: 1 2074 // ULEB128: byte size of the piece 2075 // DESCRIPTION: The operand describes the size in bytes of the piece of 2076 // the object referenced by the DWARF expression whose result is at the top 2077 // of the stack. If the piece is located in a register, but does not occupy 2078 // the entire register, the placement of the piece within that register is 2079 // defined by the ABI. 2080 // 2081 // Many compilers store a single variable in sets of registers, or store a 2082 // variable partially in memory and partially in registers. DW_OP_piece 2083 // provides a way of describing how large a part of a variable a particular 2084 // DWARF expression refers to. 2085 case DW_OP_piece: { 2086 const uint64_t piece_byte_size = opcodes.GetULEB128(&offset); 2087 2088 if (piece_byte_size > 0) { 2089 Value curr_piece; 2090 2091 if (stack.empty()) { 2092 // In a multi-piece expression, this means that the current piece is 2093 // not available. Fill with zeros for now by resizing the data and 2094 // appending it 2095 curr_piece.ResizeData(piece_byte_size); 2096 // Note that "0" is not a correct value for the unknown bits. 2097 // It would be better to also return a mask of valid bits together 2098 // with the expression result, so the debugger can print missing 2099 // members as "<optimized out>" or something. 2100 ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size); 2101 pieces.AppendDataToHostBuffer(curr_piece); 2102 } else { 2103 Status error; 2104 // Extract the current piece into "curr_piece" 2105 Value curr_piece_source_value(stack.back()); 2106 stack.pop_back(); 2107 2108 const Value::ValueType curr_piece_source_value_type = 2109 curr_piece_source_value.GetValueType(); 2110 switch (curr_piece_source_value_type) { 2111 case Value::ValueType::Invalid: 2112 return false; 2113 case Value::ValueType::LoadAddress: 2114 if (process) { 2115 if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) { 2116 lldb::addr_t load_addr = 2117 curr_piece_source_value.GetScalar().ULongLong( 2118 LLDB_INVALID_ADDRESS); 2119 if (process->ReadMemory( 2120 load_addr, curr_piece.GetBuffer().GetBytes(), 2121 piece_byte_size, error) != piece_byte_size) { 2122 if (error_ptr) 2123 error_ptr->SetErrorStringWithFormat( 2124 "failed to read memory DW_OP_piece(%" PRIu64 2125 ") from 0x%" PRIx64, 2126 piece_byte_size, load_addr); 2127 return false; 2128 } 2129 } else { 2130 if (error_ptr) 2131 error_ptr->SetErrorStringWithFormat( 2132 "failed to resize the piece memory buffer for " 2133 "DW_OP_piece(%" PRIu64 ")", 2134 piece_byte_size); 2135 return false; 2136 } 2137 } 2138 break; 2139 2140 case Value::ValueType::FileAddress: 2141 case Value::ValueType::HostAddress: 2142 if (error_ptr) { 2143 lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong( 2144 LLDB_INVALID_ADDRESS); 2145 error_ptr->SetErrorStringWithFormat( 2146 "failed to read memory DW_OP_piece(%" PRIu64 2147 ") from %s address 0x%" PRIx64, 2148 piece_byte_size, curr_piece_source_value.GetValueType() == 2149 Value::ValueType::FileAddress 2150 ? "file" 2151 : "host", 2152 addr); 2153 } 2154 return false; 2155 2156 case Value::ValueType::Scalar: { 2157 uint32_t bit_size = piece_byte_size * 8; 2158 uint32_t bit_offset = 0; 2159 Scalar &scalar = curr_piece_source_value.GetScalar(); 2160 if (!scalar.ExtractBitfield( 2161 bit_size, bit_offset)) { 2162 if (error_ptr) 2163 error_ptr->SetErrorStringWithFormat( 2164 "unable to extract %" PRIu64 " bytes from a %" PRIu64 2165 " byte scalar value.", 2166 piece_byte_size, 2167 (uint64_t)curr_piece_source_value.GetScalar() 2168 .GetByteSize()); 2169 return false; 2170 } 2171 // Create curr_piece with bit_size. By default Scalar 2172 // grows to the nearest host integer type. 2173 llvm::APInt fail_value(1, 0, false); 2174 llvm::APInt ap_int = scalar.UInt128(fail_value); 2175 assert(ap_int.getBitWidth() >= bit_size); 2176 llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(), 2177 ap_int.getNumWords()}; 2178 curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf)); 2179 } break; 2180 } 2181 2182 // Check if this is the first piece? 