1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <cinttypes>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/LLDBLog.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/RegisterValue.h"
22 #include "lldb/Utility/Scalar.h"
23 #include "lldb/Utility/StreamString.h"
24 #include "lldb/Utility/VMRange.h"
25 
26 #include "lldb/Host/Host.h"
27 #include "lldb/Utility/Endian.h"
28 
29 #include "lldb/Symbol/Function.h"
30 
31 #include "lldb/Target/ABI.h"
32 #include "lldb/Target/ExecutionContext.h"
33 #include "lldb/Target/Process.h"
34 #include "lldb/Target/RegisterContext.h"
35 #include "lldb/Target/StackFrame.h"
36 #include "lldb/Target/StackID.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 
40 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
41 
42 using namespace lldb;
43 using namespace lldb_private;
44 
45 static lldb::addr_t
46 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
47                                 uint32_t index) {
48   uint32_t index_size = dwarf_cu->GetAddressByteSize();
49   dw_offset_t addr_base = dwarf_cu->GetAddrBase();
50   lldb::offset_t offset = addr_base + index * index_size;
51   const DWARFDataExtractor &data =
52       dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
53   if (data.ValidOffsetForDataOfSize(offset, index_size))
54     return data.GetMaxU64_unchecked(&offset, index_size);
55   return LLDB_INVALID_ADDRESS;
56 }
57 
58 // DWARFExpression constructor
59 DWARFExpression::DWARFExpression() : m_module_wp(), m_data() {}
60 
61 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
62                                  const DataExtractor &data,
63                                  const DWARFUnit *dwarf_cu)
64     : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu),
65       m_reg_kind(eRegisterKindDWARF) {
66   if (module_sp)
67     m_module_wp = module_sp;
68 }
69 
70 // Destructor
71 DWARFExpression::~DWARFExpression() = default;
72 
73 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
74 
75 void DWARFExpression::UpdateValue(uint64_t const_value,
76                                   lldb::offset_t const_value_byte_size,
77                                   uint8_t addr_byte_size) {
78   if (!const_value_byte_size)
79     return;
80 
81   m_data.SetData(
82       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
83   m_data.SetByteOrder(endian::InlHostByteOrder());
84   m_data.SetAddressByteSize(addr_byte_size);
85 }
86 
87 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
88                                    lldb::DescriptionLevel level,
89                                    ABI *abi) const {
90   llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
91       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
92              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
93 }
94 
95 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
96                                                addr_t func_file_addr) {
97   m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
98 }
99 
100 int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
101 
102 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
103   m_reg_kind = reg_kind;
104 }
105 
106 bool DWARFExpression::IsLocationList() const {
107   return bool(m_loclist_addresses);
108 }
109 
110 namespace {
111 /// Implement enough of the DWARFObject interface in order to be able to call
112 /// DWARFLocationTable::dumpLocationList. We don't have access to a real
113 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
114 class DummyDWARFObject final: public llvm::DWARFObject {
115 public:
116   DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}
117 
118   bool isLittleEndian() const override { return IsLittleEndian; }
119 
120   llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
121                                             uint64_t Pos) const override {
122     return llvm::None;
123   }
124 private:
125   bool IsLittleEndian;
126 };
127 }
128 
129 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
130                                      addr_t location_list_base_addr,
131                                      ABI *abi) const {
132   if (IsLocationList()) {
133     // We have a location list
134     lldb::offset_t offset = 0;
135     std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
136         m_dwarf_cu->GetLocationTable(m_data);
137 
138     llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
139     llvm::DIDumpOptions DumpOpts;
140     DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) {
141       s->AsRawOstream() << "error: " << toString(std::move(E));
142     };
143     loctable_up->dumpLocationList(
144         &offset, s->AsRawOstream(),
145         llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
146         DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
147         DumpOpts, s->GetIndentLevel() + 2);
148   } else {
149     // We have a normal location that contains DW_OP location opcodes
150     DumpLocation(s, m_data, level, abi);
151   }
152 }
153 
154 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
155                                       lldb::RegisterKind reg_kind,
156                                       uint32_t reg_num, Status *error_ptr,
157                                       Value &value) {
158   if (reg_ctx == nullptr) {
159     if (error_ptr)
160       error_ptr->SetErrorString("No register context in frame.\n");
161   } else {
162     uint32_t native_reg =
163         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
164     if (native_reg == LLDB_INVALID_REGNUM) {
165       if (error_ptr)
166         error_ptr->SetErrorStringWithFormat("Unable to convert register "
167                                             "kind=%u reg_num=%u to a native "
168                                             "register number.\n",
169                                             reg_kind, reg_num);
170     } else {
171       const RegisterInfo *reg_info =
172           reg_ctx->GetRegisterInfoAtIndex(native_reg);
173       RegisterValue reg_value;
174       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
175         if (reg_value.GetScalarValue(value.GetScalar())) {
176           value.SetValueType(Value::ValueType::Scalar);
177           value.SetContext(Value::ContextType::RegisterInfo,
178                            const_cast<RegisterInfo *>(reg_info));
179           if (error_ptr)
180             error_ptr->Clear();
181           return true;
182         } else {
183           // If we get this error, then we need to implement a value buffer in
184           // the dwarf expression evaluation function...
185           if (error_ptr)
186             error_ptr->SetErrorStringWithFormat(
187                 "register %s can't be converted to a scalar value",
188                 reg_info->name);
189         }
190       } else {
191         if (error_ptr)
192           error_ptr->SetErrorStringWithFormat("register %s is not available",
193                                               reg_info->name);
194       }
195     }
196   }
197   return false;
198 }
199 
200 /// Return the length in bytes of the set of operands for \p op. No guarantees
201 /// are made on the state of \p data after this call.
202 static offset_t GetOpcodeDataSize(const DataExtractor &data,
203                                   const lldb::offset_t data_offset,
204                                   const uint8_t op) {
205   lldb::offset_t offset = data_offset;
206   switch (op) {
207   case DW_OP_addr:
208   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
209     return data.GetAddressByteSize();
210 
211   // Opcodes with no arguments
212   case DW_OP_deref:                // 0x06
213   case DW_OP_dup:                  // 0x12
214   case DW_OP_drop:                 // 0x13
215   case DW_OP_over:                 // 0x14
216   case DW_OP_swap:                 // 0x16
217   case DW_OP_rot:                  // 0x17
218   case DW_OP_xderef:               // 0x18
219   case DW_OP_abs:                  // 0x19
220   case DW_OP_and:                  // 0x1a
221   case DW_OP_div:                  // 0x1b
222   case DW_OP_minus:                // 0x1c
223   case DW_OP_mod:                  // 0x1d
224   case DW_OP_mul:                  // 0x1e
225   case DW_OP_neg:                  // 0x1f
226   case DW_OP_not:                  // 0x20
227   case DW_OP_or:                   // 0x21
228   case DW_OP_plus:                 // 0x22
229   case DW_OP_shl:                  // 0x24
230   case DW_OP_shr:                  // 0x25
231   case DW_OP_shra:                 // 0x26
232   case DW_OP_xor:                  // 0x27
233   case DW_OP_eq:                   // 0x29
234   case DW_OP_ge:                   // 0x2a
235   case DW_OP_gt:                   // 0x2b
236   case DW_OP_le:                   // 0x2c
237   case DW_OP_lt:                   // 0x2d
238   case DW_OP_ne:                   // 0x2e
239   case DW_OP_lit0:                 // 0x30
240   case DW_OP_lit1:                 // 0x31
241   case DW_OP_lit2:                 // 0x32
242   case DW_OP_lit3:                 // 0x33
243   case DW_OP_lit4:                 // 0x34
244   case DW_OP_lit5:                 // 0x35
245   case DW_OP_lit6:                 // 0x36
246   case DW_OP_lit7:                 // 0x37
247   case DW_OP_lit8:                 // 0x38
248   case DW_OP_lit9:                 // 0x39
249   case DW_OP_lit10:                // 0x3A
250   case DW_OP_lit11:                // 0x3B
251   case DW_OP_lit12:                // 0x3C
252   case DW_OP_lit13:                // 0x3D
253   case DW_OP_lit14:                // 0x3E
254   case DW_OP_lit15:                // 0x3F
255   case DW_OP_lit16:                // 0x40
256   case DW_OP_lit17:                // 0x41
257   case DW_OP_lit18:                // 0x42
258   case DW_OP_lit19:                // 0x43
259   case DW_OP_lit20:                // 0x44
260   case DW_OP_lit21:                // 0x45
261   case DW_OP_lit22:                // 0x46
262   case DW_OP_lit23:                // 0x47
263   case DW_OP_lit24:                // 0x48
264   case DW_OP_lit25:                // 0x49
265   case DW_OP_lit26:                // 0x4A
266   case DW_OP_lit27:                // 0x4B
267   case DW_OP_lit28:                // 0x4C
268   case DW_OP_lit29:                // 0x4D
269   case DW_OP_lit30:                // 0x4E
270   case DW_OP_lit31:                // 0x4f
271   case DW_OP_reg0:                 // 0x50
272   case DW_OP_reg1:                 // 0x51
273   case DW_OP_reg2:                 // 0x52
274   case DW_OP_reg3:                 // 0x53
275   case DW_OP_reg4:                 // 0x54
276   case DW_OP_reg5:                 // 0x55
277   case DW_OP_reg6:                 // 0x56
278   case DW_OP_reg7:                 // 0x57
279   case DW_OP_reg8:                 // 0x58
280   case DW_OP_reg9:                 // 0x59
281   case DW_OP_reg10:                // 0x5A
282   case DW_OP_reg11:                // 0x5B
283   case DW_OP_reg12:                // 0x5C
284   case DW_OP_reg13:                // 0x5D
285   case DW_OP_reg14:                // 0x5E
286   case DW_OP_reg15:                // 0x5F
287   case DW_OP_reg16:                // 0x60
288   case DW_OP_reg17:                // 0x61
289   case DW_OP_reg18:                // 0x62
290   case DW_OP_reg19:                // 0x63
291   case DW_OP_reg20:                // 0x64
292   case DW_OP_reg21:                // 0x65
293   case DW_OP_reg22:                // 0x66
294   case DW_OP_reg23:                // 0x67
295   case DW_OP_reg24:                // 0x68
296   case DW_OP_reg25:                // 0x69
297   case DW_OP_reg26:                // 0x6A
298   case DW_OP_reg27:                // 0x6B
299   case DW_OP_reg28:                // 0x6C
300   case DW_OP_reg29:                // 0x6D
301   case DW_OP_reg30:                // 0x6E
302   case DW_OP_reg31:                // 0x6F
303   case DW_OP_nop:                  // 0x96
304   case DW_OP_push_object_address:  // 0x97 DWARF3
305   case DW_OP_form_tls_address:     // 0x9b DWARF3
306   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
307   case DW_OP_stack_value:          // 0x9f DWARF4
308   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
309     return 0;
310 
311   // Opcodes with a single 1 byte arguments
312   case DW_OP_const1u:     // 0x08 1 1-byte constant
313   case DW_OP_const1s:     // 0x09 1 1-byte constant
314   case DW_OP_pick:        // 0x15 1 1-byte stack index
315   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
316   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
317     return 1;
318 
319   // Opcodes with a single 2 byte arguments
320   case DW_OP_const2u: // 0x0a 1 2-byte constant
321   case DW_OP_const2s: // 0x0b 1 2-byte constant
322   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
323   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
324   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
325     return 2;
326 
327   // Opcodes with a single 4 byte arguments
328   case DW_OP_const4u: // 0x0c 1 4-byte constant
329   case DW_OP_const4s: // 0x0d 1 4-byte constant
330   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
331     return 4;
332 
333   // Opcodes with a single 8 byte arguments
334   case DW_OP_const8u: // 0x0e 1 8-byte constant
335   case DW_OP_const8s: // 0x0f 1 8-byte constant
336     return 8;
337 
338   // All opcodes that have a single ULEB (signed or unsigned) argument
339   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
340   case DW_OP_constu:          // 0x10 1 ULEB128 constant
341   case DW_OP_consts:          // 0x11 1 SLEB128 constant
342   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
343   case DW_OP_breg0:           // 0x70 1 ULEB128 register
344   case DW_OP_breg1:           // 0x71 1 ULEB128 register
345   case DW_OP_breg2:           // 0x72 1 ULEB128 register
