1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <inttypes.h>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/RegisterValue.h"
21 #include "lldb/Utility/Scalar.h"
22 #include "lldb/Utility/StreamString.h"
23 #include "lldb/Utility/VMRange.h"
24 
25 #include "lldb/Host/Host.h"
26 #include "lldb/Utility/Endian.h"
27 
28 #include "lldb/Symbol/Function.h"
29 
30 #include "lldb/Target/ABI.h"
31 #include "lldb/Target/ExecutionContext.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/RegisterContext.h"
34 #include "lldb/Target/StackFrame.h"
35 #include "lldb/Target/StackID.h"
36 #include "lldb/Target/Target.h"
37 #include "lldb/Target/Thread.h"
38 
39 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 
44 static lldb::addr_t
45 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
46                                 uint32_t index) {
47   uint32_t index_size = dwarf_cu->GetAddressByteSize();
48   dw_offset_t addr_base = dwarf_cu->GetAddrBase();
49   lldb::offset_t offset = addr_base + index * index_size;
50   const DWARFDataExtractor &data =
51       dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
52   if (data.ValidOffsetForDataOfSize(offset, index_size))
53     return data.GetMaxU64_unchecked(&offset, index_size);
54   return LLDB_INVALID_ADDRESS;
55 }
56 
57 // DWARFExpression constructor
58 DWARFExpression::DWARFExpression()
59     : m_module_wp(), m_data(), m_dwarf_cu(nullptr),
60       m_reg_kind(eRegisterKindDWARF) {}
61 
62 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
63                                  const DataExtractor &data,
64                                  const DWARFUnit *dwarf_cu)
65     : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu),
66       m_reg_kind(eRegisterKindDWARF) {
67   if (module_sp)
68     m_module_wp = module_sp;
69 }
70 
71 // Destructor
72 DWARFExpression::~DWARFExpression() {}
73 
74 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
75 
76 void DWARFExpression::UpdateValue(uint64_t const_value,
77                                   lldb::offset_t const_value_byte_size,
78                                   uint8_t addr_byte_size) {
79   if (!const_value_byte_size)
80     return;
81 
82   m_data.SetData(
83       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
84   m_data.SetByteOrder(endian::InlHostByteOrder());
85   m_data.SetAddressByteSize(addr_byte_size);
86 }
87 
88 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
89                                    lldb::DescriptionLevel level,
90                                    ABI *abi) const {
91   llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
92       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
93              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
94 }
95 
96 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
97                                                addr_t func_file_addr) {
98   m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
99 }
100 
101 int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
102 
103 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
104   m_reg_kind = reg_kind;
105 }
106 
107 bool DWARFExpression::IsLocationList() const {
108   return bool(m_loclist_addresses);
109 }
110 
111 namespace {
112 /// Implement enough of the DWARFObject interface in order to be able to call
113 /// DWARFLocationTable::dumpLocationList. We don't have access to a real
114 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
115 class DummyDWARFObject final: public llvm::DWARFObject {
116 public:
117   DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}
118 
119   bool isLittleEndian() const override { return IsLittleEndian; }
120 
121   llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
122                                             uint64_t Pos) const override {
123     return llvm::None;
124   }
125 private:
126   bool IsLittleEndian;
127 };
128 }
129 
130 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
131                                      addr_t location_list_base_addr,
132                                      ABI *abi) const {
133   if (IsLocationList()) {
134     // We have a location list
135     lldb::offset_t offset = 0;
136     std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
137         m_dwarf_cu->GetLocationTable(m_data);
138 
139     llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
140     llvm::DIDumpOptions DumpOpts;
141     DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) {
142       s->AsRawOstream() << "error: " << toString(std::move(E));
143     };
144     loctable_up->dumpLocationList(
145         &offset, s->AsRawOstream(),
146         llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
147         DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
148         DumpOpts, s->GetIndentLevel() + 2);
149   } else {
150     // We have a normal location that contains DW_OP location opcodes
151     DumpLocation(s, m_data, level, abi);
152   }
153 }
154 
155 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
156                                       lldb::RegisterKind reg_kind,
157                                       uint32_t reg_num, Status *error_ptr,
158                                       Value &value) {
159   if (reg_ctx == nullptr) {
160     if (error_ptr)
161       error_ptr->SetErrorString("No register context in frame.\n");
162   } else {
163     uint32_t native_reg =
164         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
165     if (native_reg == LLDB_INVALID_REGNUM) {
166       if (error_ptr)
167         error_ptr->SetErrorStringWithFormat("Unable to convert register "
168                                             "kind=%u reg_num=%u to a native "
169                                             "register number.\n",
170                                             reg_kind, reg_num);
171     } else {
172       const RegisterInfo *reg_info =
173           reg_ctx->GetRegisterInfoAtIndex(native_reg);
174       RegisterValue reg_value;
175       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
176         if (reg_value.GetScalarValue(value.GetScalar())) {
177           value.SetValueType(Value::ValueType::Scalar);
178           value.SetContext(Value::ContextType::RegisterInfo,
179                            const_cast<RegisterInfo *>(reg_info));
180           if (error_ptr)
181             error_ptr->Clear();
182           return true;
183         } else {
184           // If we get this error, then we need to implement a value buffer in
185           // the dwarf expression evaluation function...
186           if (error_ptr)
187             error_ptr->SetErrorStringWithFormat(
188                 "register %s can't be converted to a scalar value",
189                 reg_info->name);
190         }
191       } else {
192         if (error_ptr)
193           error_ptr->SetErrorStringWithFormat("register %s is not available",
194                                               reg_info->name);
195       }
196     }
197   }
198   return false;
199 }
200 
201 /// Return the length in bytes of the set of operands for \p op. No guarantees
202 /// are made on the state of \p data after this call.
203 static offset_t GetOpcodeDataSize(const DataExtractor &data,
204                                   const lldb::offset_t data_offset,
205                                   const uint8_t op) {
206   lldb::offset_t offset = data_offset;
207   switch (op) {
208   case DW_OP_addr:
209   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
210     return data.GetAddressByteSize();
211 
212   // Opcodes with no arguments
213   case DW_OP_deref:                // 0x06
214   case DW_OP_dup:                  // 0x12
215   case DW_OP_drop:                 // 0x13
216   case DW_OP_over:                 // 0x14
217   case DW_OP_swap:                 // 0x16
218   case DW_OP_rot:                  // 0x17
219   case DW_OP_xderef:               // 0x18
220   case DW_OP_abs:                  // 0x19
221   case DW_OP_and:                  // 0x1a
222   case DW_OP_div:                  // 0x1b
223   case DW_OP_minus:                // 0x1c
224   case DW_OP_mod:                  // 0x1d
225   case DW_OP_mul:                  // 0x1e
226   case DW_OP_neg:                  // 0x1f
227   case DW_OP_not:                  // 0x20
228   case DW_OP_or:                   // 0x21
229   case DW_OP_plus:                 // 0x22
230   case DW_OP_shl:                  // 0x24
231   case DW_OP_shr:                  // 0x25
232   case DW_OP_shra:                 // 0x26
233   case DW_OP_xor:                  // 0x27
234   case DW_OP_eq:                   // 0x29
235   case DW_OP_ge:                   // 0x2a
236   case DW_OP_gt:                   // 0x2b
237   case DW_OP_le:                   // 0x2c
238   case DW_OP_lt:                   // 0x2d
239   case DW_OP_ne:                   // 0x2e
240   case DW_OP_lit0:                 // 0x30
241   case DW_OP_lit1:                 // 0x31
242   case DW_OP_lit2:                 // 0x32
243   case DW_OP_lit3:                 // 0x33
244   case DW_OP_lit4:                 // 0x34
245   case DW_OP_lit5:                 // 0x35
246   case DW_OP_lit6:                 // 0x36
247   case DW_OP_lit7:                 // 0x37
248   case DW_OP_lit8:                 // 0x38
249   case DW_OP_lit9:                 // 0x39
250   case DW_OP_lit10:                // 0x3A
251   case DW_OP_lit11:                // 0x3B
252   case DW_OP_lit12:                // 0x3C
253   case DW_OP_lit13:                // 0x3D
254   case DW_OP_lit14:                // 0x3E
255   case DW_OP_lit15:                // 0x3F
256   case DW_OP_lit16:                // 0x40
257   case DW_OP_lit17:                // 0x41
258   case DW_OP_lit18:                // 0x42
259   case DW_OP_lit19:                // 0x43
260   case DW_OP_lit20:                // 0x44
261   case DW_OP_lit21:                // 0x45
262   case DW_OP_lit22:                // 0x46
263   case DW_OP_lit23:                // 0x47
264   case DW_OP_lit24:                // 0x48
265   case DW_OP_lit25:                // 0x49
266   case DW_OP_lit26:                // 0x4A
267   case DW_OP_lit27:                // 0x4B
268   case DW_OP_lit28:                // 0x4C
269   case DW_OP_lit29:                // 0x4D
270   case DW_OP_lit30:                // 0x4E
271   case DW_OP_lit31:                // 0x4f
272   case DW_OP_reg0:                 // 0x50
273   case DW_OP_reg1:                 // 0x51
274   case DW_OP_reg2:                 // 0x52
275   case DW_OP_reg3:                 // 0x53
276   case DW_OP_reg4:                 // 0x54
277   case DW_OP_reg5:                 // 0x55
278   case DW_OP_reg6:                 // 0x56
279   case DW_OP_reg7:                 // 0x57
280   case DW_OP_reg8:                 // 0x58
281   case DW_OP_reg9:                 // 0x59
282   case DW_OP_reg10:                // 0x5A
283   case DW_OP_reg11:                // 0x5B
284   case DW_OP_reg12:                // 0x5C
285   case DW_OP_reg13:                // 0x5D
286   case DW_OP_reg14:                // 0x5E
287   case DW_OP_reg15:                // 0x5F
288   case DW_OP_reg16:                // 0x60
289   case DW_OP_reg17:                // 0x61
290   case DW_OP_reg18:                // 0x62
291   case DW_OP_reg19:                // 0x63
292   case DW_OP_reg20:                // 0x64
293   case DW_OP_reg21:                // 0x65
294   case DW_OP_reg22:                // 0x66
295   case DW_OP_reg23:                // 0x67
296   case DW_OP_reg24:                // 0x68
297   case DW_OP_reg25:                // 0x69
298   case DW_OP_reg26:                // 0x6A
299   case DW_OP_reg27:                // 0x6B
300   case DW_OP_reg28:                // 0x6C
301   case DW_OP_reg29:                // 0x6D
302   case DW_OP_reg30:                // 0x6E
303   case DW_OP_reg31:                // 0x6F
304   case DW_OP_nop:                  // 0x96
305   case DW_OP_push_object_address:  // 0x97 DWARF3
306   case DW_OP_form_tls_address:     // 0x9b DWARF3
307   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
308   case DW_OP_stack_value:          // 0x9f DWARF4
309   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
310     return 0;
311 
312   // Opcodes with a single 1 byte arguments
313   case DW_OP_const1u:     // 0x08 1 1-byte constant
314   case DW_OP_const1s:     // 0x09 1 1-byte constant
315   case DW_OP_pick:        // 0x15 1 1-byte stack index
316   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
317   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
318     return 1;
319 
320   // Opcodes with a single 2 byte arguments
321   case DW_OP_const2u: // 0x0a 1 2-byte constant
322   case DW_OP_const2s: // 0x0b 1 2-byte constant
323   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
324   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
325   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
326     return 2;
327 
328   // Opcodes with a single 4 byte arguments
329   case DW_OP_const4u: // 0x0c 1 4-byte constant
330   case DW_OP_const4s: // 0x0d 1 4-byte constant
331   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
332     return 4;
333 
334   // Opcodes with a single 8 byte arguments
335   case DW_OP_const8u: // 0x0e 1 8-byte constant
336   case DW_OP_const8s: // 0x0f 1 8-byte constant
337     return 8;
338 
339   // All opcodes that have a single ULEB (signed or unsigned) argument
340   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
341   case DW_OP_constu:          // 0x10 1 ULEB128 constant
342   case DW_OP_consts:          // 0x11 1 SLEB128 constant
343   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
344   case DW_OP_breg0:           // 0x70 1 ULEB128 register