2183 if (op_piece_offset == 0) { 2184 // This is the first piece, we should push it back onto the stack 2185 // so subsequent pieces will be able to access this piece and add 2186 // to it. 2187 if (pieces.AppendDataToHostBuffer(curr_piece) == 0) { 2188 if (error_ptr) 2189 error_ptr->SetErrorString("failed to append piece data"); 2190 return false; 2191 } 2192 } else { 2193 // If this is the second or later piece there should be a value on 2194 // the stack. 2195 if (pieces.GetBuffer().GetByteSize() != op_piece_offset) { 2196 if (error_ptr) 2197 error_ptr->SetErrorStringWithFormat( 2198 "DW_OP_piece for offset %" PRIu64 2199 " but top of stack is of size %" PRIu64, 2200 op_piece_offset, pieces.GetBuffer().GetByteSize()); 2201 return false; 2202 } 2203 2204 if (pieces.AppendDataToHostBuffer(curr_piece) == 0) { 2205 if (error_ptr) 2206 error_ptr->SetErrorString("failed to append piece data"); 2207 return false; 2208 } 2209 } 2210 } 2211 op_piece_offset += piece_byte_size; 2212 } 2213 } break; 2214 2215 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); 2216 if (stack.size() < 1) { 2217 if (error_ptr) 2218 error_ptr->SetErrorString( 2219 "Expression stack needs at least 1 item for DW_OP_bit_piece."); 2220 return false; 2221 } else { 2222 const uint64_t piece_bit_size = opcodes.GetULEB128(&offset); 2223 const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset); 2224 switch (stack.back().GetValueType()) { 2225 case Value::ValueType::Invalid: 2226 return false; 2227 case Value::ValueType::Scalar: { 2228 if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size, 2229 piece_bit_offset)) { 2230 if (error_ptr) 2231 error_ptr->SetErrorStringWithFormat( 2232 "unable to extract %" PRIu64 " bit value with %" PRIu64 2233 " bit offset from a %" PRIu64 " bit scalar value.", 2234 piece_bit_size, piece_bit_offset, 2235 (uint64_t)(stack.back().GetScalar().GetByteSize() * 8)); 2236 return false; 2237 } 2238 } break; 2239 2240 case Value::ValueType::FileAddress: 2241 case Value::ValueType::LoadAddress: 2242 case Value::ValueType::HostAddress: 2243 if (error_ptr) { 2244 error_ptr->SetErrorStringWithFormat( 2245 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64 2246 ", bit_offset = %" PRIu64 ") from an address value.", 2247 piece_bit_size, piece_bit_offset); 2248 } 2249 return false; 2250 } 2251 } 2252 break; 2253 2254 // OPCODE: DW_OP_implicit_value 2255 // OPERANDS: 2 2256 // ULEB128 size of the value block in bytes 2257 // uint8_t* block bytes encoding value in target's memory 2258 // representation 2259 // DESCRIPTION: Value is immediately stored in block in the debug info with 2260 // the memory representation of the target. 2261 case DW_OP_implicit_value: { 2262 const uint32_t len = opcodes.GetULEB128(&offset); 2263 const void *data = opcodes.GetData(&offset, len); 2264 2265 if (!data) { 2266 LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data"); 2267 LLDB_ERRORF(error_ptr, "Could not evaluate %s.", 2268 DW_OP_value_to_name(op)); 2269 return false; 2270 } 2271 2272 Value result(data, len); 2273 stack.push_back(result); 2274 break; 2275 } 2276 2277 // OPCODE: DW_OP_push_object_address 2278 // OPERANDS: none 2279 // DESCRIPTION: Pushes the address of the object currently being 2280 // evaluated as part of evaluation of a user presented expression. This 2281 // object may correspond to an independent variable described by its own 2282 // DIE or it may be a component of an array, structure, or class whose 2283 // address has been dynamically determined by an earlier step during user 2284 // expression evaluation. 