346   case DW_OP_breg3:           // 0x73 1 ULEB128 register
347   case DW_OP_breg4:           // 0x74 1 ULEB128 register
348   case DW_OP_breg5:           // 0x75 1 ULEB128 register
349   case DW_OP_breg6:           // 0x76 1 ULEB128 register
350   case DW_OP_breg7:           // 0x77 1 ULEB128 register
351   case DW_OP_breg8:           // 0x78 1 ULEB128 register
352   case DW_OP_breg9:           // 0x79 1 ULEB128 register
353   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
354   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
355   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
356   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
357   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
358   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
359   case DW_OP_breg16:          // 0x80 1 ULEB128 register
360   case DW_OP_breg17:          // 0x81 1 ULEB128 register
361   case DW_OP_breg18:          // 0x82 1 ULEB128 register
362   case DW_OP_breg19:          // 0x83 1 ULEB128 register
363   case DW_OP_breg20:          // 0x84 1 ULEB128 register
364   case DW_OP_breg21:          // 0x85 1 ULEB128 register
365   case DW_OP_breg22:          // 0x86 1 ULEB128 register
366   case DW_OP_breg23:          // 0x87 1 ULEB128 register
367   case DW_OP_breg24:          // 0x88 1 ULEB128 register
368   case DW_OP_breg25:          // 0x89 1 ULEB128 register
369   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
370   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
371   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
372   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
373   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
374   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
375   case DW_OP_regx:            // 0x90 1 ULEB128 register
376   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
377   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
378   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
379   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
380     data.Skip_LEB128(&offset);
381     return offset - data_offset;
382 
383   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
384   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
385   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
386     data.Skip_LEB128(&offset);
387     data.Skip_LEB128(&offset);
388     return offset - data_offset;
389 
390   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
391                              // (DWARF4)
392   {
393     uint64_t block_len = data.Skip_LEB128(&offset);
394     offset += block_len;
395     return offset - data_offset;
396   }
397 
398   case DW_OP_GNU_entry_value:
399   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
400   {
401     uint64_t subexpr_len = data.GetULEB128(&offset);
402     return (offset - data_offset) + subexpr_len;
403   }
404 
405   default:
406     break;
407   }
408   return LLDB_INVALID_OFFSET;
409 }
410 
411 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
412                                                      bool &error) const {
413   error = false;
414   if (IsLocationList())
415     return LLDB_INVALID_ADDRESS;
416   lldb::offset_t offset = 0;
417   uint32_t curr_op_addr_idx = 0;
418   while (m_data.ValidOffset(offset)) {
419     const uint8_t op = m_data.GetU8(&offset);
420 
421     if (op == DW_OP_addr) {
422       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
423       if (curr_op_addr_idx == op_addr_idx)
424         return op_file_addr;
425       else
426         ++curr_op_addr_idx;
427     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
428       uint64_t index = m_data.GetULEB128(&offset);
429       if (curr_op_addr_idx == op_addr_idx) {
430         if (!m_dwarf_cu) {
431           error = true;
432           break;
433         }
434 
435         return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
436       } else
437         ++curr_op_addr_idx;
438     } else {
439       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
440       if (op_arg_size == LLDB_INVALID_OFFSET) {
441         error = true;
442         break;
443       }
444       offset += op_arg_size;
445     }
446   }
447   return LLDB_INVALID_ADDRESS;
448 }
449 
450 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
451   if (IsLocationList())
452     return false;
453   lldb::offset_t offset = 0;
454   while (m_data.ValidOffset(offset)) {
455     const uint8_t op = m_data.GetU8(&offset);
456 
457     if (op == DW_OP_addr) {
458       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
459       // We have to make a copy of the data as we don't know if this data is
460       // from a read only memory mapped buffer, so we duplicate all of the data
461       // first, then modify it, and if all goes well, we then replace the data
462       // for this expression
463 
464       // Make en encoder that contains a copy of the location expression data
465       // so we can write the address into the buffer using the correct byte
466       // order.
467       DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
468                           m_data.GetByteOrder(), addr_byte_size);
469 
470       // Replace the address in the new buffer
471       if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
472         return false;
473 
474       // All went well, so now we can reset the data using a shared pointer to
475       // the heap data so "m_data" will now correctly manage the heap data.
476       m_data.SetData(encoder.GetDataBuffer());
477       return true;
478     } else {
479       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
480       if (op_arg_size == LLDB_INVALID_OFFSET)
481         break;
482       offset += op_arg_size;
483     }
484   }
485   return false;
486 }
487 
488 bool DWARFExpression::ContainsThreadLocalStorage() const {
489   // We are assuming for now that any thread local variable will not have a
490   // location list. This has been true for all thread local variables we have
491   // seen so far produced by any compiler.
492   if (IsLocationList())
493     return false;
494   lldb::offset_t offset = 0;
495   while (m_data.ValidOffset(offset)) {
496     const uint8_t op = m_data.GetU8(&offset);
497 
498     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
499       return true;
500     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
501     if (op_arg_size == LLDB_INVALID_OFFSET)
502       return false;
503     else
504       offset += op_arg_size;
505   }
506   return false;
507 }
508 bool DWARFExpression::LinkThreadLocalStorage(
509     lldb::ModuleSP new_module_sp,
510     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
511         &link_address_callback) {
512   // We are assuming for now that any thread local variable will not have a
513   // location list. This has been true for all thread local variables we have
514   // seen so far produced by any compiler.
515   if (IsLocationList())
516     return false;
517 
518   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
519   // We have to make a copy of the data as we don't know if this data is from a
520   // read only memory mapped buffer, so we duplicate all of the data first,
521   // then modify it, and if all goes well, we then replace the data for this
522   // expression.
523 
524   // Make en encoder that contains a copy of the location expression data so we
525   // can write the address into the buffer using the correct byte order.
526   DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
527                       m_data.GetByteOrder(), addr_byte_size);
528 
529   lldb::offset_t offset = 0;
530   lldb::offset_t const_offset = 0;
531   lldb::addr_t const_value = 0;
532   size_t const_byte_size = 0;
533   while (m_data.ValidOffset(offset)) {
534     const uint8_t op = m_data.GetU8(&offset);
535 
536     bool decoded_data = false;
537     switch (op) {
538     case DW_OP_const4u:
539       // Remember the const offset in case we later have a
540       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
541       const_offset = offset;
542       const_value = m_data.GetU32(&offset);
543       decoded_data = true;
544       const_byte_size = 4;
545       break;
546 
547     case DW_OP_const8u:
548       // Remember the const offset in case we later have a
549       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
550       const_offset = offset;
551       const_value = m_data.GetU64(&offset);
552       decoded_data = true;
553       const_byte_size = 8;
554       break;
555 
556     case DW_OP_form_tls_address:
557     case DW_OP_GNU_push_tls_address:
558       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
559       // by a file address on the stack. We assume that DW_OP_const4u or
560       // DW_OP_const8u is used for these values, and we check that the last
561       // opcode we got before either of these was DW_OP_const4u or
562       // DW_OP_const8u. If so, then we can link the value accodingly. For
563       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
564       // address of a structure that contains a function pointer, the pthread
565       // key and the offset into the data pointed to by the pthread key. So we
566       // must link this address and also set the module of this expression to
567       // the new_module_sp so we can resolve the file address correctly
568       if (const_byte_size > 0) {
569         lldb::addr_t linked_file_addr = link_address_callback(const_value);
570         if (linked_file_addr == LLDB_INVALID_ADDRESS)
571           return false;
572         // Replace the address in the new buffer
573         if (encoder.PutUnsigned(const_offset, const_byte_size,
574                                 linked_file_addr) == UINT32_MAX)
575           return false;
576       }
577       break;
578 
579     default:
580       const_offset = 0;
581       const_value = 0;
582       const_byte_size = 0;
583       break;
584     }
585 
586     if (!decoded_data) {
587       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
588       if (op_arg_size == LLDB_INVALID_OFFSET)
589         return false;
590       else
591         offset += op_arg_size;
592     }
593   }
594 
595   // If we linked the TLS address correctly, update the module so that when the
596   // expression is evaluated it can resolve the file address to a load address
597   // and read the
598   // TLS data
599   m_module_wp = new_module_sp;
600   m_data.SetData(encoder.GetDataBuffer());
601   return true;
602 }
603 
604 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
605                                                   lldb::addr_t addr) const {
606   if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
607     return false;
608 
609   if (!IsLocationList())
610     return false;
611 
612   return GetLocationExpression(func_load_addr, addr) != llvm::None;
613 }
614 
615 bool DWARFExpression::DumpLocationForAddress(Stream *s,
616                                              lldb::DescriptionLevel level,
617                                              addr_t func_load_addr,
618                                              addr_t address, ABI *abi) {
619   if (!IsLocationList()) {
620     DumpLocation(s, m_data, level, abi);
621     return true;
622   }
623   if (llvm::Optional<DataExtractor> expr =
624           GetLocationExpression(func_load_addr, address)) {
625     DumpLocation(s, *expr, level, abi);
626     return true;
627   }
628   return false;
629 }
630 
631 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
632                                        ExecutionContext *exe_ctx,
633                                        RegisterContext *reg_ctx,
634                                        const DataExtractor &opcodes,
635                                        lldb::offset_t &opcode_offset,
636                                        Status *error_ptr, Log *log) {
637   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
638   // function entry: this variable location is presumed to be optimized out at
639   // the current PC value.  The caller of the function may have call site
640   // information that describes an alternate location for the variable (e.g. a
641   // constant literal, or a spilled stack value) in the parent frame.
642   //
643   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
644   //
645   //     void child(int &sink, int x) {
646   //       ...
647   //       /* "x" gets optimized out. */
648   //
649   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
650   //       ++sink;
651   //     }
652   //
653   //     void parent() {
654   //       int sink;
655   //
656   //       /*
657   //        * The callsite information emitted here is:
658   //        *
659   //        * DW_TAG_call_site
660   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
661   //        *   DW_TAG_call_site_parameter (for "sink")
662   //        *     DW_AT_location   ($reg1)
663   //        *     DW_AT_call_value ($SP - 8)
664   //        *   DW_TAG_call_site_parameter (for "x")
665   //        *     DW_AT_location   ($reg2)
666   //        *     DW_AT_call_value ($literal 123)
667   //        *
668   //        * DW_TAG_call_site
669   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
670   //        *   ...
671   //        */
672   //       child(sink, 123);
673   //       child(sink, 456);
674   //     }
675   //
676   // When the program stops at "++sink" within `child`, the debugger determines
677   // the call site by analyzing the return address. Once the call site is found,
678   // the debugger determines which parameter is referenced by DW_OP_entry_value
679   // and evaluates the corresponding location for that parameter in `parent`.
680 
681   // 1. Find the function which pushed the current frame onto the stack.
