1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <inttypes.h>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/RegisterValue.h"
21 #include "lldb/Utility/Scalar.h"
22 #include "lldb/Utility/StreamString.h"
23 #include "lldb/Utility/VMRange.h"
24 
25 #include "lldb/Host/Host.h"
26 #include "lldb/Utility/Endian.h"
27 
28 #include "lldb/Symbol/Function.h"
29 
30 #include "lldb/Target/ABI.h"
31 #include "lldb/Target/ExecutionContext.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/RegisterContext.h"
34 #include "lldb/Target/StackFrame.h"
35 #include "lldb/Target/StackID.h"
36 #include "lldb/Target/Target.h"
37 #include "lldb/Target/Thread.h"
38 
39 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 
44 static lldb::addr_t
45 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
46                                 uint32_t index) {
47   uint32_t index_size = dwarf_cu->GetAddressByteSize();
48   dw_offset_t addr_base = dwarf_cu->GetAddrBase();
49   lldb::offset_t offset = addr_base + index * index_size;
50   const DWARFDataExtractor &data =
51       dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
52   if (data.ValidOffsetForDataOfSize(offset, index_size))
53     return data.GetMaxU64_unchecked(&offset, index_size);
54   return LLDB_INVALID_ADDRESS;
55 }
56 
57 // DWARFExpression constructor
58 DWARFExpression::DWARFExpression()
59     : m_module_wp(), m_data(), m_dwarf_cu(nullptr),
60       m_reg_kind(eRegisterKindDWARF) {}
61 
62 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
63                                  const DataExtractor &data,
64                                  const DWARFUnit *dwarf_cu)
65     : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu),
66       m_reg_kind(eRegisterKindDWARF) {
67   if (module_sp)
68     m_module_wp = module_sp;
69 }
70 
71 // Destructor
72 DWARFExpression::~DWARFExpression() {}
73 
74 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
75 
76 void DWARFExpression::UpdateValue(uint64_t const_value,
77                                   lldb::offset_t const_value_byte_size,
78                                   uint8_t addr_byte_size) {
79   if (!const_value_byte_size)
80     return;
81 
82   m_data.SetData(
83       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
84   m_data.SetByteOrder(endian::InlHostByteOrder());
85   m_data.SetAddressByteSize(addr_byte_size);
86 }
87 
88 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
89                                    lldb::DescriptionLevel level,
90                                    ABI *abi) const {
91   llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
92       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
93              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
94 }
95 
96 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
97                                                addr_t func_file_addr) {
98   m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
99 }
100 
101 int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
102 
103 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
104   m_reg_kind = reg_kind;
105 }
106 
107 bool DWARFExpression::IsLocationList() const {
108   return bool(m_loclist_addresses);
109 }
110 
111 namespace {
112 /// Implement enough of the DWARFObject interface in order to be able to call
113 /// DWARFLocationTable::dumpLocationList. We don't have access to a real
114 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
115 class DummyDWARFObject final: public llvm::DWARFObject {
116 public:
117   DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}
118 
119   bool isLittleEndian() const override { return IsLittleEndian; }
120 
121   llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
122                                             uint64_t Pos) const override {
123     return llvm::None;
124   }
125 private:
126   bool IsLittleEndian;
127 };
128 }
129 
130 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
131                                      addr_t location_list_base_addr,
132                                      ABI *abi) const {
133   if (IsLocationList()) {
134     // We have a location list
135     lldb::offset_t offset = 0;
136     std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
137         m_dwarf_cu->GetLocationTable(m_data);
138 
139     llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
140     llvm::DIDumpOptions DumpOpts;
141     DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) {
142       s->AsRawOstream() << "error: " << toString(std::move(E));
143     };
144     loctable_up->dumpLocationList(
145         &offset, s->AsRawOstream(),
146         llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
147         DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
148         DumpOpts, s->GetIndentLevel() + 2);
149   } else {
150     // We have a normal location that contains DW_OP location opcodes
151     DumpLocation(s, m_data, level, abi);
152   }
153 }
154 
155 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
156                                       lldb::RegisterKind reg_kind,
157                                       uint32_t reg_num, Status *error_ptr,
158                                       Value &value) {
159   if (reg_ctx == nullptr) {
160     if (error_ptr)
161       error_ptr->SetErrorString("No register context in frame.\n");
162   } else {
163     uint32_t native_reg =
164         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
165     if (native_reg == LLDB_INVALID_REGNUM) {
166       if (error_ptr)
167         error_ptr->SetErrorStringWithFormat("Unable to convert register "
168                                             "kind=%u reg_num=%u to a native "
169                                             "register number.\n",
170                                             reg_kind, reg_num);
171     } else {
172       const RegisterInfo *reg_info =
173           reg_ctx->GetRegisterInfoAtIndex(native_reg);
174       RegisterValue reg_value;
175       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
176         if (reg_value.GetScalarValue(value.GetScalar())) {
177           value.SetValueType(Value::eValueTypeScalar);
178           value.SetContext(Value::eContextTypeRegisterInfo,
179                            const_cast<RegisterInfo *>(reg_info));
180           if (error_ptr)
181             error_ptr->Clear();
182           return true;
183         } else {
184           // If we get this error, then we need to implement a value buffer in
185           // the dwarf expression evaluation function...
186           if (error_ptr)
187             error_ptr->SetErrorStringWithFormat(
188                 "register %s can't be converted to a scalar value",
189                 reg_info->name);
190         }
191       } else {
192         if (error_ptr)
193           error_ptr->SetErrorStringWithFormat("register %s is not available",
194                                               reg_info->name);
195       }
196     }
197   }
198   return false;
199 }
200 
201 /// Return the length in bytes of the set of operands for \p op. No guarantees
202 /// are made on the state of \p data after this call.
203 static offset_t GetOpcodeDataSize(const DataExtractor &data,
204                                   const lldb::offset_t data_offset,
205                                   const uint8_t op) {
206   lldb::offset_t offset = data_offset;
207   switch (op) {
208   case DW_OP_addr:
209   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
210     return data.GetAddressByteSize();
211 
212   // Opcodes with no arguments
213   case DW_OP_deref:                // 0x06
214   case DW_OP_dup:                  // 0x12
215   case DW_OP_drop:                 // 0x13
216   case DW_OP_over:                 // 0x14
217   case DW_OP_swap:                 // 0x16
218   case DW_OP_rot:                  // 0x17
219   case DW_OP_xderef:               // 0x18
220   case DW_OP_abs:                  // 0x19
221   case DW_OP_and:                  // 0x1a
222   case DW_OP_div:                  // 0x1b
223   case DW_OP_minus:                // 0x1c
224   case DW_OP_mod:                  // 0x1d
225   case DW_OP_mul:                  // 0x1e
226   case DW_OP_neg:                  // 0x1f
227   case DW_OP_not:                  // 0x20
228   case DW_OP_or:                   // 0x21
229   case DW_OP_plus:                 // 0x22
230   case DW_OP_shl:                  // 0x24
231   case DW_OP_shr:                  // 0x25
232   case DW_OP_shra:                 // 0x26
233   case DW_OP_xor:                  // 0x27
234   case DW_OP_eq:                   // 0x29
235   case DW_OP_ge:                   // 0x2a
236   case DW_OP_gt:                   // 0x2b
237   case DW_OP_le:                   // 0x2c
238   case DW_OP_lt:                   // 0x2d
239   case DW_OP_ne:                   // 0x2e
240   case DW_OP_lit0:                 // 0x30
241   case DW_OP_lit1:                 // 0x31
242   case DW_OP_lit2:                 // 0x32
243   case DW_OP_lit3:                 // 0x33
244   case DW_OP_lit4:                 // 0x34
245   case DW_OP_lit5:                 // 0x35
246   case DW_OP_lit6:                 // 0x36
247   case DW_OP_lit7:                 // 0x37
248   case DW_OP_lit8:                 // 0x38
249   case DW_OP_lit9:                 // 0x39
250   case DW_OP_lit10:                // 0x3A
251   case DW_OP_lit11:                // 0x3B
252   case DW_OP_lit12:                // 0x3C
253   case DW_OP_lit13:                // 0x3D
254   case DW_OP_lit14:                // 0x3E
255   case DW_OP_lit15:                // 0x3F
256   case DW_OP_lit16:                // 0x40
257   case DW_OP_lit17:                // 0x41
258   case DW_OP_lit18:                // 0x42
259   case DW_OP_lit19:                // 0x43
260   case DW_OP_lit20:                // 0x44
261   case DW_OP_lit21:                // 0x45
262   case DW_OP_lit22:                // 0x46
263   case DW_OP_lit23:                // 0x47
264   case DW_OP_lit24:                // 0x48
265   case DW_OP_lit25:                // 0x49
266   case DW_OP_lit26:                // 0x4A
267   case DW_OP_lit27:                // 0x4B
268   case DW_OP_lit28:                // 0x4C
269   case DW_OP_lit29:                // 0x4D
270   case DW_OP_lit30:                // 0x4E
271   case DW_OP_lit31:                // 0x4f
272   case DW_OP_reg0:                 // 0x50
273   case DW_OP_reg1:                 // 0x51
274   case DW_OP_reg2:                 // 0x52
275   case DW_OP_reg3:                 // 0x53
276   case DW_OP_reg4:                 // 0x54
277   case DW_OP_reg5:                 // 0x55
278   case DW_OP_reg6:                 // 0x56
279   case DW_OP_reg7:                 // 0x57
280   case DW_OP_reg8:                 // 0x58
281   case DW_OP_reg9:                 // 0x59
282   case DW_OP_reg10:                // 0x5A
283   case DW_OP_reg11:                // 0x5B
284   case DW_OP_reg12:                // 0x5C
285   case DW_OP_reg13:                // 0x5D
286   case DW_OP_reg14:                // 0x5E
287   case DW_OP_reg15:                // 0x5F
288   case DW_OP_reg16:                // 0x60
289   case DW_OP_reg17:                // 0x61
290   case DW_OP_reg18:                // 0x62
291   case DW_OP_reg19:                // 0x63
292   case DW_OP_reg20:                // 0x64
293   case DW_OP_reg21:                // 0x65
294   case DW_OP_reg22:                // 0x66
295   case DW_OP_reg23:                // 0x67
296   case DW_OP_reg24:                // 0x68
297   case DW_OP_reg25:                // 0x69
298   case DW_OP_reg26:                // 0x6A
299   case DW_OP_reg27:                // 0x6B
300   case DW_OP_reg28:                // 0x6C
301   case DW_OP_reg29:                // 0x6D
302   case DW_OP_reg30:                // 0x6E
303   case DW_OP_reg31:                // 0x6F
304   case DW_OP_nop:                  // 0x96
305   case DW_OP_push_object_address:  // 0x97 DWARF3
306   case DW_OP_form_tls_address:     // 0x9b DWARF3
307   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
308   case DW_OP_stack_value:          // 0x9f DWARF4
309   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
310     return 0;
311 
312   // Opcodes with a single 1 byte arguments
313   case DW_OP_const1u:     // 0x08 1 1-byte constant
314   case DW_OP_const1s:     // 0x09 1 1-byte constant
315   case DW_OP_pick:        // 0x15 1 1-byte stack index
316   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
317   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
318     return 1;
319 
320   // Opcodes with a single 2 byte arguments
321   case DW_OP_const2u: // 0x0a 1 2-byte constant
322   case DW_OP_const2s: // 0x0b 1 2-byte constant
323   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
324   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
325   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
326     return 2;
327 
328   // Opcodes with a single 4 byte arguments
329   case DW_OP_const4u: // 0x0c 1 4-byte constant
330   case DW_OP_const4s: // 0x0d 1 4-byte constant
331   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
332     return 4;
333 
334   // Opcodes with a single 8 byte arguments
335   case DW_OP_const8u: // 0x0e 1 8-byte constant
336   case DW_OP_const8s: // 0x0f 1 8-byte constant