2285 case DW_OP_push_object_address: 2286 if (object_address_ptr) 2287 stack.push_back(*object_address_ptr); 2288 else { 2289 if (error_ptr) 2290 error_ptr->SetErrorString("DW_OP_push_object_address used without " 2291 "specifying an object address"); 2292 return false; 2293 } 2294 break; 2295 2296 // OPCODE: DW_OP_call2 2297 // OPERANDS: 2298 // uint16_t compile unit relative offset of a DIE 2299 // DESCRIPTION: Performs subroutine calls during evaluation 2300 // of a DWARF expression. The operand is the 2-byte unsigned offset of a 2301 // debugging information entry in the current compilation unit. 2302 // 2303 // Operand interpretation is exactly like that for DW_FORM_ref2. 2304 // 2305 // This operation transfers control of DWARF expression evaluation to the 2306 // DW_AT_location attribute of the referenced DIE. If there is no such 2307 // attribute, then there is no effect. Execution of the DWARF expression of 2308 // a DW_AT_location attribute may add to and/or remove from values on the 2309 // stack. Execution returns to the point following the call when the end of 2310 // the attribute is reached. Values on the stack at the time of the call 2311 // may be used as parameters by the called expression and values left on 2312 // the stack by the called expression may be used as return values by prior 2313 // agreement between the calling and called expressions. 2314 case DW_OP_call2: 2315 if (error_ptr) 2316 error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2."); 2317 return false; 2318 // OPCODE: DW_OP_call4 2319 // OPERANDS: 1 2320 // uint32_t compile unit relative offset of a DIE 2321 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2322 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of 2323 // a debugging information entry in the current compilation unit. 2324 // 2325 // Operand interpretation DW_OP_call4 is exactly like that for 2326 // DW_FORM_ref4. 2327 // 2328 // This operation transfers control of DWARF expression evaluation to the 2329 // DW_AT_location attribute of the referenced DIE. If there is no such 2330 // attribute, then there is no effect. Execution of the DWARF expression of 2331 // a DW_AT_location attribute may add to and/or remove from values on the 2332 // stack. Execution returns to the point following the call when the end of 2333 // the attribute is reached. Values on the stack at the time of the call 2334 // may be used as parameters by the called expression and values left on 2335 // the stack by the called expression may be used as return values by prior 2336 // agreement between the calling and called expressions. 2337 case DW_OP_call4: 2338 if (error_ptr) 2339 error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4."); 2340 return false; 2341 2342 // OPCODE: DW_OP_stack_value 2343 // OPERANDS: None 2344 // DESCRIPTION: Specifies that the object does not exist in memory but 2345 // rather is a constant value. The value from the top of the stack is the 2346 // value to be used. This is the actual object value and not the location. 2347 case DW_OP_stack_value: 2348 if (stack.empty()) { 2349 if (error_ptr) 2350 error_ptr->SetErrorString( 2351 "Expression stack needs at least 1 item for DW_OP_stack_value."); 2352 return false; 2353 } 2354 stack.back().SetValueType(Value::ValueType::Scalar); 2355 break; 2356 2357 // OPCODE: DW_OP_convert 2358 // OPERANDS: 1 2359 // A ULEB128 that is either a DIE offset of a 2360 // DW_TAG_base_type or 0 for the generic (pointer-sized) type. 2361 // 2362 // DESCRIPTION: Pop the top stack element, convert it to a 2363 // different type, and push the result. 2364 case DW_OP_convert: { 2365 if (stack.size() < 1) { 2366 if (error_ptr) 2367 error_ptr->SetErrorString( 2368 "Expression stack needs at least 1 item for DW_OP_convert."); 2369 return false; 2370 } 2371 const uint64_t die_offset = opcodes.GetULEB128(&offset); 2372 uint64_t bit_size; 2373 bool sign; 2374 if (die_offset == 0) { 2375 // The generic type has the size of an address on the target 2376 // machine and an unspecified signedness. Scalar has no 2377 // "unspecified signedness", so we use unsigned types. 