682   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
683     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
684     return false;
685   }
686 
687   StackFrame *current_frame = exe_ctx->GetFramePtr();
688   Thread *thread = exe_ctx->GetThreadPtr();
689   if (!current_frame || !thread) {
690     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
691     return false;
692   }
693 
694   Target &target = exe_ctx->GetTargetRef();
695   StackFrameSP parent_frame = nullptr;
696   addr_t return_pc = LLDB_INVALID_ADDRESS;
697   uint32_t current_frame_idx = current_frame->GetFrameIndex();
698   uint32_t num_frames = thread->GetStackFrameCount();
699   for (uint32_t parent_frame_idx = current_frame_idx + 1;
700        parent_frame_idx < num_frames; ++parent_frame_idx) {
701     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
702     // Require a valid sequence of frames.
703     if (!parent_frame)
704       break;
705 
706     // Record the first valid return address, even if this is an inlined frame,
707     // in order to look up the associated call edge in the first non-inlined
708     // parent frame.
709     if (return_pc == LLDB_INVALID_ADDRESS) {
710       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
711       LLDB_LOG(log,
712                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
713                return_pc);
714     }
715 
716     // If we've found an inlined frame, skip it (these have no call site
717     // parameters).
718     if (parent_frame->IsInlined())
719       continue;
720 
721     // We've found the first non-inlined parent frame.
722     break;
723   }
724   if (!parent_frame || !parent_frame->GetRegisterContext()) {
725     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
726     return false;
727   }
728 
729   Function *parent_func =
730       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
731   if (!parent_func) {
732     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
733     return false;
734   }
735 
736   // 2. Find the call edge in the parent function responsible for creating the
737   //    current activation.
738   Function *current_func =
739       current_frame->GetSymbolContext(eSymbolContextFunction).function;
740   if (!current_func) {
741     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
742     return false;
743   }
744 
745   CallEdge *call_edge = nullptr;
746   ModuleList &modlist = target.GetImages();
747   ExecutionContext parent_exe_ctx = *exe_ctx;
748   parent_exe_ctx.SetFrameSP(parent_frame);
749   if (!parent_frame->IsArtificial()) {
750     // If the parent frame is not artificial, the current activation may be
751     // produced by an ambiguous tail call. In this case, refuse to proceed.
752     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
753     if (!call_edge) {
754       LLDB_LOG(log,
755                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
756                "in parent frame {1}",
757                return_pc, parent_func->GetName());
758       return false;
759     }
760     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
761     if (callee_func != current_func) {
762       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
763                     "can't find real parent frame");
764       return false;
765     }
766   } else {
767     // The StackFrameList solver machinery has deduced that an unambiguous tail
768     // call sequence that produced the current activation.  The first edge in
769     // the parent that points to the current function must be valid.
770     for (auto &edge : parent_func->GetTailCallingEdges()) {
771       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
772         call_edge = edge.get();
773         break;
774       }
775     }
776   }
777   if (!call_edge) {
778     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
779                   "to current function");
780     return false;
781   }
782 
783   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
784   //    available call site parameters. If found, evaluate the corresponding
785   //    parameter in the context of the parent frame.
786   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
787   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
788   if (!subexpr_data) {
789     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
790     return false;
791   }
792 
793   const CallSiteParameter *matched_param = nullptr;
794   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
795     DataExtractor param_subexpr_extractor;
796     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
797       continue;
798     lldb::offset_t param_subexpr_offset = 0;
799     const void *param_subexpr_data =
800         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
801     if (!param_subexpr_data ||
802         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
803       continue;
804 
805     // At this point, the DW_OP_entry_value sub-expression and the callee-side
806     // expression in the call site parameter are known to have the same length.
807     // Check whether they are equal.
808     //
809     // Note that an equality check is sufficient: the contents of the
810     // DW_OP_entry_value subexpression are only used to identify the right call
811     // site parameter in the parent, and do not require any special handling.
812     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
813       matched_param = &param;
814       break;
815     }
816   }
817   if (!matched_param) {
818     LLDB_LOG(log,
819              "Evaluate_DW_OP_entry_value: no matching call site param found");
820     return false;
821   }
822 
823   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
824   // subexpresion whenever llvm does.
825   Value result;
826   const DWARFExpression &param_expr = matched_param->LocationInCaller;
827   if (!param_expr.Evaluate(&parent_exe_ctx,
828                            parent_frame->GetRegisterContext().get(),
829                            /*loclist_base_load_addr=*/LLDB_INVALID_ADDRESS,
830                            /*initial_value_ptr=*/nullptr,
831                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
832     LLDB_LOG(log,
833              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
834     return false;
835   }
836 
837   stack.push_back(result);
838   return true;
839 }
840 
841 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
842                                lldb::addr_t loclist_base_load_addr,
843                                const Value *initial_value_ptr,
844                                const Value *object_address_ptr, Value &result,
845                                Status *error_ptr) const {
846   ExecutionContext exe_ctx(exe_scope);
847   return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
848                   object_address_ptr, result, error_ptr);
849 }
850 
851 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
852                                RegisterContext *reg_ctx,
853                                lldb::addr_t func_load_addr,
854                                const Value *initial_value_ptr,
855                                const Value *object_address_ptr, Value &result,
856                                Status *error_ptr) const {
857   ModuleSP module_sp = m_module_wp.lock();
858 
859   if (IsLocationList()) {
860     addr_t pc;
861     StackFrame *frame = nullptr;
862     if (reg_ctx)
863       pc = reg_ctx->GetPC();
864     else {
865       frame = exe_ctx->GetFramePtr();
866       if (!frame)
867         return false;
868       RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
869       if (!reg_ctx_sp)
870         return false;
871       pc = reg_ctx_sp->GetPC();
872     }
873 
874     if (func_load_addr != LLDB_INVALID_ADDRESS) {
875       if (pc == LLDB_INVALID_ADDRESS) {
876         if (error_ptr)
877           error_ptr->SetErrorString("Invalid PC in frame.");
878         return false;
879       }
880 
881       if (llvm::Optional<DataExtractor> expr =
882               GetLocationExpression(func_load_addr, pc)) {
883         return DWARFExpression::Evaluate(
884             exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
885             initial_value_ptr, object_address_ptr, result, error_ptr);
886       }
887     }
888     if (error_ptr)
889       error_ptr->SetErrorString("variable not available");
890     return false;
891   }
892 
893   // Not a location list, just a single expression.
894   return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
895                                    m_dwarf_cu, m_reg_kind, initial_value_ptr,
896                                    object_address_ptr, result, error_ptr);
897 }
898 
899 namespace {
900 /// The location description kinds described by the DWARF v5
901 /// specification.  Composite locations are handled out-of-band and
902 /// thus aren't part of the enum.
903 enum LocationDescriptionKind {
904   Empty,
905   Memory,
906   Register,
907   Implicit
908   /* Composite*/
909 };
910 /// Adjust value's ValueType according to the kind of location description.
911 void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
912                                             LocationDescriptionKind kind,
913                                             Value *value = nullptr) {
914   // Note that this function is conflating DWARF expressions with
915   // DWARF location descriptions. Perhaps it would be better to define
916   // a wrapper for DWARFExpresssion::Eval() that deals with DWARF
917   // location descriptions (which consist of one or more DWARF
918   // expressions). But doing this would mean we'd also need factor the
919   // handling of DW_OP_(bit_)piece out of this function.
920   if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
921     const char *log_msg = "DWARF location description kind: %s";
922     switch (kind) {
923     case Empty:
924       LLDB_LOGF(log, log_msg, "Empty");
925       break;
926     case Memory:
927       LLDB_LOGF(log, log_msg, "Memory");
928       if (value->GetValueType() == Value::ValueType::Scalar)
929         value->SetValueType(Value::ValueType::LoadAddress);
930       break;
931     case Register:
932       LLDB_LOGF(log, log_msg, "Register");
933       value->SetValueType(Value::ValueType::Scalar);
934       break;
935     case Implicit:
936       LLDB_LOGF(log, log_msg, "Implicit");
937       if (value->GetValueType() == Value::ValueType::LoadAddress)
938         value->SetValueType(Value::ValueType::Scalar);
939       break;
940     }
941   }
942 }
943 } // namespace
944 
945 bool DWARFExpression::Evaluate(
946     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
947     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
948     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
949     const Value *initial_value_ptr, const Value *object_address_ptr,
950     Value &result, Status *error_ptr) {
951 
952   if (opcodes.GetByteSize() == 0) {
953     if (error_ptr)
954       error_ptr->SetErrorString(
955           "no location, value may have been optimized out");
956     return false;
957   }
958   std::vector<Value> stack;
959 
960   Process *process = nullptr;
961   StackFrame *frame = nullptr;
962 
963   if (exe_ctx) {
964     process = exe_ctx->GetProcessPtr();
965     frame = exe_ctx->GetFramePtr();
966   }
967   if (reg_ctx == nullptr && frame)
968     reg_ctx = frame->GetRegisterContext().get();
969 
970   if (initial_value_ptr)
971     stack.push_back(*initial_value_ptr);
972 
973   lldb::offset_t offset = 0;
974   Value tmp;
975   uint32_t reg_num;
976 
977   /// Insertion point for evaluating multi-piece expression.
978   uint64_t op_piece_offset = 0;
979   Value pieces; // Used for DW_OP_piece
980 
981   Log *log = GetLog(LLDBLog::Expressions);
982   // A generic type is "an integral type that has the size of an address and an
983   // unspecified signedness". For now, just use the signedness of the operand.
984   // TODO: Implement a real typed stack, and store the genericness of the value
985   // there.
986   auto to_generic = [&](auto v) {
987     bool is_signed = std::is_signed<decltype(v)>::value;
988     return Scalar(llvm::APSInt(
989         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
990         !is_signed));
991   };
992 
993   // The default kind is a memory location. This is updated by any
994   // operation that changes this, such as DW_OP_stack_value, and reset
995   // by composition operations like DW_OP_piece.
996   LocationDescriptionKind dwarf4_location_description_kind = Memory;
997 
998   while (opcodes.ValidOffset(offset)) {
999     const lldb::offset_t op_offset = offset;
1000     const uint8_t op = opcodes.GetU8(&offset);
1001 
1002     if (log && log->GetVerbose()) {
1003       size_t count = stack.size();
1004       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
1005                 (uint64_t)count);
1006       for (size_t i = 0; i < count; ++i) {
1007         StreamString new_value;
1008         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
1009         stack[i].Dump(&new_value);
1010         LLDB_LOGF(log, "  %s", new_value.GetData());
1011       }
1012       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
1013                 DW_OP_value_to_name(op));
1014     }
1015 
1016     switch (op) {
1017     // The DW_OP_addr operation has a single operand that encodes a machine
1018     // address and whose size is the size of an address on the target machine.
1019     case DW_OP_addr:
1020       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
1021       stack.back().SetValueType(Value::ValueType::FileAddress);
1022       // Convert the file address to a load address, so subsequent
1023       // DWARF operators can operate on it.
1024       if (frame)
1025         stack.back().ConvertToLoadAddress(module_sp.get(),
1026                                           frame->CalculateTarget().get());
1027       break;
1028 
1029     // The DW_OP_addr_sect_offset4 is used for any location expressions in
1030     // shared libraries that have a location like:
1031     //  DW_OP_addr(0x1000)
1032     // If this address resides in a shared library, then this virtual address
1033     // won't make sense when it is evaluated in the context of a running
1034     // process where shared libraries have been slid. To account for this, this
1035     // new address type where we can store the section pointer and a 4 byte
1036     // offset.
1037     //      case DW_OP_addr_sect_offset4:
1038     //          {
1039     //              result_type = eResultTypeFileAddress;
1040     //              lldb::Section *sect = (lldb::Section
1041     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
1042     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1043     //
1044     //              Address so_addr (sect, sect_offset);
1045     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
1046     //              if (load_addr != LLDB_INVALID_ADDRESS)
1047     //              {
1048     //                  // We successfully resolve a file address to a load
1049     //                  // address.