337     return 8;
338 
339   // All opcodes that have a single ULEB (signed or unsigned) argument
340   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
341   case DW_OP_constu:          // 0x10 1 ULEB128 constant
342   case DW_OP_consts:          // 0x11 1 SLEB128 constant
343   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
344   case DW_OP_breg0:           // 0x70 1 ULEB128 register
345   case DW_OP_breg1:           // 0x71 1 ULEB128 register
346   case DW_OP_breg2:           // 0x72 1 ULEB128 register
347   case DW_OP_breg3:           // 0x73 1 ULEB128 register
348   case DW_OP_breg4:           // 0x74 1 ULEB128 register
349   case DW_OP_breg5:           // 0x75 1 ULEB128 register
350   case DW_OP_breg6:           // 0x76 1 ULEB128 register
351   case DW_OP_breg7:           // 0x77 1 ULEB128 register
352   case DW_OP_breg8:           // 0x78 1 ULEB128 register
353   case DW_OP_breg9:           // 0x79 1 ULEB128 register
354   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
355   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
356   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
357   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
358   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
359   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
360   case DW_OP_breg16:          // 0x80 1 ULEB128 register
361   case DW_OP_breg17:          // 0x81 1 ULEB128 register
362   case DW_OP_breg18:          // 0x82 1 ULEB128 register
363   case DW_OP_breg19:          // 0x83 1 ULEB128 register
364   case DW_OP_breg20:          // 0x84 1 ULEB128 register
365   case DW_OP_breg21:          // 0x85 1 ULEB128 register
366   case DW_OP_breg22:          // 0x86 1 ULEB128 register
367   case DW_OP_breg23:          // 0x87 1 ULEB128 register
368   case DW_OP_breg24:          // 0x88 1 ULEB128 register
369   case DW_OP_breg25:          // 0x89 1 ULEB128 register
370   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
371   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
372   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
373   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
374   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
375   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
376   case DW_OP_regx:            // 0x90 1 ULEB128 register
377   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
378   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
379   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
380   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
381     data.Skip_LEB128(&offset);
382     return offset - data_offset;
383 
384   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
385   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
386   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
387     data.Skip_LEB128(&offset);
388     data.Skip_LEB128(&offset);
389     return offset - data_offset;
390 
391   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
392                              // (DWARF4)
393   {
394     uint64_t block_len = data.Skip_LEB128(&offset);
395     offset += block_len;
396     return offset - data_offset;
397   }
398 
399   case DW_OP_GNU_entry_value:
400   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
401   {
402     uint64_t subexpr_len = data.GetULEB128(&offset);
403     return (offset - data_offset) + subexpr_len;
404   }
405 
406   default:
407     break;
408   }
409   return LLDB_INVALID_OFFSET;
410 }
411 
412 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
413                                                      bool &error) const {
414   error = false;
415   if (IsLocationList())
416     return LLDB_INVALID_ADDRESS;
417   lldb::offset_t offset = 0;
418   uint32_t curr_op_addr_idx = 0;
419   while (m_data.ValidOffset(offset)) {
420     const uint8_t op = m_data.GetU8(&offset);
421 
422     if (op == DW_OP_addr) {
423       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
424       if (curr_op_addr_idx == op_addr_idx)
425         return op_file_addr;
426       else
427         ++curr_op_addr_idx;
428     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
429       uint64_t index = m_data.GetULEB128(&offset);
430       if (curr_op_addr_idx == op_addr_idx) {
431         if (!m_dwarf_cu) {
432           error = true;
433           break;
434         }
435 
436         return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
437       } else
438         ++curr_op_addr_idx;
439     } else {
440       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
441       if (op_arg_size == LLDB_INVALID_OFFSET) {
442         error = true;
443         break;
444       }
445       offset += op_arg_size;
446     }
447   }
448   return LLDB_INVALID_ADDRESS;
449 }
450 
451 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
452   if (IsLocationList())
453     return false;
454   lldb::offset_t offset = 0;
455   while (m_data.ValidOffset(offset)) {
456     const uint8_t op = m_data.GetU8(&offset);
457 
458     if (op == DW_OP_addr) {
459       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
460       // We have to make a copy of the data as we don't know if this data is
461       // from a read only memory mapped buffer, so we duplicate all of the data
462       // first, then modify it, and if all goes well, we then replace the data
463       // for this expression
464 
465       // So first we copy the data into a heap buffer
466       std::unique_ptr<DataBufferHeap> head_data_up(
467           new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
468 
469       // Make en encoder so we can write the address into the buffer using the
470       // correct byte order (endianness)
471       DataEncoder encoder(head_data_up->GetBytes(), head_data_up->GetByteSize(),
472                           m_data.GetByteOrder(), addr_byte_size);
473 
474       // Replace the address in the new buffer
475       if (encoder.PutUnsigned(offset, addr_byte_size, file_addr) == UINT32_MAX)
476         return false;
477 
478       // All went well, so now we can reset the data using a shared pointer to
479       // the heap data so "m_data" will now correctly manage the heap data.
480       m_data.SetData(DataBufferSP(head_data_up.release()));
481       return true;
482     } else {
483       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
484       if (op_arg_size == LLDB_INVALID_OFFSET)
485         break;
486       offset += op_arg_size;
487     }
488   }
489   return false;
490 }
491 
492 bool DWARFExpression::ContainsThreadLocalStorage() const {
493   // We are assuming for now that any thread local variable will not have a
494   // location list. This has been true for all thread local variables we have
495   // seen so far produced by any compiler.
496   if (IsLocationList())
497     return false;
498   lldb::offset_t offset = 0;
499   while (m_data.ValidOffset(offset)) {
500     const uint8_t op = m_data.GetU8(&offset);
501 
502     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
503       return true;
504     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
505     if (op_arg_size == LLDB_INVALID_OFFSET)
506       return false;
507     else
508       offset += op_arg_size;
509   }
510   return false;
511 }
512 bool DWARFExpression::LinkThreadLocalStorage(
513     lldb::ModuleSP new_module_sp,
514     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
515         &link_address_callback) {
516   // We are assuming for now that any thread local variable will not have a
517   // location list. This has been true for all thread local variables we have
518   // seen so far produced by any compiler.
519   if (IsLocationList())
520     return false;
521 
522   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
523   // We have to make a copy of the data as we don't know if this data is from a
524   // read only memory mapped buffer, so we duplicate all of the data first,
525   // then modify it, and if all goes well, we then replace the data for this
526   // expression
527 
528   // So first we copy the data into a heap buffer
529   std::shared_ptr<DataBufferHeap> heap_data_sp(
530       new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
531 
532   // Make en encoder so we can write the address into the buffer using the
533   // correct byte order (endianness)
534   DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(),
535                       m_data.GetByteOrder(), addr_byte_size);
536 
537   lldb::offset_t offset = 0;
538   lldb::offset_t const_offset = 0;
539   lldb::addr_t const_value = 0;
540   size_t const_byte_size = 0;
541   while (m_data.ValidOffset(offset)) {
542     const uint8_t op = m_data.GetU8(&offset);
543 
544     bool decoded_data = false;
545     switch (op) {
546     case DW_OP_const4u:
547       // Remember the const offset in case we later have a
548       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
549       const_offset = offset;
550       const_value = m_data.GetU32(&offset);
551       decoded_data = true;
552       const_byte_size = 4;
553       break;
554 
555     case DW_OP_const8u:
556       // Remember the const offset in case we later have a
557       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
558       const_offset = offset;
559       const_value = m_data.GetU64(&offset);
560       decoded_data = true;
561       const_byte_size = 8;
562       break;
563 
564     case DW_OP_form_tls_address:
565     case DW_OP_GNU_push_tls_address:
566       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
567       // by a file address on the stack. We assume that DW_OP_const4u or
568       // DW_OP_const8u is used for these values, and we check that the last
569       // opcode we got before either of these was DW_OP_const4u or
570       // DW_OP_const8u. If so, then we can link the value accodingly. For
571       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
572       // address of a structure that contains a function pointer, the pthread
573       // key and the offset into the data pointed to by the pthread key. So we
574       // must link this address and also set the module of this expression to
575       // the new_module_sp so we can resolve the file address correctly
576       if (const_byte_size > 0) {
577         lldb::addr_t linked_file_addr = link_address_callback(const_value);
578         if (linked_file_addr == LLDB_INVALID_ADDRESS)
579           return false;
580         // Replace the address in the new buffer
581         if (encoder.PutUnsigned(const_offset, const_byte_size,
582                                 linked_file_addr) == UINT32_MAX)
583           return false;
584       }
585       break;
586 
587     default:
588       const_offset = 0;
589       const_value = 0;
590       const_byte_size = 0;
591       break;
592     }
593 
594     if (!decoded_data) {
595       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
596       if (op_arg_size == LLDB_INVALID_OFFSET)
597         return false;
598       else
599         offset += op_arg_size;
600     }
601   }
602 
603   // If we linked the TLS address correctly, update the module so that when the
604   // expression is evaluated it can resolve the file address to a load address
605   // and read the
606   // TLS data
607   m_module_wp = new_module_sp;
608   m_data.SetData(heap_data_sp);
609   return true;
610 }
611 
612 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
613                                                   lldb::addr_t addr) const {
614   if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
615     return false;
616 
617   if (!IsLocationList())
618     return false;
619 
620   return GetLocationExpression(func_load_addr, addr) != llvm::None;
621 }
622 
623 bool DWARFExpression::DumpLocationForAddress(Stream *s,
624                                              lldb::DescriptionLevel level,
625                                              addr_t func_load_addr,
626                                              addr_t address, ABI *abi) {
627   if (!IsLocationList()) {
628     DumpLocation(s, m_data, level, abi);
629     return true;
630   }
631   if (llvm::Optional<DataExtractor> expr =
632           GetLocationExpression(func_load_addr, address)) {
633     DumpLocation(s, *expr, level, abi);
634     return true;
635   }
636   return false;
637 }
638 
639 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
640                                        ExecutionContext *exe_ctx,
641                                        RegisterContext *reg_ctx,
642                                        const DataExtractor &opcodes,
643                                        lldb::offset_t &opcode_offset,
644                                        Status *error_ptr, Log *log) {
645   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
646   // function entry: this variable location is presumed to be optimized out at
647   // the current PC value.  The caller of the function may have call site
648   // information that describes an alternate location for the variable (e.g. a
649   // constant literal, or a spilled stack value) in the parent frame.
650   //
651   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
652   //
653   //     void child(int &sink, int x) {
654   //       ...
