1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <cinttypes>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/LLDBLog.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/RegisterValue.h"
22 #include "lldb/Utility/Scalar.h"
23 #include "lldb/Utility/StreamString.h"
24 #include "lldb/Utility/VMRange.h"
25 
26 #include "lldb/Host/Host.h"
27 #include "lldb/Utility/Endian.h"
28 
29 #include "lldb/Symbol/Function.h"
30 
31 #include "lldb/Target/ABI.h"
32 #include "lldb/Target/ExecutionContext.h"
33 #include "lldb/Target/Process.h"
34 #include "lldb/Target/RegisterContext.h"
35 #include "lldb/Target/StackFrame.h"
36 #include "lldb/Target/StackID.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
40 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
41 
42 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
43 
44 using namespace lldb;
45 using namespace lldb_private;
46 using namespace lldb_private::dwarf;
47 
48 static lldb::addr_t
49 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
50                                 uint32_t index) {
51   uint32_t index_size = dwarf_cu->GetAddressByteSize();
52   dw_offset_t addr_base = dwarf_cu->GetAddrBase();
53   lldb::offset_t offset = addr_base + index * index_size;
54   const DWARFDataExtractor &data =
55       dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
56   if (data.ValidOffsetForDataOfSize(offset, index_size))
57     return data.GetMaxU64_unchecked(&offset, index_size);
58   return LLDB_INVALID_ADDRESS;
59 }
60 
61 // DWARFExpression constructor
62 DWARFExpression::DWARFExpression() : m_module_wp(), m_data() {}
63 
64 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
65                                  const DataExtractor &data,
66                                  const DWARFUnit *dwarf_cu)
67     : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu) {
68   if (module_sp)
69     m_module_wp = module_sp;
70 }
71 
72 // Destructor
73 DWARFExpression::~DWARFExpression() = default;
74 
75 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
76 
77 void DWARFExpression::UpdateValue(uint64_t const_value,
78                                   lldb::offset_t const_value_byte_size,
79                                   uint8_t addr_byte_size) {
80   if (!const_value_byte_size)
81     return;
82 
83   m_data.SetData(
84       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
85   m_data.SetByteOrder(endian::InlHostByteOrder());
86   m_data.SetAddressByteSize(addr_byte_size);
87 }
88 
89 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
90                                    lldb::DescriptionLevel level,
91                                    ABI *abi) const {
92   llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
93       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
94              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
95 }
96 
97 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
98                                                addr_t func_file_addr) {
99   m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
100 }
101 
102 int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
103 
104 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
105   m_reg_kind = reg_kind;
106 }
107 
108 bool DWARFExpression::IsLocationList() const {
109   return bool(m_loclist_addresses);
110 }
111 
112 namespace {
113 /// Implement enough of the DWARFObject interface in order to be able to call
114 /// DWARFLocationTable::dumpLocationList. We don't have access to a real
115 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
116 class DummyDWARFObject final: public llvm::DWARFObject {
117 public:
118   DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}
119 
120   bool isLittleEndian() const override { return IsLittleEndian; }
121 
122   llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
123                                             uint64_t Pos) const override {
124     return llvm::None;
125   }
126 private:
127   bool IsLittleEndian;
128 };
129 }
130 
131 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
132                                      ABI *abi) const {
133   if (IsLocationList()) {
134     // We have a location list
135     lldb::offset_t offset = 0;
136     std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
137         m_dwarf_cu->GetLocationTable(m_data);
138 
139     llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
140     llvm::DIDumpOptions DumpOpts;
141     DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) {
142       s->AsRawOstream() << "error: " << toString(std::move(E));
143     };
144     loctable_up->dumpLocationList(
145         &offset, s->AsRawOstream(),
146         llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
147         DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
148         DumpOpts, s->GetIndentLevel() + 2);
149   } else {
150     // We have a normal location that contains DW_OP location opcodes
151     DumpLocation(s, m_data, level, abi);
152   }
153 }
154 
155 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
156                                       lldb::RegisterKind reg_kind,
157                                       uint32_t reg_num, Status *error_ptr,
158                                       Value &value) {
159   if (reg_ctx == nullptr) {
160     if (error_ptr)
161       error_ptr->SetErrorString("No register context in frame.\n");
162   } else {
163     uint32_t native_reg =
164         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
165     if (native_reg == LLDB_INVALID_REGNUM) {
166       if (error_ptr)
167         error_ptr->SetErrorStringWithFormat("Unable to convert register "
168                                             "kind=%u reg_num=%u to a native "
169                                             "register number.\n",
170                                             reg_kind, reg_num);
171     } else {
172       const RegisterInfo *reg_info =
173           reg_ctx->GetRegisterInfoAtIndex(native_reg);
174       RegisterValue reg_value;
175       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
176         if (reg_value.GetScalarValue(value.GetScalar())) {
177           value.SetValueType(Value::ValueType::Scalar);
178           value.SetContext(Value::ContextType::RegisterInfo,
179                            const_cast<RegisterInfo *>(reg_info));
180           if (error_ptr)
181             error_ptr->Clear();
182           return true;
183         } else {
184           // If we get this error, then we need to implement a value buffer in
185           // the dwarf expression evaluation function...
186           if (error_ptr)
187             error_ptr->SetErrorStringWithFormat(
188                 "register %s can't be converted to a scalar value",
189                 reg_info->name);
190         }
191       } else {
192         if (error_ptr)
193           error_ptr->SetErrorStringWithFormat("register %s is not available",
194                                               reg_info->name);
195       }
196     }
197   }
198   return false;
199 }
200 
201 /// Return the length in bytes of the set of operands for \p op. No guarantees
202 /// are made on the state of \p data after this call.