345   case DW_OP_breg1:           // 0x71 1 ULEB128 register
346   case DW_OP_breg2:           // 0x72 1 ULEB128 register
347   case DW_OP_breg3:           // 0x73 1 ULEB128 register
348   case DW_OP_breg4:           // 0x74 1 ULEB128 register
349   case DW_OP_breg5:           // 0x75 1 ULEB128 register
350   case DW_OP_breg6:           // 0x76 1 ULEB128 register
351   case DW_OP_breg7:           // 0x77 1 ULEB128 register
352   case DW_OP_breg8:           // 0x78 1 ULEB128 register
353   case DW_OP_breg9:           // 0x79 1 ULEB128 register
354   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
355   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
356   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
357   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
358   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
359   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
360   case DW_OP_breg16:          // 0x80 1 ULEB128 register
361   case DW_OP_breg17:          // 0x81 1 ULEB128 register
362   case DW_OP_breg18:          // 0x82 1 ULEB128 register
363   case DW_OP_breg19:          // 0x83 1 ULEB128 register
364   case DW_OP_breg20:          // 0x84 1 ULEB128 register
365   case DW_OP_breg21:          // 0x85 1 ULEB128 register
366   case DW_OP_breg22:          // 0x86 1 ULEB128 register
367   case DW_OP_breg23:          // 0x87 1 ULEB128 register
368   case DW_OP_breg24:          // 0x88 1 ULEB128 register
369   case DW_OP_breg25:          // 0x89 1 ULEB128 register
370   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
371   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
372   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
373   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
374   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
375   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
376   case DW_OP_regx:            // 0x90 1 ULEB128 register
377   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
378   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
379   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
380   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
381     data.Skip_LEB128(&offset);
382     return offset - data_offset;
383 
384   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
385   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
386   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
387     data.Skip_LEB128(&offset);
388     data.Skip_LEB128(&offset);
389     return offset - data_offset;
390 
391   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
392                              // (DWARF4)
393   {
394     uint64_t block_len = data.Skip_LEB128(&offset);
395     offset += block_len;
396     return offset - data_offset;
397   }
398 
399   case DW_OP_GNU_entry_value:
400   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
401   {
402     uint64_t subexpr_len = data.GetULEB128(&offset);
403     return (offset - data_offset) + subexpr_len;
404   }
405 
406   default:
407     break;
408   }
409   return LLDB_INVALID_OFFSET;
410 }
411 
412 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
413                                                      bool &error) const {
414   error = false;
415   if (IsLocationList())
416     return LLDB_INVALID_ADDRESS;
417   lldb::offset_t offset = 0;
418   uint32_t curr_op_addr_idx = 0;
419   while (m_data.ValidOffset(offset)) {
420     const uint8_t op = m_data.GetU8(&offset);
421 
422     if (op == DW_OP_addr) {
423       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
424       if (curr_op_addr_idx == op_addr_idx)
425         return op_file_addr;
426       else
427         ++curr_op_addr_idx;
428     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
429       uint64_t index = m_data.GetULEB128(&offset);
430       if (curr_op_addr_idx == op_addr_idx) {
431         if (!m_dwarf_cu) {
432           error = true;
433           break;
434         }
435 
436         return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
437       } else
438         ++curr_op_addr_idx;
439     } else {
440       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
441       if (op_arg_size == LLDB_INVALID_OFFSET) {
442         error = true;
443         break;
444       }
445       offset += op_arg_size;
446     }
447   }
448   return LLDB_INVALID_ADDRESS;
449 }
450 
451 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
452   if (IsLocationList())
453     return false;
454   lldb::offset_t offset = 0;
455   while (m_data.ValidOffset(offset)) {
456     const uint8_t op = m_data.GetU8(&offset);
457 
458     if (op == DW_OP_addr) {
459       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
460       // We have to make a copy of the data as we don't know if this data is
461       // from a read only memory mapped buffer, so we duplicate all of the data
462       // first, then modify it, and if all goes well, we then replace the data
463       // for this expression
464 
465       // So first we copy the data into a heap buffer
466       std::unique_ptr<DataBufferHeap> head_data_up(
467           new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
468 
469       // Make en encoder so we can write the address into the buffer using the
470       // correct byte order (endianness)
471       DataEncoder encoder(head_data_up->GetBytes(), head_data_up->GetByteSize(),
472                           m_data.GetByteOrder(), addr_byte_size);
473 
474       // Replace the address in the new buffer
475       if (encoder.PutUnsigned(offset, addr_byte_size, file_addr) == UINT32_MAX)
476         return false;
477 
478       // All went well, so now we can reset the data using a shared pointer to
479       // the heap data so "m_data" will now correctly manage the heap data.
480       m_data.SetData(DataBufferSP(head_data_up.release()));
481       return true;
482     } else {
483       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
484       if (op_arg_size == LLDB_INVALID_OFFSET)
485         break;
486       offset += op_arg_size;
487     }
488   }
489   return false;
490 }
491 
492 bool DWARFExpression::ContainsThreadLocalStorage() const {
493   // We are assuming for now that any thread local variable will not have a
494   // location list. This has been true for all thread local variables we have
495   // seen so far produced by any compiler.
496   if (IsLocationList())
497     return false;
498   lldb::offset_t offset = 0;
499   while (m_data.ValidOffset(offset)) {
500     const uint8_t op = m_data.GetU8(&offset);
501 
502     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
503       return true;
504     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
505     if (op_arg_size == LLDB_INVALID_OFFSET)
506       return false;
507     else
508       offset += op_arg_size;
509   }
510   return false;
511 }
512 bool DWARFExpression::LinkThreadLocalStorage(
513     lldb::ModuleSP new_module_sp,
514     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
515         &link_address_callback) {
516   // We are assuming for now that any thread local variable will not have a
517   // location list. This has been true for all thread local variables we have
518   // seen so far produced by any compiler.
519   if (IsLocationList())
520     return false;
521 
522   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
523   // We have to make a copy of the data as we don't know if this data is from a
524   // read only memory mapped buffer, so we duplicate all of the data first,
525   // then modify it, and if all goes well, we then replace the data for this
526   // expression
527 
528   // So first we copy the data into a heap buffer
529   std::shared_ptr<DataBufferHeap> heap_data_sp(
530       new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
531 
532   // Make en encoder so we can write the address into the buffer using the
533   // correct byte order (endianness)
534   DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(),
535                       m_data.GetByteOrder(), addr_byte_size);
536 
537   lldb::offset_t offset = 0;
538   lldb::offset_t const_offset = 0;
539   lldb::addr_t const_value = 0;
540   size_t const_byte_size = 0;
541   while (m_data.ValidOffset(offset)) {
542     const uint8_t op = m_data.GetU8(&offset);
543 
544     bool decoded_data = false;
545     switch (op) {
546     case DW_OP_const4u:
547       // Remember the const offset in case we later have a
548       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
549       const_offset = offset;
550       const_value = m_data.GetU32(&offset);
551       decoded_data = true;
552       const_byte_size = 4;
553       break;
554 
555     case DW_OP_const8u:
556       // Remember the const offset in case we later have a
557       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
558       const_offset = offset;
559       const_value = m_data.GetU64(&offset);
560       decoded_data = true;
561       const_byte_size = 8;
562       break;
563 
564     case DW_OP_form_tls_address:
565     case DW_OP_GNU_push_tls_address:
566       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
567       // by a file address on the stack. We assume that DW_OP_const4u or
568       // DW_OP_const8u is used for these values, and we check that the last
569       // opcode we got before either of these was DW_OP_const4u or
570       // DW_OP_const8u. If so, then we can link the value accodingly. For
571       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
572       // address of a structure that contains a function pointer, the pthread
573       // key and the offset into the data pointed to by the pthread key. So we
574       // must link this address and also set the module of this expression to
575       // the new_module_sp so we can resolve the file address correctly
576       if (const_byte_size > 0) {
577         lldb::addr_t linked_file_addr = link_address_callback(const_value);
578         if (linked_file_addr == LLDB_INVALID_ADDRESS)
579           return false;
580         // Replace the address in the new buffer
581         if (encoder.PutUnsigned(const_offset, const_byte_size,
582                                 linked_file_addr) == UINT32_MAX)
583           return false;
584       }
585       break;
586 
587     default:
588       const_offset = 0;
589       const_value = 0;
590       const_byte_size = 0;
591       break;
592     }
593 
594     if (!decoded_data) {
595       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
596       if (op_arg_size == LLDB_INVALID_OFFSET)
597         return false;
598       else
599         offset += op_arg_size;
600     }
601   }
602 
603   // If we linked the TLS address correctly, update the module so that when the
604   // expression is evaluated it can resolve the file address to a load address
605   // and read the
606   // TLS data
607   m_module_wp = new_module_sp;
608   m_data.SetData(heap_data_sp);
609   return true;
610 }
611 
612 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
613                                                   lldb::addr_t addr) const {
614   if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
615     return false;
616 
617   if (!IsLocationList())
618     return false;
619 
620   return GetLocationExpression(func_load_addr, addr) != llvm::None;
621 }
622 
623 bool DWARFExpression::DumpLocationForAddress(Stream *s,
624                                              lldb::DescriptionLevel level,
625                                              addr_t func_load_addr,
626                                              addr_t address, ABI *abi) {
627   if (!IsLocationList()) {
628     DumpLocation(s, m_data, level, abi);
629     return true;
630   }
631   if (llvm::Optional<DataExtractor> expr =
632           GetLocationExpression(func_load_addr, address)) {
633     DumpLocation(s, *expr, level, abi);
634     return true;
635   }
636   return false;
637 }
638 
639 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
640                                        ExecutionContext *exe_ctx,
641                                        RegisterContext *reg_ctx,
642                                        const DataExtractor &opcodes,
643                                        lldb::offset_t &opcode_offset,
644                                        Status *error_ptr, Log *log) {
645   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
646   // function entry: this variable location is presumed to be optimized out at
647   // the current PC value.  The caller of the function may have call site
648   // information that describes an alternate location for the variable (e.g. a
649   // constant literal, or a spilled stack value) in the parent frame.
650   //
651   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
652   //
653   //     void child(int &sink, int x) {
654   //       ...
655   //       /* "x" gets optimized out. */
656   //
657   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
658   //       ++sink;
659   //     }
660   //
661   //     void parent() {
662   //       int sink;
663   //
664   //       /*
665   //        * The callsite information emitted here is:
666   //        *
667   //        * DW_TAG_call_site
668   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
669   //        *   DW_TAG_call_site_parameter (for "sink")
670   //        *     DW_AT_location   ($reg1)
671   //        *     DW_AT_call_value ($SP - 8)
672   //        *   DW_TAG_call_site_parameter (for "x")
673   //        *     DW_AT_location   ($reg2)
674   //        *     DW_AT_call_value ($literal 123)
675   //        *
676   //        * DW_TAG_call_site
677   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
678   //        *   ...
