1 //===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Expression/DWARFExpression.h" 11 12 #include <vector> 13 14 #include "lldb/Core/dwarf.h" 15 #include "lldb/Core/Log.h" 16 #include "lldb/Core/RegisterValue.h" 17 #include "lldb/Core/StreamString.h" 18 #include "lldb/Core/Scalar.h" 19 #include "lldb/Core/Value.h" 20 #include "lldb/Core/VMRange.h" 21 22 #include "lldb/Expression/ClangExpressionDeclMap.h" 23 #include "lldb/Expression/ClangExpressionVariable.h" 24 25 #include "lldb/Host/Endian.h" 26 27 #include "lldb/lldb-private-log.h" 28 29 #include "lldb/Symbol/ClangASTType.h" 30 #include "lldb/Symbol/ClangASTContext.h" 31 #include "lldb/Symbol/Type.h" 32 33 #include "lldb/Target/ExecutionContext.h" 34 #include "lldb/Target/Process.h" 35 #include "lldb/Target/RegisterContext.h" 36 #include "lldb/Target/StackFrame.h" 37 38 using namespace lldb; 39 using namespace lldb_private; 40 41 const char * 42 DW_OP_value_to_name (uint32_t val) 43 { 44 static char invalid[100]; 45 switch (val) { 46 case 0x03: return "DW_OP_addr"; 47 case 0x06: return "DW_OP_deref"; 48 case 0x08: return "DW_OP_const1u"; 49 case 0x09: return "DW_OP_const1s"; 50 case 0x0a: return "DW_OP_const2u"; 51 case 0x0b: return "DW_OP_const2s"; 52 case 0x0c: return "DW_OP_const4u"; 53 case 0x0d: return "DW_OP_const4s"; 54 case 0x0e: return "DW_OP_const8u"; 55 case 0x0f: return "DW_OP_const8s"; 56 case 0x10: return "DW_OP_constu"; 57 case 0x11: return "DW_OP_consts"; 58 case 0x12: return "DW_OP_dup"; 59 case 0x13: return "DW_OP_drop"; 60 case 0x14: return "DW_OP_over"; 61 case 0x15: return "DW_OP_pick"; 62 case 0x16: return "DW_OP_swap"; 63 case 0x17: return "DW_OP_rot"; 64 case 0x18: return "DW_OP_xderef"; 65 case 0x19: return "DW_OP_abs"; 66 case 0x1a: return "DW_OP_and"; 67 case 0x1b: return "DW_OP_div"; 68 case 0x1c: return "DW_OP_minus"; 69 case 0x1d: return "DW_OP_mod"; 70 case 0x1e: return "DW_OP_mul"; 71 case 0x1f: return "DW_OP_neg"; 72 case 0x20: return "DW_OP_not"; 73 case 0x21: return "DW_OP_or"; 74 case 0x22: return "DW_OP_plus"; 75 case 0x23: return "DW_OP_plus_uconst"; 76 case 0x24: return "DW_OP_shl"; 77 case 0x25: return "DW_OP_shr"; 78 case 0x26: return "DW_OP_shra"; 79 case 0x27: return "DW_OP_xor"; 80 case 0x2f: return "DW_OP_skip"; 81 case 0x28: return "DW_OP_bra"; 82 case 0x29: return "DW_OP_eq"; 83 case 0x2a: return "DW_OP_ge"; 84 case 0x2b: return "DW_OP_gt"; 85 case 0x2c: return "DW_OP_le"; 86 case 0x2d: return "DW_OP_lt"; 87 case 0x2e: return "DW_OP_ne"; 88 case 0x30: return "DW_OP_lit0"; 89 case 0x31: return "DW_OP_lit1"; 90 case 0x32: return "DW_OP_lit2"; 91 case 0x33: return "DW_OP_lit3"; 92 case 0x34: return "DW_OP_lit4"; 93 case 0x35: return "DW_OP_lit5"; 94 case 0x36: return "DW_OP_lit6"; 95 case 0x37: return "DW_OP_lit7"; 96 case 0x38: return "DW_OP_lit8"; 97 case 0x39: return "DW_OP_lit9"; 98 case 0x3a: return "DW_OP_lit10"; 99 case 0x3b: return "DW_OP_lit11"; 100 case 0x3c: return "DW_OP_lit12"; 101 case 0x3d: return "DW_OP_lit13"; 102 case 0x3e: return "DW_OP_lit14"; 103 case 0x3f: return "DW_OP_lit15"; 104 case 0x40: return "DW_OP_lit16"; 105 case 0x41: return "DW_OP_lit17"; 106 case 0x42: return "DW_OP_lit18"; 107 case 0x43: return "DW_OP_lit19"; 108 case 0x44: return "DW_OP_lit20"; 109 case 0x45: return "DW_OP_lit21"; 110 case 0x46: return "DW_OP_lit22"; 111 case 0x47: return "DW_OP_lit23"; 112 case 0x48: return "DW_OP_lit24"; 113 case 0x49: return "DW_OP_lit25"; 114 case 0x4a: return "DW_OP_lit26"; 115 case 0x4b: return "DW_OP_lit27"; 116 case 0x4c: return "DW_OP_lit28"; 117 case 0x4d: return "DW_OP_lit29"; 118 case 0x4e: return "DW_OP_lit30"; 119 case 0x4f: return "DW_OP_lit31"; 120 case 0x50: return "DW_OP_reg0"; 121 case 0x51: return "DW_OP_reg1"; 122 case 0x52: return "DW_OP_reg2"; 123 case 0x53: return "DW_OP_reg3"; 124 case 0x54: return "DW_OP_reg4"; 125 case 0x55: return "DW_OP_reg5"; 126 case 0x56: return "DW_OP_reg6"; 127 case 0x57: return "DW_OP_reg7"; 128 case 0x58: return "DW_OP_reg8"; 129 case 0x59: return "DW_OP_reg9"; 130 case 0x5a: return "DW_OP_reg10"; 131 case 0x5b: return "DW_OP_reg11"; 132 case 0x5c: return "DW_OP_reg12"; 133 case 0x5d: return "DW_OP_reg13"; 134 case 0x5e: return "DW_OP_reg14"; 135 case 0x5f: return "DW_OP_reg15"; 136 case 0x60: return "DW_OP_reg16"; 137 case 0x61: return "DW_OP_reg17"; 138 case 0x62: return "DW_OP_reg18"; 139 case 0x63: return "DW_OP_reg19"; 140 case 0x64: return "DW_OP_reg20"; 141 case 0x65: return "DW_OP_reg21"; 142 case 0x66: return "DW_OP_reg22"; 143 case 0x67: return "DW_OP_reg23"; 144 case 0x68: return "DW_OP_reg24"; 145 case 0x69: return "DW_OP_reg25"; 146 case 0x6a: return "DW_OP_reg26"; 147 case 0x6b: return "DW_OP_reg27"; 148 case 0x6c: return "DW_OP_reg28"; 149 case 0x6d: return "DW_OP_reg29"; 150 case 0x6e: return "DW_OP_reg30"; 151 case 0x6f: return "DW_OP_reg31"; 152 case 0x70: return "DW_OP_breg0"; 153 case 0x71: return "DW_OP_breg1"; 154 case 0x72: return "DW_OP_breg2"; 155 case 0x73: return "DW_OP_breg3"; 156 case 0x74: return "DW_OP_breg4"; 157 case 0x75: return "DW_OP_breg5"; 158 case 0x76: return "DW_OP_breg6"; 159 case 0x77: return "DW_OP_breg7"; 160 case 0x78: return "DW_OP_breg8"; 161 case 0x79: return "DW_OP_breg9"; 162 case 0x7a: return "DW_OP_breg10"; 163 case 0x7b: return "DW_OP_breg11"; 164 case 0x7c: return "DW_OP_breg12"; 165 case 0x7d: return "DW_OP_breg13"; 166 case 0x7e: return "DW_OP_breg14"; 167 case 0x7f: return "DW_OP_breg15"; 168 case 0x80: return "DW_OP_breg16"; 169 case 0x81: return "DW_OP_breg17"; 170 case 0x82: return "DW_OP_breg18"; 171 case 0x83: return "DW_OP_breg19"; 172 case 0x84: return "DW_OP_breg20"; 173 case 0x85: return "DW_OP_breg21"; 174 case 0x86: return "DW_OP_breg22"; 175 case 0x87: return "DW_OP_breg23"; 176 case 0x88: return "DW_OP_breg24"; 177 case 0x89: return "DW_OP_breg25"; 178 case 0x8a: return "DW_OP_breg26"; 179 case 0x8b: return "DW_OP_breg27"; 180 case 0x8c: return "DW_OP_breg28"; 181 case 0x8d: return "DW_OP_breg29"; 182 case 0x8e: return "DW_OP_breg30"; 183 case 0x8f: return "DW_OP_breg31"; 184 case 0x90: return "DW_OP_regx"; 185 case 0x91: return "DW_OP_fbreg"; 186 case 0x92: return "DW_OP_bregx"; 187 case 0x93: return "DW_OP_piece"; 188 case 0x94: return "DW_OP_deref_size"; 189 case 0x95: return "DW_OP_xderef_size"; 190 case 0x96: return "DW_OP_nop"; 191 case 0x97: return "DW_OP_push_object_address"; 192 case 0x98: return "DW_OP_call2"; 193 case 0x99: return "DW_OP_call4"; 194 case 0x9a: return "DW_OP_call_ref"; 195 case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; 196 case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; 197 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; 198 case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; 199 case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; 200 case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; 201 case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; 202 case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; 203 case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; 204 case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; 205 case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; 206 case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; 207 case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; 208 default: 209 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); 210 return invalid; 211 } 212 } 213 214 215 //---------------------------------------------------------------------- 216 // DWARFExpression constructor 217 //---------------------------------------------------------------------- 218 DWARFExpression::DWARFExpression() : 219 m_data(), 220 m_reg_kind (eRegisterKindDWARF), 221 m_loclist_slide (LLDB_INVALID_ADDRESS) 222 { 223 } 224 225 DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : 226 m_data(rhs.m_data), 227 m_reg_kind (rhs.m_reg_kind), 228 m_loclist_slide(rhs.m_loclist_slide) 229 { 230 } 231 232 233 DWARFExpression::DWARFExpression(const DataExtractor& data, uint32_t data_offset, uint32_t data_length) : 234 m_data(data, data_offset, data_length), 235 m_reg_kind (eRegisterKindDWARF), 236 m_loclist_slide(LLDB_INVALID_ADDRESS) 237 { 238 } 239 240 //---------------------------------------------------------------------- 241 // Destructor 242 //---------------------------------------------------------------------- 243 DWARFExpression::~DWARFExpression() 244 { 245 } 246 247 248 bool 249 DWARFExpression::IsValid() const 250 { 251 return m_data.GetByteSize() > 0; 252 } 253 254 void 255 DWARFExpression::SetOpcodeData (const DataExtractor& data) 256 { 257 m_data = data; 258 } 259 260 void 261 DWARFExpression::SetOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length) 262 { 263 m_data.SetData(data, data_offset, data_length); 264 } 265 266 void 267 DWARFExpression::DumpLocation (Stream *s, uint32_t offset, uint32_t length, lldb::DescriptionLevel level) const 268 { 269 if (!m_data.ValidOffsetForDataOfSize(offset, length)) 270 return; 271 const uint32_t start_offset = offset; 272 const uint32_t end_offset = offset + length; 273 while (m_data.ValidOffset(offset) && offset < end_offset) 274 { 275 const uint32_t op_offset = offset; 276 const uint8_t op = m_data.GetU8(&offset); 277 278 switch (level) 279 { 280 default: 281 break; 282 283 case lldb::eDescriptionLevelBrief: 284 if (offset > start_offset) 285 s->PutChar(' '); 286 break; 287 288 case lldb::eDescriptionLevelFull: 289 case lldb::eDescriptionLevelVerbose: 290 if (offset > start_offset) 291 s->EOL(); 292 s->Indent(); 293 if (level == lldb::eDescriptionLevelFull) 294 break; 295 // Fall through for verbose and print offset and DW_OP prefix.. 296 s->Printf("0x%8.8x: %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); 297 break; 298 } 299 300 switch (op) 301 { 302 case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address 303 case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 304 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant 305 case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant 306 case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant 307 case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant 308 case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant 309 case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant 310 case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant 311 case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant 312 case DW_OP_constu: s->Printf("DW_OP_constu(0x%x) ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant 313 case DW_OP_consts: s->Printf("DW_OP_consts(0x%x) ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant 314 case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 315 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 316 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 317 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index 318 case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 319 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 320 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 321 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 322 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a 323 case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b 324 case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c 325 case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d 326 case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e 