203 static offset_t GetOpcodeDataSize(const DataExtractor &data,
204                                   const lldb::offset_t data_offset,
205                                   const uint8_t op) {
206   lldb::offset_t offset = data_offset;
207   switch (op) {
208   case DW_OP_addr:
209   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
210     return data.GetAddressByteSize();
211 
212   // Opcodes with no arguments
213   case DW_OP_deref:                // 0x06
214   case DW_OP_dup:                  // 0x12
215   case DW_OP_drop:                 // 0x13
216   case DW_OP_over:                 // 0x14
217   case DW_OP_swap:                 // 0x16
218   case DW_OP_rot:                  // 0x17
219   case DW_OP_xderef:               // 0x18
220   case DW_OP_abs:                  // 0x19
221   case DW_OP_and:                  // 0x1a
222   case DW_OP_div:                  // 0x1b
223   case DW_OP_minus:                // 0x1c
224   case DW_OP_mod:                  // 0x1d
225   case DW_OP_mul:                  // 0x1e
226   case DW_OP_neg:                  // 0x1f
227   case DW_OP_not:                  // 0x20
228   case DW_OP_or:                   // 0x21
229   case DW_OP_plus:                 // 0x22
230   case DW_OP_shl:                  // 0x24
231   case DW_OP_shr:                  // 0x25
232   case DW_OP_shra:                 // 0x26
233   case DW_OP_xor:                  // 0x27
234   case DW_OP_eq:                   // 0x29
235   case DW_OP_ge:                   // 0x2a
236   case DW_OP_gt:                   // 0x2b
237   case DW_OP_le:                   // 0x2c
238   case DW_OP_lt:                   // 0x2d
239   case DW_OP_ne:                   // 0x2e
240   case DW_OP_lit0:                 // 0x30
241   case DW_OP_lit1:                 // 0x31
242   case DW_OP_lit2:                 // 0x32
243   case DW_OP_lit3:                 // 0x33
244   case DW_OP_lit4:                 // 0x34
245   case DW_OP_lit5:                 // 0x35
246   case DW_OP_lit6:                 // 0x36
247   case DW_OP_lit7:                 // 0x37
248   case DW_OP_lit8:                 // 0x38
249   case DW_OP_lit9:                 // 0x39
250   case DW_OP_lit10:                // 0x3A
251   case DW_OP_lit11:                // 0x3B
252   case DW_OP_lit12:                // 0x3C
253   case DW_OP_lit13:                // 0x3D
254   case DW_OP_lit14:                // 0x3E
255   case DW_OP_lit15:                // 0x3F
256   case DW_OP_lit16:                // 0x40
257   case DW_OP_lit17:                // 0x41
258   case DW_OP_lit18:                // 0x42
259   case DW_OP_lit19:                // 0x43
260   case DW_OP_lit20:                // 0x44
261   case DW_OP_lit21:                // 0x45
262   case DW_OP_lit22:                // 0x46
263   case DW_OP_lit23:                // 0x47
264   case DW_OP_lit24:                // 0x48
265   case DW_OP_lit25:                // 0x49
266   case DW_OP_lit26:                // 0x4A
267   case DW_OP_lit27:                // 0x4B
268   case DW_OP_lit28:                // 0x4C
269   case DW_OP_lit29:                // 0x4D
270   case DW_OP_lit30:                // 0x4E
271   case DW_OP_lit31:                // 0x4f
272   case DW_OP_reg0:                 // 0x50
273   case DW_OP_reg1:                 // 0x51
274   case DW_OP_reg2:                 // 0x52
275   case DW_OP_reg3:                 // 0x53
276   case DW_OP_reg4:                 // 0x54
277   case DW_OP_reg5:                 // 0x55
278   case DW_OP_reg6:                 // 0x56
279   case DW_OP_reg7:                 // 0x57
280   case DW_OP_reg8:                 // 0x58
281   case DW_OP_reg9:                 // 0x59
282   case DW_OP_reg10:                // 0x5A
283   case DW_OP_reg11:                // 0x5B
284   case DW_OP_reg12:                // 0x5C
285   case DW_OP_reg13:                // 0x5D
286   case DW_OP_reg14:                // 0x5E
287   case DW_OP_reg15:                // 0x5F
288   case DW_OP_reg16:                // 0x60
289   case DW_OP_reg17:                // 0x61
290   case DW_OP_reg18:                // 0x62
291   case DW_OP_reg19:                // 0x63
292   case DW_OP_reg20:                // 0x64
293   case DW_OP_reg21:                // 0x65
294   case DW_OP_reg22:                // 0x66
295   case DW_OP_reg23:                // 0x67
296   case DW_OP_reg24:                // 0x68
297   case DW_OP_reg25:                // 0x69
298   case DW_OP_reg26:                // 0x6A
299   case DW_OP_reg27:                // 0x6B
300   case DW_OP_reg28:                // 0x6C
301   case DW_OP_reg29:                // 0x6D
302   case DW_OP_reg30:                // 0x6E
303   case DW_OP_reg31:                // 0x6F
304   case DW_OP_nop:                  // 0x96
305   case DW_OP_push_object_address:  // 0x97 DWARF3
306   case DW_OP_form_tls_address:     // 0x9b DWARF3
307   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
308   case DW_OP_stack_value:          // 0x9f DWARF4
309   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
310     return 0;
311 
312   // Opcodes with a single 1 byte arguments
313   case DW_OP_const1u:     // 0x08 1 1-byte constant
314   case DW_OP_const1s:     // 0x09 1 1-byte constant
315   case DW_OP_pick:        // 0x15 1 1-byte stack index
316   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
317   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
318     return 1;
319 
320   // Opcodes with a single 2 byte arguments
321   case DW_OP_const2u: // 0x0a 1 2-byte constant
322   case DW_OP_const2s: // 0x0b 1 2-byte constant
323   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
324   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
325   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
326     return 2;
327 
328   // Opcodes with a single 4 byte arguments
329   case DW_OP_const4u: // 0x0c 1 4-byte constant
330   case DW_OP_const4s: // 0x0d 1 4-byte constant
331   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
332     return 4;
333 
334   // Opcodes with a single 8 byte arguments
335   case DW_OP_const8u: // 0x0e 1 8-byte constant
336   case DW_OP_const8s: // 0x0f 1 8-byte constant
337     return 8;
338 
339   // All opcodes that have a single ULEB (signed or unsigned) argument
340   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
341   case DW_OP_constu:          // 0x10 1 ULEB128 constant
342   case DW_OP_consts:          // 0x11 1 SLEB128 constant
343   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
344   case DW_OP_breg0:           // 0x70 1 ULEB128 register
345   case DW_OP_breg1:           // 0x71 1 ULEB128 register
346   case DW_OP_breg2:           // 0x72 1 ULEB128 register
347   case DW_OP_breg3:           // 0x73 1 ULEB128 register
348   case DW_OP_breg4:           // 0x74 1 ULEB128 register
349   case DW_OP_breg5:           // 0x75 1 ULEB128 register
350   case DW_OP_breg6:           // 0x76 1 ULEB128 register
351   case DW_OP_breg7:           // 0x77 1 ULEB128 register
352   case DW_OP_breg8:           // 0x78 1 ULEB128 register
353   case DW_OP_breg9:           // 0x79 1 ULEB128 register
354   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
355   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
356   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
357   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
358   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
359   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
360   case DW_OP_breg16:          // 0x80 1 ULEB128 register
361   case DW_OP_breg17:          // 0x81 1 ULEB128 register
362   case DW_OP_breg18:          // 0x82 1 ULEB128 register
363   case DW_OP_breg19:          // 0x83 1 ULEB128 register
364   case DW_OP_breg20:          // 0x84 1 ULEB128 register
365   case DW_OP_breg21:          // 0x85 1 ULEB128 register
366   case DW_OP_breg22:          // 0x86 1 ULEB128 register
367   case DW_OP_breg23:          // 0x87 1 ULEB128 register
368   case DW_OP_breg24:          // 0x88 1 ULEB128 register
369   case DW_OP_breg25:          // 0x89 1 ULEB128 register
370   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
371   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
372   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
373   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
374   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
375   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
376   case DW_OP_regx:            // 0x90 1 ULEB128 register
377   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
378   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
379   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
380   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
381     data.Skip_LEB128(&offset);
382     return offset - data_offset;
383 
384   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
385   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
386   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
387     data.Skip_LEB128(&offset);
388     data.Skip_LEB128(&offset);
389     return offset - data_offset;
390 
391   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
392                              // (DWARF4)
393   {
394     uint64_t block_len = data.Skip_LEB128(&offset);
395     offset += block_len;
396     return offset - data_offset;
397   }
398 
399   case DW_OP_GNU_entry_value:
400   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
401   {
402     uint64_t subexpr_len = data.GetULEB128(&offset);