655   //       /* "x" gets optimized out. */
656   //
657   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
658   //       ++sink;
659   //     }
660   //
661   //     void parent() {
662   //       int sink;
663   //
664   //       /*
665   //        * The callsite information emitted here is:
666   //        *
667   //        * DW_TAG_call_site
668   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
669   //        *   DW_TAG_call_site_parameter (for "sink")
670   //        *     DW_AT_location   ($reg1)
671   //        *     DW_AT_call_value ($SP - 8)
672   //        *   DW_TAG_call_site_parameter (for "x")
673   //        *     DW_AT_location   ($reg2)
674   //        *     DW_AT_call_value ($literal 123)
675   //        *
676   //        * DW_TAG_call_site
677   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
678   //        *   ...
679   //        */
680   //       child(sink, 123);
681   //       child(sink, 456);
682   //     }
683   //
684   // When the program stops at "++sink" within `child`, the debugger determines
685   // the call site by analyzing the return address. Once the call site is found,
686   // the debugger determines which parameter is referenced by DW_OP_entry_value
687   // and evaluates the corresponding location for that parameter in `parent`.
688 
689   // 1. Find the function which pushed the current frame onto the stack.
690   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
691     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
692     return false;
693   }
694 
695   StackFrame *current_frame = exe_ctx->GetFramePtr();
696   Thread *thread = exe_ctx->GetThreadPtr();
697   if (!current_frame || !thread) {
698     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
699     return false;
700   }
701 
702   Target &target = exe_ctx->GetTargetRef();
703   StackFrameSP parent_frame = nullptr;
704   addr_t return_pc = LLDB_INVALID_ADDRESS;
705   uint32_t current_frame_idx = current_frame->GetFrameIndex();
706   uint32_t num_frames = thread->GetStackFrameCount();
707   for (uint32_t parent_frame_idx = current_frame_idx + 1;
708        parent_frame_idx < num_frames; ++parent_frame_idx) {
709     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
710     // Require a valid sequence of frames.
711     if (!parent_frame)
712       break;
713 
714     // Record the first valid return address, even if this is an inlined frame,
715     // in order to look up the associated call edge in the first non-inlined
716     // parent frame.
717     if (return_pc == LLDB_INVALID_ADDRESS) {
718       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
719       LLDB_LOG(log,
720                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
721                return_pc);
722     }
723 
724     // If we've found an inlined frame, skip it (these have no call site
725     // parameters).
726     if (parent_frame->IsInlined())
727       continue;
728 
729     // We've found the first non-inlined parent frame.
730     break;
731   }
732   if (!parent_frame || !parent_frame->GetRegisterContext()) {
733     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
734     return false;
735   }
736 
737   Function *parent_func =
738       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
739   if (!parent_func) {
740     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
741     return false;
742   }
743 
744   // 2. Find the call edge in the parent function responsible for creating the
745   //    current activation.
746   Function *current_func =
747       current_frame->GetSymbolContext(eSymbolContextFunction).function;
748   if (!current_func) {
749     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
750     return false;
751   }
752 
753   CallEdge *call_edge = nullptr;
754   ModuleList &modlist = target.GetImages();
755   ExecutionContext parent_exe_ctx = *exe_ctx;
756   parent_exe_ctx.SetFrameSP(parent_frame);
757   if (!parent_frame->IsArtificial()) {
758     // If the parent frame is not artificial, the current activation may be
759     // produced by an ambiguous tail call. In this case, refuse to proceed.
760     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
761     if (!call_edge) {
762       LLDB_LOG(log,
763                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
764                "in parent frame {1}",
765                return_pc, parent_func->GetName());
766       return false;
767     }
768     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
769     if (callee_func != current_func) {
770       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
771                     "can't find real parent frame");
772       return false;
773     }
774   } else {
775     // The StackFrameList solver machinery has deduced that an unambiguous tail
776     // call sequence that produced the current activation.  The first edge in
777     // the parent that points to the current function must be valid.
778     for (auto &edge : parent_func->GetTailCallingEdges()) {
779       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
780         call_edge = edge.get();
781         break;
782       }
783     }
784   }
785   if (!call_edge) {
786     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
787                   "to current function");
788     return false;
789   }
790 
791   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
792   //    available call site parameters. If found, evaluate the corresponding
793   //    parameter in the context of the parent frame.
794   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
795   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
796   if (!subexpr_data) {
797     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
798     return false;
799   }
800 
801   const CallSiteParameter *matched_param = nullptr;
802   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
803     DataExtractor param_subexpr_extractor;
804     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
805       continue;
806     lldb::offset_t param_subexpr_offset = 0;
807     const void *param_subexpr_data =
808         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
809     if (!param_subexpr_data ||
810         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
811       continue;
812 
813     // At this point, the DW_OP_entry_value sub-expression and the callee-side
814     // expression in the call site parameter are known to have the same length.
815     // Check whether they are equal.
816     //
817     // Note that an equality check is sufficient: the contents of the
818     // DW_OP_entry_value subexpression are only used to identify the right call
819     // site parameter in the parent, and do not require any special handling.
820     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
821       matched_param = &param;
822       break;
823     }
824   }
825   if (!matched_param) {
826     LLDB_LOG(log,
827              "Evaluate_DW_OP_entry_value: no matching call site param found");
828     return false;
829   }
830 
831   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
832   // subexpresion whenever llvm does.
833   Value result;
834   const DWARFExpression &param_expr = matched_param->LocationInCaller;
835   if (!param_expr.Evaluate(&parent_exe_ctx,
836                            parent_frame->GetRegisterContext().get(),
837                            /*loclist_base_addr=*/LLDB_INVALID_ADDRESS,
838                            /*initial_value_ptr=*/nullptr,
839                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
840     LLDB_LOG(log,
841              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
842     return false;
843   }
844 
845   stack.push_back(result);
846   return true;
847 }
848 
849 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
850                                lldb::addr_t loclist_base_load_addr,
851                                const Value *initial_value_ptr,
852                                const Value *object_address_ptr, Value &result,
853                                Status *error_ptr) const {
854   ExecutionContext exe_ctx(exe_scope);
855   return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
856                   object_address_ptr, result, error_ptr);
857 }
858 
859 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
860                                RegisterContext *reg_ctx,
861                                lldb::addr_t func_load_addr,
862                                const Value *initial_value_ptr,
863                                const Value *object_address_ptr, Value &result,
864                                Status *error_ptr) const {
865   ModuleSP module_sp = m_module_wp.lock();
866 
867   if (IsLocationList()) {
868     addr_t pc;
869     StackFrame *frame = nullptr;
870     if (reg_ctx)
871       pc = reg_ctx->GetPC();
872     else {
873       frame = exe_ctx->GetFramePtr();
874       if (!frame)
875         return false;
876       RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
877       if (!reg_ctx_sp)
878         return false;
879       pc = reg_ctx_sp->GetPC();
880     }
881 
882     if (func_load_addr != LLDB_INVALID_ADDRESS) {
883       if (pc == LLDB_INVALID_ADDRESS) {
884         if (error_ptr)
885           error_ptr->SetErrorString("Invalid PC in frame.");
886         return false;
887       }
888 
889       if (llvm::Optional<DataExtractor> expr =
890               GetLocationExpression(func_load_addr, pc)) {
891         return DWARFExpression::Evaluate(
892             exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
893             initial_value_ptr, object_address_ptr, result, error_ptr);
894       }
895     }
896     if (error_ptr)
897       error_ptr->SetErrorString("variable not available");
898     return false;
899   }
900 
901   // Not a location list, just a single expression.
902   return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
903                                    m_dwarf_cu, m_reg_kind, initial_value_ptr,
904                                    object_address_ptr, result, error_ptr);
905 }
906 
907 bool DWARFExpression::Evaluate(
908     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
909     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
910     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
911     const Value *initial_value_ptr, const Value *object_address_ptr,
912     Value &result, Status *error_ptr) {
913 
914   if (opcodes.GetByteSize() == 0) {
915     if (error_ptr)
916       error_ptr->SetErrorString(
917           "no location, value may have been optimized out");
918     return false;
919   }
920   std::vector<Value> stack;
921 
922   Process *process = nullptr;
923   StackFrame *frame = nullptr;
924 
925   if (exe_ctx) {
926     process = exe_ctx->GetProcessPtr();
927     frame = exe_ctx->GetFramePtr();
928   }
929   if (reg_ctx == nullptr && frame)
930     reg_ctx = frame->GetRegisterContext().get();
931 
932   if (initial_value_ptr)
933     stack.push_back(*initial_value_ptr);
934 
935   lldb::offset_t offset = 0;
936   Value tmp;
937   uint32_t reg_num;
938 
939   /// Insertion point for evaluating multi-piece expression.
940   uint64_t op_piece_offset = 0;
941   Value pieces; // Used for DW_OP_piece
942 
943   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
944   // A generic type is "an integral type that has the size of an address and an
945   // unspecified signedness". For now, just use the signedness of the operand.
946   // TODO: Implement a real typed stack, and store the genericness of the value
947   // there.
948   auto to_generic = [&](auto v) {
949     bool is_signed = std::is_signed<decltype(v)>::value;
950     return Scalar(llvm::APSInt(
951         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
952         !is_signed));
953   };
954 
955   while (opcodes.ValidOffset(offset)) {
956     const lldb::offset_t op_offset = offset;
957     const uint8_t op = opcodes.GetU8(&offset);
958 
959     if (log && log->GetVerbose()) {
960       size_t count = stack.size();
961       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
962                 (uint64_t)count);
963       for (size_t i = 0; i < count; ++i) {
964         StreamString new_value;
965         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
966         stack[i].Dump(&new_value);
967         LLDB_LOGF(log, "  %s", new_value.GetData());
968       }
969       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
970                 DW_OP_value_to_name(op));
971     }
972 
973     switch (op) {
974     // The DW_OP_addr operation has a single operand that encodes a machine
975     // address and whose size is the size of an address on the target machine.
976     case DW_OP_addr:
977       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
978       stack.back().SetValueType(Value::eValueTypeFileAddress);
979       // Convert the file address to a load address, so subsequent
980       // DWARF operators can operate on it.
981       if (frame)
982         stack.back().ConvertToLoadAddress(module_sp.get(),
983                                           frame->CalculateTarget().get());
984       break;
985 
986     // The DW_OP_addr_sect_offset4 is used for any location expressions in
987     // shared libraries that have a location like:
988     //  DW_OP_addr(0x1000)
989     // If this address resides in a shared library, then this virtual address
990     // won't make sense when it is evaluated in the context of a running
991     // process where shared libraries have been slid. To account for this, this
992     // new address type where we can store the section pointer and a 4 byte
993     // offset.
994     //      case DW_OP_addr_sect_offset4:
995     //          {
996     //              result_type = eResultTypeFileAddress;
997     //              lldb::Section *sect = (lldb::Section
998     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
999     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1000     //
1001     //              Address so_addr (sect, sect_offset);
1002     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
1003     //              if (load_addr != LLDB_INVALID_ADDRESS)
1004     //              {
1005     //                  // We successfully resolve a file address to a load
1006     //                  // address.
1007     //                  stack.push_back(load_addr);
1008     //                  break;
1009     //              }
1010     //              else
1011     //              {
1012     //                  // We were able
1013     //                  if (error_ptr)
1014     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
1015     //                      %s is not currently loaded.\n",
1016     //                      sect->GetName().AsCString(),
1017     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1018     //                  return false;
1019     //              }
1020     //          }
1021     //          break;
1022 
1023     // OPCODE: DW_OP_deref
1024     // OPERANDS: none
1025     // DESCRIPTION: Pops the top stack entry and treats it as an address.