327 case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f 328 case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 329 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 330 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 331 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 332 s->Printf("DW_OP_plus_uconst(0x%x) ", m_data.GetULEB128(&offset)); 333 break; 334 335 case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 336 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 337 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 338 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 339 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant 340 case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant 341 case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 342 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a 343 case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b 344 case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c 345 case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d 346 case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e 347 348 case DW_OP_lit0: // 0x30 349 case DW_OP_lit1: // 0x31 350 case DW_OP_lit2: // 0x32 351 case DW_OP_lit3: // 0x33 352 case DW_OP_lit4: // 0x34 353 case DW_OP_lit5: // 0x35 354 case DW_OP_lit6: // 0x36 355 case DW_OP_lit7: // 0x37 356 case DW_OP_lit8: // 0x38 357 case DW_OP_lit9: // 0x39 358 case DW_OP_lit10: // 0x3A 359 case DW_OP_lit11: // 0x3B 360 case DW_OP_lit12: // 0x3C 361 case DW_OP_lit13: // 0x3D 362 case DW_OP_lit14: // 0x3E 363 case DW_OP_lit15: // 0x3F 364 case DW_OP_lit16: // 0x40 365 case DW_OP_lit17: // 0x41 366 case DW_OP_lit18: // 0x42 367 case DW_OP_lit19: // 0x43 368 case DW_OP_lit20: // 0x44 369 case DW_OP_lit21: // 0x45 370 case DW_OP_lit22: // 0x46 371 case DW_OP_lit23: // 0x47 372 case DW_OP_lit24: // 0x48 373 case DW_OP_lit25: // 0x49 374 case DW_OP_lit26: // 0x4A 375 case DW_OP_lit27: // 0x4B 376 case DW_OP_lit28: // 0x4C 377 case DW_OP_lit29: // 0x4D 378 case DW_OP_lit30: // 0x4E 379 case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f 380 381 case DW_OP_reg0: // 0x50 382 case DW_OP_reg1: // 0x51 383 case DW_OP_reg2: // 0x52 384 case DW_OP_reg3: // 0x53 385 case DW_OP_reg4: // 0x54 386 case DW_OP_reg5: // 0x55 387 case DW_OP_reg6: // 0x56 388 case DW_OP_reg7: // 0x57 389 case DW_OP_reg8: // 0x58 390 case DW_OP_reg9: // 0x59 391 case DW_OP_reg10: // 0x5A 392 case DW_OP_reg11: // 0x5B 393 case DW_OP_reg12: // 0x5C 394 case DW_OP_reg13: // 0x5D 395 case DW_OP_reg14: // 0x5E 396 case DW_OP_reg15: // 0x5F 397 case DW_OP_reg16: // 0x60 398 case DW_OP_reg17: // 0x61 399 case DW_OP_reg18: // 0x62 400 case DW_OP_reg19: // 0x63 401 case DW_OP_reg20: // 0x64 402 case DW_OP_reg21: // 0x65 403 case DW_OP_reg22: // 0x66 404 case DW_OP_reg23: // 0x67 405 case DW_OP_reg24: // 0x68 406 case DW_OP_reg25: // 0x69 407 case DW_OP_reg26: // 0x6A 408 case DW_OP_reg27: // 0x6B 409 case DW_OP_reg28: // 0x6C 410 case DW_OP_reg29: // 0x6D 411 case DW_OP_reg30: // 0x6E 412 case DW_OP_reg31: s->Printf("DW_OP_reg%i", op - DW_OP_reg0); break; // 0x6f 413 414 case DW_OP_breg0: 415 case DW_OP_breg1: 416 case DW_OP_breg2: 417 case DW_OP_breg3: 418 case DW_OP_breg4: 419 case DW_OP_breg5: 420 case DW_OP_breg6: 421 case DW_OP_breg7: 422 case DW_OP_breg8: 423 case DW_OP_breg9: 424 case DW_OP_breg10: 425 case DW_OP_breg11: 426 case DW_OP_breg12: 427 case DW_OP_breg13: 428 case DW_OP_breg14: 429 case DW_OP_breg15: 430 case DW_OP_breg16: 431 case DW_OP_breg17: 432 case DW_OP_breg18: 433 case DW_OP_breg19: 434 case DW_OP_breg20: 435 case DW_OP_breg21: 436 case DW_OP_breg22: 437 case DW_OP_breg23: 438 case DW_OP_breg24: 439 case DW_OP_breg25: 440 case DW_OP_breg26: 441 case DW_OP_breg27: 442 case DW_OP_breg28: 443 case DW_OP_breg29: 444 case DW_OP_breg30: 445 case DW_OP_breg31: s->Printf("DW_OP_breg%i(0x%x)", op - DW_OP_breg0, m_data.GetULEB128(&offset)); break; 446 447 case DW_OP_regx: // 0x90 1 ULEB128 register 448 s->Printf("DW_OP_regx(0x%x)", m_data.GetULEB128(&offset)); 449 break; 450 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 451 s->Printf("DW_OP_fbreg(0x%x)",m_data.GetSLEB128(&offset)); 452 break; 453 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 454 s->Printf("DW_OP_bregx(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetSLEB128(&offset)); 455 break; 456 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 457 s->Printf("DW_OP_piece(0x%x)", m_data.GetULEB128(&offset)); 458 break; 459 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 460 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); 461 break; 462 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 463 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); 464 break; 465 case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 466 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 467 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE 468 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); 469 break; 470 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE 471 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); 472 break; 473 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE 474 s->Printf("DW_OP_call_ref(0x%8.8llx)", m_data.GetAddress(&offset)); 475 break; 476 // case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3 477 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 478 // case DW_OP_bit_piece: // 0x9d DWARF3 2 479 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); 480 // break; 481 // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0 482 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff 483 case DW_OP_APPLE_extern: 484 s->Printf("DW_OP_APPLE_extern(%u)", m_data.GetULEB128(&offset)); 485 break; 486 case DW_OP_APPLE_array_ref: 487 s->PutCString("DW_OP_APPLE_array_ref"); 488 break; 489 case DW_OP_APPLE_uninit: 490 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 491 break; 492 case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) 493 s->PutCString("DW_OP_APPLE_assign"); 494 break; 495 case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) 496 s->PutCString("DW_OP_APPLE_address_of"); 497 break; 498 case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) 499 s->PutCString("DW_OP_APPLE_value_of"); 500 break; 501 case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) 502 s->PutCString("DW_OP_APPLE_deref_type"); 503 break; 504 case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index 505 s->Printf("DW_OP_APPLE_expr_local(%u)", m_data.GetULEB128(&offset)); 506 break; 507 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 508 { 509 uint8_t float_length = m_data.GetU8(&offset); 510 s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); 511 m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 512 s->PutChar(')'); 513 // Consume the float data 514 m_data.GetData(&offset, float_length); 515 } 516 break; 517 case DW_OP_APPLE_scalar_cast: 518 s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); 519 break; 520 case DW_OP_APPLE_clang_cast: 521 { 522 clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); 523 s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); 524 } 525 break; 526 case DW_OP_APPLE_clear: 527 s->PutCString("DW_OP_APPLE_clear"); 528 break; 529 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 530 s->PutCString("DW_OP_APPLE_error"); 531 break; 532 } 533 } 534 } 535 536 void 537 DWARFExpression::SetLocationListSlide (addr_t slide) 538 { 539 m_loclist_slide = slide; 540 } 541 542 int 543 DWARFExpression::GetRegisterKind () 544 { 545 return m_reg_kind; 546 } 547 548 void 549 DWARFExpression::SetRegisterKind (int reg_kind) 550 { 551 m_reg_kind = reg_kind; 552 } 553 554 bool 555 DWARFExpression::IsLocationList() const 556 { 557 return m_loclist_slide != LLDB_INVALID_ADDRESS; 558 } 559 560 void 561 DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr) const 562 { 563 if (IsLocationList()) 564 { 565 // We have a location list 566 uint32_t offset = 0; 567 uint32_t count = 0; 568 addr_t curr_base_addr = location_list_base_addr; 569 while (m_data.ValidOffset(offset)) 570 { 571 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); 572 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); 573 if (begin_addr_offset < end_addr_offset) 574 { 575 if (count > 0) 576 s->PutCString(", "); 577 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); 578 addr_range.Dump(s, 0, 8); 579 s->PutChar('{'); 580 uint32_t location_length = m_data.GetU16(&offset); 581 DumpLocation (s, offset, location_length, level); 582 s->PutChar('}'); 583 offset += location_length; 584 } 585 else if (begin_addr_offset == 0 && end_addr_offset == 0) 586 { 587 // The end of the location list is marked by both the start and end offset being zero 588 break; 589 } 590 else 591 { 592 if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || 593 (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) 594 { 595 curr_base_addr = end_addr_offset + location_list_base_addr; 596 // We have a new base address 597 if (count > 0) 598 s->PutCString(", "); 599 *s << "base_addr = " << end_addr_offset; 600 } 601 } 602 603 count++; 604 } 605 } 606 else 607 { 608 // We have a normal location that contains DW_OP location opcodes 609 DumpLocation (s, 0, m_data.GetByteSize(), level); 610 } 611 } 612 613 static bool 614 ReadRegisterValueAsScalar 615 ( 616 RegisterContext *reg_ctx, 617 uint32_t reg_kind, 618 uint32_t reg_num, 619 Error *error_ptr, 620 Value &value 621 ) 622 { 623 if (reg_ctx == NULL) 624 { 625 if (error_ptr) 626 error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); 627 } 628 else 629 { 630 uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 631 if (native_reg == LLDB_INVALID_REGNUM) 632 { 633 if (error_ptr) 634 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); 635 } 636 else 637 { 638 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); 639 RegisterValue reg_value; 640 if (reg_ctx->ReadRegister (reg_info, reg_value)) 641 { 642 if (reg_value.GetScalarValue(value.GetScalar())) 643 { 644 value.SetValueType (Value::eValueTypeScalar); 645 value.SetContext (Value::eContextTypeRegisterInfo, 646 const_cast<RegisterInfo *>(reg_info)); 647 if (error_ptr) 648 error_ptr->Clear(); 649 return true; 650 } 651 else 652 { 653 // If we get this error, then we need to implement a value 654 // buffer in the dwarf expression evaluation function... 655 if (error_ptr) 656 error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value", 657 reg_info->name); 658 } 659 } 660 else 661 { 662 if (error_ptr) 663 error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); 664 } 665 } 666 } 667 return false; 668 } 669 670 //bool 671 //DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const 672 //{ 673 // return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); 674 //} 675 // 676 //bool 677 //DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const 678 //{ 679 // if (load_addr == LLDB_INVALID_ADDRESS) 680 // return false; 681 // 682 // if (IsLocationList()) 683 // { 684 // uint32_t offset = 0; 685 // 686 // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); 687 // 688 // if (loc_list_base_addr == LLDB_INVALID_ADDRESS) 689 // return false; 690 // 691 // while (m_data.ValidOffset(offset)) 692 // { 693 // // We need to figure out what the value is for the location. 