403     return (offset - data_offset) + subexpr_len;
404   }
405 
406   default:
407     break;
408   }
409   return LLDB_INVALID_OFFSET;
410 }
411 
412 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
413                                                      bool &error) const {
414   error = false;
415   if (IsLocationList())
416     return LLDB_INVALID_ADDRESS;
417   lldb::offset_t offset = 0;
418   uint32_t curr_op_addr_idx = 0;
419   while (m_data.ValidOffset(offset)) {
420     const uint8_t op = m_data.GetU8(&offset);
421 
422     if (op == DW_OP_addr) {
423       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
424       if (curr_op_addr_idx == op_addr_idx)
425         return op_file_addr;
426       else
427         ++curr_op_addr_idx;
428     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
429       uint64_t index = m_data.GetULEB128(&offset);
430       if (curr_op_addr_idx == op_addr_idx) {
431         if (!m_dwarf_cu) {
432           error = true;
433           break;
434         }
435 
436         return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
437       } else
438         ++curr_op_addr_idx;
439     } else {
440       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
441       if (op_arg_size == LLDB_INVALID_OFFSET) {
442         error = true;
443         break;
444       }
445       offset += op_arg_size;
446     }
447   }
448   return LLDB_INVALID_ADDRESS;
449 }
450 
451 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
452   if (IsLocationList())
453     return false;
454   lldb::offset_t offset = 0;
455   while (m_data.ValidOffset(offset)) {
456     const uint8_t op = m_data.GetU8(&offset);
457 
458     if (op == DW_OP_addr) {
459       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
460       // We have to make a copy of the data as we don't know if this data is
461       // from a read only memory mapped buffer, so we duplicate all of the data
462       // first, then modify it, and if all goes well, we then replace the data
463       // for this expression
464 
465       // Make en encoder that contains a copy of the location expression data
466       // so we can write the address into the buffer using the correct byte
467       // order.
468       DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
469                           m_data.GetByteOrder(), addr_byte_size);
470 
471       // Replace the address in the new buffer
472       if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
473         return false;
474 
475       // All went well, so now we can reset the data using a shared pointer to
476       // the heap data so "m_data" will now correctly manage the heap data.
477       m_data.SetData(encoder.GetDataBuffer());
478       return true;
479     } else {
480       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
481       if (op_arg_size == LLDB_INVALID_OFFSET)
482         break;
483       offset += op_arg_size;
484     }
485   }
486   return false;
487 }
488 
489 bool DWARFExpression::ContainsThreadLocalStorage() const {
490   // We are assuming for now that any thread local variable will not have a
491   // location list. This has been true for all thread local variables we have
492   // seen so far produced by any compiler.
493   if (IsLocationList())
494     return false;
495   lldb::offset_t offset = 0;
496   while (m_data.ValidOffset(offset)) {
497     const uint8_t op = m_data.GetU8(&offset);
498 
499     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
500       return true;
501     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
502     if (op_arg_size == LLDB_INVALID_OFFSET)
503       return false;
504     else
505       offset += op_arg_size;
506   }
507   return false;
508 }
509 bool DWARFExpression::LinkThreadLocalStorage(
510     lldb::ModuleSP new_module_sp,
511     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
512         &link_address_callback) {
513   // We are assuming for now that any thread local variable will not have a
514   // location list. This has been true for all thread local variables we have
515   // seen so far produced by any compiler.
516   if (IsLocationList())
517     return false;
518 
519   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
520   // We have to make a copy of the data as we don't know if this data is from a
521   // read only memory mapped buffer, so we duplicate all of the data first,
522   // then modify it, and if all goes well, we then replace the data for this
523   // expression.
524 
525   // Make en encoder that contains a copy of the location expression data so we
526   // can write the address into the buffer using the correct byte order.
527   DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
528                       m_data.GetByteOrder(), addr_byte_size);
529 
530   lldb::offset_t offset = 0;
531   lldb::offset_t const_offset = 0;
532   lldb::addr_t const_value = 0;
533   size_t const_byte_size = 0;
534   while (m_data.ValidOffset(offset)) {
535     const uint8_t op = m_data.GetU8(&offset);
536 
537     bool decoded_data = false;
538     switch (op) {
539     case DW_OP_const4u:
540       // Remember the const offset in case we later have a
541       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
542       const_offset = offset;
543       const_value = m_data.GetU32(&offset);
544       decoded_data = true;
545       const_byte_size = 4;
546       break;
547 
548     case DW_OP_const8u:
549       // Remember the const offset in case we later have a
550       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
551       const_offset = offset;
552       const_value = m_data.GetU64(&offset);
553       decoded_data = true;
554       const_byte_size = 8;
555       break;
556 
557     case DW_OP_form_tls_address:
558     case DW_OP_GNU_push_tls_address:
559       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
560       // by a file address on the stack. We assume that DW_OP_const4u or
561       // DW_OP_const8u is used for these values, and we check that the last
562       // opcode we got before either of these was DW_OP_const4u or
563       // DW_OP_const8u. If so, then we can link the value accodingly. For
564       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
565       // address of a structure that contains a function pointer, the pthread
566       // key and the offset into the data pointed to by the pthread key. So we
567       // must link this address and also set the module of this expression to
568       // the new_module_sp so we can resolve the file address correctly
569       if (const_byte_size > 0) {
570         lldb::addr_t linked_file_addr = link_address_callback(const_value);
571         if (linked_file_addr == LLDB_INVALID_ADDRESS)
572           return false;
573         // Replace the address in the new buffer
574         if (encoder.PutUnsigned(const_offset, const_byte_size,
575                                 linked_file_addr) == UINT32_MAX)
576           return false;
577       }
578       break;
579 
580     default:
581       const_offset = 0;
582       const_value = 0;
583       const_byte_size = 0;
584       break;
585     }
586 
587     if (!decoded_data) {
588       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
589       if (op_arg_size == LLDB_INVALID_OFFSET)
590         return false;
591       else
592         offset += op_arg_size;
593     }
594   }
595 
596   // If we linked the TLS address correctly, update the module so that when the
597   // expression is evaluated it can resolve the file address to a load address
598   // and read the
599   // TLS data
600   m_module_wp = new_module_sp;
601   m_data.SetData(encoder.GetDataBuffer());
602   return true;
603 }
604 
605 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
606                                                   lldb::addr_t addr) const {
607   if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
608     return false;
609 
610   if (!IsLocationList())
611     return false;
612 
613   return GetLocationExpression(func_load_addr, addr) != llvm::None;
614 }
615 
616 bool DWARFExpression::DumpLocationForAddress(Stream *s,
617                                              lldb::DescriptionLevel level,
618                                              addr_t func_load_addr,
619                                              addr_t address, ABI *abi) {
620   if (!IsLocationList()) {
621     DumpLocation(s, m_data, level, abi);
622     return true;
623   }
624   if (llvm::Optional<DataExtractor> expr =
625           GetLocationExpression(func_load_addr, address)) {
626     DumpLocation(s, *expr, level, abi);
627     return true;
628   }
629   return false;
630 }
631 
632 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
633                                        ExecutionContext *exe_ctx,
634                                        RegisterContext *reg_ctx,
635                                        const DataExtractor &opcodes,
636                                        lldb::offset_t &opcode_offset,
637                                        Status *error_ptr, Log *log) {
638   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
639   // function entry: this variable location is presumed to be optimized out at
640   // the current PC value.  The caller of the function may have call site
641   // information that describes an alternate location for the variable (e.g. a
642   // constant literal, or a spilled stack value) in the parent frame.