2378 if (!module_sp) { 2379 if (error_ptr) 2380 error_ptr->SetErrorString("No module"); 2381 return false; 2382 } 2383 sign = false; 2384 bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8; 2385 if (!bit_size) { 2386 if (error_ptr) 2387 error_ptr->SetErrorString("unspecified architecture"); 2388 return false; 2389 } 2390 } else { 2391 // Retrieve the type DIE that the value is being converted to. 2392 // FIXME: the constness has annoying ripple effects. 2393 DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset); 2394 if (!die) { 2395 if (error_ptr) 2396 error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE"); 2397 return false; 2398 } 2399 uint64_t encoding = 2400 die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user); 2401 bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8; 2402 if (!bit_size) 2403 bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0); 2404 if (!bit_size) { 2405 if (error_ptr) 2406 error_ptr->SetErrorString("Unsupported type size in DW_OP_convert"); 2407 return false; 2408 } 2409 switch (encoding) { 2410 case DW_ATE_signed: 2411 case DW_ATE_signed_char: 2412 sign = true; 2413 break; 2414 case DW_ATE_unsigned: 2415 case DW_ATE_unsigned_char: 2416 sign = false; 2417 break; 2418 default: 2419 if (error_ptr) 2420 error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert"); 2421 return false; 2422 } 2423 } 2424 Scalar &top = stack.back().ResolveValue(exe_ctx); 2425 top.TruncOrExtendTo(bit_size, sign); 2426 break; 2427 } 2428 2429 // OPCODE: DW_OP_call_frame_cfa 2430 // OPERANDS: None 2431 // DESCRIPTION: Specifies a DWARF expression that pushes the value of 2432 // the canonical frame address consistent with the call frame information 2433 // located in .debug_frame (or in the FDEs of the eh_frame section). 2434 case DW_OP_call_frame_cfa: 2435 if (frame) { 2436 // Note that we don't have to parse FDEs because this DWARF expression 2437 // is commonly evaluated with a valid stack frame. 2438 StackID id = frame->GetStackID(); 2439 addr_t cfa = id.GetCallFrameAddress(); 2440 if (cfa != LLDB_INVALID_ADDRESS) { 2441 stack.push_back(Scalar(cfa)); 2442 stack.back().SetValueType(Value::ValueType::LoadAddress); 2443 } else if (error_ptr) 2444 error_ptr->SetErrorString("Stack frame does not include a canonical " 2445 "frame address for DW_OP_call_frame_cfa " 2446 "opcode."); 2447 } else { 2448 if (error_ptr) 2449 error_ptr->SetErrorString("Invalid stack frame in context for " 2450 "DW_OP_call_frame_cfa opcode."); 2451 return false; 2452 } 2453 break; 2454 2455 // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension 2456 // opcode, DW_OP_GNU_push_tls_address) 2457 // OPERANDS: none 2458 // DESCRIPTION: Pops a TLS offset from the stack, converts it to 2459 // an address in the current thread's thread-local storage block, and 2460 // pushes it on the stack. 2461 case DW_OP_form_tls_address: 2462 case DW_OP_GNU_push_tls_address: { 2463 if (stack.size() < 1) { 2464 if (error_ptr) { 2465 if (op == DW_OP_form_tls_address) 2466 error_ptr->SetErrorString( 2467 "DW_OP_form_tls_address needs an argument."); 2468 else 2469 error_ptr->SetErrorString( 2470 "DW_OP_GNU_push_tls_address needs an argument."); 2471 } 2472 return false; 2473 } 2474 2475 if (!exe_ctx || !module_sp) { 2476 if (error_ptr) 2477 error_ptr->SetErrorString("No context to evaluate TLS within."); 2478 return false; 2479 } 2480 2481 Thread *thread = exe_ctx->GetThreadPtr(); 2482 if (!thread) { 2483 if (error_ptr) 2484 error_ptr->SetErrorString("No thread to evaluate TLS within."); 2485 return false; 2486 } 2487 2488 // Lookup the TLS block address for this thread and module. 2489 const addr_t tls_file_addr = 2490 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2491 const addr_t tls_load_addr = 2492 thread->GetThreadLocalData(module_sp, tls_file_addr); 2493 2494 if (tls_load_addr == LLDB_INVALID_ADDRESS) { 2495 if (error_ptr) 2496 error_ptr->SetErrorString( 2497 "No TLS data currently exists for this thread."); 2498 return false; 2499 } 2500 2501 stack.back().GetScalar() = tls_load_addr; 2502 stack.back().SetValueType(Value::ValueType::LoadAddress); 2503 } break; 2504 2505 // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.) 