694 // addr_t lo_pc = m_data.GetAddress(&offset); 695 // addr_t hi_pc = m_data.GetAddress(&offset); 696 // if (lo_pc == 0 && hi_pc == 0) 697 // break; 698 // else 699 // { 700 // lo_pc += loc_list_base_addr; 701 // hi_pc += loc_list_base_addr; 702 // 703 // if (lo_pc <= load_addr && load_addr < hi_pc) 704 // return true; 705 // 706 // offset += m_data.GetU16(&offset); 707 // } 708 // } 709 // } 710 // return false; 711 //} 712 713 bool 714 DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const 715 { 716 if (addr == LLDB_INVALID_ADDRESS) 717 return false; 718 719 if (IsLocationList()) 720 { 721 uint32_t offset = 0; 722 723 if (loclist_base_addr == LLDB_INVALID_ADDRESS) 724 return false; 725 726 while (m_data.ValidOffset(offset)) 727 { 728 // We need to figure out what the value is for the location. 729 addr_t lo_pc = m_data.GetAddress(&offset); 730 addr_t hi_pc = m_data.GetAddress(&offset); 731 if (lo_pc == 0 && hi_pc == 0) 732 break; 733 else 734 { 735 lo_pc += loclist_base_addr - m_loclist_slide; 736 hi_pc += loclist_base_addr - m_loclist_slide; 737 738 if (lo_pc <= addr && addr < hi_pc) 739 return true; 740 741 offset += m_data.GetU16(&offset); 742 } 743 } 744 } 745 return false; 746 } 747 748 bool 749 DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, uint32_t &offset, uint32_t &length) 750 { 751 offset = 0; 752 if (!IsLocationList()) 753 { 754 length = m_data.GetByteSize(); 755 return true; 756 } 757 758 if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) 759 { 760 addr_t curr_base_addr = base_addr; 761 762 while (m_data.ValidOffset(offset)) 763 { 764 // We need to figure out what the value is for the location. 765 addr_t lo_pc = m_data.GetAddress(&offset); 766 addr_t hi_pc = m_data.GetAddress(&offset); 767 if (lo_pc == 0 && hi_pc == 0) 768 { 769 break; 770 } 771 else 772 { 773 lo_pc += curr_base_addr - m_loclist_slide; 774 hi_pc += curr_base_addr - m_loclist_slide; 775 776 length = m_data.GetU16(&offset); 777 778 if (length > 0 && lo_pc <= pc && pc < hi_pc) 779 return true; 780 781 offset += length; 782 } 783 } 784 } 785 offset = UINT32_MAX; 786 length = 0; 787 return false; 788 } 789 790 bool 791 DWARFExpression::DumpLocationForAddress (Stream *s, 792 lldb::DescriptionLevel level, 793 addr_t base_addr, 794 addr_t address) 795 { 796 uint32_t offset = 0; 797 uint32_t length = 0; 798 799 if (GetLocation (base_addr, address, offset, length)) 800 { 801 if (length > 0) 802 { 803 DumpLocation(s, offset, length, level); 804 return true; 805 } 806 } 807 return false; 808 } 809 810 bool 811 DWARFExpression::Evaluate 812 ( 813 ExecutionContextScope *exe_scope, 814 clang::ASTContext *ast_context, 815 ClangExpressionVariableList *expr_locals, 816 ClangExpressionDeclMap *decl_map, 817 lldb::addr_t loclist_base_load_addr, 818 const Value* initial_value_ptr, 819 Value& result, 820 Error *error_ptr 821 ) const 822 { 823 ExecutionContext exe_ctx (exe_scope); 824 return Evaluate(&exe_ctx, ast_context, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); 825 } 826 827 bool 828 DWARFExpression::Evaluate 829 ( 830 ExecutionContext *exe_ctx, 831 clang::ASTContext *ast_context, 832 ClangExpressionVariableList *expr_locals, 833 ClangExpressionDeclMap *decl_map, 834 RegisterContext *reg_ctx, 835 lldb::addr_t loclist_base_load_addr, 836 const Value* initial_value_ptr, 837 Value& result, 838 Error *error_ptr 839 ) const 840 { 841 if (IsLocationList()) 842 { 843 uint32_t offset = 0; 844 addr_t pc; 845 if (reg_ctx) 846 pc = reg_ctx->GetPC(); 847 else 848 pc = exe_ctx->frame->GetRegisterContext()->GetPC(); 849 850 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) 851 { 852 if (pc == LLDB_INVALID_ADDRESS) 853 { 854 if (error_ptr) 855 error_ptr->SetErrorString("Invalid PC in frame."); 856 return false; 857 } 858 859 addr_t curr_loclist_base_load_addr = loclist_base_load_addr; 860 861 while (m_data.ValidOffset(offset)) 862 { 863 // We need to figure out what the value is for the location. 864 addr_t lo_pc = m_data.GetAddress(&offset); 865 addr_t hi_pc = m_data.GetAddress(&offset); 866 if (lo_pc == 0 && hi_pc == 0) 867 { 868 break; 869 } 870 else 871 { 872 lo_pc += curr_loclist_base_load_addr - m_loclist_slide; 873 hi_pc += curr_loclist_base_load_addr - m_loclist_slide; 874 875 uint16_t length = m_data.GetU16(&offset); 876 877 if (length > 0 && lo_pc <= pc && pc < hi_pc) 878 { 879 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); 880 } 881 offset += length; 882 } 883 } 884 } 885 if (error_ptr) 886 error_ptr->SetErrorString ("variable not available"); 887 return false; 888 } 889 890 // Not a location list, just a single expression. 891 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); 892 } 893 894 895 896 bool 897 DWARFExpression::Evaluate 898 ( 899 ExecutionContext *exe_ctx, 900 clang::ASTContext *ast_context, 901 ClangExpressionVariableList *expr_locals, 902 ClangExpressionDeclMap *decl_map, 903 RegisterContext *reg_ctx, 904 const DataExtractor& opcodes, 905 const uint32_t opcodes_offset, 906 const uint32_t opcodes_length, 907 const uint32_t reg_kind, 908 const Value* initial_value_ptr, 909 Value& result, 910 Error *error_ptr 911 ) 912 { 913 std::vector<Value> stack; 914 915 if (reg_ctx == NULL && exe_ctx && exe_ctx->frame) 916 reg_ctx = exe_ctx->frame->GetRegisterContext().get(); 917 918 if (initial_value_ptr) 919 stack.push_back(*initial_value_ptr); 920 921 uint32_t offset = opcodes_offset; 922 const uint32_t end_offset = opcodes_offset + opcodes_length; 923 Value tmp; 924 uint32_t reg_num; 925 926 // Make sure all of the data is available in opcodes. 927 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) 928 { 929 if (error_ptr) 930 error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer."); 931 return false; 932 } 933 LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 934 935 936 while (opcodes.ValidOffset(offset) && offset < end_offset) 937 { 938 const uint32_t op_offset = offset; 939 const uint8_t op = opcodes.GetU8(&offset); 940 941 if (log) 942 { 943 size_t count = stack.size(); 944 log->Printf("Stack before operation has %d values:", count); 945 for (size_t i=0; i<count; ++i) 946 { 947 StreamString new_value; 948 new_value.Printf("[%zu]", i); 949 stack[i].Dump(&new_value); 950 log->Printf(" %s", new_value.GetData()); 951 } 952 log->Printf("0x%8.8x: %s", op_offset, DW_OP_value_to_name(op)); 953 } 954 switch (op) 955 { 956 //---------------------------------------------------------------------- 957 // The DW_OP_addr operation has a single operand that encodes a machine 958 // address and whose size is the size of an address on the target machine. 959 //---------------------------------------------------------------------- 960 case DW_OP_addr: 961 stack.push_back(Scalar(opcodes.GetAddress(&offset))); 962 stack.back().SetValueType (Value::eValueTypeFileAddress); 963 break; 964 965 //---------------------------------------------------------------------- 966 // The DW_OP_addr_sect_offset4 is used for any location expressions in 967 // shared libraries that have a location like: 968 // DW_OP_addr(0x1000) 969 // If this address resides in a shared library, then this virtual 970 // address won't make sense when it is evaluated in the context of a 971 // running process where shared libraries have been slid. To account for 972 // this, this new address type where we can store the section pointer 973 // and a 4 byte offset. 974 //---------------------------------------------------------------------- 975 // case DW_OP_addr_sect_offset4: 976 // { 977 // result_type = eResultTypeFileAddress; 978 // lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); 979 // lldb::addr_t sect_offset = opcodes.GetU32(&offset); 980 // 981 // Address so_addr (sect, sect_offset); 982 // lldb::addr_t load_addr = so_addr.GetLoadAddress(); 983 // if (load_addr != LLDB_INVALID_ADDRESS) 984 // { 985 // // We successfully resolve a file address to a load 986 // // address. 987 // stack.push_back(load_addr); 988 // break; 989 // } 990 // else 991 // { 992 // // We were able 993 // if (error_ptr) 994 // error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 995 // return false; 996 // } 997 // } 998 // break; 999 1000 //---------------------------------------------------------------------- 1001 // OPCODE: DW_OP_deref 1002 // OPERANDS: none 1003 // DESCRIPTION: Pops the top stack entry and treats it as an address. 1004 // The value retrieved from that address is pushed. The size of the 1005 // data retrieved from the dereferenced address is the size of an 1006 // address on the target machine. 1007 //---------------------------------------------------------------------- 1008 case DW_OP_deref: 1009 { 1010 Value::ValueType value_type = stack.back().GetValueType(); 1011 switch (value_type) 1012 { 1013 case Value::eValueTypeHostAddress: 1014 { 1015 void *src = (void *)stack.back().GetScalar().ULongLong(); 1016 intptr_t ptr; 1017 ::memcpy (&ptr, src, sizeof(void *)); 1018 stack.back().GetScalar() = ptr; 1019 stack.back().ClearContext(); 1020 } 1021 break; 1022 case Value::eValueTypeLoadAddress: 1023 if (exe_ctx) 1024 { 1025 if (exe_ctx->process) 1026 { 1027 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1028 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1029 uint32_t addr_size = exe_ctx->process->GetAddressByteSize(); 1030 Error error; 1031 if (exe_ctx->process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size) 1032 { 1033 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), exe_ctx->process->GetByteOrder(), addr_size); 1034 uint32_t addr_data_offset = 0; 1035 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1036 stack.back().ClearContext(); 1037 } 1038 else 1039 { 1040 if (error_ptr) 1041 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1042 pointer_addr, 1043 error.AsCString()); 1044 return false; 1045 } 1046 } 1047 else 1048 { 1049 if (error_ptr) 1050 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1051 return false; 1052 } 1053 } 1054 else 1055 { 1056 if (error_ptr) 1057 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1058 return false; 1059 } 1060 break; 1061 1062 default: 1063 break; 1064 } 1065 1066 } 1067 break; 1068 1069 //---------------------------------------------------------------------- 1070 // OPCODE: DW_OP_deref_size 1071 // OPERANDS: 1 1072 // 1 - uint8_t that specifies the size of the data to dereference. 1073 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 1074 // stack entry and treats it as an address. The value retrieved from that 1075 // address is pushed. In the DW_OP_deref_size operation, however, the 1076 // size in bytes of the data retrieved from the dereferenced address is 1077 // specified by the single operand. This operand is a 1-byte unsigned 1078 // integral constant whose value may not be larger than the size of an 1079 // address on the target machine. The data retrieved is zero extended 1080 // to the size of an address on the target machine before being pushed 1081 // on the expression stack. 1082 //---------------------------------------------------------------------- 1083 case DW_OP_deref_size: 1084 { 1085 uint8_t size = opcodes.GetU8(&offset); 1086 Value::ValueType value_type = stack.back().GetValueType(); 1087 switch (value_type) 1088 { 1089 case Value::eValueTypeHostAddress: 1090 { 1091 void *src = (void *)stack.back().GetScalar().ULongLong(); 1092 intptr_t ptr; 1093 ::memcpy (&ptr, src, sizeof(void *)); 1094 // I can't decide whether the size operand should apply to the bytes in their 1095 // lldb-host endianness or the target endianness.. I doubt this'll ever come up 1096 // but I'll opt for assuming big endian regardless. 