1026     // The value retrieved from that address is pushed. The size of the data
1027     // retrieved from the dereferenced address is the size of an address on the
1028     // target machine.
1029     case DW_OP_deref: {
1030       if (stack.empty()) {
1031         if (error_ptr)
1032           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1033         return false;
1034       }
1035       Value::ValueType value_type = stack.back().GetValueType();
1036       switch (value_type) {
1037       case Value::eValueTypeHostAddress: {
1038         void *src = (void *)stack.back().GetScalar().ULongLong();
1039         intptr_t ptr;
1040         ::memcpy(&ptr, src, sizeof(void *));
1041         stack.back().GetScalar() = ptr;
1042         stack.back().ClearContext();
1043       } break;
1044       case Value::eValueTypeFileAddress: {
1045         auto file_addr = stack.back().GetScalar().ULongLong(
1046             LLDB_INVALID_ADDRESS);
1047         if (!module_sp) {
1048           if (error_ptr)
1049             error_ptr->SetErrorString(
1050                 "need module to resolve file address for DW_OP_deref");
1051           return false;
1052         }
1053         Address so_addr;
1054         if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
1055           if (error_ptr)
1056             error_ptr->SetErrorString(
1057                 "failed to resolve file address in module");
1058           return false;
1059         }
1060         addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
1061         if (load_Addr == LLDB_INVALID_ADDRESS) {
1062           if (error_ptr)
1063             error_ptr->SetErrorString("failed to resolve load address");
1064           return false;
1065         }
1066         stack.back().GetScalar() = load_Addr;
1067         stack.back().SetValueType(Value::eValueTypeLoadAddress);
1068         // Fall through to load address code below...
1069       } LLVM_FALLTHROUGH;
1070       case Value::eValueTypeLoadAddress:
1071         if (exe_ctx) {
1072           if (process) {
1073             lldb::addr_t pointer_addr =
1074                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1075             Status error;
1076             lldb::addr_t pointer_value =
1077                 process->ReadPointerFromMemory(pointer_addr, error);
1078             if (pointer_value != LLDB_INVALID_ADDRESS) {
1079               stack.back().GetScalar() = pointer_value;
1080               stack.back().ClearContext();
1081             } else {
1082               if (error_ptr)
1083                 error_ptr->SetErrorStringWithFormat(
1084                     "Failed to dereference pointer from 0x%" PRIx64
1085                     " for DW_OP_deref: %s\n",
1086                     pointer_addr, error.AsCString());
1087               return false;
1088             }
1089           } else {
1090             if (error_ptr)
1091               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1092             return false;
1093           }
1094         } else {
1095           if (error_ptr)
1096             error_ptr->SetErrorString(
1097                 "NULL execution context for DW_OP_deref.\n");
1098           return false;
1099         }
1100         break;
1101 
1102       default:
1103         if (error_ptr)
1104           error_ptr->SetErrorString("Unhandled value type for DW_OP_deref.\n");
1105         return false;
1106       }
1107 
1108     } break;
1109 
1110     // OPCODE: DW_OP_deref_size
1111     // OPERANDS: 1
1112     //  1 - uint8_t that specifies the size of the data to dereference.
1113     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1114     // stack entry and treats it as an address. The value retrieved from that
1115     // address is pushed. In the DW_OP_deref_size operation, however, the size
1116     // in bytes of the data retrieved from the dereferenced address is
1117     // specified by the single operand. This operand is a 1-byte unsigned
1118     // integral constant whose value may not be larger than the size of an
1119     // address on the target machine. The data retrieved is zero extended to
1120     // the size of an address on the target machine before being pushed on the
1121     // expression stack.
1122     case DW_OP_deref_size: {
1123       if (stack.empty()) {
1124         if (error_ptr)
1125           error_ptr->SetErrorString(
1126               "Expression stack empty for DW_OP_deref_size.");
1127         return false;
1128       }
1129       uint8_t size = opcodes.GetU8(&offset);
1130       Value::ValueType value_type = stack.back().GetValueType();
1131       switch (value_type) {
1132       case Value::eValueTypeHostAddress: {
1133         void *src = (void *)stack.back().GetScalar().ULongLong();
1134         intptr_t ptr;
1135         ::memcpy(&ptr, src, sizeof(void *));
1136         // I can't decide whether the size operand should apply to the bytes in
1137         // their
1138         // lldb-host endianness or the target endianness.. I doubt this'll ever
1139         // come up but I'll opt for assuming big endian regardless.
1140         switch (size) {
1141         case 1:
1142           ptr = ptr & 0xff;
1143           break;
1144         case 2:
1145           ptr = ptr & 0xffff;
1146           break;
1147         case 3:
1148           ptr = ptr & 0xffffff;
1149           break;
1150         case 4:
1151           ptr = ptr & 0xffffffff;
1152           break;
1153         // the casts are added to work around the case where intptr_t is a 32
1154         // bit quantity;
1155         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1156         // program.
1157         case 5:
1158           ptr = (intptr_t)ptr & 0xffffffffffULL;
1159           break;
1160         case 6:
1161           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1162           break;
1163         case 7:
1164           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1165           break;
1166         default:
1167           break;
1168         }
1169         stack.back().GetScalar() = ptr;
1170         stack.back().ClearContext();
1171       } break;
1172       case Value::eValueTypeLoadAddress:
1173         if (exe_ctx) {
1174           if (process) {
1175             lldb::addr_t pointer_addr =
1176                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1177             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1178             Status error;
1179             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1180                 size) {
1181               DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
1182                                       process->GetByteOrder(), size);
1183               lldb::offset_t addr_data_offset = 0;
1184               switch (size) {
1185               case 1:
1186                 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
1187                 break;
1188               case 2:
1189                 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
1190                 break;
1191               case 4:
1192                 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
1193                 break;
1194               case 8:
1195                 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
1196                 break;
1197               default:
1198                 stack.back().GetScalar() =
1199                     addr_data.GetAddress(&addr_data_offset);
1200               }
1201               stack.back().ClearContext();
1202             } else {
1203               if (error_ptr)
1204                 error_ptr->SetErrorStringWithFormat(
1205                     "Failed to dereference pointer from 0x%" PRIx64
1206                     " for DW_OP_deref: %s\n",
1207                     pointer_addr, error.AsCString());
1208               return false;
1209             }
1210           } else {
1211             if (error_ptr)
1212               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1213             return false;
1214           }
1215         } else {
1216           if (error_ptr)
1217             error_ptr->SetErrorString(
1218                 "NULL execution context for DW_OP_deref.\n");
1219           return false;
1220         }
1221         break;
1222 
1223       default:
1224         break;
1225       }
1226 
1227     } break;
1228 
1229     // OPCODE: DW_OP_xderef_size
1230     // OPERANDS: 1
1231     //  1 - uint8_t that specifies the size of the data to dereference.
1232     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1233     // the top of the stack is treated as an address. The second stack entry is
1234     // treated as an "address space identifier" for those architectures that
1235     // support multiple address spaces. The top two stack elements are popped,
1236     // a data item is retrieved through an implementation-defined address
1237     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1238     // operation, however, the size in bytes of the data retrieved from the
1239     // dereferenced address is specified by the single operand. This operand is
1240     // a 1-byte unsigned integral constant whose value may not be larger than
1241     // the size of an address on the target machine. The data retrieved is zero
1242     // extended to the size of an address on the target machine before being
1243     // pushed on the expression stack.
1244     case DW_OP_xderef_size:
1245       if (error_ptr)
1246         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1247       return false;
1248     // OPCODE: DW_OP_xderef
1249     // OPERANDS: none
1250     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1251     // the top of the stack is treated as an address. The second stack entry is
1252     // treated as an "address space identifier" for those architectures that
1253     // support multiple address spaces. The top two stack elements are popped,
1254     // a data item is retrieved through an implementation-defined address
1255     // calculation and pushed as the new stack top. The size of the data
1256     // retrieved from the dereferenced address is the size of an address on the
1257     // target machine.
1258     case DW_OP_xderef:
1259       if (error_ptr)
1260         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1261       return false;
1262 
1263     // All DW_OP_constXXX opcodes have a single operand as noted below:
1264     //
1265     // Opcode           Operand 1
1266     // DW_OP_const1u    1-byte unsigned integer constant
1267     // DW_OP_const1s    1-byte signed integer constant
1268     // DW_OP_const2u    2-byte unsigned integer constant
1269     // DW_OP_const2s    2-byte signed integer constant
1270     // DW_OP_const4u    4-byte unsigned integer constant
1271     // DW_OP_const4s    4-byte signed integer constant
1272     // DW_OP_const8u    8-byte unsigned integer constant
1273     // DW_OP_const8s    8-byte signed integer constant
1274     // DW_OP_constu     unsigned LEB128 integer constant
1275     // DW_OP_consts     signed LEB128 integer constant
1276     case DW_OP_const1u:
1277       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1278       break;
1279     case DW_OP_const1s:
1280       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1281       break;
1282     case DW_OP_const2u:
1283       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1284       break;
1285     case DW_OP_const2s:
1286       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1287       break;
1288     case DW_OP_const4u:
1289       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1290       break;
1291     case DW_OP_const4s:
1292       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1293       break;
1294     case DW_OP_const8u:
1295       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1296       break;
1297     case DW_OP_const8s:
1298       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1299       break;
1300     // These should also use to_generic, but we can't do that due to a
1301     // producer-side bug in llvm. See llvm.org/pr48087.
1302     case DW_OP_constu:
1303       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1304       break;
1305     case DW_OP_consts:
1306       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1307       break;
1308 
1309     // OPCODE: DW_OP_dup
1310     // OPERANDS: none
1311     // DESCRIPTION: duplicates the value at the top of the stack
1312     case DW_OP_dup:
1313       if (stack.empty()) {
1314         if (error_ptr)
1315           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1316         return false;
1317       } else
1318         stack.push_back(stack.back());
1319       break;
1320 
1321     // OPCODE: DW_OP_drop
1322     // OPERANDS: none
1323     // DESCRIPTION: pops the value at the top of the stack
1324     case DW_OP_drop:
1325       if (stack.empty()) {
1326         if (error_ptr)
1327           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1328         return false;
1329       } else
1330         stack.pop_back();
1331       break;
1332 
1333     // OPCODE: DW_OP_over
1334     // OPERANDS: none
1335     // DESCRIPTION: Duplicates the entry currently second in the stack at
1336     // the top of the stack.
1337     case DW_OP_over:
1338       if (stack.size() < 2) {
1339         if (error_ptr)
1340           error_ptr->SetErrorString(
1341               "Expression stack needs at least 2 items for DW_OP_over.");
1342         return false;
1343       } else
1344         stack.push_back(stack[stack.size() - 2]);
1345       break;
1346 
1347     // OPCODE: DW_OP_pick
1348     // OPERANDS: uint8_t index into the current stack
1349     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1350     // inclusive) is pushed on the stack
1351     case DW_OP_pick: {
1352       uint8_t pick_idx = opcodes.GetU8(&offset);
1353       if (pick_idx < stack.size())
1354         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1355       else {
1356         if (error_ptr)
1357           error_ptr->SetErrorStringWithFormat(
1358               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1359         return false;
1360       }
1361     } break;
1362 
1363     // OPCODE: DW_OP_swap
1364     // OPERANDS: none
1365     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1366     // of the stack becomes the second stack entry, and the second entry
1367     // becomes the top of the stack
1368     case DW_OP_swap:
1369       if (stack.size() < 2) {
1370         if (error_ptr)
1371           error_ptr->SetErrorString(
1372               "Expression stack needs at least 2 items for DW_OP_swap.");
1373         return false;
1374       } else {
1375         tmp = stack.back();
1376         stack.back() = stack[stack.size() - 2];
1377         stack[stack.size() - 2] = tmp;
1378       }
1379       break;
1380 
1381     // OPCODE: DW_OP_rot
1382     // OPERANDS: none
1383     // DESCRIPTION: Rotates the first three stack entries. The entry at
1384     // the top of the stack becomes the third stack entry, the second entry
1385     // becomes the top of the stack, and the third entry becomes the second
1386     // entry.