2506 // OPERANDS: 1 2507 // ULEB128: index to the .debug_addr section 2508 // DESCRIPTION: Pushes an address to the stack from the .debug_addr 2509 // section with the base address specified by the DW_AT_addr_base attribute 2510 // and the 0 based index is the ULEB128 encoded index. 2511 case DW_OP_addrx: 2512 case DW_OP_GNU_addr_index: { 2513 if (!dwarf_cu) { 2514 if (error_ptr) 2515 error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a " 2516 "compile unit being specified"); 2517 return false; 2518 } 2519 uint64_t index = opcodes.GetULEB128(&offset); 2520 lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index); 2521 stack.push_back(Scalar(value)); 2522 stack.back().SetValueType(Value::ValueType::FileAddress); 2523 } break; 2524 2525 // OPCODE: DW_OP_GNU_const_index 2526 // OPERANDS: 1 2527 // ULEB128: index to the .debug_addr section 2528 // DESCRIPTION: Pushes an constant with the size of a machine address to 2529 // the stack from the .debug_addr section with the base address specified 2530 // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128 2531 // encoded index. 2532 case DW_OP_GNU_const_index: { 2533 if (!dwarf_cu) { 2534 if (error_ptr) 2535 error_ptr->SetErrorString("DW_OP_GNU_const_index found without a " 2536 "compile unit being specified"); 2537 return false; 2538 } 2539 uint64_t index = opcodes.GetULEB128(&offset); 2540 lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index); 2541 stack.push_back(Scalar(value)); 2542 } break; 2543 2544 case DW_OP_GNU_entry_value: 2545 case DW_OP_entry_value: { 2546 if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset, 2547 error_ptr, log)) { 2548 LLDB_ERRORF(error_ptr, "Could not evaluate %s.", 2549 DW_OP_value_to_name(op)); 2550 return false; 2551 } 2552 break; 2553 } 2554 2555 default: 2556 if (error_ptr) 2557 error_ptr->SetErrorStringWithFormatv( 2558 "Unhandled opcode {0} in DWARFExpression", LocationAtom(op)); 2559 return false; 2560 } 2561 } 2562 2563 if (stack.empty()) { 2564 // Nothing on the stack, check if we created a piece value from DW_OP_piece 2565 // or DW_OP_bit_piece opcodes 2566 if (pieces.GetBuffer().GetByteSize()) { 2567 result = pieces; 2568 } else { 2569 if (error_ptr) 2570 error_ptr->SetErrorString("Stack empty after evaluation."); 2571 return false; 2572 } 2573 } else { 2574 if (log && log->GetVerbose()) { 2575 size_t count = stack.size(); 2576 LLDB_LOGF(log, "Stack after operation has %" PRIu64 " values:", 2577 (uint64_t)count); 2578 for (size_t i = 0; i < count; ++i) { 2579 StreamString new_value; 2580 new_value.Printf("[%" PRIu64 "]", (uint64_t)i); 2581 stack[i].Dump(&new_value); 2582 LLDB_LOGF(log, " %s", new_value.GetData()); 2583 } 2584 } 2585 result = stack.back(); 2586 } 2587 return true; // Return true on success 2588 } 2589 2590 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc, 2591 ByteOrder byte_order, uint32_t addr_size) { 2592 auto buffer_sp = 2593 std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size()); 2594 return DataExtractor(buffer_sp, byte_order, addr_size); 2595 } 2596 2597 llvm::Optional<DataExtractor> 2598 DWARFExpression::GetLocationExpression(addr_t load_function_start, 2599 addr_t addr) const { 2600 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS); 2601 2602 std::unique_ptr<llvm::DWARFLocationTable> loctable_up = 2603 m_dwarf_cu->GetLocationTable(m_data); 2604 llvm::Optional<DataExtractor> result; 2605 uint64_t offset = 0; 2606 auto lookup_addr = 2607 [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> { 2608 addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index); 2609 if (address == LLDB_INVALID_ADDRESS) 2610 return llvm::None; 2611 return llvm::object::SectionedAddress{address}; 2612 }; 2613 auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) { 2614 if (!loc) { 2615 LLDB_LOG_ERROR(log, loc.takeError(), "{0}"); 2616 return true; 2617 } 2618 if (loc->Range) { 2619 // This relocates low_pc and high_pc by adding the difference between the 2620 // function file address, and the actual address it is loaded in memory. 