643   //
644   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
645   //
646   //     void child(int &sink, int x) {
647   //       ...
648   //       /* "x" gets optimized out. */
649   //
650   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
651   //       ++sink;
652   //     }
653   //
654   //     void parent() {
655   //       int sink;
656   //
657   //       /*
658   //        * The callsite information emitted here is:
659   //        *
660   //        * DW_TAG_call_site
661   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
662   //        *   DW_TAG_call_site_parameter (for "sink")
663   //        *     DW_AT_location   ($reg1)
664   //        *     DW_AT_call_value ($SP - 8)
665   //        *   DW_TAG_call_site_parameter (for "x")
666   //        *     DW_AT_location   ($reg2)
667   //        *     DW_AT_call_value ($literal 123)
668   //        *
669   //        * DW_TAG_call_site
670   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
671   //        *   ...
672   //        */
673   //       child(sink, 123);
674   //       child(sink, 456);
675   //     }
676   //
677   // When the program stops at "++sink" within `child`, the debugger determines
678   // the call site by analyzing the return address. Once the call site is found,
679   // the debugger determines which parameter is referenced by DW_OP_entry_value
680   // and evaluates the corresponding location for that parameter in `parent`.
681 
682   // 1. Find the function which pushed the current frame onto the stack.
683   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
684     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
685     return false;
686   }
687 
688   StackFrame *current_frame = exe_ctx->GetFramePtr();
689   Thread *thread = exe_ctx->GetThreadPtr();
690   if (!current_frame || !thread) {
691     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
692     return false;
693   }
694 
695   Target &target = exe_ctx->GetTargetRef();
696   StackFrameSP parent_frame = nullptr;
697   addr_t return_pc = LLDB_INVALID_ADDRESS;
698   uint32_t current_frame_idx = current_frame->GetFrameIndex();
699   uint32_t num_frames = thread->GetStackFrameCount();
700   for (uint32_t parent_frame_idx = current_frame_idx + 1;
701        parent_frame_idx < num_frames; ++parent_frame_idx) {
702     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
703     // Require a valid sequence of frames.
704     if (!parent_frame)
705       break;
706 
707     // Record the first valid return address, even if this is an inlined frame,
708     // in order to look up the associated call edge in the first non-inlined
709     // parent frame.
710     if (return_pc == LLDB_INVALID_ADDRESS) {
711       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
712       LLDB_LOG(log,
713                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
714                return_pc);
715     }
716 
717     // If we've found an inlined frame, skip it (these have no call site
718     // parameters).
719     if (parent_frame->IsInlined())
720       continue;
721 
722     // We've found the first non-inlined parent frame.
723     break;
724   }
725   if (!parent_frame || !parent_frame->GetRegisterContext()) {
726     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
727     return false;
728   }
729 
730   Function *parent_func =
731       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
732   if (!parent_func) {
733     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
734     return false;
735   }
736 
737   // 2. Find the call edge in the parent function responsible for creating the
738   //    current activation.
739   Function *current_func =
740       current_frame->GetSymbolContext(eSymbolContextFunction).function;
741   if (!current_func) {
742     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
743     return false;
744   }
745 
746   CallEdge *call_edge = nullptr;
747   ModuleList &modlist = target.GetImages();
748   ExecutionContext parent_exe_ctx = *exe_ctx;
749   parent_exe_ctx.SetFrameSP(parent_frame);
750   if (!parent_frame->IsArtificial()) {
751     // If the parent frame is not artificial, the current activation may be
752     // produced by an ambiguous tail call. In this case, refuse to proceed.
753     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
754     if (!call_edge) {
755       LLDB_LOG(log,
756                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
757                "in parent frame {1}",
758                return_pc, parent_func->GetName());
759       return false;
760     }
761     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
762     if (callee_func != current_func) {
763       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
764                     "can't find real parent frame");
765       return false;
766     }
767   } else {
768     // The StackFrameList solver machinery has deduced that an unambiguous tail
769     // call sequence that produced the current activation.  The first edge in
770     // the parent that points to the current function must be valid.
771     for (auto &edge : parent_func->GetTailCallingEdges()) {
772       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
773         call_edge = edge.get();
774         break;
775       }
776     }
777   }
778   if (!call_edge) {
779     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
780                   "to current function");
781     return false;
782   }
783 
784   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
785   //    available call site parameters. If found, evaluate the corresponding
786   //    parameter in the context of the parent frame.
787   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
788   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
789   if (!subexpr_data) {
790     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
791     return false;
792   }
793 
794   const CallSiteParameter *matched_param = nullptr;
795   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
796     DataExtractor param_subexpr_extractor;
797     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
798       continue;
799     lldb::offset_t param_subexpr_offset = 0;
800     const void *param_subexpr_data =
801         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
802     if (!param_subexpr_data ||
803         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
804       continue;
805 
806     // At this point, the DW_OP_entry_value sub-expression and the callee-side
807     // expression in the call site parameter are known to have the same length.