679   //        */
680   //       child(sink, 123);
681   //       child(sink, 456);
682   //     }
683   //
684   // When the program stops at "++sink" within `child`, the debugger determines
685   // the call site by analyzing the return address. Once the call site is found,
686   // the debugger determines which parameter is referenced by DW_OP_entry_value
687   // and evaluates the corresponding location for that parameter in `parent`.
688 
689   // 1. Find the function which pushed the current frame onto the stack.
690   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
691     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
692     return false;
693   }
694 
695   StackFrame *current_frame = exe_ctx->GetFramePtr();
696   Thread *thread = exe_ctx->GetThreadPtr();
697   if (!current_frame || !thread) {
698     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
699     return false;
700   }
701 
702   Target &target = exe_ctx->GetTargetRef();
703   StackFrameSP parent_frame = nullptr;
704   addr_t return_pc = LLDB_INVALID_ADDRESS;
705   uint32_t current_frame_idx = current_frame->GetFrameIndex();
706   uint32_t num_frames = thread->GetStackFrameCount();
707   for (uint32_t parent_frame_idx = current_frame_idx + 1;
708        parent_frame_idx < num_frames; ++parent_frame_idx) {
709     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
710     // Require a valid sequence of frames.
711     if (!parent_frame)
712       break;
713 
714     // Record the first valid return address, even if this is an inlined frame,
715     // in order to look up the associated call edge in the first non-inlined
716     // parent frame.
717     if (return_pc == LLDB_INVALID_ADDRESS) {
718       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
719       LLDB_LOG(log,
720                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
721                return_pc);
722     }
723 
724     // If we've found an inlined frame, skip it (these have no call site
725     // parameters).
726     if (parent_frame->IsInlined())
727       continue;
728 
729     // We've found the first non-inlined parent frame.
730     break;
731   }
732   if (!parent_frame || !parent_frame->GetRegisterContext()) {
733     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
734     return false;
735   }
736 
737   Function *parent_func =
738       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
739   if (!parent_func) {
740     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
741     return false;
742   }
743 
744   // 2. Find the call edge in the parent function responsible for creating the
745   //    current activation.
746   Function *current_func =
747       current_frame->GetSymbolContext(eSymbolContextFunction).function;
748   if (!current_func) {
749     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
750     return false;
751   }
752 
753   CallEdge *call_edge = nullptr;
754   ModuleList &modlist = target.GetImages();
755   ExecutionContext parent_exe_ctx = *exe_ctx;
756   parent_exe_ctx.SetFrameSP(parent_frame);
757   if (!parent_frame->IsArtificial()) {
758     // If the parent frame is not artificial, the current activation may be
759     // produced by an ambiguous tail call. In this case, refuse to proceed.
760     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
761     if (!call_edge) {
762       LLDB_LOG(log,
763                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
764                "in parent frame {1}",
765                return_pc, parent_func->GetName());
766       return false;
767     }
768     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
769     if (callee_func != current_func) {
770       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
771                     "can't find real parent frame");
772       return false;
773     }
774   } else {
775     // The StackFrameList solver machinery has deduced that an unambiguous tail
776     // call sequence that produced the current activation.  The first edge in
777     // the parent that points to the current function must be valid.
778     for (auto &edge : parent_func->GetTailCallingEdges()) {
779       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
780         call_edge = edge.get();
781         break;
782       }
783     }
784   }
785   if (!call_edge) {
786     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
787                   "to current function");
788     return false;
789   }
790 
791   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
792   //    available call site parameters. If found, evaluate the corresponding
793   //    parameter in the context of the parent frame.
794   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
795   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
796   if (!subexpr_data) {
797     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
798     return false;
799   }
800 
801   const CallSiteParameter *matched_param = nullptr;
802   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
803     DataExtractor param_subexpr_extractor;
804     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
805       continue;
806     lldb::offset_t param_subexpr_offset = 0;
807     const void *param_subexpr_data =
808         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
809     if (!param_subexpr_data ||
810         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
811       continue;
812 
813     // At this point, the DW_OP_entry_value sub-expression and the callee-side
814     // expression in the call site parameter are known to have the same length.
815     // Check whether they are equal.
816     //
817     // Note that an equality check is sufficient: the contents of the
818     // DW_OP_entry_value subexpression are only used to identify the right call
819     // site parameter in the parent, and do not require any special handling.
820     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
821       matched_param = &param;
822       break;
823     }
824   }
825   if (!matched_param) {
826     LLDB_LOG(log,
827              "Evaluate_DW_OP_entry_value: no matching call site param found");
828     return false;
829   }
830 
831   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
832   // subexpresion whenever llvm does.
833   Value result;
834   const DWARFExpression &param_expr = matched_param->LocationInCaller;
835   if (!param_expr.Evaluate(&parent_exe_ctx,
836                            parent_frame->GetRegisterContext().get(),
837                            /*loclist_base_addr=*/LLDB_INVALID_ADDRESS,
838                            /*initial_value_ptr=*/nullptr,
839                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
840     LLDB_LOG(log,
841              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
842     return false;
843   }
844 
845   stack.push_back(result);
846   return true;
847 }
848 
849 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
850                                lldb::addr_t loclist_base_load_addr,
851                                const Value *initial_value_ptr,
852                                const Value *object_address_ptr, Value &result,
853                                Status *error_ptr) const {
854   ExecutionContext exe_ctx(exe_scope);
855   return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
856                   object_address_ptr, result, error_ptr);
857 }
858 
859 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
860                                RegisterContext *reg_ctx,
861                                lldb::addr_t func_load_addr,
862                                const Value *initial_value_ptr,
863                                const Value *object_address_ptr, Value &result,
864                                Status *error_ptr) const {
865   ModuleSP module_sp = m_module_wp.lock();
866 
867   if (IsLocationList()) {
868     addr_t pc;
869     StackFrame *frame = nullptr;
870     if (reg_ctx)
871       pc = reg_ctx->GetPC();
872     else {
873       frame = exe_ctx->GetFramePtr();
874       if (!frame)
875         return false;
876       RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
877       if (!reg_ctx_sp)
878         return false;
879       pc = reg_ctx_sp->GetPC();
880     }
881 
882     if (func_load_addr != LLDB_INVALID_ADDRESS) {
883       if (pc == LLDB_INVALID_ADDRESS) {
884         if (error_ptr)
885           error_ptr->SetErrorString("Invalid PC in frame.");
886         return false;
887       }
888 
889       if (llvm::Optional<DataExtractor> expr =
890               GetLocationExpression(func_load_addr, pc)) {
891         return DWARFExpression::Evaluate(
892             exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
893             initial_value_ptr, object_address_ptr, result, error_ptr);
894       }
895     }
896     if (error_ptr)
897       error_ptr->SetErrorString("variable not available");
898     return false;
899   }
900 
901   // Not a location list, just a single expression.
902   return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
903                                    m_dwarf_cu, m_reg_kind, initial_value_ptr,
904                                    object_address_ptr, result, error_ptr);
905 }
906 
907 bool DWARFExpression::Evaluate(
908     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
909     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
910     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
911     const Value *initial_value_ptr, const Value *object_address_ptr,
912     Value &result, Status *error_ptr) {
913 
914   if (opcodes.GetByteSize() == 0) {
915     if (error_ptr)
916       error_ptr->SetErrorString(
917           "no location, value may have been optimized out");
918     return false;
919   }
920   std::vector<Value> stack;
921 
922   Process *process = nullptr;
923   StackFrame *frame = nullptr;
924 
925   if (exe_ctx) {
926     process = exe_ctx->GetProcessPtr();
927     frame = exe_ctx->GetFramePtr();
928   }
929   if (reg_ctx == nullptr && frame)
930     reg_ctx = frame->GetRegisterContext().get();
931 
932   if (initial_value_ptr)
933     stack.push_back(*initial_value_ptr);
934 
935   lldb::offset_t offset = 0;
936   Value tmp;
937   uint32_t reg_num;
938 
939   /// Insertion point for evaluating multi-piece expression.
940   uint64_t op_piece_offset = 0;
941   Value pieces; // Used for DW_OP_piece
942 
943   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
944   // A generic type is "an integral type that has the size of an address and an
945   // unspecified signedness". For now, just use the signedness of the operand.
946   // TODO: Implement a real typed stack, and store the genericness of the value
947   // there.
948   auto to_generic = [&](auto v) {
949     bool is_signed = std::is_signed<decltype(v)>::value;
950     return Scalar(llvm::APSInt(
951         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
952         !is_signed));
953   };
954 
955   while (opcodes.ValidOffset(offset)) {
956     const lldb::offset_t op_offset = offset;
957     const uint8_t op = opcodes.GetU8(&offset);
958 
959     if (log && log->GetVerbose()) {
960       size_t count = stack.size();
961       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
962                 (uint64_t)count);
963       for (size_t i = 0; i < count; ++i) {
964         StreamString new_value;
965         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
966         stack[i].Dump(&new_value);
967         LLDB_LOGF(log, "  %s", new_value.GetData());
968       }
969       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
970                 DW_OP_value_to_name(op));
971     }
972 
973     switch (op) {
974     // The DW_OP_addr operation has a single operand that encodes a machine
975     // address and whose size is the size of an address on the target machine.
976     case DW_OP_addr:
977       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
978       stack.back().SetValueType(Value::ValueType::FileAddress);
979       // Convert the file address to a load address, so subsequent
980       // DWARF operators can operate on it.
981       if (frame)
982         stack.back().ConvertToLoadAddress(module_sp.get(),
983                                           frame->CalculateTarget().get());
984       break;
985 
986     // The DW_OP_addr_sect_offset4 is used for any location expressions in
987     // shared libraries that have a location like:
988     //  DW_OP_addr(0x1000)
989     // If this address resides in a shared library, then this virtual address
990     // won't make sense when it is evaluated in the context of a running
991     // process where shared libraries have been slid. To account for this, this
992     // new address type where we can store the section pointer and a 4 byte
993     // offset.
994     //      case DW_OP_addr_sect_offset4:
995     //          {
996     //              result_type = eResultTypeFileAddress;
997     //              lldb::Section *sect = (lldb::Section
998     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
999     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1000     //
1001     //              Address so_addr (sect, sect_offset);
1002     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
1003     //              if (load_addr != LLDB_INVALID_ADDRESS)
1004     //              {
1005     //                  // We successfully resolve a file address to a load
1006     //                  // address.
1007     //                  stack.push_back(load_addr);
1008     //                  break;
1009     //              }
1010     //              else
1011     //              {
1012     //                  // We were able
1013     //                  if (error_ptr)
1014     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
1015     //                      %s is not currently loaded.\n",
1016     //                      sect->GetName().AsCString(),
1017     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1018     //                  return false;
1019     //              }
1020     //          }
1021     //          break;
1022 
1023     // OPCODE: DW_OP_deref
1024     // OPERANDS: none
1025     // DESCRIPTION: Pops the top stack entry and treats it as an address.
1026     // The value retrieved from that address is pushed. The size of the data
1027     // retrieved from the dereferenced address is the size of an address on the
1028     // target machine.