2621 addr_t slide = load_function_start - m_loclist_addresses->func_file_addr; 2622 loc->Range->LowPC += slide; 2623 loc->Range->HighPC += slide; 2624 2625 if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC) 2626 result = ToDataExtractor(*loc, m_data.GetByteOrder(), 2627 m_data.GetAddressByteSize()); 2628 } 2629 return !result; 2630 }; 2631 llvm::Error E = loctable_up->visitAbsoluteLocationList( 2632 offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, 2633 lookup_addr, process_list); 2634 if (E) 2635 LLDB_LOG_ERROR(log, std::move(E), "{0}"); 2636 return result; 2637 } 2638 2639 bool DWARFExpression::MatchesOperand(StackFrame &frame, 2640 const Instruction::Operand &operand) { 2641 using namespace OperandMatchers; 2642 2643 RegisterContextSP reg_ctx_sp = frame.GetRegisterContext(); 2644 if (!reg_ctx_sp) { 2645 return false; 2646 } 2647 2648 DataExtractor opcodes; 2649 if (IsLocationList()) { 2650 SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction); 2651 if (!sc.function) 2652 return false; 2653 2654 addr_t load_function_start = 2655 sc.function->GetAddressRange().GetBaseAddress().GetFileAddress(); 2656 if (load_function_start == LLDB_INVALID_ADDRESS) 2657 return false; 2658 2659 addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress( 2660 frame.CalculateTarget().get()); 2661 2662 if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc)) 2663 opcodes = std::move(*expr); 2664 else 2665 return false; 2666 } else 2667 opcodes = m_data; 2668 2669 2670 lldb::offset_t op_offset = 0; 2671 uint8_t opcode = opcodes.GetU8(&op_offset); 2672 2673 if (opcode == DW_OP_fbreg) { 2674 int64_t offset = opcodes.GetSLEB128(&op_offset); 2675 2676 DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr); 2677 if (!fb_expr) { 2678 return false; 2679 } 2680 2681 auto recurse = [&frame, fb_expr](const Instruction::Operand &child) { 2682 return fb_expr->MatchesOperand(frame, child); 2683 }; 2684 2685 if (!offset && 2686 MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference), 2687 recurse)(operand)) { 2688 return true; 2689 } 2690 2691 return MatchUnaryOp( 2692 MatchOpType(Instruction::Operand::Type::Dereference), 2693 MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum), 2694 MatchImmOp(offset), recurse))(operand); 2695 } 2696 2697 bool dereference = false; 2698 const RegisterInfo *reg = nullptr; 2699 int64_t offset = 0; 2700 2701 if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) { 2702 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0); 2703 } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) { 2704 offset = opcodes.GetSLEB128(&op_offset); 2705 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0); 2706 } else if (opcode == DW_OP_regx) { 2707 uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset)); 2708 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num); 2709 } else if (opcode == DW_OP_bregx) { 2710 uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset)); 2711 offset = opcodes.GetSLEB128(&op_offset); 2712 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num); 2713 } else { 2714 return false; 2715 } 2716 2717 if (!reg) { 2718 return false; 2719 } 2720 2721 if (dereference) { 2722 if (!offset && 2723 MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference), 2724 MatchRegOp(*reg))(operand)) { 2725 return true; 2726 } 2727 2728 return MatchUnaryOp( 2729 MatchOpType(Instruction::Operand::Type::Dereference), 2730 MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum), 2731 MatchRegOp(*reg), 2732 MatchImmOp(offset)))(operand); 2733 } else { 2734 return MatchRegOp(*reg)(operand); 2735 } 2736 } 2737 2738