1050     //                  stack.push_back(load_addr);
1051     //                  break;
1052     //              }
1053     //              else
1054     //              {
1055     //                  // We were able
1056     //                  if (error_ptr)
1057     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
1058     //                      %s is not currently loaded.\n",
1059     //                      sect->GetName().AsCString(),
1060     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1061     //                  return false;
1062     //              }
1063     //          }
1064     //          break;
1065 
1066     // OPCODE: DW_OP_deref
1067     // OPERANDS: none
1068     // DESCRIPTION: Pops the top stack entry and treats it as an address.
1069     // The value retrieved from that address is pushed. The size of the data
1070     // retrieved from the dereferenced address is the size of an address on the
1071     // target machine.
1072     case DW_OP_deref: {
1073       if (stack.empty()) {
1074         if (error_ptr)
1075           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1076         return false;
1077       }
1078       Value::ValueType value_type = stack.back().GetValueType();
1079       switch (value_type) {
1080       case Value::ValueType::HostAddress: {
1081         void *src = (void *)stack.back().GetScalar().ULongLong();
1082         intptr_t ptr;
1083         ::memcpy(&ptr, src, sizeof(void *));
1084         stack.back().GetScalar() = ptr;
1085         stack.back().ClearContext();
1086       } break;
1087       case Value::ValueType::FileAddress: {
1088         auto file_addr = stack.back().GetScalar().ULongLong(
1089             LLDB_INVALID_ADDRESS);
1090         if (!module_sp) {
1091           if (error_ptr)
1092             error_ptr->SetErrorString(
1093                 "need module to resolve file address for DW_OP_deref");
1094           return false;
1095         }
1096         Address so_addr;
1097         if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
1098           if (error_ptr)
1099             error_ptr->SetErrorString(
1100                 "failed to resolve file address in module");
1101           return false;
1102         }
1103         addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
1104         if (load_Addr == LLDB_INVALID_ADDRESS) {
1105           if (error_ptr)
1106             error_ptr->SetErrorString("failed to resolve load address");
1107           return false;
1108         }
1109         stack.back().GetScalar() = load_Addr;
1110         // Fall through to load address promotion code below.
1111       } LLVM_FALLTHROUGH;
1112       case Value::ValueType::Scalar:
1113         // Promote Scalar to LoadAddress and fall through.
1114         stack.back().SetValueType(Value::ValueType::LoadAddress);
1115         LLVM_FALLTHROUGH;
1116       case Value::ValueType::LoadAddress:
1117         if (exe_ctx) {
1118           if (process) {
1119             lldb::addr_t pointer_addr =
1120                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1121             Status error;
1122             lldb::addr_t pointer_value =
1123                 process->ReadPointerFromMemory(pointer_addr, error);
1124             if (pointer_value != LLDB_INVALID_ADDRESS) {
1125               if (ABISP abi_sp = process->GetABI())
1126                 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1127               stack.back().GetScalar() = pointer_value;
1128               stack.back().ClearContext();
1129             } else {
1130               if (error_ptr)
1131                 error_ptr->SetErrorStringWithFormat(
1132                     "Failed to dereference pointer from 0x%" PRIx64
1133                     " for DW_OP_deref: %s\n",
1134                     pointer_addr, error.AsCString());
1135               return false;
1136             }
1137           } else {
1138             if (error_ptr)
1139               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1140             return false;
1141           }
1142         } else {
1143           if (error_ptr)
1144             error_ptr->SetErrorString(
1145                 "NULL execution context for DW_OP_deref.\n");
1146           return false;
1147         }
1148         break;
1149 
1150       case Value::ValueType::Invalid:
1151         if (error_ptr)
1152           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1153         return false;
1154       }
1155 
1156     } break;
1157 
1158     // OPCODE: DW_OP_deref_size
1159     // OPERANDS: 1
1160     //  1 - uint8_t that specifies the size of the data to dereference.
1161     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1162     // stack entry and treats it as an address. The value retrieved from that
1163     // address is pushed. In the DW_OP_deref_size operation, however, the size
1164     // in bytes of the data retrieved from the dereferenced address is
1165     // specified by the single operand. This operand is a 1-byte unsigned
1166     // integral constant whose value may not be larger than the size of an
1167     // address on the target machine. The data retrieved is zero extended to
1168     // the size of an address on the target machine before being pushed on the
1169     // expression stack.
1170     case DW_OP_deref_size: {
1171       if (stack.empty()) {
1172         if (error_ptr)
1173           error_ptr->SetErrorString(
1174               "Expression stack empty for DW_OP_deref_size.");
1175         return false;
1176       }
1177       uint8_t size = opcodes.GetU8(&offset);
1178       Value::ValueType value_type = stack.back().GetValueType();
1179       switch (value_type) {
1180       case Value::ValueType::HostAddress: {
1181         void *src = (void *)stack.back().GetScalar().ULongLong();
1182         intptr_t ptr;
1183         ::memcpy(&ptr, src, sizeof(void *));
1184         // I can't decide whether the size operand should apply to the bytes in
1185         // their
1186         // lldb-host endianness or the target endianness.. I doubt this'll ever
1187         // come up but I'll opt for assuming big endian regardless.
1188         switch (size) {
1189         case 1:
1190           ptr = ptr & 0xff;
1191           break;
1192         case 2:
1193           ptr = ptr & 0xffff;
1194           break;
1195         case 3:
1196           ptr = ptr & 0xffffff;
1197           break;
1198         case 4:
1199           ptr = ptr & 0xffffffff;
1200           break;
1201         // the casts are added to work around the case where intptr_t is a 32
1202         // bit quantity;
1203         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1204         // program.
1205         case 5:
1206           ptr = (intptr_t)ptr & 0xffffffffffULL;
1207           break;
1208         case 6:
1209           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1210           break;
1211         case 7:
1212           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1213           break;
1214         default:
1215           break;
1216         }
1217         stack.back().GetScalar() = ptr;
1218         stack.back().ClearContext();
1219       } break;
1220       case Value::ValueType::Scalar:
1221       case Value::ValueType::LoadAddress:
1222         if (exe_ctx) {
1223           if (process) {
1224             lldb::addr_t pointer_addr =
1225                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1226             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1227             Status error;
1228             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1229                 size) {
1230               DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
1231                                       process->GetByteOrder(), size);
1232               lldb::offset_t addr_data_offset = 0;
1233               switch (size) {
1234               case 1:
1235                 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
1236                 break;
1237               case 2:
1238                 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
1239                 break;
1240               case 4:
1241                 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
1242                 break;
1243               case 8:
1244                 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
1245                 break;
1246               default:
1247                 stack.back().GetScalar() =
1248                     addr_data.GetAddress(&addr_data_offset);
1249               }
1250               stack.back().ClearContext();
1251             } else {
1252               if (error_ptr)
1253                 error_ptr->SetErrorStringWithFormat(
1254                     "Failed to dereference pointer from 0x%" PRIx64
1255                     " for DW_OP_deref: %s\n",
1256                     pointer_addr, error.AsCString());
1257               return false;
1258             }
1259           } else {
1260             if (error_ptr)
1261               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1262             return false;
1263           }
1264         } else {
1265           if (error_ptr)
1266             error_ptr->SetErrorString(
1267                 "NULL execution context for DW_OP_deref_size.\n");
1268           return false;
1269         }
1270         break;
1271 
1272       case Value::ValueType::FileAddress:
1273       case Value::ValueType::Invalid:
1274         if (error_ptr)
1275           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1276         return false;
1277       }
1278 
1279     } break;
1280 
1281     // OPCODE: DW_OP_xderef_size
1282     // OPERANDS: 1
1283     //  1 - uint8_t that specifies the size of the data to dereference.
1284     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1285     // the top of the stack is treated as an address. The second stack entry is
1286     // treated as an "address space identifier" for those architectures that
1287     // support multiple address spaces. The top two stack elements are popped,
1288     // a data item is retrieved through an implementation-defined address
1289     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1290     // operation, however, the size in bytes of the data retrieved from the
1291     // dereferenced address is specified by the single operand. This operand is
1292     // a 1-byte unsigned integral constant whose value may not be larger than
1293     // the size of an address on the target machine. The data retrieved is zero
1294     // extended to the size of an address on the target machine before being
1295     // pushed on the expression stack.
1296     case DW_OP_xderef_size:
1297       if (error_ptr)
1298         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1299       return false;
1300     // OPCODE: DW_OP_xderef
1301     // OPERANDS: none
1302     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1303     // the top of the stack is treated as an address. The second stack entry is
1304     // treated as an "address space identifier" for those architectures that
1305     // support multiple address spaces. The top two stack elements are popped,
1306     // a data item is retrieved through an implementation-defined address
1307     // calculation and pushed as the new stack top. The size of the data
1308     // retrieved from the dereferenced address is the size of an address on the
1309     // target machine.
1310     case DW_OP_xderef:
1311       if (error_ptr)
1312         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1313       return false;
1314 
1315     // All DW_OP_constXXX opcodes have a single operand as noted below:
1316     //
1317     // Opcode           Operand 1
1318     // DW_OP_const1u    1-byte unsigned integer constant
1319     // DW_OP_const1s    1-byte signed integer constant
1320     // DW_OP_const2u    2-byte unsigned integer constant
1321     // DW_OP_const2s    2-byte signed integer constant
1322     // DW_OP_const4u    4-byte unsigned integer constant
1323     // DW_OP_const4s    4-byte signed integer constant
1324     // DW_OP_const8u    8-byte unsigned integer constant
1325     // DW_OP_const8s    8-byte signed integer constant
1326     // DW_OP_constu     unsigned LEB128 integer constant
1327     // DW_OP_consts     signed LEB128 integer constant
1328     case DW_OP_const1u:
1329       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1330       break;
1331     case DW_OP_const1s:
1332       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1333       break;
1334     case DW_OP_const2u:
1335       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1336       break;
1337     case DW_OP_const2s:
1338       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1339       break;
1340     case DW_OP_const4u:
1341       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1342       break;
1343     case DW_OP_const4s:
1344       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1345       break;
1346     case DW_OP_const8u:
1347       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1348       break;
1349     case DW_OP_const8s:
1350       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1351       break;
1352     // These should also use to_generic, but we can't do that due to a
1353     // producer-side bug in llvm. See llvm.org/pr48087.
1354     case DW_OP_constu:
1355       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1356       break;
1357     case DW_OP_consts:
1358       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1359       break;
1360 
1361     // OPCODE: DW_OP_dup
1362     // OPERANDS: none
1363     // DESCRIPTION: duplicates the value at the top of the stack
1364     case DW_OP_dup:
1365       if (stack.empty()) {
1366         if (error_ptr)
1367           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1368         return false;
1369       } else
1370         stack.push_back(stack.back());
1371       break;
1372 
1373     // OPCODE: DW_OP_drop
1374     // OPERANDS: none
1375     // DESCRIPTION: pops the value at the top of the stack
1376     case DW_OP_drop:
1377       if (stack.empty()) {
1378         if (error_ptr)
1379           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1380         return false;
1381       } else
1382         stack.pop_back();
1383       break;
1384 
1385     // OPCODE: DW_OP_over
1386     // OPERANDS: none
1387     // DESCRIPTION: Duplicates the entry currently second in the stack at
1388     // the top of the stack.