1387     case DW_OP_rot:
1388       if (stack.size() < 3) {
1389         if (error_ptr)
1390           error_ptr->SetErrorString(
1391               "Expression stack needs at least 3 items for DW_OP_rot.");
1392         return false;
1393       } else {
1394         size_t last_idx = stack.size() - 1;
1395         Value old_top = stack[last_idx];
1396         stack[last_idx] = stack[last_idx - 1];
1397         stack[last_idx - 1] = stack[last_idx - 2];
1398         stack[last_idx - 2] = old_top;
1399       }
1400       break;
1401 
1402     // OPCODE: DW_OP_abs
1403     // OPERANDS: none
1404     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1405     // value and pushes its absolute value. If the absolute value can not be
1406     // represented, the result is undefined.
1407     case DW_OP_abs:
1408       if (stack.empty()) {
1409         if (error_ptr)
1410           error_ptr->SetErrorString(
1411               "Expression stack needs at least 1 item for DW_OP_abs.");
1412         return false;
1413       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1414         if (error_ptr)
1415           error_ptr->SetErrorString(
1416               "Failed to take the absolute value of the first stack item.");
1417         return false;
1418       }
1419       break;
1420 
1421     // OPCODE: DW_OP_and
1422     // OPERANDS: none
1423     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1424     // operation on the two, and pushes the result.
1425     case DW_OP_and:
1426       if (stack.size() < 2) {
1427         if (error_ptr)
1428           error_ptr->SetErrorString(
1429               "Expression stack needs at least 2 items for DW_OP_and.");
1430         return false;
1431       } else {
1432         tmp = stack.back();
1433         stack.pop_back();
1434         stack.back().ResolveValue(exe_ctx) =
1435             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1436       }
1437       break;
1438 
1439     // OPCODE: DW_OP_div
1440     // OPERANDS: none
1441     // DESCRIPTION: pops the top two stack values, divides the former second
1442     // entry by the former top of the stack using signed division, and pushes
1443     // the result.
1444     case DW_OP_div:
1445       if (stack.size() < 2) {
1446         if (error_ptr)
1447           error_ptr->SetErrorString(
1448               "Expression stack needs at least 2 items for DW_OP_div.");
1449         return false;
1450       } else {
1451         tmp = stack.back();
1452         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1453           if (error_ptr)
1454             error_ptr->SetErrorString("Divide by zero.");
1455           return false;
1456         } else {
1457           stack.pop_back();
1458           stack.back() =
1459               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1460           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1461             if (error_ptr)
1462               error_ptr->SetErrorString("Divide failed.");
1463             return false;
1464           }
1465         }
1466       }
1467       break;
1468 
1469     // OPCODE: DW_OP_minus
1470     // OPERANDS: none
1471     // DESCRIPTION: pops the top two stack values, subtracts the former top
1472     // of the stack from the former second entry, and pushes the result.
1473     case DW_OP_minus:
1474       if (stack.size() < 2) {
1475         if (error_ptr)
1476           error_ptr->SetErrorString(
1477               "Expression stack needs at least 2 items for DW_OP_minus.");
1478         return false;
1479       } else {
1480         tmp = stack.back();
1481         stack.pop_back();
1482         stack.back().ResolveValue(exe_ctx) =
1483             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1484       }
1485       break;
1486 
1487     // OPCODE: DW_OP_mod
1488     // OPERANDS: none
1489     // DESCRIPTION: pops the top two stack values and pushes the result of
1490     // the calculation: former second stack entry modulo the former top of the
1491     // stack.
1492     case DW_OP_mod:
1493       if (stack.size() < 2) {
1494         if (error_ptr)
1495           error_ptr->SetErrorString(
1496               "Expression stack needs at least 2 items for DW_OP_mod.");
1497         return false;
1498       } else {
1499         tmp = stack.back();
1500         stack.pop_back();
1501         stack.back().ResolveValue(exe_ctx) =
1502             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1503       }
1504       break;
1505 
1506     // OPCODE: DW_OP_mul
1507     // OPERANDS: none
1508     // DESCRIPTION: pops the top two stack entries, multiplies them
1509     // together, and pushes the result.
1510     case DW_OP_mul:
1511       if (stack.size() < 2) {
1512         if (error_ptr)
1513           error_ptr->SetErrorString(
1514               "Expression stack needs at least 2 items for DW_OP_mul.");
1515         return false;
1516       } else {
1517         tmp = stack.back();
1518         stack.pop_back();
1519         stack.back().ResolveValue(exe_ctx) =
1520             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1521       }
1522       break;
1523 
1524     // OPCODE: DW_OP_neg
1525     // OPERANDS: none
1526     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1527     case DW_OP_neg:
1528       if (stack.empty()) {
1529         if (error_ptr)
1530           error_ptr->SetErrorString(
1531               "Expression stack needs at least 1 item for DW_OP_neg.");
1532         return false;
1533       } else {
1534         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1535           if (error_ptr)
1536             error_ptr->SetErrorString("Unary negate failed.");
1537           return false;
1538         }
1539       }
1540       break;
1541 
1542     // OPCODE: DW_OP_not
1543     // OPERANDS: none
1544     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1545     // complement
1546     case DW_OP_not:
1547       if (stack.empty()) {
1548         if (error_ptr)
1549           error_ptr->SetErrorString(
1550               "Expression stack needs at least 1 item for DW_OP_not.");
1551         return false;
1552       } else {
1553         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1554           if (error_ptr)
1555             error_ptr->SetErrorString("Logical NOT failed.");
1556           return false;
1557         }
1558       }
1559       break;
1560 
1561     // OPCODE: DW_OP_or
1562     // OPERANDS: none
1563     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1564     // operation on the two, and pushes the result.
1565     case DW_OP_or:
1566       if (stack.size() < 2) {
1567         if (error_ptr)
1568           error_ptr->SetErrorString(
1569               "Expression stack needs at least 2 items for DW_OP_or.");
1570         return false;
1571       } else {
1572         tmp = stack.back();
1573         stack.pop_back();
1574         stack.back().ResolveValue(exe_ctx) =
1575             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1576       }
1577       break;
1578 
1579     // OPCODE: DW_OP_plus
1580     // OPERANDS: none
1581     // DESCRIPTION: pops the top two stack entries, adds them together, and
1582     // pushes the result.
1583     case DW_OP_plus:
1584       if (stack.size() < 2) {
1585         if (error_ptr)
1586           error_ptr->SetErrorString(
1587               "Expression stack needs at least 2 items for DW_OP_plus.");
1588         return false;
1589       } else {
1590         tmp = stack.back();
1591         stack.pop_back();
1592         stack.back().GetScalar() += tmp.GetScalar();
1593       }
1594       break;
1595 
1596     // OPCODE: DW_OP_plus_uconst
1597     // OPERANDS: none
1598     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1599     // constant operand and pushes the result.
1600     case DW_OP_plus_uconst:
1601       if (stack.empty()) {
1602         if (error_ptr)
1603           error_ptr->SetErrorString(
1604               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1605         return false;
1606       } else {
1607         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1608         // Implicit conversion from a UINT to a Scalar...
1609         stack.back().GetScalar() += uconst_value;
1610         if (!stack.back().GetScalar().IsValid()) {
1611           if (error_ptr)
1612             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1613           return false;
1614         }
1615       }
1616       break;
1617 
1618     // OPCODE: DW_OP_shl
1619     // OPERANDS: none
1620     // DESCRIPTION:  pops the top two stack entries, shifts the former
1621     // second entry left by the number of bits specified by the former top of
1622     // the stack, and pushes the result.
1623     case DW_OP_shl:
1624       if (stack.size() < 2) {
1625         if (error_ptr)
1626           error_ptr->SetErrorString(
1627               "Expression stack needs at least 2 items for DW_OP_shl.");
1628         return false;
1629       } else {
1630         tmp = stack.back();
1631         stack.pop_back();
1632         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1633       }
1634       break;
1635 
1636     // OPCODE: DW_OP_shr
1637     // OPERANDS: none
1638     // DESCRIPTION: pops the top two stack entries, shifts the former second
1639     // entry right logically (filling with zero bits) by the number of bits
1640     // specified by the former top of the stack, and pushes the result.
1641     case DW_OP_shr:
1642       if (stack.size() < 2) {
1643         if (error_ptr)
1644           error_ptr->SetErrorString(
1645               "Expression stack needs at least 2 items for DW_OP_shr.");
1646         return false;
1647       } else {
1648         tmp = stack.back();
1649         stack.pop_back();
1650         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1651                 tmp.ResolveValue(exe_ctx))) {
1652           if (error_ptr)
1653             error_ptr->SetErrorString("DW_OP_shr failed.");
1654           return false;
1655         }
1656       }
1657       break;
1658 
1659     // OPCODE: DW_OP_shra
1660     // OPERANDS: none
1661     // DESCRIPTION: pops the top two stack entries, shifts the former second
1662     // entry right arithmetically (divide the magnitude by 2, keep the same
1663     // sign for the result) by the number of bits specified by the former top
1664     // of the stack, and pushes the result.
1665     case DW_OP_shra:
1666       if (stack.size() < 2) {
1667         if (error_ptr)
1668           error_ptr->SetErrorString(
1669               "Expression stack needs at least 2 items for DW_OP_shra.");
1670         return false;
1671       } else {
1672         tmp = stack.back();
1673         stack.pop_back();
1674         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1675       }
1676       break;
1677 
1678     // OPCODE: DW_OP_xor
1679     // OPERANDS: none
1680     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1681     // exclusive-or operation on the two, and pushes the result.
1682     case DW_OP_xor:
1683       if (stack.size() < 2) {
1684         if (error_ptr)
1685           error_ptr->SetErrorString(
1686               "Expression stack needs at least 2 items for DW_OP_xor.");
1687         return false;
1688       } else {
1689         tmp = stack.back();
1690         stack.pop_back();
1691         stack.back().ResolveValue(exe_ctx) =
1692             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1693       }
1694       break;
1695 
1696     // OPCODE: DW_OP_skip
1697     // OPERANDS: int16_t
1698     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1699     // signed integer constant. The 2-byte constant is the number of bytes of
1700     // the DWARF expression to skip forward or backward from the current
1701     // operation, beginning after the 2-byte constant.
1702     case DW_OP_skip: {
1703       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1704       lldb::offset_t new_offset = offset + skip_offset;
1705       if (opcodes.ValidOffset(new_offset))
1706         offset = new_offset;
1707       else {
1708         if (error_ptr)
1709           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1710         return false;
1711       }
1712     } break;
1713 
1714     // OPCODE: DW_OP_bra
1715     // OPERANDS: int16_t
1716     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1717     // signed integer constant. This operation pops the top of stack. If the
1718     // value popped is not the constant 0, the 2-byte constant operand is the
1719     // number of bytes of the DWARF expression to skip forward or backward from
1720     // the current operation, beginning after the 2-byte constant.