1029     case DW_OP_deref: {
1030       if (stack.empty()) {
1031         if (error_ptr)
1032           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1033         return false;
1034       }
1035       Value::ValueType value_type = stack.back().GetValueType();
1036       switch (value_type) {
1037       case Value::ValueType::HostAddress: {
1038         void *src = (void *)stack.back().GetScalar().ULongLong();
1039         intptr_t ptr;
1040         ::memcpy(&ptr, src, sizeof(void *));
1041         stack.back().GetScalar() = ptr;
1042         stack.back().ClearContext();
1043       } break;
1044       case Value::ValueType::FileAddress: {
1045         auto file_addr = stack.back().GetScalar().ULongLong(
1046             LLDB_INVALID_ADDRESS);
1047         if (!module_sp) {
1048           if (error_ptr)
1049             error_ptr->SetErrorString(
1050                 "need module to resolve file address for DW_OP_deref");
1051           return false;
1052         }
1053         Address so_addr;
1054         if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
1055           if (error_ptr)
1056             error_ptr->SetErrorString(
1057                 "failed to resolve file address in module");
1058           return false;
1059         }
1060         addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
1061         if (load_Addr == LLDB_INVALID_ADDRESS) {
1062           if (error_ptr)
1063             error_ptr->SetErrorString("failed to resolve load address");
1064           return false;
1065         }
1066         stack.back().GetScalar() = load_Addr;
1067         stack.back().SetValueType(Value::ValueType::LoadAddress);
1068         // Fall through to load address code below...
1069       } LLVM_FALLTHROUGH;
1070       case Value::ValueType::Scalar:
1071       case Value::ValueType::LoadAddress:
1072         if (exe_ctx) {
1073           if (process) {
1074             lldb::addr_t pointer_addr =
1075                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1076             Status error;
1077             lldb::addr_t pointer_value =
1078                 process->ReadPointerFromMemory(pointer_addr, error);
1079             if (pointer_value != LLDB_INVALID_ADDRESS) {
1080               stack.back().GetScalar() = pointer_value;
1081               stack.back().ClearContext();
1082             } else {
1083               if (error_ptr)
1084                 error_ptr->SetErrorStringWithFormat(
1085                     "Failed to dereference pointer from 0x%" PRIx64
1086                     " for DW_OP_deref: %s\n",
1087                     pointer_addr, error.AsCString());
1088               return false;
1089             }
1090           } else {
1091             if (error_ptr)
1092               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1093             return false;
1094           }
1095         } else {
1096           if (error_ptr)
1097             error_ptr->SetErrorString(
1098                 "NULL execution context for DW_OP_deref.\n");
1099           return false;
1100         }
1101         break;
1102 
1103       case Value::ValueType::Invalid:
1104         if (error_ptr)
1105           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1106         return false;
1107       }
1108 
1109     } break;
1110 
1111     // OPCODE: DW_OP_deref_size
1112     // OPERANDS: 1
1113     //  1 - uint8_t that specifies the size of the data to dereference.
1114     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1115     // stack entry and treats it as an address. The value retrieved from that
1116     // address is pushed. In the DW_OP_deref_size operation, however, the size
1117     // in bytes of the data retrieved from the dereferenced address is
1118     // specified by the single operand. This operand is a 1-byte unsigned
1119     // integral constant whose value may not be larger than the size of an
1120     // address on the target machine. The data retrieved is zero extended to
1121     // the size of an address on the target machine before being pushed on the
1122     // expression stack.
1123     case DW_OP_deref_size: {
1124       if (stack.empty()) {
1125         if (error_ptr)
1126           error_ptr->SetErrorString(
1127               "Expression stack empty for DW_OP_deref_size.");
1128         return false;
1129       }
1130       uint8_t size = opcodes.GetU8(&offset);
1131       Value::ValueType value_type = stack.back().GetValueType();
1132       switch (value_type) {
1133       case Value::ValueType::HostAddress: {
1134         void *src = (void *)stack.back().GetScalar().ULongLong();
1135         intptr_t ptr;
1136         ::memcpy(&ptr, src, sizeof(void *));
1137         // I can't decide whether the size operand should apply to the bytes in
1138         // their
1139         // lldb-host endianness or the target endianness.. I doubt this'll ever
1140         // come up but I'll opt for assuming big endian regardless.
1141         switch (size) {
1142         case 1:
1143           ptr = ptr & 0xff;
1144           break;
1145         case 2:
1146           ptr = ptr & 0xffff;
1147           break;
1148         case 3:
1149           ptr = ptr & 0xffffff;
1150           break;
1151         case 4:
1152           ptr = ptr & 0xffffffff;
1153           break;
1154         // the casts are added to work around the case where intptr_t is a 32
1155         // bit quantity;
1156         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1157         // program.
1158         case 5:
1159           ptr = (intptr_t)ptr & 0xffffffffffULL;
1160           break;
1161         case 6:
1162           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1163           break;
1164         case 7:
1165           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1166           break;
1167         default:
1168           break;
1169         }
1170         stack.back().GetScalar() = ptr;
1171         stack.back().ClearContext();
1172       } break;
1173       case Value::ValueType::Scalar:
1174       case Value::ValueType::LoadAddress:
1175         if (exe_ctx) {
1176           if (process) {
1177             lldb::addr_t pointer_addr =
1178                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1179             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1180             Status error;
1181             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1182                 size) {
1183               DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
1184                                       process->GetByteOrder(), size);
1185               lldb::offset_t addr_data_offset = 0;
1186               switch (size) {
1187               case 1:
1188                 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
1189                 break;
1190               case 2:
1191                 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
1192                 break;
1193               case 4:
1194                 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
1195                 break;
1196               case 8:
1197                 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
1198                 break;
1199               default:
1200                 stack.back().GetScalar() =
1201                     addr_data.GetAddress(&addr_data_offset);
1202               }
1203               stack.back().ClearContext();
1204             } else {
1205               if (error_ptr)
1206                 error_ptr->SetErrorStringWithFormat(
1207                     "Failed to dereference pointer from 0x%" PRIx64
1208                     " for DW_OP_deref: %s\n",
1209                     pointer_addr, error.AsCString());
1210               return false;
1211             }
1212           } else {
1213             if (error_ptr)
1214               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1215             return false;
1216           }
1217         } else {
1218           if (error_ptr)
1219             error_ptr->SetErrorString(
1220                 "NULL execution context for DW_OP_deref_size.\n");
1221           return false;
1222         }
1223         break;
1224 
1225       case Value::ValueType::FileAddress:
1226       case Value::ValueType::Invalid:
1227         if (error_ptr)
1228           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1229         return false;
1230       }
1231 
1232     } break;
1233 
1234     // OPCODE: DW_OP_xderef_size
1235     // OPERANDS: 1
1236     //  1 - uint8_t that specifies the size of the data to dereference.
1237     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1238     // the top of the stack is treated as an address. The second stack entry is
1239     // treated as an "address space identifier" for those architectures that
1240     // support multiple address spaces. The top two stack elements are popped,
1241     // a data item is retrieved through an implementation-defined address
1242     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1243     // operation, however, the size in bytes of the data retrieved from the
1244     // dereferenced address is specified by the single operand. This operand is
1245     // a 1-byte unsigned integral constant whose value may not be larger than
1246     // the size of an address on the target machine. The data retrieved is zero
1247     // extended to the size of an address on the target machine before being
1248     // pushed on the expression stack.
1249     case DW_OP_xderef_size:
1250       if (error_ptr)
1251         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1252       return false;
1253     // OPCODE: DW_OP_xderef
1254     // OPERANDS: none
1255     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1256     // the top of the stack is treated as an address. The second stack entry is
1257     // treated as an "address space identifier" for those architectures that
1258     // support multiple address spaces. The top two stack elements are popped,
1259     // a data item is retrieved through an implementation-defined address
1260     // calculation and pushed as the new stack top. The size of the data
1261     // retrieved from the dereferenced address is the size of an address on the
1262     // target machine.
1263     case DW_OP_xderef:
1264       if (error_ptr)
1265         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1266       return false;
1267 
1268     // All DW_OP_constXXX opcodes have a single operand as noted below:
1269     //
1270     // Opcode           Operand 1
1271     // DW_OP_const1u    1-byte unsigned integer constant
1272     // DW_OP_const1s    1-byte signed integer constant
1273     // DW_OP_const2u    2-byte unsigned integer constant
1274     // DW_OP_const2s    2-byte signed integer constant
1275     // DW_OP_const4u    4-byte unsigned integer constant
1276     // DW_OP_const4s    4-byte signed integer constant
1277     // DW_OP_const8u    8-byte unsigned integer constant
1278     // DW_OP_const8s    8-byte signed integer constant
1279     // DW_OP_constu     unsigned LEB128 integer constant
1280     // DW_OP_consts     signed LEB128 integer constant
1281     case DW_OP_const1u:
1282       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1283       break;
1284     case DW_OP_const1s:
1285       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1286       break;
1287     case DW_OP_const2u:
1288       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1289       break;
1290     case DW_OP_const2s:
1291       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1292       break;
1293     case DW_OP_const4u:
1294       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1295       break;
1296     case DW_OP_const4s:
1297       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1298       break;
1299     case DW_OP_const8u:
1300       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1301       break;
1302     case DW_OP_const8s:
1303       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1304       break;
1305     // These should also use to_generic, but we can't do that due to a
1306     // producer-side bug in llvm. See llvm.org/pr48087.
1307     case DW_OP_constu:
1308       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1309       break;
1310     case DW_OP_consts:
1311       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1312       break;
1313 
1314     // OPCODE: DW_OP_dup
1315     // OPERANDS: none
1316     // DESCRIPTION: duplicates the value at the top of the stack
1317     case DW_OP_dup:
1318       if (stack.empty()) {
1319         if (error_ptr)
1320           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1321         return false;
1322       } else
1323         stack.push_back(stack.back());
1324       break;
1325 
1326     // OPCODE: DW_OP_drop
1327     // OPERANDS: none
1328     // DESCRIPTION: pops the value at the top of the stack
1329     case DW_OP_drop:
1330       if (stack.empty()) {
1331         if (error_ptr)
1332           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1333         return false;
1334       } else
1335         stack.pop_back();
1336       break;
1337 
1338     // OPCODE: DW_OP_over
1339     // OPERANDS: none
1340     // DESCRIPTION: Duplicates the entry currently second in the stack at
1341     // the top of the stack.
1342     case DW_OP_over:
1343       if (stack.size() < 2) {
1344         if (error_ptr)
1345           error_ptr->SetErrorString(
1346               "Expression stack needs at least 2 items for DW_OP_over.");
1347         return false;
1348       } else
1349         stack.push_back(stack[stack.size() - 2]);
1350       break;
1351 
1352     // OPCODE: DW_OP_pick
1353     // OPERANDS: uint8_t index into the current stack
1354     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1355     // inclusive) is pushed on the stack
1356     case DW_OP_pick: {
1357       uint8_t pick_idx = opcodes.GetU8(&offset);
1358       if (pick_idx < stack.size())
1359         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1360       else {
1361         if (error_ptr)
1362           error_ptr->SetErrorStringWithFormat(
1363               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1364         return false;
1365       }
1366     } break;
1367 
1368     // OPCODE: DW_OP_swap
1369     // OPERANDS: none
1370     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1371     // of the stack becomes the second stack entry, and the second entry
1372     // becomes the top of the stack
1373     case DW_OP_swap:
1374       if (stack.size() < 2) {
1375         if (error_ptr)
1376           error_ptr->SetErrorString(
1377               "Expression stack needs at least 2 items for DW_OP_swap.");
1378         return false;
1379       } else {
1380         tmp = stack.back();
1381         stack.back() = stack[stack.size() - 2];
1382         stack[stack.size() - 2] = tmp;
1383       }
1384       break;
1385 
1386     // OPCODE: DW_OP_rot
1387     // OPERANDS: none
1388     // DESCRIPTION: Rotates the first three stack entries. The entry at
1389     // the top of the stack becomes the third stack entry, the second entry
1390     // becomes the top of the stack, and the third entry becomes the second
1391     // entry.