1389     case DW_OP_over:
1390       if (stack.size() < 2) {
1391         if (error_ptr)
1392           error_ptr->SetErrorString(
1393               "Expression stack needs at least 2 items for DW_OP_over.");
1394         return false;
1395       } else
1396         stack.push_back(stack[stack.size() - 2]);
1397       break;
1398 
1399     // OPCODE: DW_OP_pick
1400     // OPERANDS: uint8_t index into the current stack
1401     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1402     // inclusive) is pushed on the stack
1403     case DW_OP_pick: {
1404       uint8_t pick_idx = opcodes.GetU8(&offset);
1405       if (pick_idx < stack.size())
1406         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1407       else {
1408         if (error_ptr)
1409           error_ptr->SetErrorStringWithFormat(
1410               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1411         return false;
1412       }
1413     } break;
1414 
1415     // OPCODE: DW_OP_swap
1416     // OPERANDS: none
1417     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1418     // of the stack becomes the second stack entry, and the second entry
1419     // becomes the top of the stack
1420     case DW_OP_swap:
1421       if (stack.size() < 2) {
1422         if (error_ptr)
1423           error_ptr->SetErrorString(
1424               "Expression stack needs at least 2 items for DW_OP_swap.");
1425         return false;
1426       } else {
1427         tmp = stack.back();
1428         stack.back() = stack[stack.size() - 2];
1429         stack[stack.size() - 2] = tmp;
1430       }
1431       break;
1432 
1433     // OPCODE: DW_OP_rot
1434     // OPERANDS: none
1435     // DESCRIPTION: Rotates the first three stack entries. The entry at
1436     // the top of the stack becomes the third stack entry, the second entry
1437     // becomes the top of the stack, and the third entry becomes the second
1438     // entry.
1439     case DW_OP_rot:
1440       if (stack.size() < 3) {
1441         if (error_ptr)
1442           error_ptr->SetErrorString(
1443               "Expression stack needs at least 3 items for DW_OP_rot.");
1444         return false;
1445       } else {
1446         size_t last_idx = stack.size() - 1;
1447         Value old_top = stack[last_idx];
1448         stack[last_idx] = stack[last_idx - 1];
1449         stack[last_idx - 1] = stack[last_idx - 2];
1450         stack[last_idx - 2] = old_top;
1451       }
1452       break;
1453 
1454     // OPCODE: DW_OP_abs
1455     // OPERANDS: none
1456     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1457     // value and pushes its absolute value. If the absolute value can not be
1458     // represented, the result is undefined.
1459     case DW_OP_abs:
1460       if (stack.empty()) {
1461         if (error_ptr)
1462           error_ptr->SetErrorString(
1463               "Expression stack needs at least 1 item for DW_OP_abs.");
1464         return false;
1465       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1466         if (error_ptr)
1467           error_ptr->SetErrorString(
1468               "Failed to take the absolute value of the first stack item.");
1469         return false;
1470       }
1471       break;
1472 
1473     // OPCODE: DW_OP_and
1474     // OPERANDS: none
1475     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1476     // operation on the two, and pushes the result.
1477     case DW_OP_and:
1478       if (stack.size() < 2) {
1479         if (error_ptr)
1480           error_ptr->SetErrorString(
1481               "Expression stack needs at least 2 items for DW_OP_and.");
1482         return false;
1483       } else {
1484         tmp = stack.back();
1485         stack.pop_back();
1486         stack.back().ResolveValue(exe_ctx) =
1487             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1488       }
1489       break;
1490 
1491     // OPCODE: DW_OP_div
1492     // OPERANDS: none
1493     // DESCRIPTION: pops the top two stack values, divides the former second
1494     // entry by the former top of the stack using signed division, and pushes
1495     // the result.
1496     case DW_OP_div:
1497       if (stack.size() < 2) {
1498         if (error_ptr)
1499           error_ptr->SetErrorString(
1500               "Expression stack needs at least 2 items for DW_OP_div.");
1501         return false;
1502       } else {
1503         tmp = stack.back();
1504         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1505           if (error_ptr)
1506             error_ptr->SetErrorString("Divide by zero.");
1507           return false;
1508         } else {
1509           stack.pop_back();
1510           stack.back() =
1511               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1512           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1513             if (error_ptr)
1514               error_ptr->SetErrorString("Divide failed.");
1515             return false;
1516           }
1517         }
1518       }
1519       break;
1520 
1521     // OPCODE: DW_OP_minus
1522     // OPERANDS: none
1523     // DESCRIPTION: pops the top two stack values, subtracts the former top
1524     // of the stack from the former second entry, and pushes the result.
1525     case DW_OP_minus:
1526       if (stack.size() < 2) {
1527         if (error_ptr)
1528           error_ptr->SetErrorString(
1529               "Expression stack needs at least 2 items for DW_OP_minus.");
1530         return false;
1531       } else {
1532         tmp = stack.back();
1533         stack.pop_back();
1534         stack.back().ResolveValue(exe_ctx) =
1535             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1536       }
1537       break;
1538 
1539     // OPCODE: DW_OP_mod
1540     // OPERANDS: none
1541     // DESCRIPTION: pops the top two stack values and pushes the result of
1542     // the calculation: former second stack entry modulo the former top of the
1543     // stack.
1544     case DW_OP_mod:
1545       if (stack.size() < 2) {
1546         if (error_ptr)
1547           error_ptr->SetErrorString(
1548               "Expression stack needs at least 2 items for DW_OP_mod.");
1549         return false;
1550       } else {
1551         tmp = stack.back();
1552         stack.pop_back();
1553         stack.back().ResolveValue(exe_ctx) =
1554             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1555       }
1556       break;
1557 
1558     // OPCODE: DW_OP_mul
1559     // OPERANDS: none
1560     // DESCRIPTION: pops the top two stack entries, multiplies them
1561     // together, and pushes the result.
1562     case DW_OP_mul:
1563       if (stack.size() < 2) {
1564         if (error_ptr)
1565           error_ptr->SetErrorString(
1566               "Expression stack needs at least 2 items for DW_OP_mul.");
1567         return false;
1568       } else {
1569         tmp = stack.back();
1570         stack.pop_back();
1571         stack.back().ResolveValue(exe_ctx) =
1572             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1573       }
1574       break;
1575 
1576     // OPCODE: DW_OP_neg
1577     // OPERANDS: none
1578     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1579     case DW_OP_neg:
1580       if (stack.empty()) {
1581         if (error_ptr)
1582           error_ptr->SetErrorString(
1583               "Expression stack needs at least 1 item for DW_OP_neg.");
1584         return false;
1585       } else {
1586         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1587           if (error_ptr)
1588             error_ptr->SetErrorString("Unary negate failed.");
1589           return false;
1590         }
1591       }
1592       break;
1593 
1594     // OPCODE: DW_OP_not
1595     // OPERANDS: none
1596     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1597     // complement
1598     case DW_OP_not:
1599       if (stack.empty()) {
1600         if (error_ptr)
1601           error_ptr->SetErrorString(
1602               "Expression stack needs at least 1 item for DW_OP_not.");
1603         return false;
1604       } else {
1605         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1606           if (error_ptr)
1607             error_ptr->SetErrorString("Logical NOT failed.");
1608           return false;
1609         }
1610       }
1611       break;
1612 
1613     // OPCODE: DW_OP_or
1614     // OPERANDS: none
1615     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1616     // operation on the two, and pushes the result.
1617     case DW_OP_or:
1618       if (stack.size() < 2) {
1619         if (error_ptr)
1620           error_ptr->SetErrorString(
1621               "Expression stack needs at least 2 items for DW_OP_or.");
1622         return false;
1623       } else {
1624         tmp = stack.back();
1625         stack.pop_back();
1626         stack.back().ResolveValue(exe_ctx) =
1627             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1628       }
1629       break;
1630 
1631     // OPCODE: DW_OP_plus
1632     // OPERANDS: none
1633     // DESCRIPTION: pops the top two stack entries, adds them together, and
1634     // pushes the result.
1635     case DW_OP_plus:
1636       if (stack.size() < 2) {
1637         if (error_ptr)
1638           error_ptr->SetErrorString(
1639               "Expression stack needs at least 2 items for DW_OP_plus.");
1640         return false;
1641       } else {
1642         tmp = stack.back();
1643         stack.pop_back();
1644         stack.back().GetScalar() += tmp.GetScalar();
1645       }
1646       break;
1647 
1648     // OPCODE: DW_OP_plus_uconst
1649     // OPERANDS: none
1650     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1651     // constant operand and pushes the result.
1652     case DW_OP_plus_uconst:
1653       if (stack.empty()) {
1654         if (error_ptr)
1655           error_ptr->SetErrorString(
1656               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1657         return false;
1658       } else {
1659         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1660         // Implicit conversion from a UINT to a Scalar...
1661         stack.back().GetScalar() += uconst_value;
1662         if (!stack.back().GetScalar().IsValid()) {
1663           if (error_ptr)
1664             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1665           return false;
1666         }
1667       }
1668       break;
1669 
1670     // OPCODE: DW_OP_shl
1671     // OPERANDS: none
1672     // DESCRIPTION:  pops the top two stack entries, shifts the former
1673     // second entry left by the number of bits specified by the former top of
1674     // the stack, and pushes the result.
1675     case DW_OP_shl:
1676       if (stack.size() < 2) {
1677         if (error_ptr)
1678           error_ptr->SetErrorString(
1679               "Expression stack needs at least 2 items for DW_OP_shl.");
1680         return false;
1681       } else {
1682         tmp = stack.back();
1683         stack.pop_back();
1684         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1685       }
1686       break;
1687 
1688     // OPCODE: DW_OP_shr
1689     // OPERANDS: none
1690     // DESCRIPTION: pops the top two stack entries, shifts the former second
1691     // entry right logically (filling with zero bits) by the number of bits
1692     // specified by the former top of the stack, and pushes the result.
1693     case DW_OP_shr:
1694       if (stack.size() < 2) {
1695         if (error_ptr)
1696           error_ptr->SetErrorString(
1697               "Expression stack needs at least 2 items for DW_OP_shr.");
1698         return false;
1699       } else {
1700         tmp = stack.back();
1701         stack.pop_back();
1702         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1703                 tmp.ResolveValue(exe_ctx))) {
1704           if (error_ptr)
1705             error_ptr->SetErrorString("DW_OP_shr failed.");
1706           return false;
1707         }
1708       }
1709       break;
1710 
1711     // OPCODE: DW_OP_shra
1712     // OPERANDS: none
1713     // DESCRIPTION: pops the top two stack entries, shifts the former second
1714     // entry right arithmetically (divide the magnitude by 2, keep the same
1715     // sign for the result) by the number of bits specified by the former top
1716     // of the stack, and pushes the result.
1717     case DW_OP_shra:
1718       if (stack.size() < 2) {
1719         if (error_ptr)
1720           error_ptr->SetErrorString(
1721               "Expression stack needs at least 2 items for DW_OP_shra.");
1722         return false;
1723       } else {
1724         tmp = stack.back();
1725         stack.pop_back();
1726         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1727       }
1728       break;
1729 
1730     // OPCODE: DW_OP_xor
1731     // OPERANDS: none
1732     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1733     // exclusive-or operation on the two, and pushes the result.
1734     case DW_OP_xor:
1735       if (stack.size() < 2) {
1736         if (error_ptr)
1737           error_ptr->SetErrorString(
1738               "Expression stack needs at least 2 items for DW_OP_xor.");
1739         return false;
1740       } else {
1741         tmp = stack.back();
1742         stack.pop_back();
1743         stack.back().ResolveValue(exe_ctx) =
1744             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1745       }
1746       break;
1747 
1748     // OPCODE: DW_OP_skip
1749     // OPERANDS: int16_t
1750     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1751     // signed integer constant. The 2-byte constant is the number of bytes of
1752     // the DWARF expression to skip forward or backward from the current
1753     // operation, beginning after the 2-byte constant.
1754     case DW_OP_skip: {
1755       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1756       lldb::offset_t new_offset = offset + skip_offset;
1757       if (opcodes.ValidOffset(new_offset))
1758         offset = new_offset;
1759       else {
1760         if (error_ptr)
1761           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1762         return false;
1763       }
1764     } break;
1765 
1766     // OPCODE: DW_OP_bra
1767     // OPERANDS: int16_t
1768     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1769     // signed integer constant. This operation pops the top of stack. If the
1770     // value popped is not the constant 0, the 2-byte constant operand is the
1771     // number of bytes of the DWARF expression to skip forward or backward from
1772     // the current operation, beginning after the 2-byte constant.