1721     case DW_OP_bra:
1722       if (stack.empty()) {
1723         if (error_ptr)
1724           error_ptr->SetErrorString(
1725               "Expression stack needs at least 1 item for DW_OP_bra.");
1726         return false;
1727       } else {
1728         tmp = stack.back();
1729         stack.pop_back();
1730         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1731         Scalar zero(0);
1732         if (tmp.ResolveValue(exe_ctx) != zero) {
1733           lldb::offset_t new_offset = offset + bra_offset;
1734           if (opcodes.ValidOffset(new_offset))
1735             offset = new_offset;
1736           else {
1737             if (error_ptr)
1738               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1739             return false;
1740           }
1741         }
1742       }
1743       break;
1744 
1745     // OPCODE: DW_OP_eq
1746     // OPERANDS: none
1747     // DESCRIPTION: pops the top two stack values, compares using the
1748     // equals (==) operator.
1749     // STACK RESULT: push the constant value 1 onto the stack if the result
1750     // of the operation is true or the constant value 0 if the result of the
1751     // operation is false.
1752     case DW_OP_eq:
1753       if (stack.size() < 2) {
1754         if (error_ptr)
1755           error_ptr->SetErrorString(
1756               "Expression stack needs at least 2 items for DW_OP_eq.");
1757         return false;
1758       } else {
1759         tmp = stack.back();
1760         stack.pop_back();
1761         stack.back().ResolveValue(exe_ctx) =
1762             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1763       }
1764       break;
1765 
1766     // OPCODE: DW_OP_ge
1767     // OPERANDS: none
1768     // DESCRIPTION: pops the top two stack values, compares using the
1769     // greater than or equal to (>=) operator.
1770     // STACK RESULT: push the constant value 1 onto the stack if the result
1771     // of the operation is true or the constant value 0 if the result of the
1772     // operation is false.
1773     case DW_OP_ge:
1774       if (stack.size() < 2) {
1775         if (error_ptr)
1776           error_ptr->SetErrorString(
1777               "Expression stack needs at least 2 items for DW_OP_ge.");
1778         return false;
1779       } else {
1780         tmp = stack.back();
1781         stack.pop_back();
1782         stack.back().ResolveValue(exe_ctx) =
1783             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1784       }
1785       break;
1786 
1787     // OPCODE: DW_OP_gt
1788     // OPERANDS: none
1789     // DESCRIPTION: pops the top two stack values, compares using the
1790     // greater than (>) operator.
1791     // STACK RESULT: push the constant value 1 onto the stack if the result
1792     // of the operation is true or the constant value 0 if the result of the
1793     // operation is false.
1794     case DW_OP_gt:
1795       if (stack.size() < 2) {
1796         if (error_ptr)
1797           error_ptr->SetErrorString(
1798               "Expression stack needs at least 2 items for DW_OP_gt.");
1799         return false;
1800       } else {
1801         tmp = stack.back();
1802         stack.pop_back();
1803         stack.back().ResolveValue(exe_ctx) =
1804             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1805       }
1806       break;
1807 
1808     // OPCODE: DW_OP_le
1809     // OPERANDS: none
1810     // DESCRIPTION: pops the top two stack values, compares using the
1811     // less than or equal to (<=) operator.
1812     // STACK RESULT: push the constant value 1 onto the stack if the result
1813     // of the operation is true or the constant value 0 if the result of the
1814     // operation is false.
1815     case DW_OP_le:
1816       if (stack.size() < 2) {
1817         if (error_ptr)
1818           error_ptr->SetErrorString(
1819               "Expression stack needs at least 2 items for DW_OP_le.");
1820         return false;
1821       } else {
1822         tmp = stack.back();
1823         stack.pop_back();
1824         stack.back().ResolveValue(exe_ctx) =
1825             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1826       }
1827       break;
1828 
1829     // OPCODE: DW_OP_lt
1830     // OPERANDS: none
1831     // DESCRIPTION: pops the top two stack values, compares using the
1832     // less than (<) operator.
1833     // STACK RESULT: push the constant value 1 onto the stack if the result
1834     // of the operation is true or the constant value 0 if the result of the
1835     // operation is false.
1836     case DW_OP_lt:
1837       if (stack.size() < 2) {
1838         if (error_ptr)
1839           error_ptr->SetErrorString(
1840               "Expression stack needs at least 2 items for DW_OP_lt.");
1841         return false;
1842       } else {
1843         tmp = stack.back();
1844         stack.pop_back();
1845         stack.back().ResolveValue(exe_ctx) =
1846             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1847       }
1848       break;
1849 
1850     // OPCODE: DW_OP_ne
1851     // OPERANDS: none
1852     // DESCRIPTION: pops the top two stack values, compares using the
1853     // not equal (!=) operator.
1854     // STACK RESULT: push the constant value 1 onto the stack if the result
1855     // of the operation is true or the constant value 0 if the result of the
1856     // operation is false.
1857     case DW_OP_ne:
1858       if (stack.size() < 2) {
1859         if (error_ptr)
1860           error_ptr->SetErrorString(
1861               "Expression stack needs at least 2 items for DW_OP_ne.");
1862         return false;
1863       } else {
1864         tmp = stack.back();
1865         stack.pop_back();
1866         stack.back().ResolveValue(exe_ctx) =
1867             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1868       }
1869       break;
1870 
1871     // OPCODE: DW_OP_litn
1872     // OPERANDS: none
1873     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1874     // STACK RESULT: push the unsigned literal constant value onto the top
1875     // of the stack.
1876     case DW_OP_lit0:
1877     case DW_OP_lit1:
1878     case DW_OP_lit2:
1879     case DW_OP_lit3:
1880     case DW_OP_lit4:
1881     case DW_OP_lit5:
1882     case DW_OP_lit6:
1883     case DW_OP_lit7:
1884     case DW_OP_lit8:
1885     case DW_OP_lit9:
1886     case DW_OP_lit10:
1887     case DW_OP_lit11:
1888     case DW_OP_lit12:
1889     case DW_OP_lit13:
1890     case DW_OP_lit14:
1891     case DW_OP_lit15:
1892     case DW_OP_lit16:
1893     case DW_OP_lit17:
1894     case DW_OP_lit18:
1895     case DW_OP_lit19:
1896     case DW_OP_lit20:
1897     case DW_OP_lit21:
1898     case DW_OP_lit22:
1899     case DW_OP_lit23:
1900     case DW_OP_lit24:
1901     case DW_OP_lit25:
1902     case DW_OP_lit26:
1903     case DW_OP_lit27:
1904     case DW_OP_lit28:
1905     case DW_OP_lit29:
1906     case DW_OP_lit30:
1907     case DW_OP_lit31:
1908       stack.push_back(to_generic(op - DW_OP_lit0));
1909       break;
1910 
1911     // OPCODE: DW_OP_regN
1912     // OPERANDS: none
1913     // DESCRIPTION: Push the value in register n on the top of the stack.
1914     case DW_OP_reg0:
1915     case DW_OP_reg1:
1916     case DW_OP_reg2:
1917     case DW_OP_reg3:
1918     case DW_OP_reg4:
1919     case DW_OP_reg5:
1920     case DW_OP_reg6:
1921     case DW_OP_reg7:
1922     case DW_OP_reg8:
1923     case DW_OP_reg9:
1924     case DW_OP_reg10:
1925     case DW_OP_reg11:
1926     case DW_OP_reg12:
1927     case DW_OP_reg13:
1928     case DW_OP_reg14:
1929     case DW_OP_reg15:
1930     case DW_OP_reg16:
1931     case DW_OP_reg17:
1932     case DW_OP_reg18:
1933     case DW_OP_reg19:
1934     case DW_OP_reg20:
1935     case DW_OP_reg21:
1936     case DW_OP_reg22:
1937     case DW_OP_reg23:
1938     case DW_OP_reg24:
1939     case DW_OP_reg25:
1940     case DW_OP_reg26:
1941     case DW_OP_reg27:
1942     case DW_OP_reg28:
1943     case DW_OP_reg29:
1944     case DW_OP_reg30:
1945     case DW_OP_reg31: {
1946       reg_num = op - DW_OP_reg0;
1947 
1948       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1949         stack.push_back(tmp);
1950       else
1951         return false;
1952     } break;
1953     // OPCODE: DW_OP_regx
1954     // OPERANDS:
1955     //      ULEB128 literal operand that encodes the register.
1956     // DESCRIPTION: Push the value in register on the top of the stack.
1957     case DW_OP_regx: {
1958       reg_num = opcodes.GetULEB128(&offset);
1959       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1960         stack.push_back(tmp);
1961       else
1962         return false;
1963     } break;
1964 
1965     // OPCODE: DW_OP_bregN
1966     // OPERANDS:
1967     //      SLEB128 offset from register N
1968     // DESCRIPTION: Value is in memory at the address specified by register
1969     // N plus an offset.
1970     case DW_OP_breg0:
1971     case DW_OP_breg1:
1972     case DW_OP_breg2:
1973     case DW_OP_breg3:
1974     case DW_OP_breg4:
1975     case DW_OP_breg5:
1976     case DW_OP_breg6:
1977     case DW_OP_breg7:
1978     case DW_OP_breg8:
1979     case DW_OP_breg9:
1980     case DW_OP_breg10:
1981     case DW_OP_breg11:
1982     case DW_OP_breg12:
1983     case DW_OP_breg13:
1984     case DW_OP_breg14:
1985     case DW_OP_breg15:
1986     case DW_OP_breg16:
1987     case DW_OP_breg17:
1988     case DW_OP_breg18:
1989     case DW_OP_breg19:
1990     case DW_OP_breg20:
1991     case DW_OP_breg21:
1992     case DW_OP_breg22:
1993     case DW_OP_breg23:
1994     case DW_OP_breg24:
1995     case DW_OP_breg25:
1996     case DW_OP_breg26:
1997     case DW_OP_breg27:
1998     case DW_OP_breg28:
1999     case DW_OP_breg29:
2000     case DW_OP_breg30:
2001     case DW_OP_breg31: {
2002       reg_num = op - DW_OP_breg0;
2003 
2004       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2005                                     tmp)) {
2006         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2007         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2008         tmp.ClearContext();
2009         stack.push_back(tmp);
2010         stack.back().SetValueType(Value::eValueTypeLoadAddress);
2011       } else
2012         return false;
2013     } break;
2014     // OPCODE: DW_OP_bregx
2015     // OPERANDS: 2
2016     //      ULEB128 literal operand that encodes the register.
2017     //      SLEB128 offset from register N
2018     // DESCRIPTION: Value is in memory at the address specified by register
2019     // N plus an offset.