1097 switch (size) 1098 { 1099 case 1: ptr = ptr & 0xff; break; 1100 case 2: ptr = ptr & 0xffff; break; 1101 case 3: ptr = ptr & 0xffffff; break; 1102 case 4: ptr = ptr & 0xffffffff; break; 1103 // the casts are added to work around the case where intptr_t is a 32 bit quantity; 1104 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. 1105 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; 1106 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; 1107 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; 1108 default: break; 1109 } 1110 stack.back().GetScalar() = ptr; 1111 stack.back().ClearContext(); 1112 } 1113 break; 1114 case Value::eValueTypeLoadAddress: 1115 if (exe_ctx) 1116 { 1117 if (exe_ctx->process) 1118 { 1119 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1120 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1121 Error error; 1122 if (exe_ctx->process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) 1123 { 1124 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), exe_ctx->process->GetByteOrder(), size); 1125 uint32_t addr_data_offset = 0; 1126 switch (size) 1127 { 1128 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; 1129 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; 1130 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; 1131 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; 1132 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1133 } 1134 stack.back().ClearContext(); 1135 } 1136 else 1137 { 1138 if (error_ptr) 1139 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1140 pointer_addr, 1141 error.AsCString()); 1142 return false; 1143 } 1144 } 1145 else 1146 { 1147 if (error_ptr) 1148 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1149 return false; 1150 } 1151 } 1152 else 1153 { 1154 if (error_ptr) 1155 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1156 return false; 1157 } 1158 break; 1159 1160 default: 1161 break; 1162 } 1163 1164 } 1165 break; 1166 1167 //---------------------------------------------------------------------- 1168 // OPCODE: DW_OP_xderef_size 1169 // OPERANDS: 1 1170 // 1 - uint8_t that specifies the size of the data to dereference. 1171 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1172 // the top of the stack is treated as an address. The second stack 1173 // entry is treated as an "address space identifier" for those 1174 // architectures that support multiple address spaces. The top two 1175 // stack elements are popped, a data item is retrieved through an 1176 // implementation-defined address calculation and pushed as the new 1177 // stack top. In the DW_OP_xderef_size operation, however, the size in 1178 // bytes of the data retrieved from the dereferenced address is 1179 // specified by the single operand. This operand is a 1-byte unsigned 1180 // integral constant whose value may not be larger than the size of an 1181 // address on the target machine. The data retrieved is zero extended 1182 // to the size of an address on the target machine before being pushed 1183 // on the expression stack. 1184 //---------------------------------------------------------------------- 1185 case DW_OP_xderef_size: 1186 if (error_ptr) 1187 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1188 return false; 1189 //---------------------------------------------------------------------- 1190 // OPCODE: DW_OP_xderef 1191 // OPERANDS: none 1192 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1193 // the top of the stack is treated as an address. The second stack entry 1194 // is treated as an "address space identifier" for those architectures 1195 // that support multiple address spaces. The top two stack elements are 1196 // popped, a data item is retrieved through an implementation-defined 1197 // address calculation and pushed as the new stack top. The size of the 1198 // data retrieved from the dereferenced address is the size of an address 1199 // on the target machine. 1200 //---------------------------------------------------------------------- 1201 case DW_OP_xderef: 1202 if (error_ptr) 1203 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1204 return false; 1205 1206 //---------------------------------------------------------------------- 1207 // All DW_OP_constXXX opcodes have a single operand as noted below: 1208 // 1209 // Opcode Operand 1 1210 // --------------- ---------------------------------------------------- 1211 // DW_OP_const1u 1-byte unsigned integer constant 1212 // DW_OP_const1s 1-byte signed integer constant 1213 // DW_OP_const2u 2-byte unsigned integer constant 1214 // DW_OP_const2s 2-byte signed integer constant 1215 // DW_OP_const4u 4-byte unsigned integer constant 1216 // DW_OP_const4s 4-byte signed integer constant 1217 // DW_OP_const8u 8-byte unsigned integer constant 1218 // DW_OP_const8s 8-byte signed integer constant 1219 // DW_OP_constu unsigned LEB128 integer constant 1220 // DW_OP_consts signed LEB128 integer constant 1221 //---------------------------------------------------------------------- 1222 case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break; 1223 case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break; 1224 case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break; 1225 case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break; 1226 case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break; 1227 case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break; 1228 case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break; 1229 case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break; 1230 case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break; 1231 case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break; 1232 1233 //---------------------------------------------------------------------- 1234 // OPCODE: DW_OP_dup 1235 // OPERANDS: none 1236 // DESCRIPTION: duplicates the value at the top of the stack 1237 //---------------------------------------------------------------------- 1238 case DW_OP_dup: 1239 if (stack.empty()) 1240 { 1241 if (error_ptr) 1242 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1243 return false; 1244 } 1245 else 1246 stack.push_back(stack.back()); 1247 break; 1248 1249 //---------------------------------------------------------------------- 1250 // OPCODE: DW_OP_drop 1251 // OPERANDS: none 1252 // DESCRIPTION: pops the value at the top of the stack 1253 //---------------------------------------------------------------------- 1254 case DW_OP_drop: 1255 if (stack.empty()) 1256 { 1257 if (error_ptr) 1258 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1259 return false; 1260 } 1261 else 1262 stack.pop_back(); 1263 break; 1264 1265 //---------------------------------------------------------------------- 1266 // OPCODE: DW_OP_over 1267 // OPERANDS: none 1268 // DESCRIPTION: Duplicates the entry currently second in the stack at 1269 // the top of the stack. 1270 //---------------------------------------------------------------------- 1271 case DW_OP_over: 1272 if (stack.size() < 2) 1273 { 1274 if (error_ptr) 1275 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); 1276 return false; 1277 } 1278 else 1279 stack.push_back(stack[stack.size() - 2]); 1280 break; 1281 1282 1283 //---------------------------------------------------------------------- 1284 // OPCODE: DW_OP_pick 1285 // OPERANDS: uint8_t index into the current stack 1286 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1287 // inclusive) is pushed on the stack 1288 //---------------------------------------------------------------------- 1289 case DW_OP_pick: 1290 { 1291 uint8_t pick_idx = opcodes.GetU8(&offset); 1292 if (pick_idx < stack.size()) 1293 stack.push_back(stack[pick_idx]); 1294 else 1295 { 1296 if (error_ptr) 1297 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); 1298 return false; 1299 } 1300 } 1301 break; 1302 1303 //---------------------------------------------------------------------- 1304 // OPCODE: DW_OP_swap 1305 // OPERANDS: none 1306 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1307 // of the stack becomes the second stack entry, and the second entry 1308 // becomes the top of the stack 1309 //---------------------------------------------------------------------- 1310 case DW_OP_swap: 1311 if (stack.size() < 2) 1312 { 1313 if (error_ptr) 1314 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); 1315 return false; 1316 } 1317 else 1318 { 1319 tmp = stack.back(); 1320 stack.back() = stack[stack.size() - 2]; 1321 stack[stack.size() - 2] = tmp; 1322 } 1323 break; 1324 1325 //---------------------------------------------------------------------- 1326 // OPCODE: DW_OP_rot 1327 // OPERANDS: none 1328 // DESCRIPTION: Rotates the first three stack entries. The entry at 1329 // the top of the stack becomes the third stack entry, the second 1330 // entry becomes the top of the stack, and the third entry becomes 1331 // the second entry. 1332 //---------------------------------------------------------------------- 1333 case DW_OP_rot: 1334 if (stack.size() < 3) 1335 { 1336 if (error_ptr) 1337 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); 1338 return false; 1339 } 1340 else 1341 { 1342 size_t last_idx = stack.size() - 1; 1343 Value old_top = stack[last_idx]; 1344 stack[last_idx] = stack[last_idx - 1]; 1345 stack[last_idx - 1] = stack[last_idx - 2]; 1346 stack[last_idx - 2] = old_top; 1347 } 1348 break; 1349 1350 //---------------------------------------------------------------------- 1351 // OPCODE: DW_OP_abs 1352 // OPERANDS: none 1353 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1354 // value and pushes its absolute value. If the absolute value can not be 1355 // represented, the result is undefined. 1356 //---------------------------------------------------------------------- 1357 case DW_OP_abs: 1358 if (stack.empty()) 1359 { 1360 if (error_ptr) 1361 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); 1362 return false; 1363 } 1364 else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false) 1365 { 1366 if (error_ptr) 1367 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); 1368 return false; 1369 } 1370 break; 1371 1372 //---------------------------------------------------------------------- 1373 // OPCODE: DW_OP_and 1374 // OPERANDS: none 1375 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1376 // operation on the two, and pushes the result. 1377 //---------------------------------------------------------------------- 1378 case DW_OP_and: 1379 if (stack.size() < 2) 1380 { 1381 if (error_ptr) 1382 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); 1383 return false; 1384 } 1385 else 1386 { 1387 tmp = stack.back(); 1388 stack.pop_back(); 1389 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context); 1390 } 1391 break; 1392 1393 //---------------------------------------------------------------------- 1394 // OPCODE: DW_OP_div 1395 // OPERANDS: none 1396 // DESCRIPTION: pops the top two stack values, divides the former second 1397 // entry by the former top of the stack using signed division, and 1398 // pushes the result. 