1773     case DW_OP_bra:
1774       if (stack.empty()) {
1775         if (error_ptr)
1776           error_ptr->SetErrorString(
1777               "Expression stack needs at least 1 item for DW_OP_bra.");
1778         return false;
1779       } else {
1780         tmp = stack.back();
1781         stack.pop_back();
1782         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1783         Scalar zero(0);
1784         if (tmp.ResolveValue(exe_ctx) != zero) {
1785           lldb::offset_t new_offset = offset + bra_offset;
1786           if (opcodes.ValidOffset(new_offset))
1787             offset = new_offset;
1788           else {
1789             if (error_ptr)
1790               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1791             return false;
1792           }
1793         }
1794       }
1795       break;
1796 
1797     // OPCODE: DW_OP_eq
1798     // OPERANDS: none
1799     // DESCRIPTION: pops the top two stack values, compares using the
1800     // equals (==) operator.
1801     // STACK RESULT: push the constant value 1 onto the stack if the result
1802     // of the operation is true or the constant value 0 if the result of the
1803     // operation is false.
1804     case DW_OP_eq:
1805       if (stack.size() < 2) {
1806         if (error_ptr)
1807           error_ptr->SetErrorString(
1808               "Expression stack needs at least 2 items for DW_OP_eq.");
1809         return false;
1810       } else {
1811         tmp = stack.back();
1812         stack.pop_back();
1813         stack.back().ResolveValue(exe_ctx) =
1814             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1815       }
1816       break;
1817 
1818     // OPCODE: DW_OP_ge
1819     // OPERANDS: none
1820     // DESCRIPTION: pops the top two stack values, compares using the
1821     // greater than or equal to (>=) operator.
1822     // STACK RESULT: push the constant value 1 onto the stack if the result
1823     // of the operation is true or the constant value 0 if the result of the
1824     // operation is false.
1825     case DW_OP_ge:
1826       if (stack.size() < 2) {
1827         if (error_ptr)
1828           error_ptr->SetErrorString(
1829               "Expression stack needs at least 2 items for DW_OP_ge.");
1830         return false;
1831       } else {
1832         tmp = stack.back();
1833         stack.pop_back();
1834         stack.back().ResolveValue(exe_ctx) =
1835             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1836       }
1837       break;
1838 
1839     // OPCODE: DW_OP_gt
1840     // OPERANDS: none
1841     // DESCRIPTION: pops the top two stack values, compares using the
1842     // greater than (>) operator.
1843     // STACK RESULT: push the constant value 1 onto the stack if the result
1844     // of the operation is true or the constant value 0 if the result of the
1845     // operation is false.
1846     case DW_OP_gt:
1847       if (stack.size() < 2) {
1848         if (error_ptr)
1849           error_ptr->SetErrorString(
1850               "Expression stack needs at least 2 items for DW_OP_gt.");
1851         return false;
1852       } else {
1853         tmp = stack.back();
1854         stack.pop_back();
1855         stack.back().ResolveValue(exe_ctx) =
1856             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1857       }
1858       break;
1859 
1860     // OPCODE: DW_OP_le
1861     // OPERANDS: none
1862     // DESCRIPTION: pops the top two stack values, compares using the
1863     // less than or equal to (<=) operator.
1864     // STACK RESULT: push the constant value 1 onto the stack if the result
1865     // of the operation is true or the constant value 0 if the result of the
1866     // operation is false.
1867     case DW_OP_le:
1868       if (stack.size() < 2) {
1869         if (error_ptr)
1870           error_ptr->SetErrorString(
1871               "Expression stack needs at least 2 items for DW_OP_le.");
1872         return false;
1873       } else {
1874         tmp = stack.back();
1875         stack.pop_back();
1876         stack.back().ResolveValue(exe_ctx) =
1877             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1878       }
1879       break;
1880 
1881     // OPCODE: DW_OP_lt
1882     // OPERANDS: none
1883     // DESCRIPTION: pops the top two stack values, compares using the
1884     // less than (<) operator.
1885     // STACK RESULT: push the constant value 1 onto the stack if the result
1886     // of the operation is true or the constant value 0 if the result of the
1887     // operation is false.
1888     case DW_OP_lt:
1889       if (stack.size() < 2) {
1890         if (error_ptr)
1891           error_ptr->SetErrorString(
1892               "Expression stack needs at least 2 items for DW_OP_lt.");
1893         return false;
1894       } else {
1895         tmp = stack.back();
1896         stack.pop_back();
1897         stack.back().ResolveValue(exe_ctx) =
1898             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1899       }
1900       break;
1901 
1902     // OPCODE: DW_OP_ne
1903     // OPERANDS: none
1904     // DESCRIPTION: pops the top two stack values, compares using the
1905     // not equal (!=) operator.
1906     // STACK RESULT: push the constant value 1 onto the stack if the result
1907     // of the operation is true or the constant value 0 if the result of the
1908     // operation is false.
1909     case DW_OP_ne:
1910       if (stack.size() < 2) {
1911         if (error_ptr)
1912           error_ptr->SetErrorString(
1913               "Expression stack needs at least 2 items for DW_OP_ne.");
1914         return false;
1915       } else {
1916         tmp = stack.back();
1917         stack.pop_back();
1918         stack.back().ResolveValue(exe_ctx) =
1919             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1920       }
1921       break;
1922 
1923     // OPCODE: DW_OP_litn
1924     // OPERANDS: none
1925     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1926     // STACK RESULT: push the unsigned literal constant value onto the top
1927     // of the stack.
1928     case DW_OP_lit0:
1929     case DW_OP_lit1:
1930     case DW_OP_lit2:
1931     case DW_OP_lit3:
1932     case DW_OP_lit4:
1933     case DW_OP_lit5:
1934     case DW_OP_lit6:
1935     case DW_OP_lit7:
1936     case DW_OP_lit8:
1937     case DW_OP_lit9:
1938     case DW_OP_lit10:
1939     case DW_OP_lit11:
1940     case DW_OP_lit12:
1941     case DW_OP_lit13:
1942     case DW_OP_lit14:
1943     case DW_OP_lit15:
1944     case DW_OP_lit16:
1945     case DW_OP_lit17:
1946     case DW_OP_lit18:
1947     case DW_OP_lit19:
1948     case DW_OP_lit20:
1949     case DW_OP_lit21:
1950     case DW_OP_lit22:
1951     case DW_OP_lit23:
1952     case DW_OP_lit24:
1953     case DW_OP_lit25:
1954     case DW_OP_lit26:
1955     case DW_OP_lit27:
1956     case DW_OP_lit28:
1957     case DW_OP_lit29:
1958     case DW_OP_lit30:
1959     case DW_OP_lit31:
1960       stack.push_back(to_generic(op - DW_OP_lit0));
1961       break;
1962 
1963     // OPCODE: DW_OP_regN
1964     // OPERANDS: none
1965     // DESCRIPTION: Push the value in register n on the top of the stack.
1966     case DW_OP_reg0:
1967     case DW_OP_reg1:
1968     case DW_OP_reg2:
1969     case DW_OP_reg3:
1970     case DW_OP_reg4:
1971     case DW_OP_reg5:
1972     case DW_OP_reg6:
1973     case DW_OP_reg7:
1974     case DW_OP_reg8:
1975     case DW_OP_reg9:
1976     case DW_OP_reg10:
1977     case DW_OP_reg11:
1978     case DW_OP_reg12:
1979     case DW_OP_reg13:
1980     case DW_OP_reg14:
1981     case DW_OP_reg15:
1982     case DW_OP_reg16:
1983     case DW_OP_reg17:
1984     case DW_OP_reg18:
1985     case DW_OP_reg19:
1986     case DW_OP_reg20:
1987     case DW_OP_reg21:
1988     case DW_OP_reg22:
1989     case DW_OP_reg23:
1990     case DW_OP_reg24:
1991     case DW_OP_reg25:
1992     case DW_OP_reg26:
1993     case DW_OP_reg27:
1994     case DW_OP_reg28:
1995     case DW_OP_reg29:
1996     case DW_OP_reg30:
1997     case DW_OP_reg31: {
1998       dwarf4_location_description_kind = Register;
1999       reg_num = op - DW_OP_reg0;
2000 
2001       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2002         stack.push_back(tmp);
2003       else
2004         return false;
2005     } break;
2006     // OPCODE: DW_OP_regx
2007     // OPERANDS:
2008     //      ULEB128 literal operand that encodes the register.
2009     // DESCRIPTION: Push the value in register on the top of the stack.
2010     case DW_OP_regx: {
2011       dwarf4_location_description_kind = Register;
2012       reg_num = opcodes.GetULEB128(&offset);
2013       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2014         stack.push_back(tmp);
2015       else
2016         return false;
2017     } break;
2018 
2019     // OPCODE: DW_OP_bregN
2020     // OPERANDS:
2021     //      SLEB128 offset from register N
2022     // DESCRIPTION: Value is in memory at the address specified by register
2023     // N plus an offset.
2024     case DW_OP_breg0:
2025     case DW_OP_breg1:
2026     case DW_OP_breg2:
2027     case DW_OP_breg3:
2028     case DW_OP_breg4:
2029     case DW_OP_breg5:
2030     case DW_OP_breg6:
2031     case DW_OP_breg7:
2032     case DW_OP_breg8:
2033     case DW_OP_breg9:
2034     case DW_OP_breg10:
2035     case DW_OP_breg11:
2036     case DW_OP_breg12:
2037     case DW_OP_breg13:
2038     case DW_OP_breg14:
2039     case DW_OP_breg15:
2040     case DW_OP_breg16:
2041     case DW_OP_breg17:
2042     case DW_OP_breg18:
2043     case DW_OP_breg19:
2044     case DW_OP_breg20:
2045     case DW_OP_breg21:
2046     case DW_OP_breg22:
2047     case DW_OP_breg23:
2048     case DW_OP_breg24:
2049     case DW_OP_breg25:
2050     case DW_OP_breg26:
2051     case DW_OP_breg27:
2052     case DW_OP_breg28:
2053     case DW_OP_breg29:
2054     case DW_OP_breg30:
2055     case DW_OP_breg31: {
2056       reg_num = op - DW_OP_breg0;
2057 
2058       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2059                                     tmp)) {
2060         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2061         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2062         tmp.ClearContext();
2063         stack.push_back(tmp);
2064         stack.back().SetValueType(Value::ValueType::LoadAddress);
2065       } else
2066         return false;
2067     } break;
2068     // OPCODE: DW_OP_bregx
2069     // OPERANDS: 2
2070     //      ULEB128 literal operand that encodes the register.
2071     //      SLEB128 offset from register N
2072     // DESCRIPTION: Value is in memory at the address specified by register
2073     // N plus an offset.
2074     case DW_OP_bregx: {
2075       reg_num = opcodes.GetULEB128(&offset);
2076 
2077       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2078                                     tmp)) {
2079         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2080         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2081         tmp.ClearContext();
2082         stack.push_back(tmp);
2083         stack.back().SetValueType(Value::ValueType::LoadAddress);
2084       } else
2085         return false;
2086     } break;
2087 
2088     case DW_OP_fbreg:
2089       if (exe_ctx) {
2090         if (frame) {
2091           Scalar value;
2092           if (frame->GetFrameBaseValue(value, error_ptr)) {
2093             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2094             value += fbreg_offset;
2095             stack.push_back(value);
2096             stack.back().SetValueType(Value::ValueType::LoadAddress);
2097           } else
2098             return false;
2099         } else {
2100           if (error_ptr)
2101             error_ptr->SetErrorString(
2102                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2103           return false;
2104         }
2105       } else {
2106         if (error_ptr)
2107           error_ptr->SetErrorString(
2108               "NULL execution context for DW_OP_fbreg.\n");
2109         return false;
2110       }
2111 
2112       break;
2113 
2114     // OPCODE: DW_OP_nop
2115     // OPERANDS: none
2116     // DESCRIPTION: A place holder. It has no effect on the location stack
2117     // or any of its values.