1392     case DW_OP_rot:
1393       if (stack.size() < 3) {
1394         if (error_ptr)
1395           error_ptr->SetErrorString(
1396               "Expression stack needs at least 3 items for DW_OP_rot.");
1397         return false;
1398       } else {
1399         size_t last_idx = stack.size() - 1;
1400         Value old_top = stack[last_idx];
1401         stack[last_idx] = stack[last_idx - 1];
1402         stack[last_idx - 1] = stack[last_idx - 2];
1403         stack[last_idx - 2] = old_top;
1404       }
1405       break;
1406 
1407     // OPCODE: DW_OP_abs
1408     // OPERANDS: none
1409     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1410     // value and pushes its absolute value. If the absolute value can not be
1411     // represented, the result is undefined.
1412     case DW_OP_abs:
1413       if (stack.empty()) {
1414         if (error_ptr)
1415           error_ptr->SetErrorString(
1416               "Expression stack needs at least 1 item for DW_OP_abs.");
1417         return false;
1418       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1419         if (error_ptr)
1420           error_ptr->SetErrorString(
1421               "Failed to take the absolute value of the first stack item.");
1422         return false;
1423       }
1424       break;
1425 
1426     // OPCODE: DW_OP_and
1427     // OPERANDS: none
1428     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1429     // operation on the two, and pushes the result.
1430     case DW_OP_and:
1431       if (stack.size() < 2) {
1432         if (error_ptr)
1433           error_ptr->SetErrorString(
1434               "Expression stack needs at least 2 items for DW_OP_and.");
1435         return false;
1436       } else {
1437         tmp = stack.back();
1438         stack.pop_back();
1439         stack.back().ResolveValue(exe_ctx) =
1440             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1441       }
1442       break;
1443 
1444     // OPCODE: DW_OP_div
1445     // OPERANDS: none
1446     // DESCRIPTION: pops the top two stack values, divides the former second
1447     // entry by the former top of the stack using signed division, and pushes
1448     // the result.
1449     case DW_OP_div:
1450       if (stack.size() < 2) {
1451         if (error_ptr)
1452           error_ptr->SetErrorString(
1453               "Expression stack needs at least 2 items for DW_OP_div.");
1454         return false;
1455       } else {
1456         tmp = stack.back();
1457         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1458           if (error_ptr)
1459             error_ptr->SetErrorString("Divide by zero.");
1460           return false;
1461         } else {
1462           stack.pop_back();
1463           stack.back() =
1464               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1465           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1466             if (error_ptr)
1467               error_ptr->SetErrorString("Divide failed.");
1468             return false;
1469           }
1470         }
1471       }
1472       break;
1473 
1474     // OPCODE: DW_OP_minus
1475     // OPERANDS: none
1476     // DESCRIPTION: pops the top two stack values, subtracts the former top
1477     // of the stack from the former second entry, and pushes the result.
1478     case DW_OP_minus:
1479       if (stack.size() < 2) {
1480         if (error_ptr)
1481           error_ptr->SetErrorString(
1482               "Expression stack needs at least 2 items for DW_OP_minus.");
1483         return false;
1484       } else {
1485         tmp = stack.back();
1486         stack.pop_back();
1487         stack.back().ResolveValue(exe_ctx) =
1488             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1489       }
1490       break;
1491 
1492     // OPCODE: DW_OP_mod
1493     // OPERANDS: none
1494     // DESCRIPTION: pops the top two stack values and pushes the result of
1495     // the calculation: former second stack entry modulo the former top of the
1496     // stack.
1497     case DW_OP_mod:
1498       if (stack.size() < 2) {
1499         if (error_ptr)
1500           error_ptr->SetErrorString(
1501               "Expression stack needs at least 2 items for DW_OP_mod.");
1502         return false;
1503       } else {
1504         tmp = stack.back();
1505         stack.pop_back();
1506         stack.back().ResolveValue(exe_ctx) =
1507             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1508       }
1509       break;
1510 
1511     // OPCODE: DW_OP_mul
1512     // OPERANDS: none
1513     // DESCRIPTION: pops the top two stack entries, multiplies them
1514     // together, and pushes the result.
1515     case DW_OP_mul:
1516       if (stack.size() < 2) {
1517         if (error_ptr)
1518           error_ptr->SetErrorString(
1519               "Expression stack needs at least 2 items for DW_OP_mul.");
1520         return false;
1521       } else {
1522         tmp = stack.back();
1523         stack.pop_back();
1524         stack.back().ResolveValue(exe_ctx) =
1525             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1526       }
1527       break;
1528 
1529     // OPCODE: DW_OP_neg
1530     // OPERANDS: none
1531     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1532     case DW_OP_neg:
1533       if (stack.empty()) {
1534         if (error_ptr)
1535           error_ptr->SetErrorString(
1536               "Expression stack needs at least 1 item for DW_OP_neg.");
1537         return false;
1538       } else {
1539         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1540           if (error_ptr)
1541             error_ptr->SetErrorString("Unary negate failed.");
1542           return false;
1543         }
1544       }
1545       break;
1546 
1547     // OPCODE: DW_OP_not
1548     // OPERANDS: none
1549     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1550     // complement
1551     case DW_OP_not:
1552       if (stack.empty()) {
1553         if (error_ptr)
1554           error_ptr->SetErrorString(
1555               "Expression stack needs at least 1 item for DW_OP_not.");
1556         return false;
1557       } else {
1558         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1559           if (error_ptr)
1560             error_ptr->SetErrorString("Logical NOT failed.");
1561           return false;
1562         }
1563       }
1564       break;
1565 
1566     // OPCODE: DW_OP_or
1567     // OPERANDS: none
1568     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1569     // operation on the two, and pushes the result.
1570     case DW_OP_or:
1571       if (stack.size() < 2) {
1572         if (error_ptr)
1573           error_ptr->SetErrorString(
1574               "Expression stack needs at least 2 items for DW_OP_or.");
1575         return false;
1576       } else {
1577         tmp = stack.back();
1578         stack.pop_back();
1579         stack.back().ResolveValue(exe_ctx) =
1580             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1581       }
1582       break;
1583 
1584     // OPCODE: DW_OP_plus
1585     // OPERANDS: none
1586     // DESCRIPTION: pops the top two stack entries, adds them together, and
1587     // pushes the result.
1588     case DW_OP_plus:
1589       if (stack.size() < 2) {
1590         if (error_ptr)
1591           error_ptr->SetErrorString(
1592               "Expression stack needs at least 2 items for DW_OP_plus.");
1593         return false;
1594       } else {
1595         tmp = stack.back();
1596         stack.pop_back();
1597         stack.back().GetScalar() += tmp.GetScalar();
1598       }
1599       break;
1600 
1601     // OPCODE: DW_OP_plus_uconst
1602     // OPERANDS: none
1603     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1604     // constant operand and pushes the result.
1605     case DW_OP_plus_uconst:
1606       if (stack.empty()) {
1607         if (error_ptr)
1608           error_ptr->SetErrorString(
1609               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1610         return false;
1611       } else {
1612         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1613         // Implicit conversion from a UINT to a Scalar...
1614         stack.back().GetScalar() += uconst_value;
1615         if (!stack.back().GetScalar().IsValid()) {
1616           if (error_ptr)
1617             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1618           return false;
1619         }
1620       }
1621       break;
1622 
1623     // OPCODE: DW_OP_shl
1624     // OPERANDS: none
1625     // DESCRIPTION:  pops the top two stack entries, shifts the former
1626     // second entry left by the number of bits specified by the former top of
1627     // the stack, and pushes the result.
1628     case DW_OP_shl:
1629       if (stack.size() < 2) {
1630         if (error_ptr)
1631           error_ptr->SetErrorString(
1632               "Expression stack needs at least 2 items for DW_OP_shl.");
1633         return false;
1634       } else {
1635         tmp = stack.back();
1636         stack.pop_back();
1637         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1638       }
1639       break;
1640 
1641     // OPCODE: DW_OP_shr
1642     // OPERANDS: none
1643     // DESCRIPTION: pops the top two stack entries, shifts the former second
1644     // entry right logically (filling with zero bits) by the number of bits
1645     // specified by the former top of the stack, and pushes the result.
1646     case DW_OP_shr:
1647       if (stack.size() < 2) {
1648         if (error_ptr)
1649           error_ptr->SetErrorString(
1650               "Expression stack needs at least 2 items for DW_OP_shr.");
1651         return false;
1652       } else {
1653         tmp = stack.back();
1654         stack.pop_back();
1655         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1656                 tmp.ResolveValue(exe_ctx))) {
1657           if (error_ptr)
1658             error_ptr->SetErrorString("DW_OP_shr failed.");
1659           return false;
1660         }
1661       }
1662       break;
1663 
1664     // OPCODE: DW_OP_shra
1665     // OPERANDS: none
1666     // DESCRIPTION: pops the top two stack entries, shifts the former second
1667     // entry right arithmetically (divide the magnitude by 2, keep the same
1668     // sign for the result) by the number of bits specified by the former top
1669     // of the stack, and pushes the result.
1670     case DW_OP_shra:
1671       if (stack.size() < 2) {
1672         if (error_ptr)
1673           error_ptr->SetErrorString(
1674               "Expression stack needs at least 2 items for DW_OP_shra.");
1675         return false;
1676       } else {
1677         tmp = stack.back();
1678         stack.pop_back();
1679         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1680       }
1681       break;
1682 
1683     // OPCODE: DW_OP_xor
1684     // OPERANDS: none
1685     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1686     // exclusive-or operation on the two, and pushes the result.
1687     case DW_OP_xor:
1688       if (stack.size() < 2) {
1689         if (error_ptr)
1690           error_ptr->SetErrorString(
1691               "Expression stack needs at least 2 items for DW_OP_xor.");
1692         return false;
1693       } else {
1694         tmp = stack.back();
1695         stack.pop_back();
1696         stack.back().ResolveValue(exe_ctx) =
1697             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1698       }
1699       break;
1700 
1701     // OPCODE: DW_OP_skip
1702     // OPERANDS: int16_t
1703     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1704     // signed integer constant. The 2-byte constant is the number of bytes of
1705     // the DWARF expression to skip forward or backward from the current
1706     // operation, beginning after the 2-byte constant.
1707     case DW_OP_skip: {
1708       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1709       lldb::offset_t new_offset = offset + skip_offset;
1710       if (opcodes.ValidOffset(new_offset))
1711         offset = new_offset;
1712       else {
1713         if (error_ptr)
1714           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1715         return false;
1716       }
1717     } break;
1718 
1719     // OPCODE: DW_OP_bra
1720     // OPERANDS: int16_t
1721     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1722     // signed integer constant. This operation pops the top of stack. If the
1723     // value popped is not the constant 0, the 2-byte constant operand is the
1724     // number of bytes of the DWARF expression to skip forward or backward from
1725     // the current operation, beginning after the 2-byte constant.