1399 //---------------------------------------------------------------------- 1400 case DW_OP_div: 1401 if (stack.size() < 2) 1402 { 1403 if (error_ptr) 1404 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); 1405 return false; 1406 } 1407 else 1408 { 1409 tmp = stack.back(); 1410 if (tmp.ResolveValue(exe_ctx, ast_context).IsZero()) 1411 { 1412 if (error_ptr) 1413 error_ptr->SetErrorString("Divide by zero."); 1414 return false; 1415 } 1416 else 1417 { 1418 stack.pop_back(); 1419 stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context); 1420 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1421 { 1422 if (error_ptr) 1423 error_ptr->SetErrorString("Divide failed."); 1424 return false; 1425 } 1426 } 1427 } 1428 break; 1429 1430 //---------------------------------------------------------------------- 1431 // OPCODE: DW_OP_minus 1432 // OPERANDS: none 1433 // DESCRIPTION: pops the top two stack values, subtracts the former top 1434 // of the stack from the former second entry, and pushes the result. 1435 //---------------------------------------------------------------------- 1436 case DW_OP_minus: 1437 if (stack.size() < 2) 1438 { 1439 if (error_ptr) 1440 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); 1441 return false; 1442 } 1443 else 1444 { 1445 tmp = stack.back(); 1446 stack.pop_back(); 1447 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context); 1448 } 1449 break; 1450 1451 //---------------------------------------------------------------------- 1452 // OPCODE: DW_OP_mod 1453 // OPERANDS: none 1454 // DESCRIPTION: pops the top two stack values and pushes the result of 1455 // the calculation: former second stack entry modulo the former top of 1456 // the stack. 1457 //---------------------------------------------------------------------- 1458 case DW_OP_mod: 1459 if (stack.size() < 2) 1460 { 1461 if (error_ptr) 1462 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); 1463 return false; 1464 } 1465 else 1466 { 1467 tmp = stack.back(); 1468 stack.pop_back(); 1469 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context); 1470 } 1471 break; 1472 1473 1474 //---------------------------------------------------------------------- 1475 // OPCODE: DW_OP_mul 1476 // OPERANDS: none 1477 // DESCRIPTION: pops the top two stack entries, multiplies them 1478 // together, and pushes the result. 1479 //---------------------------------------------------------------------- 1480 case DW_OP_mul: 1481 if (stack.size() < 2) 1482 { 1483 if (error_ptr) 1484 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); 1485 return false; 1486 } 1487 else 1488 { 1489 tmp = stack.back(); 1490 stack.pop_back(); 1491 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context); 1492 } 1493 break; 1494 1495 //---------------------------------------------------------------------- 1496 // OPCODE: DW_OP_neg 1497 // OPERANDS: none 1498 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1499 //---------------------------------------------------------------------- 1500 case DW_OP_neg: 1501 if (stack.empty()) 1502 { 1503 if (error_ptr) 1504 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); 1505 return false; 1506 } 1507 else 1508 { 1509 if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false) 1510 { 1511 if (error_ptr) 1512 error_ptr->SetErrorString("Unary negate failed."); 1513 return false; 1514 } 1515 } 1516 break; 1517 1518 //---------------------------------------------------------------------- 1519 // OPCODE: DW_OP_not 1520 // OPERANDS: none 1521 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1522 // complement 1523 //---------------------------------------------------------------------- 1524 case DW_OP_not: 1525 if (stack.empty()) 1526 { 1527 if (error_ptr) 1528 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); 1529 return false; 1530 } 1531 else 1532 { 1533 if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false) 1534 { 1535 if (error_ptr) 1536 error_ptr->SetErrorString("Logical NOT failed."); 1537 return false; 1538 } 1539 } 1540 break; 1541 1542 //---------------------------------------------------------------------- 1543 // OPCODE: DW_OP_or 1544 // OPERANDS: none 1545 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 1546 // operation on the two, and pushes the result. 1547 //---------------------------------------------------------------------- 1548 case DW_OP_or: 1549 if (stack.size() < 2) 1550 { 1551 if (error_ptr) 1552 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); 1553 return false; 1554 } 1555 else 1556 { 1557 tmp = stack.back(); 1558 stack.pop_back(); 1559 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context); 1560 } 1561 break; 1562 1563 //---------------------------------------------------------------------- 1564 // OPCODE: DW_OP_plus 1565 // OPERANDS: none 1566 // DESCRIPTION: pops the top two stack entries, adds them together, and 1567 // pushes the result. 1568 //---------------------------------------------------------------------- 1569 case DW_OP_plus: 1570 if (stack.size() < 2) 1571 { 1572 if (error_ptr) 1573 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); 1574 return false; 1575 } 1576 else 1577 { 1578 tmp = stack.back(); 1579 stack.pop_back(); 1580 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context); 1581 } 1582 break; 1583 1584 //---------------------------------------------------------------------- 1585 // OPCODE: DW_OP_plus_uconst 1586 // OPERANDS: none 1587 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 1588 // constant operand and pushes the result. 1589 //---------------------------------------------------------------------- 1590 case DW_OP_plus_uconst: 1591 if (stack.empty()) 1592 { 1593 if (error_ptr) 1594 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); 1595 return false; 1596 } 1597 else 1598 { 1599 uint32_t uconst_value = opcodes.GetULEB128(&offset); 1600 // Implicit conversion from a UINT to a Scalar... 1601 stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value; 1602 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1603 { 1604 if (error_ptr) 1605 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 1606 return false; 1607 } 1608 } 1609 break; 1610 1611 //---------------------------------------------------------------------- 1612 // OPCODE: DW_OP_shl 1613 // OPERANDS: none 1614 // DESCRIPTION: pops the top two stack entries, shifts the former 1615 // second entry left by the number of bits specified by the former top 1616 // of the stack, and pushes the result. 1617 //---------------------------------------------------------------------- 1618 case DW_OP_shl: 1619 if (stack.size() < 2) 1620 { 1621 if (error_ptr) 1622 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); 1623 return false; 1624 } 1625 else 1626 { 1627 tmp = stack.back(); 1628 stack.pop_back(); 1629 stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context); 1630 } 1631 break; 1632 1633 //---------------------------------------------------------------------- 1634 // OPCODE: DW_OP_shr 1635 // OPERANDS: none 1636 // DESCRIPTION: pops the top two stack entries, shifts the former second 1637 // entry right logically (filling with zero bits) by the number of bits 1638 // specified by the former top of the stack, and pushes the result. 1639 //---------------------------------------------------------------------- 1640 case DW_OP_shr: 1641 if (stack.size() < 2) 1642 { 1643 if (error_ptr) 1644 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); 1645 return false; 1646 } 1647 else 1648 { 1649 tmp = stack.back(); 1650 stack.pop_back(); 1651 if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false) 1652 { 1653 if (error_ptr) 1654 error_ptr->SetErrorString("DW_OP_shr failed."); 1655 return false; 1656 } 1657 } 1658 break; 1659 1660 //---------------------------------------------------------------------- 1661 // OPCODE: DW_OP_shra 1662 // OPERANDS: none 1663 // DESCRIPTION: pops the top two stack entries, shifts the former second 1664 // entry right arithmetically (divide the magnitude by 2, keep the same 1665 // sign for the result) by the number of bits specified by the former 1666 // top of the stack, and pushes the result. 1667 //---------------------------------------------------------------------- 1668 case DW_OP_shra: 1669 if (stack.size() < 2) 1670 { 1671 if (error_ptr) 1672 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); 1673 return false; 1674 } 1675 else 1676 { 1677 tmp = stack.back(); 1678 stack.pop_back(); 1679 stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context); 1680 } 1681 break; 1682 1683 //---------------------------------------------------------------------- 1684 // OPCODE: DW_OP_xor 1685 // OPERANDS: none 1686 // DESCRIPTION: pops the top two stack entries, performs the bitwise 1687 // exclusive-or operation on the two, and pushes the result. 1688 //---------------------------------------------------------------------- 1689 case DW_OP_xor: 1690 if (stack.size() < 2) 1691 { 1692 if (error_ptr) 1693 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); 1694 return false; 1695 } 1696 else 1697 { 1698 tmp = stack.back(); 1699 stack.pop_back(); 1700 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context); 1701 } 1702 break; 1703 1704 1705 //---------------------------------------------------------------------- 1706 // OPCODE: DW_OP_skip 1707 // OPERANDS: int16_t 1708 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 1709 // signed integer constant. The 2-byte constant is the number of bytes 1710 // of the DWARF expression to skip forward or backward from the current 1711 // operation, beginning after the 2-byte constant. 1712 //---------------------------------------------------------------------- 1713 case DW_OP_skip: 1714 { 1715 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 1716 uint32_t new_offset = offset + skip_offset; 1717 if (new_offset >= opcodes_offset && new_offset < end_offset) 1718 offset = new_offset; 1719 else 1720 { 1721 if (error_ptr) 1722 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 1723 return false; 1724 } 1725 } 1726 break; 1727 1728 //---------------------------------------------------------------------- 1729 // OPCODE: DW_OP_bra 1730 // OPERANDS: int16_t 1731 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 1732 // signed integer constant. This operation pops the top of stack. If 1733 // the value popped is not the constant 0, the 2-byte constant operand 1734 // is the number of bytes of the DWARF expression to skip forward or 1735 // backward from the current operation, beginning after the 2-byte 1736 // constant. 1737 //---------------------------------------------------------------------- 1738 case DW_OP_bra: 1739 { 1740 tmp = stack.back(); 1741 stack.pop_back(); 1742 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 1743 Scalar zero(0); 1744 if (tmp.ResolveValue(exe_ctx, ast_context) != zero) 1745 { 1746 uint32_t new_offset = offset + bra_offset; 1747 if (new_offset >= opcodes_offset && new_offset < end_offset) 1748 offset = new_offset; 1749 else 1750 { 1751 if (error_ptr) 1752 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 1753 return false; 1754 } 1755 } 1756 } 1757 break; 1758 1759 //---------------------------------------------------------------------- 1760 // OPCODE: DW_OP_eq 1761 // OPERANDS: none 1762 // DESCRIPTION: pops the top two stack values, compares using the 1763 // equals (==) operator. 