2118     case DW_OP_nop:
2119       break;
2120 
2121     // OPCODE: DW_OP_piece
2122     // OPERANDS: 1
2123     //      ULEB128: byte size of the piece
2124     // DESCRIPTION: The operand describes the size in bytes of the piece of
2125     // the object referenced by the DWARF expression whose result is at the top
2126     // of the stack. If the piece is located in a register, but does not occupy
2127     // the entire register, the placement of the piece within that register is
2128     // defined by the ABI.
2129     //
2130     // Many compilers store a single variable in sets of registers, or store a
2131     // variable partially in memory and partially in registers. DW_OP_piece
2132     // provides a way of describing how large a part of a variable a particular
2133     // DWARF expression refers to.
2134     case DW_OP_piece: {
2135       LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2136       // Reset for the next piece.
2137       dwarf4_location_description_kind = Memory;
2138 
2139       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2140 
2141       if (piece_byte_size > 0) {
2142         Value curr_piece;
2143 
2144         if (stack.empty()) {
2145           UpdateValueTypeFromLocationDescription(
2146               log, dwarf_cu, LocationDescriptionKind::Empty);
2147           // In a multi-piece expression, this means that the current piece is
2148           // not available. Fill with zeros for now by resizing the data and
2149           // appending it
2150           curr_piece.ResizeData(piece_byte_size);
2151           // Note that "0" is not a correct value for the unknown bits.
2152           // It would be better to also return a mask of valid bits together
2153           // with the expression result, so the debugger can print missing
2154           // members as "<optimized out>" or something.
2155           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2156           pieces.AppendDataToHostBuffer(curr_piece);
2157         } else {
2158           Status error;
2159           // Extract the current piece into "curr_piece"
2160           Value curr_piece_source_value(stack.back());
2161           stack.pop_back();
2162           UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2163                                                  &curr_piece_source_value);
2164 
2165           const Value::ValueType curr_piece_source_value_type =
2166               curr_piece_source_value.GetValueType();
2167           switch (curr_piece_source_value_type) {
2168           case Value::ValueType::Invalid:
2169             return false;
2170           case Value::ValueType::LoadAddress:
2171             if (process) {
2172               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2173                 lldb::addr_t load_addr =
2174                     curr_piece_source_value.GetScalar().ULongLong(
2175                         LLDB_INVALID_ADDRESS);
2176                 if (process->ReadMemory(
2177                         load_addr, curr_piece.GetBuffer().GetBytes(),
2178                         piece_byte_size, error) != piece_byte_size) {
2179                   if (error_ptr)
2180                     error_ptr->SetErrorStringWithFormat(
2181                         "failed to read memory DW_OP_piece(%" PRIu64
2182                         ") from 0x%" PRIx64,
2183                         piece_byte_size, load_addr);
2184                   return false;
2185                 }
2186               } else {
2187                 if (error_ptr)
2188                   error_ptr->SetErrorStringWithFormat(
2189                       "failed to resize the piece memory buffer for "
2190                       "DW_OP_piece(%" PRIu64 ")",
2191                       piece_byte_size);
2192                 return false;
2193               }
2194             }
2195             break;
2196 
2197           case Value::ValueType::FileAddress:
2198           case Value::ValueType::HostAddress:
2199             if (error_ptr) {
2200               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2201                   LLDB_INVALID_ADDRESS);
2202               error_ptr->SetErrorStringWithFormat(
2203                   "failed to read memory DW_OP_piece(%" PRIu64
2204                   ") from %s address 0x%" PRIx64,
2205                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2206                                            Value::ValueType::FileAddress
2207                                        ? "file"
2208                                        : "host",
2209                   addr);
2210             }
2211             return false;
2212 
2213           case Value::ValueType::Scalar: {
2214             uint32_t bit_size = piece_byte_size * 8;
2215             uint32_t bit_offset = 0;
2216             Scalar &scalar = curr_piece_source_value.GetScalar();
2217             if (!scalar.ExtractBitfield(
2218                     bit_size, bit_offset)) {
2219               if (error_ptr)
2220                 error_ptr->SetErrorStringWithFormat(
2221                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2222                     " byte scalar value.",
2223                     piece_byte_size,
2224                     (uint64_t)curr_piece_source_value.GetScalar()
2225                         .GetByteSize());
2226               return false;
2227             }
2228             // Create curr_piece with bit_size. By default Scalar
2229             // grows to the nearest host integer type.
2230             llvm::APInt fail_value(1, 0, false);
2231             llvm::APInt ap_int = scalar.UInt128(fail_value);
2232             assert(ap_int.getBitWidth() >= bit_size);
2233             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2234                                          ap_int.getNumWords()};
2235             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2236           } break;
2237           }
2238 
2239           // Check if this is the first piece?
2240           if (op_piece_offset == 0) {
2241             // This is the first piece, we should push it back onto the stack
2242             // so subsequent pieces will be able to access this piece and add
2243             // to it.
2244             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2245               if (error_ptr)
2246                 error_ptr->SetErrorString("failed to append piece data");
2247               return false;
2248             }
2249           } else {
2250             // If this is the second or later piece there should be a value on
2251             // the stack.
2252             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2253               if (error_ptr)
2254                 error_ptr->SetErrorStringWithFormat(
2255                     "DW_OP_piece for offset %" PRIu64
2256                     " but top of stack is of size %" PRIu64,
2257                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2258               return false;
2259             }
2260 
2261             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2262               if (error_ptr)
2263                 error_ptr->SetErrorString("failed to append piece data");
2264               return false;
2265             }
2266           }
2267         }
2268         op_piece_offset += piece_byte_size;
2269       }
2270     } break;
2271 
2272     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2273       if (stack.size() < 1) {
2274         UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2275                                                LocationDescriptionKind::Empty);
2276         // Reset for the next piece.
2277         dwarf4_location_description_kind = Memory;
2278         if (error_ptr)
2279           error_ptr->SetErrorString(
2280               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2281         return false;
2282       } else {
2283         UpdateValueTypeFromLocationDescription(
2284             log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2285         // Reset for the next piece.
2286         dwarf4_location_description_kind = Memory;
2287         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2288         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2289         switch (stack.back().GetValueType()) {
2290         case Value::ValueType::Invalid:
2291           return false;
2292         case Value::ValueType::Scalar: {
2293           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2294                                                         piece_bit_offset)) {
2295             if (error_ptr)
2296               error_ptr->SetErrorStringWithFormat(
2297                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2298                   " bit offset from a %" PRIu64 " bit scalar value.",
2299                   piece_bit_size, piece_bit_offset,
2300                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2301             return false;
2302           }
2303         } break;
2304 
2305         case Value::ValueType::FileAddress:
2306         case Value::ValueType::LoadAddress:
2307         case Value::ValueType::HostAddress:
2308           if (error_ptr) {
2309             error_ptr->SetErrorStringWithFormat(
2310                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2311                 ", bit_offset = %" PRIu64 ") from an address value.",
2312                 piece_bit_size, piece_bit_offset);
2313           }
2314           return false;
2315         }
2316       }
2317       break;
2318 
2319     // OPCODE: DW_OP_implicit_value
2320     // OPERANDS: 2
2321     //      ULEB128  size of the value block in bytes
2322     //      uint8_t* block bytes encoding value in target's memory
2323     //      representation
2324     // DESCRIPTION: Value is immediately stored in block in the debug info with
2325     // the memory representation of the target.
2326     case DW_OP_implicit_value: {
2327       dwarf4_location_description_kind = Implicit;
2328 
2329       const uint32_t len = opcodes.GetULEB128(&offset);
2330       const void *data = opcodes.GetData(&offset, len);
2331 
2332       if (!data) {
2333         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2334         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2335                     DW_OP_value_to_name(op));
2336         return false;
2337       }
2338 
2339       Value result(data, len);
2340       stack.push_back(result);
2341       break;
2342     }
2343 
2344     case DW_OP_implicit_pointer: {
2345       dwarf4_location_description_kind = Implicit;
2346       LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2347       return false;
2348     }
2349 
2350     // OPCODE: DW_OP_push_object_address
2351     // OPERANDS: none
2352     // DESCRIPTION: Pushes the address of the object currently being
2353     // evaluated as part of evaluation of a user presented expression. This
2354     // object may correspond to an independent variable described by its own
2355     // DIE or it may be a component of an array, structure, or class whose
2356     // address has been dynamically determined by an earlier step during user
2357     // expression evaluation.
2358     case DW_OP_push_object_address:
2359       if (object_address_ptr)
2360         stack.push_back(*object_address_ptr);
2361       else {
2362         if (error_ptr)
2363           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2364                                     "specifying an object address");
2365         return false;
2366       }
2367       break;
2368 
2369     // OPCODE: DW_OP_call2
2370     // OPERANDS:
2371     //      uint16_t compile unit relative offset of a DIE
2372     // DESCRIPTION: Performs subroutine calls during evaluation
2373     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2374     // debugging information entry in the current compilation unit.
2375     //
2376     // Operand interpretation is exactly like that for DW_FORM_ref2.
2377     //
2378     // This operation transfers control of DWARF expression evaluation to the
2379     // DW_AT_location attribute of the referenced DIE. If there is no such
2380     // attribute, then there is no effect. Execution of the DWARF expression of
2381     // a DW_AT_location attribute may add to and/or remove from values on the
2382     // stack. Execution returns to the point following the call when the end of
2383     // the attribute is reached. Values on the stack at the time of the call
2384     // may be used as parameters by the called expression and values left on
2385     // the stack by the called expression may be used as return values by prior
2386     // agreement between the calling and called expressions.
2387     case DW_OP_call2:
2388       if (error_ptr)
2389         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2390       return false;
2391     // OPCODE: DW_OP_call4
2392     // OPERANDS: 1
2393     //      uint32_t compile unit relative offset of a DIE
2394     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2395     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2396     // a debugging information entry in  the current compilation unit.
2397     //
2398     // Operand interpretation DW_OP_call4 is exactly like that for
2399     // DW_FORM_ref4.
2400     //
2401     // This operation transfers control of DWARF expression evaluation to the
2402     // DW_AT_location attribute of the referenced DIE. If there is no such
2403     // attribute, then there is no effect. Execution of the DWARF expression of
2404     // a DW_AT_location attribute may add to and/or remove from values on the
2405     // stack. Execution returns to the point following the call when the end of
2406     // the attribute is reached. Values on the stack at the time of the call
2407     // may be used as parameters by the called expression and values left on
2408     // the stack by the called expression may be used as return values by prior
2409     // agreement between the calling and called expressions.
2410     case DW_OP_call4:
2411       if (error_ptr)
2412         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2413       return false;
2414 
2415     // OPCODE: DW_OP_stack_value
2416     // OPERANDS: None
2417     // DESCRIPTION: Specifies that the object does not exist in memory but
2418     // rather is a constant value.  The value from the top of the stack is the
2419     // value to be used.  This is the actual object value and not the location.
2420     case DW_OP_stack_value:
2421       dwarf4_location_description_kind = Implicit;
2422       if (stack.empty()) {
2423         if (error_ptr)
2424           error_ptr->SetErrorString(
2425               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2426         return false;
2427       }
2428       stack.back().SetValueType(Value::ValueType::Scalar);
2429       break;
2430 
2431     // OPCODE: DW_OP_convert
2432     // OPERANDS: 1
2433     //      A ULEB128 that is either a DIE offset of a
2434     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2435     //
2436     // DESCRIPTION: Pop the top stack element, convert it to a
2437     // different type, and push the result.