2020     case DW_OP_bregx: {
2021       reg_num = opcodes.GetULEB128(&offset);
2022 
2023       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2024                                     tmp)) {
2025         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2026         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2027         tmp.ClearContext();
2028         stack.push_back(tmp);
2029         stack.back().SetValueType(Value::eValueTypeLoadAddress);
2030       } else
2031         return false;
2032     } break;
2033 
2034     case DW_OP_fbreg:
2035       if (exe_ctx) {
2036         if (frame) {
2037           Scalar value;
2038           if (frame->GetFrameBaseValue(value, error_ptr)) {
2039             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2040             value += fbreg_offset;
2041             stack.push_back(value);
2042             stack.back().SetValueType(Value::eValueTypeLoadAddress);
2043           } else
2044             return false;
2045         } else {
2046           if (error_ptr)
2047             error_ptr->SetErrorString(
2048                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2049           return false;
2050         }
2051       } else {
2052         if (error_ptr)
2053           error_ptr->SetErrorString(
2054               "NULL execution context for DW_OP_fbreg.\n");
2055         return false;
2056       }
2057 
2058       break;
2059 
2060     // OPCODE: DW_OP_nop
2061     // OPERANDS: none
2062     // DESCRIPTION: A place holder. It has no effect on the location stack
2063     // or any of its values.
2064     case DW_OP_nop:
2065       break;
2066 
2067     // OPCODE: DW_OP_piece
2068     // OPERANDS: 1
2069     //      ULEB128: byte size of the piece
2070     // DESCRIPTION: The operand describes the size in bytes of the piece of
2071     // the object referenced by the DWARF expression whose result is at the top
2072     // of the stack. If the piece is located in a register, but does not occupy
2073     // the entire register, the placement of the piece within that register is
2074     // defined by the ABI.
2075     //
2076     // Many compilers store a single variable in sets of registers, or store a
2077     // variable partially in memory and partially in registers. DW_OP_piece
2078     // provides a way of describing how large a part of a variable a particular
2079     // DWARF expression refers to.
2080     case DW_OP_piece: {
2081       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2082 
2083       if (piece_byte_size > 0) {
2084         Value curr_piece;
2085 
2086         if (stack.empty()) {
2087           // In a multi-piece expression, this means that the current piece is
2088           // not available. Fill with zeros for now by resizing the data and
2089           // appending it
2090           curr_piece.ResizeData(piece_byte_size);
2091           // Note that "0" is not a correct value for the unknown bits.
2092           // It would be better to also return a mask of valid bits together
2093           // with the expression result, so the debugger can print missing
2094           // members as "<optimized out>" or something.
2095           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2096           pieces.AppendDataToHostBuffer(curr_piece);
2097         } else {
2098           Status error;
2099           // Extract the current piece into "curr_piece"
2100           Value curr_piece_source_value(stack.back());
2101           stack.pop_back();
2102 
2103           const Value::ValueType curr_piece_source_value_type =
2104               curr_piece_source_value.GetValueType();
2105           switch (curr_piece_source_value_type) {
2106           case Value::eValueTypeLoadAddress:
2107             if (process) {
2108               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2109                 lldb::addr_t load_addr =
2110                     curr_piece_source_value.GetScalar().ULongLong(
2111                         LLDB_INVALID_ADDRESS);
2112                 if (process->ReadMemory(
2113                         load_addr, curr_piece.GetBuffer().GetBytes(),
2114                         piece_byte_size, error) != piece_byte_size) {
2115                   if (error_ptr)
2116                     error_ptr->SetErrorStringWithFormat(
2117                         "failed to read memory DW_OP_piece(%" PRIu64
2118                         ") from 0x%" PRIx64,
2119                         piece_byte_size, load_addr);
2120                   return false;
2121                 }
2122               } else {
2123                 if (error_ptr)
2124                   error_ptr->SetErrorStringWithFormat(
2125                       "failed to resize the piece memory buffer for "
2126                       "DW_OP_piece(%" PRIu64 ")",
2127                       piece_byte_size);
2128                 return false;
2129               }
2130             }
2131             break;
2132 
2133           case Value::eValueTypeFileAddress:
2134           case Value::eValueTypeHostAddress:
2135             if (error_ptr) {
2136               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2137                   LLDB_INVALID_ADDRESS);
2138               error_ptr->SetErrorStringWithFormat(
2139                   "failed to read memory DW_OP_piece(%" PRIu64
2140                   ") from %s address 0x%" PRIx64,
2141                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2142                                            Value::eValueTypeFileAddress
2143                                        ? "file"
2144                                        : "host",
2145                   addr);
2146             }
2147             return false;
2148 
2149           case Value::eValueTypeScalar: {
2150             uint32_t bit_size = piece_byte_size * 8;
2151             uint32_t bit_offset = 0;
2152             Scalar &scalar = curr_piece_source_value.GetScalar();
2153             if (!scalar.ExtractBitfield(
2154                     bit_size, bit_offset)) {
2155               if (error_ptr)
2156                 error_ptr->SetErrorStringWithFormat(
2157                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2158                     " byte scalar value.",
2159                     piece_byte_size,
2160                     (uint64_t)curr_piece_source_value.GetScalar()
2161                         .GetByteSize());
2162               return false;
2163             }
2164             // Create curr_piece with bit_size. By default Scalar
2165             // grows to the nearest host integer type.
2166             llvm::APInt fail_value(1, 0, false);
2167             llvm::APInt ap_int = scalar.UInt128(fail_value);
2168             assert(ap_int.getBitWidth() >= bit_size);
2169             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2170                                          ap_int.getNumWords()};
2171             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2172           } break;
2173           }
2174 
2175           // Check if this is the first piece?
2176           if (op_piece_offset == 0) {
2177             // This is the first piece, we should push it back onto the stack
2178             // so subsequent pieces will be able to access this piece and add
2179             // to it.
2180             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2181               if (error_ptr)
2182                 error_ptr->SetErrorString("failed to append piece data");
2183               return false;
2184             }
2185           } else {
2186             // If this is the second or later piece there should be a value on
2187             // the stack.
2188             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2189               if (error_ptr)
2190                 error_ptr->SetErrorStringWithFormat(
2191                     "DW_OP_piece for offset %" PRIu64
2192                     " but top of stack is of size %" PRIu64,
2193                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2194               return false;
2195             }
2196 
2197             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2198               if (error_ptr)
2199                 error_ptr->SetErrorString("failed to append piece data");
2200               return false;
2201             }
2202           }
2203         }
2204         op_piece_offset += piece_byte_size;
2205       }
2206     } break;
2207 
2208     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2209       if (stack.size() < 1) {
2210         if (error_ptr)
2211           error_ptr->SetErrorString(
2212               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2213         return false;
2214       } else {
2215         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2216         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2217         switch (stack.back().GetValueType()) {
2218         case Value::eValueTypeScalar: {
2219           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2220                                                         piece_bit_offset)) {
2221             if (error_ptr)
2222               error_ptr->SetErrorStringWithFormat(
2223                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2224                   " bit offset from a %" PRIu64 " bit scalar value.",
2225                   piece_bit_size, piece_bit_offset,
2226                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2227             return false;
2228           }
2229         } break;
2230 
2231         case Value::eValueTypeFileAddress:
2232         case Value::eValueTypeLoadAddress:
2233         case Value::eValueTypeHostAddress:
2234           if (error_ptr) {
2235             error_ptr->SetErrorStringWithFormat(
2236                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2237                 ", bit_offset = %" PRIu64 ") from an address value.",
2238                 piece_bit_size, piece_bit_offset);
2239           }
2240           return false;
2241         }
2242       }
2243       break;
2244 
2245     // OPCODE: DW_OP_implicit_value
2246     // OPERANDS: 2
2247     //      ULEB128  size of the value block in bytes
2248     //      uint8_t* block bytes encoding value in target's memory
2249     //      representation
2250     // DESCRIPTION: Value is immediately stored in block in the debug info with
2251     // the memory representation of the target.
2252     case DW_OP_implicit_value: {
2253       const uint32_t len = opcodes.GetULEB128(&offset);
2254       const void *data = opcodes.GetData(&offset, len);
2255 
2256       if (!data) {
2257         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2258         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2259                     DW_OP_value_to_name(op));
2260         return false;
2261       }
2262 
2263       Value result(data, len);
2264       stack.push_back(result);
2265       break;
2266     }
2267 
2268     // OPCODE: DW_OP_push_object_address
2269     // OPERANDS: none
2270     // DESCRIPTION: Pushes the address of the object currently being
2271     // evaluated as part of evaluation of a user presented expression. This
2272     // object may correspond to an independent variable described by its own
2273     // DIE or it may be a component of an array, structure, or class whose
2274     // address has been dynamically determined by an earlier step during user
2275     // expression evaluation.
2276     case DW_OP_push_object_address:
2277       if (object_address_ptr)
2278         stack.push_back(*object_address_ptr);
2279       else {
2280         if (error_ptr)
2281           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2282                                     "specifying an object address");
2283         return false;
2284       }
2285       break;
2286 
2287     // OPCODE: DW_OP_call2
2288     // OPERANDS:
2289     //      uint16_t compile unit relative offset of a DIE
2290     // DESCRIPTION: Performs subroutine calls during evaluation
2291     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2292     // debugging information entry in the current compilation unit.
2293     //
2294     // Operand interpretation is exactly like that for DW_FORM_ref2.
2295     //
2296     // This operation transfers control of DWARF expression evaluation to the
2297     // DW_AT_location attribute of the referenced DIE. If there is no such
2298     // attribute, then there is no effect. Execution of the DWARF expression of
2299     // a DW_AT_location attribute may add to and/or remove from values on the
2300     // stack. Execution returns to the point following the call when the end of
2301     // the attribute is reached. Values on the stack at the time of the call
2302     // may be used as parameters by the called expression and values left on
2303     // the stack by the called expression may be used as return values by prior
2304     // agreement between the calling and called expressions.
2305     case DW_OP_call2:
2306       if (error_ptr)
2307         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2308       return false;
2309     // OPCODE: DW_OP_call4
2310     // OPERANDS: 1
2311     //      uint32_t compile unit relative offset of a DIE
2312     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2313     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2314     // a debugging information entry in  the current compilation unit.
2315     //
2316     // Operand interpretation DW_OP_call4 is exactly like that for
2317     // DW_FORM_ref4.
2318     //
2319     // This operation transfers control of DWARF expression evaluation to the
2320     // DW_AT_location attribute of the referenced DIE. If there is no such
2321     // attribute, then there is no effect. Execution of the DWARF expression of
2322     // a DW_AT_location attribute may add to and/or remove from values on the
2323     // stack. Execution returns to the point following the call when the end of
2324     // the attribute is reached. Values on the stack at the time of the call
2325     // may be used as parameters by the called expression and values left on
2326     // the stack by the called expression may be used as return values by prior
2327     // agreement between the calling and called expressions.
2328     case DW_OP_call4:
2329       if (error_ptr)
2330         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2331       return false;
2332 
2333     // OPCODE: DW_OP_stack_value
2334     // OPERANDS: None
2335     // DESCRIPTION: Specifies that the object does not exist in memory but
2336     // rather is a constant value.  The value from the top of the stack is the
2337     // value to be used.  This is the actual object value and not the location.
2338     case DW_OP_stack_value:
2339       if (stack.empty()) {
2340         if (error_ptr)
2341           error_ptr->SetErrorString(
2342               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2343         return false;
2344       }
2345       stack.back().SetValueType(Value::eValueTypeScalar);
2346       break;
2347 
2348     // OPCODE: DW_OP_convert
2349     // OPERANDS: 1
2350     //      A ULEB128 that is either a DIE offset of a
2351     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2352     //
2353     // DESCRIPTION: Pop the top stack element, convert it to a
2354     // different type, and push the result.