808     // Check whether they are equal.
809     //
810     // Note that an equality check is sufficient: the contents of the
811     // DW_OP_entry_value subexpression are only used to identify the right call
812     // site parameter in the parent, and do not require any special handling.
813     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
814       matched_param = &param;
815       break;
816     }
817   }
818   if (!matched_param) {
819     LLDB_LOG(log,
820              "Evaluate_DW_OP_entry_value: no matching call site param found");
821     return false;
822   }
823 
824   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
825   // subexpresion whenever llvm does.
826   Value result;
827   const DWARFExpression &param_expr = matched_param->LocationInCaller;
828   if (!param_expr.Evaluate(&parent_exe_ctx,
829                            parent_frame->GetRegisterContext().get(),
830                            /*loclist_base_load_addr=*/LLDB_INVALID_ADDRESS,
831                            /*initial_value_ptr=*/nullptr,
832                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
833     LLDB_LOG(log,
834              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
835     return false;
836   }
837 
838   stack.push_back(result);
839   return true;
840 }
841 
842 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
843                                lldb::addr_t loclist_base_load_addr,
844                                const Value *initial_value_ptr,
845                                const Value *object_address_ptr, Value &result,
846                                Status *error_ptr) const {
847   ExecutionContext exe_ctx(exe_scope);
848   return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
849                   object_address_ptr, result, error_ptr);
850 }
851 
852 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
853                                RegisterContext *reg_ctx,
854                                lldb::addr_t func_load_addr,
855                                const Value *initial_value_ptr,
856                                const Value *object_address_ptr, Value &result,
857                                Status *error_ptr) const {
858   ModuleSP module_sp = m_module_wp.lock();
859 
860   if (IsLocationList()) {
861     addr_t pc;
862     StackFrame *frame = nullptr;
863     if (reg_ctx)
864       pc = reg_ctx->GetPC();
865     else {
866       frame = exe_ctx->GetFramePtr();
867       if (!frame)
868         return false;
869       RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
870       if (!reg_ctx_sp)
871         return false;
872       pc = reg_ctx_sp->GetPC();
873     }
874 
875     if (func_load_addr != LLDB_INVALID_ADDRESS) {
876       if (pc == LLDB_INVALID_ADDRESS) {
877         if (error_ptr)
878           error_ptr->SetErrorString("Invalid PC in frame.");
879         return false;
880       }
881 
882       if (llvm::Optional<DataExtractor> expr =
883               GetLocationExpression(func_load_addr, pc)) {
884         return DWARFExpression::Evaluate(
885             exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
886             initial_value_ptr, object_address_ptr, result, error_ptr);
887       }
888     }
889     if (error_ptr)
890       error_ptr->SetErrorString("variable not available");
891     return false;
892   }
893 
894   // Not a location list, just a single expression.
895   return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
896                                    m_dwarf_cu, m_reg_kind, initial_value_ptr,
897                                    object_address_ptr, result, error_ptr);
898 }
899 
900 namespace {
901 /// The location description kinds described by the DWARF v5
902 /// specification.  Composite locations are handled out-of-band and
903 /// thus aren't part of the enum.
904 enum LocationDescriptionKind {
905   Empty,
906   Memory,
907   Register,
908   Implicit
909   /* Composite*/
910 };
911 /// Adjust value's ValueType according to the kind of location description.
912 void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
913                                             LocationDescriptionKind kind,
914                                             Value *value = nullptr) {
915   // Note that this function is conflating DWARF expressions with
916   // DWARF location descriptions. Perhaps it would be better to define
917   // a wrapper for DWARFExpresssion::Eval() that deals with DWARF
918   // location descriptions (which consist of one or more DWARF
919   // expressions). But doing this would mean we'd also need factor the
920   // handling of DW_OP_(bit_)piece out of this function.
921   if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
922     const char *log_msg = "DWARF location description kind: %s";
923     switch (kind) {
924     case Empty:
925       LLDB_LOGF(log, log_msg, "Empty");
926       break;
927     case Memory:
928       LLDB_LOGF(log, log_msg, "Memory");
929       if (value->GetValueType() == Value::ValueType::Scalar)
930         value->SetValueType(Value::ValueType::LoadAddress);
931       break;
932     case Register:
933       LLDB_LOGF(log, log_msg, "Register");
934       value->SetValueType(Value::ValueType::Scalar);
935       break;
936     case Implicit:
937       LLDB_LOGF(log, log_msg, "Implicit");
938       if (value->GetValueType() == Value::ValueType::LoadAddress)
939         value->SetValueType(Value::ValueType::Scalar);
940       break;
941     }
942   }
943 }
944 } // namespace
945 
946 /// Helper function to move common code used to resolve a file address and turn
947 /// into a load address.
948 ///
949 /// \param exe_ctx Pointer to the execution context
950 /// \param module_sp shared_ptr contains the module if we have one
951 /// \param error_ptr pointer to Status object if we have one
952 /// \param dw_op_type C-style string used to vary the error output
953 /// \param file_addr the file address we are trying to resolve and turn into a
954 ///                  load address
955 /// \param so_addr out parameter, will be set to load addresss or section offset
956 /// \param check_sectionoffset bool which determines if having a section offset
957 ///                            but not a load address is considerd a success
958 /// \returns llvm::Optional containing the load address if resolving and getting
959 ///          the load address succeed or an empty Optinal otherwise. If
960 ///          check_sectionoffset is true we consider LLDB_INVALID_ADDRESS a
961 ///          success if so_addr.IsSectionOffset() is true.
962 static llvm::Optional<lldb::addr_t>
963 ResolveAndLoadFileAddress(ExecutionContext *exe_ctx, lldb::ModuleSP module_sp,
964                           Status *error_ptr, const char *dw_op_type,
965                           lldb::addr_t file_addr, Address &so_addr,
966                           bool check_sectionoffset = false) {
967   if (!module_sp) {
968     if (error_ptr)
969       error_ptr->SetErrorStringWithFormat(
970           "need module to resolve file address for %s", dw_op_type);
971     return {};
972   }
973 
974   if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
975     if (error_ptr)
976       error_ptr->SetErrorString("failed to resolve file address in module");
977     return {};
978   }
979 
980   addr_t load_addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
981 
982   if (load_addr == LLDB_INVALID_ADDRESS &&
983       (check_sectionoffset && !so_addr.IsSectionOffset())) {
984     if (error_ptr)
985       error_ptr->SetErrorString("failed to resolve load address");
986     return {};
987   }
988 
989   return load_addr;
990 }
991 
992 /// Helper function to move common code used to load sized data from a uint8_t
993 /// buffer.