1726     case DW_OP_bra:
1727       if (stack.empty()) {
1728         if (error_ptr)
1729           error_ptr->SetErrorString(
1730               "Expression stack needs at least 1 item for DW_OP_bra.");
1731         return false;
1732       } else {
1733         tmp = stack.back();
1734         stack.pop_back();
1735         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1736         Scalar zero(0);
1737         if (tmp.ResolveValue(exe_ctx) != zero) {
1738           lldb::offset_t new_offset = offset + bra_offset;
1739           if (opcodes.ValidOffset(new_offset))
1740             offset = new_offset;
1741           else {
1742             if (error_ptr)
1743               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1744             return false;
1745           }
1746         }
1747       }
1748       break;
1749 
1750     // OPCODE: DW_OP_eq
1751     // OPERANDS: none
1752     // DESCRIPTION: pops the top two stack values, compares using the
1753     // equals (==) operator.
1754     // STACK RESULT: push the constant value 1 onto the stack if the result
1755     // of the operation is true or the constant value 0 if the result of the
1756     // operation is false.
1757     case DW_OP_eq:
1758       if (stack.size() < 2) {
1759         if (error_ptr)
1760           error_ptr->SetErrorString(
1761               "Expression stack needs at least 2 items for DW_OP_eq.");
1762         return false;
1763       } else {
1764         tmp = stack.back();
1765         stack.pop_back();
1766         stack.back().ResolveValue(exe_ctx) =
1767             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1768       }
1769       break;
1770 
1771     // OPCODE: DW_OP_ge
1772     // OPERANDS: none
1773     // DESCRIPTION: pops the top two stack values, compares using the
1774     // greater than or equal to (>=) operator.
1775     // STACK RESULT: push the constant value 1 onto the stack if the result
1776     // of the operation is true or the constant value 0 if the result of the
1777     // operation is false.
1778     case DW_OP_ge:
1779       if (stack.size() < 2) {
1780         if (error_ptr)
1781           error_ptr->SetErrorString(
1782               "Expression stack needs at least 2 items for DW_OP_ge.");
1783         return false;
1784       } else {
1785         tmp = stack.back();
1786         stack.pop_back();
1787         stack.back().ResolveValue(exe_ctx) =
1788             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1789       }
1790       break;
1791 
1792     // OPCODE: DW_OP_gt
1793     // OPERANDS: none
1794     // DESCRIPTION: pops the top two stack values, compares using the
1795     // greater than (>) operator.
1796     // STACK RESULT: push the constant value 1 onto the stack if the result
1797     // of the operation is true or the constant value 0 if the result of the
1798     // operation is false.
1799     case DW_OP_gt:
1800       if (stack.size() < 2) {
1801         if (error_ptr)
1802           error_ptr->SetErrorString(
1803               "Expression stack needs at least 2 items for DW_OP_gt.");
1804         return false;
1805       } else {
1806         tmp = stack.back();
1807         stack.pop_back();
1808         stack.back().ResolveValue(exe_ctx) =
1809             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1810       }
1811       break;
1812 
1813     // OPCODE: DW_OP_le
1814     // OPERANDS: none
1815     // DESCRIPTION: pops the top two stack values, compares using the
1816     // less than or equal to (<=) operator.
1817     // STACK RESULT: push the constant value 1 onto the stack if the result
1818     // of the operation is true or the constant value 0 if the result of the
1819     // operation is false.
1820     case DW_OP_le:
1821       if (stack.size() < 2) {
1822         if (error_ptr)
1823           error_ptr->SetErrorString(
1824               "Expression stack needs at least 2 items for DW_OP_le.");
1825         return false;
1826       } else {
1827         tmp = stack.back();
1828         stack.pop_back();
1829         stack.back().ResolveValue(exe_ctx) =
1830             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1831       }
1832       break;
1833 
1834     // OPCODE: DW_OP_lt
1835     // OPERANDS: none
1836     // DESCRIPTION: pops the top two stack values, compares using the
1837     // less than (<) operator.
1838     // STACK RESULT: push the constant value 1 onto the stack if the result
1839     // of the operation is true or the constant value 0 if the result of the
1840     // operation is false.
1841     case DW_OP_lt:
1842       if (stack.size() < 2) {
1843         if (error_ptr)
1844           error_ptr->SetErrorString(
1845               "Expression stack needs at least 2 items for DW_OP_lt.");
1846         return false;
1847       } else {
1848         tmp = stack.back();
1849         stack.pop_back();
1850         stack.back().ResolveValue(exe_ctx) =
1851             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1852       }
1853       break;
1854 
1855     // OPCODE: DW_OP_ne
1856     // OPERANDS: none
1857     // DESCRIPTION: pops the top two stack values, compares using the
1858     // not equal (!=) operator.
1859     // STACK RESULT: push the constant value 1 onto the stack if the result
1860     // of the operation is true or the constant value 0 if the result of the
1861     // operation is false.
1862     case DW_OP_ne:
1863       if (stack.size() < 2) {
1864         if (error_ptr)
1865           error_ptr->SetErrorString(
1866               "Expression stack needs at least 2 items for DW_OP_ne.");
1867         return false;
1868       } else {
1869         tmp = stack.back();
1870         stack.pop_back();
1871         stack.back().ResolveValue(exe_ctx) =
1872             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1873       }
1874       break;
1875 
1876     // OPCODE: DW_OP_litn
1877     // OPERANDS: none
1878     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1879     // STACK RESULT: push the unsigned literal constant value onto the top
1880     // of the stack.
1881     case DW_OP_lit0:
1882     case DW_OP_lit1:
1883     case DW_OP_lit2:
1884     case DW_OP_lit3:
1885     case DW_OP_lit4:
1886     case DW_OP_lit5:
1887     case DW_OP_lit6:
1888     case DW_OP_lit7:
1889     case DW_OP_lit8:
1890     case DW_OP_lit9:
1891     case DW_OP_lit10:
1892     case DW_OP_lit11:
1893     case DW_OP_lit12:
1894     case DW_OP_lit13:
1895     case DW_OP_lit14:
1896     case DW_OP_lit15:
1897     case DW_OP_lit16:
1898     case DW_OP_lit17:
1899     case DW_OP_lit18:
1900     case DW_OP_lit19:
1901     case DW_OP_lit20:
1902     case DW_OP_lit21:
1903     case DW_OP_lit22:
1904     case DW_OP_lit23:
1905     case DW_OP_lit24:
1906     case DW_OP_lit25:
1907     case DW_OP_lit26:
1908     case DW_OP_lit27:
1909     case DW_OP_lit28:
1910     case DW_OP_lit29:
1911     case DW_OP_lit30:
1912     case DW_OP_lit31:
1913       stack.push_back(to_generic(op - DW_OP_lit0));
1914       break;
1915 
1916     // OPCODE: DW_OP_regN
1917     // OPERANDS: none
1918     // DESCRIPTION: Push the value in register n on the top of the stack.
1919     case DW_OP_reg0:
1920     case DW_OP_reg1:
1921     case DW_OP_reg2:
1922     case DW_OP_reg3:
1923     case DW_OP_reg4:
1924     case DW_OP_reg5:
1925     case DW_OP_reg6:
1926     case DW_OP_reg7:
1927     case DW_OP_reg8:
1928     case DW_OP_reg9:
1929     case DW_OP_reg10:
1930     case DW_OP_reg11:
1931     case DW_OP_reg12:
1932     case DW_OP_reg13:
1933     case DW_OP_reg14:
1934     case DW_OP_reg15:
1935     case DW_OP_reg16:
1936     case DW_OP_reg17:
1937     case DW_OP_reg18:
1938     case DW_OP_reg19:
1939     case DW_OP_reg20:
1940     case DW_OP_reg21:
1941     case DW_OP_reg22:
1942     case DW_OP_reg23:
1943     case DW_OP_reg24:
1944     case DW_OP_reg25:
1945     case DW_OP_reg26:
1946     case DW_OP_reg27:
1947     case DW_OP_reg28:
1948     case DW_OP_reg29:
1949     case DW_OP_reg30:
1950     case DW_OP_reg31: {
1951       reg_num = op - DW_OP_reg0;
1952 
1953       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1954         stack.push_back(tmp);
1955       else
1956         return false;
1957     } break;
1958     // OPCODE: DW_OP_regx
1959     // OPERANDS:
1960     //      ULEB128 literal operand that encodes the register.
1961     // DESCRIPTION: Push the value in register on the top of the stack.
1962     case DW_OP_regx: {
1963       reg_num = opcodes.GetULEB128(&offset);
1964       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1965         stack.push_back(tmp);
1966       else
1967         return false;
1968     } break;
1969 
1970     // OPCODE: DW_OP_bregN
1971     // OPERANDS:
1972     //      SLEB128 offset from register N
1973     // DESCRIPTION: Value is in memory at the address specified by register
1974     // N plus an offset.
1975     case DW_OP_breg0:
1976     case DW_OP_breg1:
1977     case DW_OP_breg2:
1978     case DW_OP_breg3:
1979     case DW_OP_breg4:
1980     case DW_OP_breg5:
1981     case DW_OP_breg6:
1982     case DW_OP_breg7:
1983     case DW_OP_breg8:
1984     case DW_OP_breg9:
1985     case DW_OP_breg10:
1986     case DW_OP_breg11:
1987     case DW_OP_breg12:
1988     case DW_OP_breg13:
1989     case DW_OP_breg14:
1990     case DW_OP_breg15:
1991     case DW_OP_breg16:
1992     case DW_OP_breg17:
1993     case DW_OP_breg18:
1994     case DW_OP_breg19:
1995     case DW_OP_breg20:
1996     case DW_OP_breg21:
1997     case DW_OP_breg22:
1998     case DW_OP_breg23:
1999     case DW_OP_breg24:
2000     case DW_OP_breg25:
2001     case DW_OP_breg26:
2002     case DW_OP_breg27:
2003     case DW_OP_breg28:
2004     case DW_OP_breg29:
2005     case DW_OP_breg30:
2006     case DW_OP_breg31: {
2007       reg_num = op - DW_OP_breg0;
2008 
2009       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2010                                     tmp)) {
2011         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2012         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2013         tmp.ClearContext();
2014         stack.push_back(tmp);
2015         stack.back().SetValueType(Value::ValueType::LoadAddress);
2016       } else
2017         return false;
2018     } break;
2019     // OPCODE: DW_OP_bregx
2020     // OPERANDS: 2
2021     //      ULEB128 literal operand that encodes the register.
2022     //      SLEB128 offset from register N
2023     // DESCRIPTION: Value is in memory at the address specified by register
2024     // N plus an offset.