1764 // STACK RESULT: push the constant value 1 onto the stack if the result 1765 // of the operation is true or the constant value 0 if the result of the 1766 // operation is false. 1767 //---------------------------------------------------------------------- 1768 case DW_OP_eq: 1769 if (stack.size() < 2) 1770 { 1771 if (error_ptr) 1772 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); 1773 return false; 1774 } 1775 else 1776 { 1777 tmp = stack.back(); 1778 stack.pop_back(); 1779 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context); 1780 } 1781 break; 1782 1783 //---------------------------------------------------------------------- 1784 // OPCODE: DW_OP_ge 1785 // OPERANDS: none 1786 // DESCRIPTION: pops the top two stack values, compares using the 1787 // greater than or equal to (>=) operator. 1788 // STACK RESULT: push the constant value 1 onto the stack if the result 1789 // of the operation is true or the constant value 0 if the result of the 1790 // operation is false. 1791 //---------------------------------------------------------------------- 1792 case DW_OP_ge: 1793 if (stack.size() < 2) 1794 { 1795 if (error_ptr) 1796 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); 1797 return false; 1798 } 1799 else 1800 { 1801 tmp = stack.back(); 1802 stack.pop_back(); 1803 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context); 1804 } 1805 break; 1806 1807 //---------------------------------------------------------------------- 1808 // OPCODE: DW_OP_gt 1809 // OPERANDS: none 1810 // DESCRIPTION: pops the top two stack values, compares using the 1811 // greater than (>) operator. 1812 // STACK RESULT: push the constant value 1 onto the stack if the result 1813 // of the operation is true or the constant value 0 if the result of the 1814 // operation is false. 1815 //---------------------------------------------------------------------- 1816 case DW_OP_gt: 1817 if (stack.size() < 2) 1818 { 1819 if (error_ptr) 1820 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); 1821 return false; 1822 } 1823 else 1824 { 1825 tmp = stack.back(); 1826 stack.pop_back(); 1827 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context); 1828 } 1829 break; 1830 1831 //---------------------------------------------------------------------- 1832 // OPCODE: DW_OP_le 1833 // OPERANDS: none 1834 // DESCRIPTION: pops the top two stack values, compares using the 1835 // less than or equal to (<=) operator. 1836 // STACK RESULT: push the constant value 1 onto the stack if the result 1837 // of the operation is true or the constant value 0 if the result of the 1838 // operation is false. 1839 //---------------------------------------------------------------------- 1840 case DW_OP_le: 1841 if (stack.size() < 2) 1842 { 1843 if (error_ptr) 1844 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); 1845 return false; 1846 } 1847 else 1848 { 1849 tmp = stack.back(); 1850 stack.pop_back(); 1851 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context); 1852 } 1853 break; 1854 1855 //---------------------------------------------------------------------- 1856 // OPCODE: DW_OP_lt 1857 // OPERANDS: none 1858 // DESCRIPTION: pops the top two stack values, compares using the 1859 // less than (<) operator. 1860 // STACK RESULT: push the constant value 1 onto the stack if the result 1861 // of the operation is true or the constant value 0 if the result of the 1862 // operation is false. 1863 //---------------------------------------------------------------------- 1864 case DW_OP_lt: 1865 if (stack.size() < 2) 1866 { 1867 if (error_ptr) 1868 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); 1869 return false; 1870 } 1871 else 1872 { 1873 tmp = stack.back(); 1874 stack.pop_back(); 1875 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context); 1876 } 1877 break; 1878 1879 //---------------------------------------------------------------------- 1880 // OPCODE: DW_OP_ne 1881 // OPERANDS: none 1882 // DESCRIPTION: pops the top two stack values, compares using the 1883 // not equal (!=) operator. 1884 // STACK RESULT: push the constant value 1 onto the stack if the result 1885 // of the operation is true or the constant value 0 if the result of the 1886 // operation is false. 1887 //---------------------------------------------------------------------- 1888 case DW_OP_ne: 1889 if (stack.size() < 2) 1890 { 1891 if (error_ptr) 1892 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); 1893 return false; 1894 } 1895 else 1896 { 1897 tmp = stack.back(); 1898 stack.pop_back(); 1899 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context); 1900 } 1901 break; 1902 1903 //---------------------------------------------------------------------- 1904 // OPCODE: DW_OP_litn 1905 // OPERANDS: none 1906 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 1907 // STACK RESULT: push the unsigned literal constant value onto the top 1908 // of the stack. 1909 //---------------------------------------------------------------------- 1910 case DW_OP_lit0: 1911 case DW_OP_lit1: 1912 case DW_OP_lit2: 1913 case DW_OP_lit3: 1914 case DW_OP_lit4: 1915 case DW_OP_lit5: 1916 case DW_OP_lit6: 1917 case DW_OP_lit7: 1918 case DW_OP_lit8: 1919 case DW_OP_lit9: 1920 case DW_OP_lit10: 1921 case DW_OP_lit11: 1922 case DW_OP_lit12: 1923 case DW_OP_lit13: 1924 case DW_OP_lit14: 1925 case DW_OP_lit15: 1926 case DW_OP_lit16: 1927 case DW_OP_lit17: 1928 case DW_OP_lit18: 1929 case DW_OP_lit19: 1930 case DW_OP_lit20: 1931 case DW_OP_lit21: 1932 case DW_OP_lit22: 1933 case DW_OP_lit23: 1934 case DW_OP_lit24: 1935 case DW_OP_lit25: 1936 case DW_OP_lit26: 1937 case DW_OP_lit27: 1938 case DW_OP_lit28: 1939 case DW_OP_lit29: 1940 case DW_OP_lit30: 1941 case DW_OP_lit31: 1942 stack.push_back(Scalar(op - DW_OP_lit0)); 1943 break; 1944 1945 //---------------------------------------------------------------------- 1946 // OPCODE: DW_OP_regN 1947 // OPERANDS: none 1948 // DESCRIPTION: Push the value in register n on the top of the stack. 1949 //---------------------------------------------------------------------- 1950 case DW_OP_reg0: 1951 case DW_OP_reg1: 1952 case DW_OP_reg2: 1953 case DW_OP_reg3: 1954 case DW_OP_reg4: 1955 case DW_OP_reg5: 1956 case DW_OP_reg6: 1957 case DW_OP_reg7: 1958 case DW_OP_reg8: 1959 case DW_OP_reg9: 1960 case DW_OP_reg10: 1961 case DW_OP_reg11: 1962 case DW_OP_reg12: 1963 case DW_OP_reg13: 1964 case DW_OP_reg14: 1965 case DW_OP_reg15: 1966 case DW_OP_reg16: 1967 case DW_OP_reg17: 1968 case DW_OP_reg18: 1969 case DW_OP_reg19: 1970 case DW_OP_reg20: 1971 case DW_OP_reg21: 1972 case DW_OP_reg22: 1973 case DW_OP_reg23: 1974 case DW_OP_reg24: 1975 case DW_OP_reg25: 1976 case DW_OP_reg26: 1977 case DW_OP_reg27: 1978 case DW_OP_reg28: 1979 case DW_OP_reg29: 1980 case DW_OP_reg30: 1981 case DW_OP_reg31: 1982 { 1983 reg_num = op - DW_OP_reg0; 1984 1985 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 1986 stack.push_back(tmp); 1987 else 1988 return false; 1989 } 1990 break; 1991 //---------------------------------------------------------------------- 1992 // OPCODE: DW_OP_regx 1993 // OPERANDS: 1994 // ULEB128 literal operand that encodes the register. 1995 // DESCRIPTION: Push the value in register on the top of the stack. 1996 //---------------------------------------------------------------------- 1997 case DW_OP_regx: 1998 { 1999 reg_num = opcodes.GetULEB128(&offset); 2000 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2001 stack.push_back(tmp); 2002 else 2003 return false; 2004 } 2005 break; 2006 2007 //---------------------------------------------------------------------- 2008 // OPCODE: DW_OP_bregN 2009 // OPERANDS: 2010 // SLEB128 offset from register N 2011 // DESCRIPTION: Value is in memory at the address specified by register 2012 // N plus an offset. 2013 //---------------------------------------------------------------------- 2014 case DW_OP_breg0: 2015 case DW_OP_breg1: 2016 case DW_OP_breg2: 2017 case DW_OP_breg3: 2018 case DW_OP_breg4: 2019 case DW_OP_breg5: 2020 case DW_OP_breg6: 2021 case DW_OP_breg7: 2022 case DW_OP_breg8: 2023 case DW_OP_breg9: 2024 case DW_OP_breg10: 2025 case DW_OP_breg11: 2026 case DW_OP_breg12: 2027 case DW_OP_breg13: 2028 case DW_OP_breg14: 2029 case DW_OP_breg15: 2030 case DW_OP_breg16: 2031 case DW_OP_breg17: 2032 case DW_OP_breg18: 2033 case DW_OP_breg19: 2034 case DW_OP_breg20: 2035 case DW_OP_breg21: 2036 case DW_OP_breg22: 2037 case DW_OP_breg23: 2038 case DW_OP_breg24: 2039 case DW_OP_breg25: 2040 case DW_OP_breg26: 2041 case DW_OP_breg27: 2042 case DW_OP_breg28: 2043 case DW_OP_breg29: 2044 case DW_OP_breg30: 2045 case DW_OP_breg31: 2046 { 2047 reg_num = op - DW_OP_breg0; 2048 2049 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2050 { 2051 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2052 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2053 stack.push_back(tmp); 2054 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2055 } 2056 else 2057 return false; 2058 } 2059 break; 2060 //---------------------------------------------------------------------- 2061 // OPCODE: DW_OP_bregx 2062 // OPERANDS: 2 2063 // ULEB128 literal operand that encodes the register. 2064 // SLEB128 offset from register N 2065 // DESCRIPTION: Value is in memory at the address specified by register 2066 // N plus an offset. 2067 //---------------------------------------------------------------------- 2068 case DW_OP_bregx: 2069 { 2070 reg_num = opcodes.GetULEB128(&offset); 2071 2072 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2073 { 2074 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2075 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2076 stack.push_back(tmp); 2077 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2078 } 2079 else 2080 return false; 2081 } 2082 break; 2083 2084 case DW_OP_fbreg: 2085 if (exe_ctx && exe_ctx->frame) 2086 { 2087 Scalar value; 2088 if (exe_ctx->frame->GetFrameBaseValue(value, error_ptr)) 2089 { 2090 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2091 value += fbreg_offset; 2092 stack.push_back(value); 2093 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2094 } 2095 else 2096 return false; 2097 } 2098 else 2099 { 2100 if (error_ptr) 2101 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); 2102 return false; 2103 } 2104 break; 2105 2106 //---------------------------------------------------------------------- 2107 // OPCODE: DW_OP_nop 2108 // OPERANDS: none 2109 // DESCRIPTION: A place holder. It has no effect on the location stack 2110 // or any of its values. 2111 //---------------------------------------------------------------------- 2112 case DW_OP_nop: 2113 break; 2114 2115 //---------------------------------------------------------------------- 2116 // OPCODE: DW_OP_piece 2117 // OPERANDS: 1 2118 // ULEB128: byte size of the piece 2119 // DESCRIPTION: The operand describes the size in bytes of the piece of 2120 // the object referenced by the DWARF expression whose result is at the 2121 // top of the stack. If the piece is located in a register, but does not 2122 // occupy the entire register, the placement of the piece within that 2123 // register is defined by the ABI. 2124 // 2125 // Many compilers store a single variable in sets of registers, or store 2126 // a variable partially in memory and partially in registers. 