994 ///
995 /// \param addr_bytes uint8_t buffer containg raw data
996 /// \param size_addr_bytes how large is the underlying raw data
997 /// \param byte_order what is the byter order of the underlyig data
998 /// \param size How much of the underlying data we want to use
999 /// \return The underlying data converted into a Scalar
1000 static Scalar DerefSizeExtractDataHelper(uint8_t *addr_bytes,
1001                                          size_t size_addr_bytes,
1002                                          ByteOrder byte_order, size_t size) {
1003   DataExtractor addr_data(addr_bytes, size_addr_bytes, byte_order, size);
1004 
1005   lldb::offset_t addr_data_offset = 0;
1006   switch (size) {
1007   case 1:
1008     return addr_data.GetU8(&addr_data_offset);
1009   case 2:
1010     return addr_data.GetU16(&addr_data_offset);
1011   case 4:
1012     return addr_data.GetU32(&addr_data_offset);
1013   case 8:
1014     return addr_data.GetU64(&addr_data_offset);
1015   default:
1016     return addr_data.GetAddress(&addr_data_offset);
1017   }
1018 }
1019 
1020 bool DWARFExpression::Evaluate(
1021     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
1022     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
1023     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
1024     const Value *initial_value_ptr, const Value *object_address_ptr,
1025     Value &result, Status *error_ptr) {
1026 
1027   if (opcodes.GetByteSize() == 0) {
1028     if (error_ptr)
1029       error_ptr->SetErrorString(
1030           "no location, value may have been optimized out");
1031     return false;
1032   }
1033   std::vector<Value> stack;
1034 
1035   Process *process = nullptr;
1036   StackFrame *frame = nullptr;
1037 
1038   if (exe_ctx) {
1039     process = exe_ctx->GetProcessPtr();
1040     frame = exe_ctx->GetFramePtr();
1041   }
1042   if (reg_ctx == nullptr && frame)
1043     reg_ctx = frame->GetRegisterContext().get();
1044 
1045   if (initial_value_ptr)
1046     stack.push_back(*initial_value_ptr);
1047 
1048   lldb::offset_t offset = 0;
1049   Value tmp;
1050   uint32_t reg_num;
1051 
1052   /// Insertion point for evaluating multi-piece expression.
1053   uint64_t op_piece_offset = 0;
1054   Value pieces; // Used for DW_OP_piece
1055 
1056   Log *log = GetLog(LLDBLog::Expressions);
1057   // A generic type is "an integral type that has the size of an address and an
1058   // unspecified signedness". For now, just use the signedness of the operand.
1059   // TODO: Implement a real typed stack, and store the genericness of the value
1060   // there.
1061   auto to_generic = [&](auto v) {
1062     bool is_signed = std::is_signed<decltype(v)>::value;
1063     return Scalar(llvm::APSInt(
1064         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
1065         !is_signed));
1066   };
1067 
1068   // The default kind is a memory location. This is updated by any
1069   // operation that changes this, such as DW_OP_stack_value, and reset
1070   // by composition operations like DW_OP_piece.
1071   LocationDescriptionKind dwarf4_location_description_kind = Memory;
1072 
1073   while (opcodes.ValidOffset(offset)) {
1074     const lldb::offset_t op_offset = offset;
1075     const uint8_t op = opcodes.GetU8(&offset);
1076 
1077     if (log && log->GetVerbose()) {
1078       size_t count = stack.size();
1079       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
1080                 (uint64_t)count);
1081       for (size_t i = 0; i < count; ++i) {
1082         StreamString new_value;
1083         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
1084         stack[i].Dump(&new_value);
1085         LLDB_LOGF(log, "  %s", new_value.GetData());
1086       }
1087       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
1088                 DW_OP_value_to_name(op));
1089     }
1090 
1091     switch (op) {
1092     // The DW_OP_addr operation has a single operand that encodes a machine
1093     // address and whose size is the size of an address on the target machine.
1094     case DW_OP_addr:
1095       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
1096       stack.back().SetValueType(Value::ValueType::FileAddress);
1097       // Convert the file address to a load address, so subsequent
1098       // DWARF operators can operate on it.
1099       if (frame)
1100         stack.back().ConvertToLoadAddress(module_sp.get(),
1101                                           frame->CalculateTarget().get());
1102 
1103       break;
1104 
1105     // The DW_OP_addr_sect_offset4 is used for any location expressions in
1106     // shared libraries that have a location like:
1107     //  DW_OP_addr(0x1000)
1108     // If this address resides in a shared library, then this virtual address
1109     // won't make sense when it is evaluated in the context of a running
1110     // process where shared libraries have been slid. To account for this, this
1111     // new address type where we can store the section pointer and a 4 byte
1112     // offset.
1113     //      case DW_OP_addr_sect_offset4:
1114     //          {
1115     //              result_type = eResultTypeFileAddress;
1116     //              lldb::Section *sect = (lldb::Section
1117     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
1118     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1119     //
1120     //              Address so_addr (sect, sect_offset);
1121     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
1122     //              if (load_addr != LLDB_INVALID_ADDRESS)
1123     //              {
1124     //                  // We successfully resolve a file address to a load
1125     //                  // address.
1126     //                  stack.push_back(load_addr);
1127     //                  break;
1128     //              }
1129     //              else
1130     //              {
1131     //                  // We were able
1132     //                  if (error_ptr)
1133     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
1134     //                      %s is not currently loaded.\n",
1135     //                      sect->GetName().AsCString(),
1136     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1137     //                  return false;
1138     //              }
1139     //          }
1140     //          break;
1141 
1142     // OPCODE: DW_OP_deref
1143     // OPERANDS: none
1144     // DESCRIPTION: Pops the top stack entry and treats it as an address.
1145     // The value retrieved from that address is pushed. The size of the data
1146     // retrieved from the dereferenced address is the size of an address on the
1147     // target machine.
1148     case DW_OP_deref: {
1149       if (stack.empty()) {
1150         if (error_ptr)
1151           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1152         return false;
1153       }
1154       Value::ValueType value_type = stack.back().GetValueType();
1155       switch (value_type) {
1156       case Value::ValueType::HostAddress: {
1157         void *src = (void *)stack.back().GetScalar().ULongLong();
1158         intptr_t ptr;
1159         ::memcpy(&ptr, src, sizeof(void *));
1160         stack.back().GetScalar() = ptr;
1161         stack.back().ClearContext();
1162       } break;
1163       case Value::ValueType::FileAddress: {
1164         auto file_addr = stack.back().GetScalar().ULongLong(
1165             LLDB_INVALID_ADDRESS);
1166 
1167         Address so_addr;
1168         auto maybe_load_addr = ResolveAndLoadFileAddress(
1169             exe_ctx, module_sp, error_ptr, "DW_OP_deref", file_addr, so_addr);
1170 
1171         if (!maybe_load_addr)
1172           return false;
1173 
1174         stack.back().GetScalar() = *maybe_load_addr;
1175         // Fall through to load address promotion code below.