2025     case DW_OP_bregx: {
2026       reg_num = opcodes.GetULEB128(&offset);
2027 
2028       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2029                                     tmp)) {
2030         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2031         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2032         tmp.ClearContext();
2033         stack.push_back(tmp);
2034         stack.back().SetValueType(Value::ValueType::LoadAddress);
2035       } else
2036         return false;
2037     } break;
2038 
2039     case DW_OP_fbreg:
2040       if (exe_ctx) {
2041         if (frame) {
2042           Scalar value;
2043           if (frame->GetFrameBaseValue(value, error_ptr)) {
2044             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2045             value += fbreg_offset;
2046             stack.push_back(value);
2047             stack.back().SetValueType(Value::ValueType::LoadAddress);
2048           } else
2049             return false;
2050         } else {
2051           if (error_ptr)
2052             error_ptr->SetErrorString(
2053                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2054           return false;
2055         }
2056       } else {
2057         if (error_ptr)
2058           error_ptr->SetErrorString(
2059               "NULL execution context for DW_OP_fbreg.\n");
2060         return false;
2061       }
2062 
2063       break;
2064 
2065     // OPCODE: DW_OP_nop
2066     // OPERANDS: none
2067     // DESCRIPTION: A place holder. It has no effect on the location stack
2068     // or any of its values.
2069     case DW_OP_nop:
2070       break;
2071 
2072     // OPCODE: DW_OP_piece
2073     // OPERANDS: 1
2074     //      ULEB128: byte size of the piece
2075     // DESCRIPTION: The operand describes the size in bytes of the piece of
2076     // the object referenced by the DWARF expression whose result is at the top
2077     // of the stack. If the piece is located in a register, but does not occupy
2078     // the entire register, the placement of the piece within that register is
2079     // defined by the ABI.
2080     //
2081     // Many compilers store a single variable in sets of registers, or store a
2082     // variable partially in memory and partially in registers. DW_OP_piece
2083     // provides a way of describing how large a part of a variable a particular
2084     // DWARF expression refers to.
2085     case DW_OP_piece: {
2086       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2087 
2088       if (piece_byte_size > 0) {
2089         Value curr_piece;
2090 
2091         if (stack.empty()) {
2092           // In a multi-piece expression, this means that the current piece is
2093           // not available. Fill with zeros for now by resizing the data and
2094           // appending it
2095           curr_piece.ResizeData(piece_byte_size);
2096           // Note that "0" is not a correct value for the unknown bits.
2097           // It would be better to also return a mask of valid bits together
2098           // with the expression result, so the debugger can print missing
2099           // members as "<optimized out>" or something.
2100           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2101           pieces.AppendDataToHostBuffer(curr_piece);
2102         } else {
2103           Status error;
2104           // Extract the current piece into "curr_piece"
2105           Value curr_piece_source_value(stack.back());
2106           stack.pop_back();
2107 
2108           const Value::ValueType curr_piece_source_value_type =
2109               curr_piece_source_value.GetValueType();
2110           switch (curr_piece_source_value_type) {
2111           case Value::ValueType::Invalid:
2112             return false;
2113           case Value::ValueType::LoadAddress:
2114             if (process) {
2115               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2116                 lldb::addr_t load_addr =
2117                     curr_piece_source_value.GetScalar().ULongLong(
2118                         LLDB_INVALID_ADDRESS);
2119                 if (process->ReadMemory(
2120                         load_addr, curr_piece.GetBuffer().GetBytes(),
2121                         piece_byte_size, error) != piece_byte_size) {
2122                   if (error_ptr)
2123                     error_ptr->SetErrorStringWithFormat(
2124                         "failed to read memory DW_OP_piece(%" PRIu64
2125                         ") from 0x%" PRIx64,
2126                         piece_byte_size, load_addr);
2127                   return false;
2128                 }
2129               } else {
2130                 if (error_ptr)
2131                   error_ptr->SetErrorStringWithFormat(
2132                       "failed to resize the piece memory buffer for "
2133                       "DW_OP_piece(%" PRIu64 ")",
2134                       piece_byte_size);
2135                 return false;
2136               }
2137             }
2138             break;
2139 
2140           case Value::ValueType::FileAddress:
2141           case Value::ValueType::HostAddress:
2142             if (error_ptr) {
2143               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2144                   LLDB_INVALID_ADDRESS);
2145               error_ptr->SetErrorStringWithFormat(
2146                   "failed to read memory DW_OP_piece(%" PRIu64
2147                   ") from %s address 0x%" PRIx64,
2148                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2149                                            Value::ValueType::FileAddress
2150                                        ? "file"
2151                                        : "host",
2152                   addr);
2153             }
2154             return false;
2155 
2156           case Value::ValueType::Scalar: {
2157             uint32_t bit_size = piece_byte_size * 8;
2158             uint32_t bit_offset = 0;
2159             Scalar &scalar = curr_piece_source_value.GetScalar();
2160             if (!scalar.ExtractBitfield(
2161                     bit_size, bit_offset)) {
2162               if (error_ptr)
2163                 error_ptr->SetErrorStringWithFormat(
2164                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2165                     " byte scalar value.",
2166                     piece_byte_size,
2167                     (uint64_t)curr_piece_source_value.GetScalar()
2168                         .GetByteSize());
2169               return false;
2170             }
2171             // Create curr_piece with bit_size. By default Scalar
2172             // grows to the nearest host integer type.
2173             llvm::APInt fail_value(1, 0, false);
2174             llvm::APInt ap_int = scalar.UInt128(fail_value);
2175             assert(ap_int.getBitWidth() >= bit_size);
2176             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2177                                          ap_int.getNumWords()};
2178             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2179           } break;
2180           }
2181 
2182           // Check if this is the first piece?
2183           if (op_piece_offset == 0) {
2184             // This is the first piece, we should push it back onto the stack
2185             // so subsequent pieces will be able to access this piece and add
2186             // to it.
2187             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2188               if (error_ptr)
2189                 error_ptr->SetErrorString("failed to append piece data");
2190               return false;
2191             }
2192           } else {
2193             // If this is the second or later piece there should be a value on
2194             // the stack.
2195             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2196               if (error_ptr)
2197                 error_ptr->SetErrorStringWithFormat(
2198                     "DW_OP_piece for offset %" PRIu64
2199                     " but top of stack is of size %" PRIu64,
2200                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2201               return false;
2202             }
2203 
2204             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2205               if (error_ptr)
2206                 error_ptr->SetErrorString("failed to append piece data");
2207               return false;
2208             }
2209           }
2210         }
2211         op_piece_offset += piece_byte_size;
2212       }
2213     } break;
2214 
2215     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2216       if (stack.size() < 1) {
2217         if (error_ptr)
2218           error_ptr->SetErrorString(
2219               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2220         return false;
2221       } else {
2222         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2223         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2224         switch (stack.back().GetValueType()) {
2225         case Value::ValueType::Invalid:
2226           return false;
2227         case Value::ValueType::Scalar: {
2228           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2229                                                         piece_bit_offset)) {
2230             if (error_ptr)
2231               error_ptr->SetErrorStringWithFormat(
2232                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2233                   " bit offset from a %" PRIu64 " bit scalar value.",
2234                   piece_bit_size, piece_bit_offset,
2235                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2236             return false;
2237           }
2238         } break;
2239 
2240         case Value::ValueType::FileAddress:
2241         case Value::ValueType::LoadAddress:
2242         case Value::ValueType::HostAddress:
2243           if (error_ptr) {
2244             error_ptr->SetErrorStringWithFormat(
2245                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2246                 ", bit_offset = %" PRIu64 ") from an address value.",
2247                 piece_bit_size, piece_bit_offset);
2248           }
2249           return false;
2250         }
2251       }
2252       break;
2253 
2254     // OPCODE: DW_OP_implicit_value
2255     // OPERANDS: 2
2256     //      ULEB128  size of the value block in bytes
2257     //      uint8_t* block bytes encoding value in target's memory
2258     //      representation
2259     // DESCRIPTION: Value is immediately stored in block in the debug info with
2260     // the memory representation of the target.
2261     case DW_OP_implicit_value: {
2262       const uint32_t len = opcodes.GetULEB128(&offset);
2263       const void *data = opcodes.GetData(&offset, len);
2264 
2265       if (!data) {
2266         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2267         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2268                     DW_OP_value_to_name(op));
2269         return false;
2270       }
2271 
2272       Value result(data, len);
2273       stack.push_back(result);
2274       break;
2275     }
2276 
2277     // OPCODE: DW_OP_push_object_address
2278     // OPERANDS: none
2279     // DESCRIPTION: Pushes the address of the object currently being
2280     // evaluated as part of evaluation of a user presented expression. This
2281     // object may correspond to an independent variable described by its own
2282     // DIE or it may be a component of an array, structure, or class whose
2283     // address has been dynamically determined by an earlier step during user
2284     // expression evaluation.
2285     case DW_OP_push_object_address:
2286       if (object_address_ptr)
2287         stack.push_back(*object_address_ptr);
2288       else {
2289         if (error_ptr)
2290           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2291                                     "specifying an object address");
2292         return false;
2293       }
2294       break;
2295 
2296     // OPCODE: DW_OP_call2
2297     // OPERANDS:
2298     //      uint16_t compile unit relative offset of a DIE
2299     // DESCRIPTION: Performs subroutine calls during evaluation
2300     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2301     // debugging information entry in the current compilation unit.
2302     //
2303     // Operand interpretation is exactly like that for DW_FORM_ref2.
2304     //
2305     // This operation transfers control of DWARF expression evaluation to the
2306     // DW_AT_location attribute of the referenced DIE. If there is no such
2307     // attribute, then there is no effect. Execution of the DWARF expression of
2308     // a DW_AT_location attribute may add to and/or remove from values on the
2309     // stack. Execution returns to the point following the call when the end of
2310     // the attribute is reached. Values on the stack at the time of the call
2311     // may be used as parameters by the called expression and values left on
2312     // the stack by the called expression may be used as return values by prior
2313     // agreement between the calling and called expressions.
2314     case DW_OP_call2:
2315       if (error_ptr)
2316         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2317       return false;
2318     // OPCODE: DW_OP_call4
2319     // OPERANDS: 1
2320     //      uint32_t compile unit relative offset of a DIE
2321     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2322     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2323     // a debugging information entry in  the current compilation unit.
2324     //
2325     // Operand interpretation DW_OP_call4 is exactly like that for
2326     // DW_FORM_ref4.
2327     //
2328     // This operation transfers control of DWARF expression evaluation to the
2329     // DW_AT_location attribute of the referenced DIE. If there is no such
2330     // attribute, then there is no effect. Execution of the DWARF expression of
2331     // a DW_AT_location attribute may add to and/or remove from values on the
2332     // stack. Execution returns to the point following the call when the end of
2333     // the attribute is reached. Values on the stack at the time of the call
2334     // may be used as parameters by the called expression and values left on
2335     // the stack by the called expression may be used as return values by prior
2336     // agreement between the calling and called expressions.
2337     case DW_OP_call4:
2338       if (error_ptr)
2339         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2340       return false;
2341 
2342     // OPCODE: DW_OP_stack_value
2343     // OPERANDS: None
2344     // DESCRIPTION: Specifies that the object does not exist in memory but
2345     // rather is a constant value.  The value from the top of the stack is the
2346     // value to be used.  This is the actual object value and not the location.
2347     case DW_OP_stack_value:
2348       if (stack.empty()) {
2349         if (error_ptr)
2350           error_ptr->SetErrorString(
2351               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2352         return false;
2353       }
2354       stack.back().SetValueType(Value::ValueType::Scalar);
2355       break;
2356 
2357     // OPCODE: DW_OP_convert
2358     // OPERANDS: 1
2359     //      A ULEB128 that is either a DIE offset of a
2360     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2361     //
2362     // DESCRIPTION: Pop the top stack element, convert it to a
2363     // different type, and push the result.