2127 // DW_OP_piece provides a way of describing how large a part of a 2128 // variable a particular DWARF expression refers to. 2129 //---------------------------------------------------------------------- 2130 case DW_OP_piece: 2131 if (error_ptr) 2132 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece."); 2133 return false; 2134 2135 //---------------------------------------------------------------------- 2136 // OPCODE: DW_OP_push_object_address 2137 // OPERANDS: none 2138 // DESCRIPTION: Pushes the address of the object currently being 2139 // evaluated as part of evaluation of a user presented expression. 2140 // This object may correspond to an independent variable described by 2141 // its own DIE or it may be a component of an array, structure, or class 2142 // whose address has been dynamically determined by an earlier step 2143 // during user expression evaluation. 2144 //---------------------------------------------------------------------- 2145 case DW_OP_push_object_address: 2146 if (error_ptr) 2147 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); 2148 return false; 2149 2150 //---------------------------------------------------------------------- 2151 // OPCODE: DW_OP_call2 2152 // OPERANDS: 2153 // uint16_t compile unit relative offset of a DIE 2154 // DESCRIPTION: Performs subroutine calls during evaluation 2155 // of a DWARF expression. The operand is the 2-byte unsigned offset 2156 // of a debugging information entry in the current compilation unit. 2157 // 2158 // Operand interpretation is exactly like that for DW_FORM_ref2. 2159 // 2160 // This operation transfers control of DWARF expression evaluation 2161 // to the DW_AT_location attribute of the referenced DIE. If there is 2162 // no such attribute, then there is no effect. Execution of the DWARF 2163 // expression of a DW_AT_location attribute may add to and/or remove from 2164 // values on the stack. Execution returns to the point following the call 2165 // when the end of the attribute is reached. Values on the stack at the 2166 // time of the call may be used as parameters by the called expression 2167 // and values left on the stack by the called expression may be used as 2168 // return values by prior agreement between the calling and called 2169 // expressions. 2170 //---------------------------------------------------------------------- 2171 case DW_OP_call2: 2172 if (error_ptr) 2173 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); 2174 return false; 2175 //---------------------------------------------------------------------- 2176 // OPCODE: DW_OP_call4 2177 // OPERANDS: 1 2178 // uint32_t compile unit relative offset of a DIE 2179 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2180 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset 2181 // of a debugging information entry in the current compilation unit. 2182 // 2183 // Operand interpretation DW_OP_call4 is exactly like that for 2184 // DW_FORM_ref4. 2185 // 2186 // This operation transfers control of DWARF expression evaluation 2187 // to the DW_AT_location attribute of the referenced DIE. If there is 2188 // no such attribute, then there is no effect. Execution of the DWARF 2189 // expression of a DW_AT_location attribute may add to and/or remove from 2190 // values on the stack. Execution returns to the point following the call 2191 // when the end of the attribute is reached. Values on the stack at the 2192 // time of the call may be used as parameters by the called expression 2193 // and values left on the stack by the called expression may be used as 2194 // return values by prior agreement between the calling and called 2195 // expressions. 2196 //---------------------------------------------------------------------- 2197 case DW_OP_call4: 2198 if (error_ptr) 2199 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); 2200 return false; 2201 2202 2203 //---------------------------------------------------------------------- 2204 // OPCODE: DW_OP_call_ref 2205 // OPERANDS: 2206 // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t 2207 // absolute DIE offset for 64 bit DWARF. 2208 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2209 // expression. Takes a single operand. In the 32-bit DWARF format, the 2210 // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it 2211 // is an 8-byte unsigned value. The operand is used as the offset of a 2212 // debugging information entry in a .debug_info section which may be 2213 // contained in a shared object for executable other than that 2214 // containing the operator. For references from one shared object or 2215 // executable to another, the relocation must be performed by the 2216 // consumer. 2217 // 2218 // Operand interpretation of DW_OP_call_ref is exactly like that for 2219 // DW_FORM_ref_addr. 2220 // 2221 // This operation transfers control of DWARF expression evaluation 2222 // to the DW_AT_location attribute of the referenced DIE. If there is 2223 // no such attribute, then there is no effect. Execution of the DWARF 2224 // expression of a DW_AT_location attribute may add to and/or remove from 2225 // values on the stack. Execution returns to the point following the call 2226 // when the end of the attribute is reached. Values on the stack at the 2227 // time of the call may be used as parameters by the called expression 2228 // and values left on the stack by the called expression may be used as 2229 // return values by prior agreement between the calling and called 2230 // expressions. 2231 //---------------------------------------------------------------------- 2232 case DW_OP_call_ref: 2233 if (error_ptr) 2234 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref."); 2235 return false; 2236 2237 //---------------------------------------------------------------------- 2238 // OPCODE: DW_OP_APPLE_array_ref 2239 // OPERANDS: none 2240 // DESCRIPTION: Pops a value off the stack and uses it as the array 2241 // index. Pops a second value off the stack and uses it as the array 2242 // itself. Pushes a value onto the stack representing the element of 2243 // the array specified by the index. 2244 //---------------------------------------------------------------------- 2245 case DW_OP_APPLE_array_ref: 2246 { 2247 if (stack.size() < 2) 2248 { 2249 if (error_ptr) 2250 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref."); 2251 return false; 2252 } 2253 2254 Value index_val = stack.back(); 2255 stack.pop_back(); 2256 Value array_val = stack.back(); 2257 stack.pop_back(); 2258 2259 Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context); 2260 int64_t index = index_scalar.SLongLong(LLONG_MAX); 2261 2262 if (index == LLONG_MAX) 2263 { 2264 if (error_ptr) 2265 error_ptr->SetErrorString("Invalid array index."); 2266 return false; 2267 } 2268 2269 if (array_val.GetContextType() != Value::eContextTypeClangType) 2270 { 2271 if (error_ptr) 2272 error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time."); 2273 return false; 2274 } 2275 2276 if (array_val.GetValueType() != Value::eValueTypeLoadAddress && 2277 array_val.GetValueType() != Value::eValueTypeHostAddress) 2278 { 2279 if (error_ptr) 2280 error_ptr->SetErrorString("Array must be stored in memory."); 2281 return false; 2282 } 2283 2284 void *array_type = array_val.GetClangType(); 2285 2286 void *member_type; 2287 uint64_t size = 0; 2288 2289 if ((!ClangASTContext::IsPointerType(array_type, &member_type)) && 2290 (!ClangASTContext::IsArrayType(array_type, &member_type, &size))) 2291 { 2292 if (error_ptr) 2293 error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array."); 2294 return false; 2295 } 2296 2297 if (size && (index >= size || index < 0)) 2298 { 2299 if (error_ptr) 2300 error_ptr->SetErrorStringWithFormat("Out of bounds array access. %lld is not in [0, %llu]", index, size); 2301 return false; 2302 } 2303 2304 uint64_t member_bit_size = ClangASTType::GetClangTypeBitWidth(ast_context, member_type); 2305 uint64_t member_bit_align = ClangASTType::GetTypeBitAlign(ast_context, member_type); 2306 uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align; 2307 if (member_bit_incr % 8) 2308 { 2309 if (error_ptr) 2310 error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned", index, size); 2311 return false; 2312 } 2313 int64_t member_offset = (int64_t)(member_bit_incr / 8) * index; 2314 2315 Value member; 2316 2317 member.SetContext(Value::eContextTypeClangType, member_type); 2318 member.SetValueType(array_val.GetValueType()); 2319 2320 addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2321 addr_t member_loc = array_base + member_offset; 2322 member.GetScalar() = (uint64_t)member_loc; 2323 2324 stack.push_back(member); 2325 } 2326 break; 2327 2328 //---------------------------------------------------------------------- 2329 // OPCODE: DW_OP_APPLE_uninit 2330 // OPERANDS: none 2331 // DESCRIPTION: Lets us know that the value is currently not initialized 2332 //---------------------------------------------------------------------- 2333 case DW_OP_APPLE_uninit: 2334 //return eResultTypeErrorUninitialized; 2335 break; // Ignore this as we have seen cases where this value is incorrectly added 2336 2337 //---------------------------------------------------------------------- 2338 // OPCODE: DW_OP_APPLE_assign 2339 // OPERANDS: none 2340 // DESCRIPTION: Pops a value off of the stack and assigns it to the next 2341 // item on the stack which must be something assignable (inferior 2342 // Variable, inferior Type with address, inferior register, or 2343 // expression local variable. 2344 //---------------------------------------------------------------------- 2345 case DW_OP_APPLE_assign: 2346 if (stack.size() < 2) 2347 { 2348 if (error_ptr) 2349 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign."); 2350 return false; 2351 } 2352 else 2353 { 2354 tmp = stack.back(); 2355 stack.pop_back(); 2356 Value::ContextType context_type = stack.back().GetContextType(); 2357 StreamString new_value(Stream::eBinary, 4, lldb::endian::InlHostByteOrder()); 2358 switch (context_type) 2359 { 2360 case Value::eContextTypeClangType: 2361 { 2362 void *clang_type = stack.back().GetClangType(); 2363 2364 if (ClangASTContext::IsAggregateType (clang_type)) 2365 { 2366 Value::ValueType source_value_type = tmp.GetValueType(); 2367 Value::ValueType target_value_type = stack.back().GetValueType(); 2368 2369 addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong(); 2370 addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong(); 2371 2372 size_t byte_size = (ClangASTType::GetClangTypeBitWidth(ast_context, clang_type) + 7) / 8; 2373 2374 switch (source_value_type) 2375 { 2376 case Value::eValueTypeScalar: 2377 case Value::eValueTypeFileAddress: 2378 break; 2379 2380 case Value::eValueTypeLoadAddress: 2381 switch (target_value_type) 2382 { 2383 case Value::eValueTypeLoadAddress: 2384 { 2385 DataBufferHeap data; 2386 data.SetByteSize(byte_size); 2387 2388 Error error; 2389 if (exe_ctx->process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size) 2390 { 2391 if (error_ptr) 2392 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2393 return false; 2394 } 2395 2396 if (exe_ctx->process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size) 2397 { 2398 if (error_ptr) 2399 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2400 return false; 2401 } 2402 } 2403 break; 2404 case Value::eValueTypeHostAddress: 2405 if (exe_ctx->process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2406 { 2407 if (error_ptr) 