1176       } LLVM_FALLTHROUGH;
1177       case Value::ValueType::Scalar:
1178         // Promote Scalar to LoadAddress and fall through.
1179         stack.back().SetValueType(Value::ValueType::LoadAddress);
1180         LLVM_FALLTHROUGH;
1181       case Value::ValueType::LoadAddress:
1182         if (exe_ctx) {
1183           if (process) {
1184             lldb::addr_t pointer_addr =
1185                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1186             Status error;
1187             lldb::addr_t pointer_value =
1188                 process->ReadPointerFromMemory(pointer_addr, error);
1189             if (pointer_value != LLDB_INVALID_ADDRESS) {
1190               if (ABISP abi_sp = process->GetABI())
1191                 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1192               stack.back().GetScalar() = pointer_value;
1193               stack.back().ClearContext();
1194             } else {
1195               if (error_ptr)
1196                 error_ptr->SetErrorStringWithFormat(
1197                     "Failed to dereference pointer from 0x%" PRIx64
1198                     " for DW_OP_deref: %s\n",
1199                     pointer_addr, error.AsCString());
1200               return false;
1201             }
1202           } else {
1203             if (error_ptr)
1204               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1205             return false;
1206           }
1207         } else {
1208           if (error_ptr)
1209             error_ptr->SetErrorString(
1210                 "NULL execution context for DW_OP_deref.\n");
1211           return false;
1212         }
1213         break;
1214 
1215       case Value::ValueType::Invalid:
1216         if (error_ptr)
1217           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1218         return false;
1219       }
1220 
1221     } break;
1222 
1223     // OPCODE: DW_OP_deref_size
1224     // OPERANDS: 1
1225     //  1 - uint8_t that specifies the size of the data to dereference.
1226     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1227     // stack entry and treats it as an address. The value retrieved from that
1228     // address is pushed. In the DW_OP_deref_size operation, however, the size
1229     // in bytes of the data retrieved from the dereferenced address is
1230     // specified by the single operand. This operand is a 1-byte unsigned
1231     // integral constant whose value may not be larger than the size of an
1232     // address on the target machine. The data retrieved is zero extended to
1233     // the size of an address on the target machine before being pushed on the
1234     // expression stack.
1235     case DW_OP_deref_size: {
1236       if (stack.empty()) {
1237         if (error_ptr)
1238           error_ptr->SetErrorString(
1239               "Expression stack empty for DW_OP_deref_size.");
1240         return false;
1241       }
1242       uint8_t size = opcodes.GetU8(&offset);
1243       Value::ValueType value_type = stack.back().GetValueType();
1244       switch (value_type) {
1245       case Value::ValueType::HostAddress: {
1246         void *src = (void *)stack.back().GetScalar().ULongLong();
1247         intptr_t ptr;
1248         ::memcpy(&ptr, src, sizeof(void *));
1249         // I can't decide whether the size operand should apply to the bytes in
1250         // their
1251         // lldb-host endianness or the target endianness.. I doubt this'll ever
1252         // come up but I'll opt for assuming big endian regardless.
1253         switch (size) {
1254         case 1:
1255           ptr = ptr & 0xff;
1256           break;
1257         case 2:
1258           ptr = ptr & 0xffff;
1259           break;
1260         case 3:
1261           ptr = ptr & 0xffffff;
1262           break;
1263         case 4:
1264           ptr = ptr & 0xffffffff;
1265           break;
1266         // the casts are added to work around the case where intptr_t is a 32
1267         // bit quantity;
1268         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1269         // program.
1270         case 5:
1271           ptr = (intptr_t)ptr & 0xffffffffffULL;
1272           break;
1273         case 6:
1274           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1275           break;
1276         case 7:
1277           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1278           break;
1279         default:
1280           break;
1281         }
1282         stack.back().GetScalar() = ptr;
1283         stack.back().ClearContext();
1284       } break;
1285       case Value::ValueType::FileAddress: {
1286         auto file_addr =
1287             stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1288         Address so_addr;
1289         auto maybe_load_addr =
1290             ResolveAndLoadFileAddress(exe_ctx, module_sp, error_ptr,
1291                                       "DW_OP_deref_size", file_addr, so_addr,
1292                                       /*check_sectionoffset=*/true);
1293 
1294         if (!maybe_load_addr)
1295           return false;
1296 
1297         addr_t load_addr = *maybe_load_addr;
1298 
1299         if (load_addr == LLDB_INVALID_ADDRESS && so_addr.IsSectionOffset()) {
1300           uint8_t addr_bytes[8];
1301           Status error;
1302 
1303           if (exe_ctx->GetTargetRef().ReadMemory(
1304                   so_addr, &addr_bytes, size, error,
1305                   /*force_live_memory=*/false) == size) {
1306             ObjectFile *objfile = module_sp->GetObjectFile();
1307 
1308             stack.back().GetScalar() = DerefSizeExtractDataHelper(
1309                 addr_bytes, size, objfile->GetByteOrder(), size);
1310             stack.back().ClearContext();
1311             break;
1312           } else {
1313             if (error_ptr)
1314               error_ptr->SetErrorStringWithFormat(
1315                   "Failed to dereference pointer for for DW_OP_deref_size: "
1316                   "%s\n",
1317                   error.AsCString());
1318             return false;
1319           }
1320         }
1321         stack.back().GetScalar() = load_addr;
1322         // Fall through to load address promotion code below.
1323       }
1324 
1325         LLVM_FALLTHROUGH;
1326       case Value::ValueType::Scalar:
1327       case Value::ValueType::LoadAddress:
1328         if (exe_ctx) {
1329           if (process) {
1330             lldb::addr_t pointer_addr =
1331                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1332             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1333             Status error;
1334             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1335                 size) {
1336 
1337               stack.back().GetScalar() =
1338                   DerefSizeExtractDataHelper(addr_bytes, sizeof(addr_bytes),
1339                                              process->GetByteOrder(), size);
1340               stack.back().ClearContext();
1341             } else {
1342               if (error_ptr)
1343                 error_ptr->SetErrorStringWithFormat(
1344                     "Failed to dereference pointer from 0x%" PRIx64
1345                     " for DW_OP_deref: %s\n",
1346                     pointer_addr, error.AsCString());
1347               return false;
1348             }
1349           } else {
1350             if (error_ptr)
1351               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1352             return false;
1353           }
1354         } else {
1355           if (error_ptr)
1356             error_ptr->SetErrorString(
1357                 "NULL execution context for DW_OP_deref_size.\n");
1358           return false;
1359         }
1360         break;
1361 
1362       case Value::ValueType::Invalid:
1363         if (error_ptr)
1364           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1365         return false;
1366       }
1367 
1368     } break;
1369 
1370     // OPCODE: DW_OP_xderef_size
1371     // OPERANDS: 1
1372     //  1 - uint8_t that specifies the size of the data to dereference.