2364     case DW_OP_convert: {
2365       if (stack.size() < 1) {
2366         if (error_ptr)
2367           error_ptr->SetErrorString(
2368               "Expression stack needs at least 1 item for DW_OP_convert.");
2369         return false;
2370       }
2371       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2372       uint64_t bit_size;
2373       bool sign;
2374       if (die_offset == 0) {
2375         // The generic type has the size of an address on the target
2376         // machine and an unspecified signedness. Scalar has no
2377         // "unspecified signedness", so we use unsigned types.
2378         if (!module_sp) {
2379           if (error_ptr)
2380             error_ptr->SetErrorString("No module");
2381           return false;
2382         }
2383         sign = false;
2384         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2385         if (!bit_size) {
2386           if (error_ptr)
2387             error_ptr->SetErrorString("unspecified architecture");
2388           return false;
2389         }
2390       } else {
2391         // Retrieve the type DIE that the value is being converted to.
2392         // FIXME: the constness has annoying ripple effects.
2393         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2394         if (!die) {
2395           if (error_ptr)
2396             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2397           return false;
2398         }
2399         uint64_t encoding =
2400             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2401         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2402         if (!bit_size)
2403           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2404         if (!bit_size) {
2405           if (error_ptr)
2406             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2407           return false;
2408         }
2409         switch (encoding) {
2410         case DW_ATE_signed:
2411         case DW_ATE_signed_char:
2412           sign = true;
2413           break;
2414         case DW_ATE_unsigned:
2415         case DW_ATE_unsigned_char:
2416           sign = false;
2417           break;
2418         default:
2419           if (error_ptr)
2420             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2421           return false;
2422         }
2423       }
2424       Scalar &top = stack.back().ResolveValue(exe_ctx);
2425       top.TruncOrExtendTo(bit_size, sign);
2426       break;
2427     }
2428 
2429     // OPCODE: DW_OP_call_frame_cfa
2430     // OPERANDS: None
2431     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2432     // the canonical frame address consistent with the call frame information
2433     // located in .debug_frame (or in the FDEs of the eh_frame section).
2434     case DW_OP_call_frame_cfa:
2435       if (frame) {
2436         // Note that we don't have to parse FDEs because this DWARF expression
2437         // is commonly evaluated with a valid stack frame.
2438         StackID id = frame->GetStackID();
2439         addr_t cfa = id.GetCallFrameAddress();
2440         if (cfa != LLDB_INVALID_ADDRESS) {
2441           stack.push_back(Scalar(cfa));
2442           stack.back().SetValueType(Value::ValueType::LoadAddress);
2443         } else if (error_ptr)
2444           error_ptr->SetErrorString("Stack frame does not include a canonical "
2445                                     "frame address for DW_OP_call_frame_cfa "
2446                                     "opcode.");
2447       } else {
2448         if (error_ptr)
2449           error_ptr->SetErrorString("Invalid stack frame in context for "
2450                                     "DW_OP_call_frame_cfa opcode.");
2451         return false;
2452       }
2453       break;
2454 
2455     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2456     // opcode, DW_OP_GNU_push_tls_address)
2457     // OPERANDS: none
2458     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2459     // an address in the current thread's thread-local storage block, and
2460     // pushes it on the stack.
2461     case DW_OP_form_tls_address:
2462     case DW_OP_GNU_push_tls_address: {
2463       if (stack.size() < 1) {
2464         if (error_ptr) {
2465           if (op == DW_OP_form_tls_address)
2466             error_ptr->SetErrorString(
2467                 "DW_OP_form_tls_address needs an argument.");
2468           else
2469             error_ptr->SetErrorString(
2470                 "DW_OP_GNU_push_tls_address needs an argument.");
2471         }
2472         return false;
2473       }
2474 
2475       if (!exe_ctx || !module_sp) {
2476         if (error_ptr)
2477           error_ptr->SetErrorString("No context to evaluate TLS within.");
2478         return false;
2479       }
2480 
2481       Thread *thread = exe_ctx->GetThreadPtr();
2482       if (!thread) {
2483         if (error_ptr)
2484           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2485         return false;
2486       }
2487 
2488       // Lookup the TLS block address for this thread and module.
2489       const addr_t tls_file_addr =
2490           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2491       const addr_t tls_load_addr =
2492           thread->GetThreadLocalData(module_sp, tls_file_addr);
2493 
2494       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2495         if (error_ptr)
2496           error_ptr->SetErrorString(
2497               "No TLS data currently exists for this thread.");
2498         return false;
2499       }
2500 
2501       stack.back().GetScalar() = tls_load_addr;
2502       stack.back().SetValueType(Value::ValueType::LoadAddress);
2503     } break;
2504 
2505     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2506     // OPERANDS: 1
2507     //      ULEB128: index to the .debug_addr section
2508     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2509     // section with the base address specified by the DW_AT_addr_base attribute
2510     // and the 0 based index is the ULEB128 encoded index.
2511     case DW_OP_addrx:
2512     case DW_OP_GNU_addr_index: {
2513       if (!dwarf_cu) {
2514         if (error_ptr)
2515           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2516                                     "compile unit being specified");
2517         return false;
2518       }
2519       uint64_t index = opcodes.GetULEB128(&offset);
2520       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2521       stack.push_back(Scalar(value));
2522       stack.back().SetValueType(Value::ValueType::FileAddress);
2523     } break;
2524 
2525     // OPCODE: DW_OP_GNU_const_index
2526     // OPERANDS: 1
2527     //      ULEB128: index to the .debug_addr section
2528     // DESCRIPTION: Pushes an constant with the size of a machine address to
2529     // the stack from the .debug_addr section with the base address specified
2530     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2531     // encoded index.
2532     case DW_OP_GNU_const_index: {
2533       if (!dwarf_cu) {
2534         if (error_ptr)
2535           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2536                                     "compile unit being specified");
2537         return false;
2538       }
2539       uint64_t index = opcodes.GetULEB128(&offset);
2540       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2541       stack.push_back(Scalar(value));
2542     } break;
2543 
2544     case DW_OP_GNU_entry_value:
2545     case DW_OP_entry_value: {
2546       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2547                                       error_ptr, log)) {
2548         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2549                     DW_OP_value_to_name(op));
2550         return false;
2551       }
2552       break;
2553     }
2554 
2555     default:
2556       if (error_ptr)
2557         error_ptr->SetErrorStringWithFormatv(
2558             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2559       return false;
2560     }
2561   }
2562 
2563   if (stack.empty()) {
2564     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2565     // or DW_OP_bit_piece opcodes
2566     if (pieces.GetBuffer().GetByteSize()) {
2567       result = pieces;
2568     } else {
2569       if (error_ptr)
2570         error_ptr->SetErrorString("Stack empty after evaluation.");
2571       return false;
2572     }
2573   } else {
2574     if (log && log->GetVerbose()) {
2575       size_t count = stack.size();
2576       LLDB_LOGF(log, "Stack after operation has %" PRIu64 " values:",
2577                 (uint64_t)count);
2578       for (size_t i = 0; i < count; ++i) {
2579         StreamString new_value;
2580         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2581         stack[i].Dump(&new_value);
2582         LLDB_LOGF(log, "  %s", new_value.GetData());
2583       }
2584     }
2585     result = stack.back();
2586   }
2587   return true; // Return true on success
2588 }
2589 
2590 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
2591                                      ByteOrder byte_order, uint32_t addr_size) {
2592   auto buffer_sp =
2593       std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
2594   return DataExtractor(buffer_sp, byte_order, addr_size);
2595 }
2596 
2597 llvm::Optional<DataExtractor>
2598 DWARFExpression::GetLocationExpression(addr_t load_function_start,
2599                                        addr_t addr) const {
2600   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
2601 
2602   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2603       m_dwarf_cu->GetLocationTable(m_data);
2604   llvm::Optional<DataExtractor> result;
2605   uint64_t offset = 0;
2606   auto lookup_addr =
2607       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2608     addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
2609     if (address == LLDB_INVALID_ADDRESS)
2610       return llvm::None;
2611     return llvm::object::SectionedAddress{address};
2612   };
2613   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2614     if (!loc) {
2615       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2616       return true;
2617     }
2618     if (loc->Range) {
2619       // This relocates low_pc and high_pc by adding the difference between the
2620       // function file address, and the actual address it is loaded in memory.
2621       addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
2622       loc->Range->LowPC += slide;
2623       loc->Range->HighPC += slide;
2624 
2625       if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC)
2626         result = ToDataExtractor(*loc, m_data.GetByteOrder(),
2627                                  m_data.GetAddressByteSize());
2628     }
2629     return !result;
2630   };
2631   llvm::Error E = loctable_up->visitAbsoluteLocationList(
2632       offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
2633       lookup_addr, process_list);
2634   if (E)
2635     LLDB_LOG_ERROR(log, std::move(E), "{0}");
2636   return result;
2637 }
2638 
2639 bool DWARFExpression::MatchesOperand(StackFrame &frame,
2640                                      const Instruction::Operand &operand) {
2641   using namespace OperandMatchers;
2642 
2643   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2644   if (!reg_ctx_sp) {
2645     return false;
2646   }
2647 
2648   DataExtractor opcodes;
2649   if (IsLocationList()) {
2650     SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
2651     if (!sc.function)
2652       return false;
2653 
2654     addr_t load_function_start =
2655         sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
2656     if (load_function_start == LLDB_INVALID_ADDRESS)
2657       return false;
2658 
2659     addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
2660         frame.CalculateTarget().get());
2661 
2662     if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc))
2663       opcodes = std::move(*expr);
2664     else
2665       return false;
2666   } else
2667     opcodes = m_data;
2668 
2669 
2670   lldb::offset_t op_offset = 0;
2671   uint8_t opcode = opcodes.GetU8(&op_offset);
2672 
2673   if (opcode == DW_OP_fbreg) {
2674     int64_t offset = opcodes.GetSLEB128(&op_offset);
2675 
2676     DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
2677     if (!fb_expr) {
2678       return false;
2679     }
2680 
2681     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2682       return fb_expr->MatchesOperand(frame, child);
2683     };
2684 
2685     if (!offset &&
2686         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2687                      recurse)(operand)) {
2688       return true;
2689     }
2690 
2691     return MatchUnaryOp(
2692         MatchOpType(Instruction::Operand::Type::Dereference),
2693         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2694                       MatchImmOp(offset), recurse))(operand);
2695   }
2696 
2697   bool dereference = false;
2698   const RegisterInfo *reg = nullptr;
2699   int64_t offset = 0;
2700 
2701   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2702     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2703   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2704     offset = opcodes.GetSLEB128(&op_offset);
2705     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2706   } else if (opcode == DW_OP_regx) {
2707     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2708     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2709   } else if (opcode == DW_OP_bregx) {
2710     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2711     offset = opcodes.GetSLEB128(&op_offset);
2712     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2713   } else {
2714     return false;
2715   }
2716 
2717   if (!reg) {
2718     return false;
2719   }
2720 
2721   if (dereference) {
2722     if (!offset &&
2723         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2724                      MatchRegOp(*reg))(operand)) {
2725       return true;
2726     }
2727 
2728     return MatchUnaryOp(
2729         MatchOpType(Instruction::Operand::Type::Dereference),
2730         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2731                       MatchRegOp(*reg),
2732                       MatchImmOp(offset)))(operand);
2733   } else {
2734     return MatchRegOp(*reg)(operand);
2735   }
2736 }
2737 
2738