2408 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2409 return false; 2410 } 2411 else 2412 { 2413 Error error; 2414 if (exe_ctx->process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size) 2415 { 2416 if (error_ptr) 2417 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2418 return false; 2419 } 2420 } 2421 break; 2422 default: 2423 return false; 2424 } 2425 break; 2426 case Value::eValueTypeHostAddress: 2427 switch (target_value_type) 2428 { 2429 case Value::eValueTypeLoadAddress: 2430 if (exe_ctx->process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2431 { 2432 if (error_ptr) 2433 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2434 return false; 2435 } 2436 else 2437 { 2438 Error error; 2439 if (exe_ctx->process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size) 2440 { 2441 if (error_ptr) 2442 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2443 return false; 2444 } 2445 } 2446 case Value::eValueTypeHostAddress: 2447 memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size); 2448 break; 2449 default: 2450 return false; 2451 } 2452 } 2453 } 2454 else 2455 { 2456 if (!ClangASTType::SetValueFromScalar (ast_context, 2457 clang_type, 2458 tmp.ResolveValue(exe_ctx, ast_context), 2459 new_value)) 2460 { 2461 if (error_ptr) 2462 error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n"); 2463 return false; 2464 } 2465 2466 Value::ValueType value_type = stack.back().GetValueType(); 2467 2468 switch (value_type) 2469 { 2470 case Value::eValueTypeLoadAddress: 2471 case Value::eValueTypeHostAddress: 2472 { 2473 AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost); 2474 lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2475 if (!ClangASTType::WriteToMemory (ast_context, 2476 clang_type, 2477 exe_ctx, 2478 addr, 2479 address_type, 2480 new_value)) 2481 { 2482 if (error_ptr) 2483 error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%llx.\n", addr); 2484 return false; 2485 } 2486 } 2487 break; 2488 2489 default: 2490 break; 2491 } 2492 } 2493 } 2494 break; 2495 2496 default: 2497 if (error_ptr) 2498 error_ptr->SetErrorString ("Assign failed."); 2499 return false; 2500 } 2501 } 2502 break; 2503 2504 //---------------------------------------------------------------------- 2505 // OPCODE: DW_OP_APPLE_address_of 2506 // OPERANDS: none 2507 // DESCRIPTION: Pops a value off of the stack and pushed its address. 2508 // The top item on the stack must be a variable, or already be a memory 2509 // location. 2510 //---------------------------------------------------------------------- 2511 case DW_OP_APPLE_address_of: 2512 if (stack.empty()) 2513 { 2514 if (error_ptr) 2515 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of."); 2516 return false; 2517 } 2518 else 2519 { 2520 Value::ValueType value_type = stack.back().GetValueType(); 2521 switch (value_type) 2522 { 2523 default: 2524 case Value::eValueTypeScalar: // raw scalar value 2525 if (error_ptr) 2526 error_ptr->SetErrorString("Top stack item isn't a memory based object."); 2527 return false; 2528 2529 case Value::eValueTypeLoadAddress: // load address value 2530 case Value::eValueTypeFileAddress: // file address value 2531 case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb) 2532 // Taking the address of an object reduces it to the address 2533 // of the value and removes any extra context it had. 2534 //stack.back().SetValueType(Value::eValueTypeScalar); 2535 stack.back().ClearContext(); 2536 break; 2537 } 2538 } 2539 break; 2540 2541 //---------------------------------------------------------------------- 2542 // OPCODE: DW_OP_APPLE_value_of 2543 // OPERANDS: none 2544 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2545 // The top item on the stack must be a variable, expression variable. 2546 //---------------------------------------------------------------------- 2547 case DW_OP_APPLE_value_of: 2548 if (stack.empty()) 2549 { 2550 if (error_ptr) 2551 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of."); 2552 return false; 2553 } 2554 else if (!stack.back().ValueOf(exe_ctx, ast_context)) 2555 { 2556 if (error_ptr) 2557 error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of."); 2558 return false; 2559 } 2560 break; 2561 2562 //---------------------------------------------------------------------- 2563 // OPCODE: DW_OP_APPLE_deref_type 2564 // OPERANDS: none 2565 // DESCRIPTION: gets the value pointed to by the top stack item 2566 //---------------------------------------------------------------------- 2567 case DW_OP_APPLE_deref_type: 2568 { 2569 if (stack.empty()) 2570 { 2571 if (error_ptr) 2572 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type."); 2573 return false; 2574 } 2575 2576 tmp = stack.back(); 2577 stack.pop_back(); 2578 2579 if (tmp.GetContextType() != Value::eContextTypeClangType) 2580 { 2581 if (error_ptr) 2582 error_ptr->SetErrorString("Item at top of expression stack must have a Clang type"); 2583 return false; 2584 } 2585 2586 void *ptr_type = tmp.GetClangType(); 2587 void *target_type; 2588 2589 if (!ClangASTContext::IsPointerType(ptr_type, &target_type)) 2590 { 2591 if (error_ptr) 2592 error_ptr->SetErrorString("Dereferencing a non-pointer type"); 2593 return false; 2594 } 2595 2596 // TODO do we want all pointers to be dereferenced as load addresses? 2597 Value::ValueType value_type = tmp.GetValueType(); 2598 2599 tmp.ResolveValue(exe_ctx, ast_context); 2600 2601 tmp.SetValueType(value_type); 2602 tmp.SetContext(Value::eContextTypeClangType, target_type); 2603 2604 stack.push_back(tmp); 2605 } 2606 break; 2607 2608 //---------------------------------------------------------------------- 2609 // OPCODE: DW_OP_APPLE_expr_local 2610 // OPERANDS: ULEB128 2611 // DESCRIPTION: pushes the expression local variable index onto the 2612 // stack and set the appropriate context so we know the stack item is 2613 // an expression local variable index. 2614 //---------------------------------------------------------------------- 2615 case DW_OP_APPLE_expr_local: 2616 { 2617 /* 2618 uint32_t idx = opcodes.GetULEB128(&offset); 2619 if (expr_locals == NULL) 2620 { 2621 if (error_ptr) 2622 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx); 2623 return false; 2624 } 2625 Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx); 2626 if (expr_local_variable == NULL) 2627 { 2628 if (error_ptr) 2629 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx); 2630 return false; 2631 } 2632 // The proxy code has been removed. If it is ever re-added, please 2633 // use shared pointers or return by value to avoid possible memory 2634 // leak (there is no leak here, but in general, no returning pointers 2635 // that must be manually freed please. 2636 Value *proxy = expr_local_variable->CreateProxy(); 2637 stack.push_back(*proxy); 2638 delete proxy; 2639 //stack.back().SetContext (Value::eContextTypeClangType, expr_local_variable->GetClangType()); 2640 */ 2641 } 2642 break; 2643 2644 //---------------------------------------------------------------------- 2645 // OPCODE: DW_OP_APPLE_extern 2646 // OPERANDS: ULEB128 2647 // DESCRIPTION: pushes a proxy for the extern object index onto the 2648 // stack. 2649 //---------------------------------------------------------------------- 2650 case DW_OP_APPLE_extern: 2651 { 2652 /* 2653 uint32_t idx = opcodes.GetULEB128(&offset); 2654 if (!decl_map) 2655 { 2656 if (error_ptr) 2657 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx); 2658 return false; 2659 } 2660 Value *extern_var = decl_map->GetValueForIndex(idx); 2661 if (!extern_var) 2662 { 2663 if (error_ptr) 2664 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx); 2665 return false; 2666 } 2667 // The proxy code has been removed. If it is ever re-added, please 2668 // use shared pointers or return by value to avoid possible memory 2669 // leak (there is no leak here, but in general, no returning pointers 2670 // that must be manually freed please. 2671 Value *proxy = extern_var->CreateProxy(); 2672 stack.push_back(*proxy); 2673 delete proxy; 2674 */ 2675 } 2676 break; 2677 2678 case DW_OP_APPLE_scalar_cast: 2679 if (stack.empty()) 2680 { 2681 if (error_ptr) 2682 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast."); 2683 return false; 2684 } 2685 else 2686 { 2687 // Simple scalar cast 2688 if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset))) 2689 { 2690 if (error_ptr) 2691 error_ptr->SetErrorString("Cast failed."); 2692 return false; 2693 } 2694 } 2695 break; 2696 2697 2698 case DW_OP_APPLE_clang_cast: 2699 if (stack.empty()) 2700 { 2701 if (error_ptr) 2702 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast."); 2703 return false; 2704 } 2705 else 2706 { 2707 void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*)); 2708 stack.back().SetContext (Value::eContextTypeClangType, clang_type); 2709 } 2710 break; 2711 //---------------------------------------------------------------------- 2712 // OPCODE: DW_OP_APPLE_constf 2713 // OPERANDS: 1 byte float length, followed by that many bytes containing 2714 // the constant float data. 2715 // DESCRIPTION: Push a float value onto the expression stack. 2716 //---------------------------------------------------------------------- 2717 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 2718 { 2719 uint8_t float_length = opcodes.GetU8(&offset); 2720 if (sizeof(float) == float_length) 2721 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset); 2722 else if (sizeof(double) == float_length) 2723 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset); 2724 else if (sizeof(long double) == float_length) 2725 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset); 2726 else 2727 { 2728 StreamString new_value; 2729 opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 2730 2731 if (error_ptr) 2732 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData()); 2733 return false; 2734 } 2735 tmp.SetValueType(Value::eValueTypeScalar); 2736 tmp.ClearContext(); 2737 stack.push_back(tmp); 2738 } 2739 break; 2740 //---------------------------------------------------------------------- 2741 // OPCODE: DW_OP_APPLE_clear 2742 // OPERANDS: none 2743 // DESCRIPTION: Clears the expression stack. 2744 //---------------------------------------------------------------------- 2745 case DW_OP_APPLE_clear: 2746 stack.clear(); 2747 break; 2748 2749 //---------------------------------------------------------------------- 2750 // OPCODE: DW_OP_APPLE_error 2751 // OPERANDS: none 2752 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2753 // The top item on the stack must be a variable, expression variable. 2754 //---------------------------------------------------------------------- 2755 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 2756 if (error_ptr) 2757 error_ptr->SetErrorString ("Generic error."); 2758 return false; 2759 } 2760 } 2761 2762 if (stack.empty()) 2763 { 2764 if (error_ptr) 2765 error_ptr->SetErrorString ("Stack empty after evaluation."); 2766 return false; 2767 } 2768 else if (log) 2769 { 2770 size_t count = stack.size(); 2771 log->Printf("Stack after operation has %d values:", count); 2772 for (size_t i=0; i<count; ++i) 2773 { 2774 StreamString new_value; 2775 new_value.Printf("[%zu]", i); 2776 stack[i].Dump(&new_value); 2777 log->Printf(" %s", new_value.GetData()); 2778 } 2779 } 2780 2781 result = stack.back(); 2782 return true; // Return true on success 2783 } 2784 2785