2438     case DW_OP_convert: {
2439       if (stack.size() < 1) {
2440         if (error_ptr)
2441           error_ptr->SetErrorString(
2442               "Expression stack needs at least 1 item for DW_OP_convert.");
2443         return false;
2444       }
2445       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2446       uint64_t bit_size;
2447       bool sign;
2448       if (die_offset == 0) {
2449         // The generic type has the size of an address on the target
2450         // machine and an unspecified signedness. Scalar has no
2451         // "unspecified signedness", so we use unsigned types.
2452         if (!module_sp) {
2453           if (error_ptr)
2454             error_ptr->SetErrorString("No module");
2455           return false;
2456         }
2457         sign = false;
2458         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2459         if (!bit_size) {
2460           if (error_ptr)
2461             error_ptr->SetErrorString("unspecified architecture");
2462           return false;
2463         }
2464       } else {
2465         // Retrieve the type DIE that the value is being converted to.
2466         // FIXME: the constness has annoying ripple effects.
2467         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2468         if (!die) {
2469           if (error_ptr)
2470             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2471           return false;
2472         }
2473         uint64_t encoding =
2474             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2475         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2476         if (!bit_size)
2477           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2478         if (!bit_size) {
2479           if (error_ptr)
2480             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2481           return false;
2482         }
2483         switch (encoding) {
2484         case DW_ATE_signed:
2485         case DW_ATE_signed_char:
2486           sign = true;
2487           break;
2488         case DW_ATE_unsigned:
2489         case DW_ATE_unsigned_char:
2490           sign = false;
2491           break;
2492         default:
2493           if (error_ptr)
2494             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2495           return false;
2496         }
2497       }
2498       Scalar &top = stack.back().ResolveValue(exe_ctx);
2499       top.TruncOrExtendTo(bit_size, sign);
2500       break;
2501     }
2502 
2503     // OPCODE: DW_OP_call_frame_cfa
2504     // OPERANDS: None
2505     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2506     // the canonical frame address consistent with the call frame information
2507     // located in .debug_frame (or in the FDEs of the eh_frame section).
2508     case DW_OP_call_frame_cfa:
2509       if (frame) {
2510         // Note that we don't have to parse FDEs because this DWARF expression
2511         // is commonly evaluated with a valid stack frame.
2512         StackID id = frame->GetStackID();
2513         addr_t cfa = id.GetCallFrameAddress();
2514         if (cfa != LLDB_INVALID_ADDRESS) {
2515           stack.push_back(Scalar(cfa));
2516           stack.back().SetValueType(Value::ValueType::LoadAddress);
2517         } else if (error_ptr)
2518           error_ptr->SetErrorString("Stack frame does not include a canonical "
2519                                     "frame address for DW_OP_call_frame_cfa "
2520                                     "opcode.");
2521       } else {
2522         if (error_ptr)
2523           error_ptr->SetErrorString("Invalid stack frame in context for "
2524                                     "DW_OP_call_frame_cfa opcode.");
2525         return false;
2526       }
2527       break;
2528 
2529     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2530     // opcode, DW_OP_GNU_push_tls_address)
2531     // OPERANDS: none
2532     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2533     // an address in the current thread's thread-local storage block, and
2534     // pushes it on the stack.
2535     case DW_OP_form_tls_address:
2536     case DW_OP_GNU_push_tls_address: {
2537       if (stack.size() < 1) {
2538         if (error_ptr) {
2539           if (op == DW_OP_form_tls_address)
2540             error_ptr->SetErrorString(
2541                 "DW_OP_form_tls_address needs an argument.");
2542           else
2543             error_ptr->SetErrorString(
2544                 "DW_OP_GNU_push_tls_address needs an argument.");
2545         }
2546         return false;
2547       }
2548 
2549       if (!exe_ctx || !module_sp) {
2550         if (error_ptr)
2551           error_ptr->SetErrorString("No context to evaluate TLS within.");
2552         return false;
2553       }
2554 
2555       Thread *thread = exe_ctx->GetThreadPtr();
2556       if (!thread) {
2557         if (error_ptr)
2558           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2559         return false;
2560       }
2561 
2562       // Lookup the TLS block address for this thread and module.
2563       const addr_t tls_file_addr =
2564           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2565       const addr_t tls_load_addr =
2566           thread->GetThreadLocalData(module_sp, tls_file_addr);
2567 
2568       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2569         if (error_ptr)
2570           error_ptr->SetErrorString(
2571               "No TLS data currently exists for this thread.");
2572         return false;
2573       }
2574 
2575       stack.back().GetScalar() = tls_load_addr;
2576       stack.back().SetValueType(Value::ValueType::LoadAddress);
2577     } break;
2578 
2579     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2580     // OPERANDS: 1
2581     //      ULEB128: index to the .debug_addr section
2582     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2583     // section with the base address specified by the DW_AT_addr_base attribute
2584     // and the 0 based index is the ULEB128 encoded index.
2585     case DW_OP_addrx:
2586     case DW_OP_GNU_addr_index: {
2587       if (!dwarf_cu) {
2588         if (error_ptr)
2589           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2590                                     "compile unit being specified");
2591         return false;
2592       }
2593       uint64_t index = opcodes.GetULEB128(&offset);
2594       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2595       stack.push_back(Scalar(value));
2596       stack.back().SetValueType(Value::ValueType::FileAddress);
2597     } break;
2598 
2599     // OPCODE: DW_OP_GNU_const_index
2600     // OPERANDS: 1
2601     //      ULEB128: index to the .debug_addr section
2602     // DESCRIPTION: Pushes an constant with the size of a machine address to
2603     // the stack from the .debug_addr section with the base address specified
2604     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2605     // encoded index.
2606     case DW_OP_GNU_const_index: {
2607       if (!dwarf_cu) {
2608         if (error_ptr)
2609           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2610                                     "compile unit being specified");
2611         return false;
2612       }
2613       uint64_t index = opcodes.GetULEB128(&offset);
2614       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2615       stack.push_back(Scalar(value));
2616     } break;
2617 
2618     case DW_OP_GNU_entry_value:
2619     case DW_OP_entry_value: {
2620       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2621                                       error_ptr, log)) {
2622         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2623                     DW_OP_value_to_name(op));
2624         return false;
2625       }
2626       break;
2627     }
2628 
2629     default:
2630       if (error_ptr)
2631         error_ptr->SetErrorStringWithFormatv(
2632             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2633       return false;
2634     }
2635   }
2636 
2637   if (stack.empty()) {
2638     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2639     // or DW_OP_bit_piece opcodes
2640     if (pieces.GetBuffer().GetByteSize()) {
2641       result = pieces;
2642       return true;
2643     }
2644     if (error_ptr)
2645       error_ptr->SetErrorString("Stack empty after evaluation.");
2646     return false;
2647   }
2648 
2649   UpdateValueTypeFromLocationDescription(
2650       log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2651 
2652   if (log && log->GetVerbose()) {
2653     size_t count = stack.size();
2654     LLDB_LOGF(log,
2655               "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2656     for (size_t i = 0; i < count; ++i) {
2657       StreamString new_value;
2658       new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2659       stack[i].Dump(&new_value);
2660       LLDB_LOGF(log, "  %s", new_value.GetData());
2661     }
2662   }
2663   result = stack.back();
2664   return true; // Return true on success
2665 }
2666 
2667 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
2668                                      ByteOrder byte_order, uint32_t addr_size) {
2669   auto buffer_sp =
2670       std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
2671   return DataExtractor(buffer_sp, byte_order, addr_size);
2672 }
2673 
2674 llvm::Optional<DataExtractor>
2675 DWARFExpression::GetLocationExpression(addr_t load_function_start,
2676                                        addr_t addr) const {
2677   Log *log = GetLog(LLDBLog::Expressions);
2678 
2679   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2680       m_dwarf_cu->GetLocationTable(m_data);
2681   llvm::Optional<DataExtractor> result;
2682   uint64_t offset = 0;
2683   auto lookup_addr =
2684       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2685     addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
2686     if (address == LLDB_INVALID_ADDRESS)
2687       return llvm::None;
2688     return llvm::object::SectionedAddress{address};
2689   };
2690   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2691     if (!loc) {
2692       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2693       return true;
2694     }
2695     if (loc->Range) {
2696       // This relocates low_pc and high_pc by adding the difference between the
2697       // function file address, and the actual address it is loaded in memory.
2698       addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
2699       loc->Range->LowPC += slide;
2700       loc->Range->HighPC += slide;
2701 
2702       if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC)
2703         result = ToDataExtractor(*loc, m_data.GetByteOrder(),
2704                                  m_data.GetAddressByteSize());
2705     }
2706     return !result;
2707   };
2708   llvm::Error E = loctable_up->visitAbsoluteLocationList(
2709       offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
2710       lookup_addr, process_list);
2711   if (E)
2712     LLDB_LOG_ERROR(log, std::move(E), "{0}");
2713   return result;
2714 }
2715 
2716 bool DWARFExpression::MatchesOperand(StackFrame &frame,
2717                                      const Instruction::Operand &operand) {
2718   using namespace OperandMatchers;
2719 
2720   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2721   if (!reg_ctx_sp) {
2722     return false;
2723   }
2724 
2725   DataExtractor opcodes;
2726   if (IsLocationList()) {
2727     SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
2728     if (!sc.function)
2729       return false;
2730 
2731     addr_t load_function_start =
2732         sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
2733     if (load_function_start == LLDB_INVALID_ADDRESS)
2734       return false;
2735 
2736     addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
2737         frame.CalculateTarget().get());
2738 
2739     if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc))
2740       opcodes = std::move(*expr);
2741     else
2742       return false;
2743   } else
2744     opcodes = m_data;
2745 
2746 
2747   lldb::offset_t op_offset = 0;
2748   uint8_t opcode = opcodes.GetU8(&op_offset);
2749 
2750   if (opcode == DW_OP_fbreg) {
2751     int64_t offset = opcodes.GetSLEB128(&op_offset);
2752 
2753     DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
2754     if (!fb_expr) {
2755       return false;
2756     }
2757 
2758     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2759       return fb_expr->MatchesOperand(frame, child);
2760     };
2761 
2762     if (!offset &&
2763         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2764                      recurse)(operand)) {
2765       return true;
2766     }
2767 
2768     return MatchUnaryOp(
2769         MatchOpType(Instruction::Operand::Type::Dereference),
2770         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2771                       MatchImmOp(offset), recurse))(operand);
2772   }
2773 
2774   bool dereference = false;
2775   const RegisterInfo *reg = nullptr;
2776   int64_t offset = 0;
2777 
2778   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2779     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2780   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2781     offset = opcodes.GetSLEB128(&op_offset);
2782     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2783   } else if (opcode == DW_OP_regx) {
2784     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2785     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2786   } else if (opcode == DW_OP_bregx) {
2787     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2788     offset = opcodes.GetSLEB128(&op_offset);
2789     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2790   } else {
2791     return false;
2792   }
2793 
2794   if (!reg) {
2795     return false;
2796   }
2797 
2798   if (dereference) {
2799     if (!offset &&
2800         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2801                      MatchRegOp(*reg))(operand)) {
2802       return true;
2803     }
2804 
2805     return MatchUnaryOp(
2806         MatchOpType(Instruction::Operand::Type::Dereference),
2807         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2808                       MatchRegOp(*reg),
2809                       MatchImmOp(offset)))(operand);
2810   } else {
2811     return MatchRegOp(*reg)(operand);
2812   }
2813 }
2814