2355     case DW_OP_convert: {
2356       if (stack.size() < 1) {
2357         if (error_ptr)
2358           error_ptr->SetErrorString(
2359               "Expression stack needs at least 1 item for DW_OP_convert.");
2360         return false;
2361       }
2362       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2363       uint64_t bit_size;
2364       bool sign;
2365       if (die_offset == 0) {
2366         // The generic type has the size of an address on the target
2367         // machine and an unspecified signedness. Scalar has no
2368         // "unspecified signedness", so we use unsigned types.
2369         if (!module_sp) {
2370           if (error_ptr)
2371             error_ptr->SetErrorString("No module");
2372           return false;
2373         }
2374         sign = false;
2375         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2376         if (!bit_size) {
2377           if (error_ptr)
2378             error_ptr->SetErrorString("unspecified architecture");
2379           return false;
2380         }
2381       } else {
2382         // Retrieve the type DIE that the value is being converted to.
2383         // FIXME: the constness has annoying ripple effects.
2384         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2385         if (!die) {
2386           if (error_ptr)
2387             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2388           return false;
2389         }
2390         uint64_t encoding =
2391             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2392         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2393         if (!bit_size)
2394           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2395         if (!bit_size) {
2396           if (error_ptr)
2397             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2398           return false;
2399         }
2400         switch (encoding) {
2401         case DW_ATE_signed:
2402         case DW_ATE_signed_char:
2403           sign = true;
2404           break;
2405         case DW_ATE_unsigned:
2406         case DW_ATE_unsigned_char:
2407           sign = false;
2408           break;
2409         default:
2410           if (error_ptr)
2411             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2412           return false;
2413         }
2414       }
2415       Scalar &top = stack.back().ResolveValue(exe_ctx);
2416       top.TruncOrExtendTo(bit_size, sign);
2417       break;
2418     }
2419 
2420     // OPCODE: DW_OP_call_frame_cfa
2421     // OPERANDS: None
2422     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2423     // the canonical frame address consistent with the call frame information
2424     // located in .debug_frame (or in the FDEs of the eh_frame section).
2425     case DW_OP_call_frame_cfa:
2426       if (frame) {
2427         // Note that we don't have to parse FDEs because this DWARF expression
2428         // is commonly evaluated with a valid stack frame.
2429         StackID id = frame->GetStackID();
2430         addr_t cfa = id.GetCallFrameAddress();
2431         if (cfa != LLDB_INVALID_ADDRESS) {
2432           stack.push_back(Scalar(cfa));
2433           stack.back().SetValueType(Value::eValueTypeLoadAddress);
2434         } else if (error_ptr)
2435           error_ptr->SetErrorString("Stack frame does not include a canonical "
2436                                     "frame address for DW_OP_call_frame_cfa "
2437                                     "opcode.");
2438       } else {
2439         if (error_ptr)
2440           error_ptr->SetErrorString("Invalid stack frame in context for "
2441                                     "DW_OP_call_frame_cfa opcode.");
2442         return false;
2443       }
2444       break;
2445 
2446     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2447     // opcode, DW_OP_GNU_push_tls_address)
2448     // OPERANDS: none
2449     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2450     // an address in the current thread's thread-local storage block, and
2451     // pushes it on the stack.
2452     case DW_OP_form_tls_address:
2453     case DW_OP_GNU_push_tls_address: {
2454       if (stack.size() < 1) {
2455         if (error_ptr) {
2456           if (op == DW_OP_form_tls_address)
2457             error_ptr->SetErrorString(
2458                 "DW_OP_form_tls_address needs an argument.");
2459           else
2460             error_ptr->SetErrorString(
2461                 "DW_OP_GNU_push_tls_address needs an argument.");
2462         }
2463         return false;
2464       }
2465 
2466       if (!exe_ctx || !module_sp) {
2467         if (error_ptr)
2468           error_ptr->SetErrorString("No context to evaluate TLS within.");
2469         return false;
2470       }
2471 
2472       Thread *thread = exe_ctx->GetThreadPtr();
2473       if (!thread) {
2474         if (error_ptr)
2475           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2476         return false;
2477       }
2478 
2479       // Lookup the TLS block address for this thread and module.
2480       const addr_t tls_file_addr =
2481           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2482       const addr_t tls_load_addr =
2483           thread->GetThreadLocalData(module_sp, tls_file_addr);
2484 
2485       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2486         if (error_ptr)
2487           error_ptr->SetErrorString(
2488               "No TLS data currently exists for this thread.");
2489         return false;
2490       }
2491 
2492       stack.back().GetScalar() = tls_load_addr;
2493       stack.back().SetValueType(Value::eValueTypeLoadAddress);
2494     } break;
2495 
2496     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2497     // OPERANDS: 1
2498     //      ULEB128: index to the .debug_addr section
2499     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2500     // section with the base address specified by the DW_AT_addr_base attribute
2501     // and the 0 based index is the ULEB128 encoded index.
2502     case DW_OP_addrx:
2503     case DW_OP_GNU_addr_index: {
2504       if (!dwarf_cu) {
2505         if (error_ptr)
2506           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2507                                     "compile unit being specified");
2508         return false;
2509       }
2510       uint64_t index = opcodes.GetULEB128(&offset);
2511       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2512       stack.push_back(Scalar(value));
2513       stack.back().SetValueType(Value::eValueTypeFileAddress);
2514     } break;
2515 
2516     // OPCODE: DW_OP_GNU_const_index
2517     // OPERANDS: 1
2518     //      ULEB128: index to the .debug_addr section
2519     // DESCRIPTION: Pushes an constant with the size of a machine address to
2520     // the stack from the .debug_addr section with the base address specified
2521     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2522     // encoded index.
2523     case DW_OP_GNU_const_index: {
2524       if (!dwarf_cu) {
2525         if (error_ptr)
2526           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2527                                     "compile unit being specified");
2528         return false;
2529       }
2530       uint64_t index = opcodes.GetULEB128(&offset);
2531       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2532       stack.push_back(Scalar(value));
2533     } break;
2534 
2535     case DW_OP_GNU_entry_value:
2536     case DW_OP_entry_value: {
2537       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2538                                       error_ptr, log)) {
2539         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2540                     DW_OP_value_to_name(op));
2541         return false;
2542       }
2543       break;
2544     }
2545 
2546     default:
2547       if (error_ptr)
2548         error_ptr->SetErrorStringWithFormatv(
2549             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2550       return false;
2551     }
2552   }
2553 
2554   if (stack.empty()) {
2555     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2556     // or DW_OP_bit_piece opcodes
2557     if (pieces.GetBuffer().GetByteSize()) {
2558       result = pieces;
2559     } else {
2560       if (error_ptr)
2561         error_ptr->SetErrorString("Stack empty after evaluation.");
2562       return false;
2563     }
2564   } else {
2565     if (log && log->GetVerbose()) {
2566       size_t count = stack.size();
2567       LLDB_LOGF(log, "Stack after operation has %" PRIu64 " values:",
2568                 (uint64_t)count);
2569       for (size_t i = 0; i < count; ++i) {
2570         StreamString new_value;
2571         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2572         stack[i].Dump(&new_value);
2573         LLDB_LOGF(log, "  %s", new_value.GetData());
2574       }
2575     }
2576     result = stack.back();
2577   }
2578   return true; // Return true on success
2579 }
2580 
2581 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
2582                                      ByteOrder byte_order, uint32_t addr_size) {
2583   auto buffer_sp =
2584       std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
2585   return DataExtractor(buffer_sp, byte_order, addr_size);
2586 }
2587 
2588 llvm::Optional<DataExtractor>
2589 DWARFExpression::GetLocationExpression(addr_t load_function_start,
2590                                        addr_t addr) const {
2591   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
2592 
2593   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2594       m_dwarf_cu->GetLocationTable(m_data);
2595   llvm::Optional<DataExtractor> result;
2596   uint64_t offset = 0;
2597   auto lookup_addr =
2598       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2599     addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
2600     if (address == LLDB_INVALID_ADDRESS)
2601       return llvm::None;
2602     return llvm::object::SectionedAddress{address};
2603   };
2604   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2605     if (!loc) {
2606       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2607       return true;
2608     }
2609     if (loc->Range) {
2610       // This relocates low_pc and high_pc by adding the difference between the
2611       // function file address, and the actual address it is loaded in memory.
2612       addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
2613       loc->Range->LowPC += slide;
2614       loc->Range->HighPC += slide;
2615 
2616       if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC)
2617         result = ToDataExtractor(*loc, m_data.GetByteOrder(),
2618                                  m_data.GetAddressByteSize());
2619     }
2620     return !result;
2621   };
2622   llvm::Error E = loctable_up->visitAbsoluteLocationList(
2623       offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
2624       lookup_addr, process_list);
2625   if (E)
2626     LLDB_LOG_ERROR(log, std::move(E), "{0}");
2627   return result;
2628 }
2629 
2630 bool DWARFExpression::MatchesOperand(StackFrame &frame,
2631                                      const Instruction::Operand &operand) {
2632   using namespace OperandMatchers;
2633 
2634   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2635   if (!reg_ctx_sp) {
2636     return false;
2637   }
2638 
2639   DataExtractor opcodes;
2640   if (IsLocationList()) {
2641     SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
2642     if (!sc.function)
2643       return false;
2644 
2645     addr_t load_function_start =
2646         sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
2647     if (load_function_start == LLDB_INVALID_ADDRESS)
2648       return false;
2649 
2650     addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
2651         frame.CalculateTarget().get());
2652 
2653     if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc))
2654       opcodes = std::move(*expr);
2655     else
2656       return false;
2657   } else
2658     opcodes = m_data;
2659 
2660 
2661   lldb::offset_t op_offset = 0;
2662   uint8_t opcode = opcodes.GetU8(&op_offset);
2663 
2664   if (opcode == DW_OP_fbreg) {
2665     int64_t offset = opcodes.GetSLEB128(&op_offset);
2666 
2667     DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
2668     if (!fb_expr) {
2669       return false;
2670     }
2671 
2672     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2673       return fb_expr->MatchesOperand(frame, child);
2674     };
2675 
2676     if (!offset &&
2677         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2678                      recurse)(operand)) {
2679       return true;
2680     }
2681 
2682     return MatchUnaryOp(
2683         MatchOpType(Instruction::Operand::Type::Dereference),
2684         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2685                       MatchImmOp(offset), recurse))(operand);
2686   }
2687 
2688   bool dereference = false;
2689   const RegisterInfo *reg = nullptr;
2690   int64_t offset = 0;
2691 
2692   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2693     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2694   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2695     offset = opcodes.GetSLEB128(&op_offset);
2696     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2697   } else if (opcode == DW_OP_regx) {
2698     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2699     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2700   } else if (opcode == DW_OP_bregx) {
2701     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2702     offset = opcodes.GetSLEB128(&op_offset);
2703     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2704   } else {
2705     return false;
2706   }
2707 
2708   if (!reg) {
2709     return false;
2710   }
2711 
2712   if (dereference) {
2713     if (!offset &&
2714         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2715                      MatchRegOp(*reg))(operand)) {
2716       return true;
2717     }
2718 
2719     return MatchUnaryOp(
2720         MatchOpType(Instruction::Operand::Type::Dereference),
2721         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2722                       MatchRegOp(*reg),
2723                       MatchImmOp(offset)))(operand);
2724   } else {
2725     return MatchRegOp(*reg)(operand);
2726   }
2727 }
2728 
2729