1373     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1374     // the top of the stack is treated as an address. The second stack entry is
1375     // treated as an "address space identifier" for those architectures that
1376     // support multiple address spaces. The top two stack elements are popped,
1377     // a data item is retrieved through an implementation-defined address
1378     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1379     // operation, however, the size in bytes of the data retrieved from the
1380     // dereferenced address is specified by the single operand. This operand is
1381     // a 1-byte unsigned integral constant whose value may not be larger than
1382     // the size of an address on the target machine. The data retrieved is zero
1383     // extended to the size of an address on the target machine before being
1384     // pushed on the expression stack.
1385     case DW_OP_xderef_size:
1386       if (error_ptr)
1387         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1388       return false;
1389     // OPCODE: DW_OP_xderef
1390     // OPERANDS: none
1391     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1392     // the top of the stack is treated as an address. The second stack entry is
1393     // treated as an "address space identifier" for those architectures that
1394     // support multiple address spaces. The top two stack elements are popped,
1395     // a data item is retrieved through an implementation-defined address
1396     // calculation and pushed as the new stack top. The size of the data
1397     // retrieved from the dereferenced address is the size of an address on the
1398     // target machine.
1399     case DW_OP_xderef:
1400       if (error_ptr)
1401         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1402       return false;
1403 
1404     // All DW_OP_constXXX opcodes have a single operand as noted below:
1405     //
1406     // Opcode           Operand 1
1407     // DW_OP_const1u    1-byte unsigned integer constant
1408     // DW_OP_const1s    1-byte signed integer constant
1409     // DW_OP_const2u    2-byte unsigned integer constant
1410     // DW_OP_const2s    2-byte signed integer constant
1411     // DW_OP_const4u    4-byte unsigned integer constant
1412     // DW_OP_const4s    4-byte signed integer constant
1413     // DW_OP_const8u    8-byte unsigned integer constant
1414     // DW_OP_const8s    8-byte signed integer constant
1415     // DW_OP_constu     unsigned LEB128 integer constant
1416     // DW_OP_consts     signed LEB128 integer constant
1417     case DW_OP_const1u:
1418       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1419       break;
1420     case DW_OP_const1s:
1421       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1422       break;
1423     case DW_OP_const2u:
1424       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1425       break;
1426     case DW_OP_const2s:
1427       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1428       break;
1429     case DW_OP_const4u:
1430       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1431       break;
1432     case DW_OP_const4s:
1433       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1434       break;
1435     case DW_OP_const8u:
1436       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1437       break;
1438     case DW_OP_const8s:
1439       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1440       break;
1441     // These should also use to_generic, but we can't do that due to a
1442     // producer-side bug in llvm. See llvm.org/pr48087.
1443     case DW_OP_constu:
1444       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1445       break;
1446     case DW_OP_consts:
1447       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1448       break;
1449 
1450     // OPCODE: DW_OP_dup
1451     // OPERANDS: none
1452     // DESCRIPTION: duplicates the value at the top of the stack
1453     case DW_OP_dup:
1454       if (stack.empty()) {
1455         if (error_ptr)
1456           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1457         return false;
1458       } else
1459         stack.push_back(stack.back());
1460       break;
1461 
1462     // OPCODE: DW_OP_drop
1463     // OPERANDS: none
1464     // DESCRIPTION: pops the value at the top of the stack
1465     case DW_OP_drop:
1466       if (stack.empty()) {
1467         if (error_ptr)
1468           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1469         return false;
1470       } else
1471         stack.pop_back();
1472       break;
1473 
1474     // OPCODE: DW_OP_over
1475     // OPERANDS: none
1476     // DESCRIPTION: Duplicates the entry currently second in the stack at
1477     // the top of the stack.
1478     case DW_OP_over:
1479       if (stack.size() < 2) {
1480         if (error_ptr)
1481           error_ptr->SetErrorString(
1482               "Expression stack needs at least 2 items for DW_OP_over.");
1483         return false;
1484       } else
1485         stack.push_back(stack[stack.size() - 2]);
1486       break;
1487 
1488     // OPCODE: DW_OP_pick
1489     // OPERANDS: uint8_t index into the current stack
1490     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1491     // inclusive) is pushed on the stack
1492     case DW_OP_pick: {
1493       uint8_t pick_idx = opcodes.GetU8(&offset);
1494       if (pick_idx < stack.size())
1495         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1496       else {
1497         if (error_ptr)
1498           error_ptr->SetErrorStringWithFormat(
1499               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1500         return false;
1501       }
1502     } break;
1503 
1504     // OPCODE: DW_OP_swap
1505     // OPERANDS: none
1506     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1507     // of the stack becomes the second stack entry, and the second entry
1508     // becomes the top of the stack
1509     case DW_OP_swap:
1510       if (stack.size() < 2) {
1511         if (error_ptr)
1512           error_ptr->SetErrorString(
1513               "Expression stack needs at least 2 items for DW_OP_swap.");
1514         return false;
1515       } else {
1516         tmp = stack.back();
1517         stack.back() = stack[stack.size() - 2];
1518         stack[stack.size() - 2] = tmp;
1519       }
1520       break;
1521 
1522     // OPCODE: DW_OP_rot
1523     // OPERANDS: none
1524     // DESCRIPTION: Rotates the first three stack entries. The entry at
1525     // the top of the stack becomes the third stack entry, the second entry
1526     // becomes the top of the stack, and the third entry becomes the second
1527     // entry.
1528     case DW_OP_rot:
1529       if (stack.size() < 3) {
1530         if (error_ptr)
1531           error_ptr->SetErrorString(
1532               "Expression stack needs at least 3 items for DW_OP_rot.");
1533         return false;
1534       } else {
1535         size_t last_idx = stack.size() - 1;
1536         Value old_top = stack[last_idx];
1537         stack[last_idx] = stack[last_idx - 1];
1538         stack[last_idx - 1] = stack[last_idx - 2];
1539         stack[last_idx - 2] = old_top;
1540       }
1541       break;
1542 
1543     // OPCODE: DW_OP_abs
1544     // OPERANDS: none
1545     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1546     // value and pushes its absolute value. If the absolute value can not be
1547     // represented, the result is undefined.
1548     case DW_OP_abs:
1549       if (stack.empty()) {
1550         if (error_ptr)
1551           error_ptr->SetErrorString(
1552               "Expression stack needs at least 1 item for DW_OP_abs.");
1553         return false;
1554       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1555         if (error_ptr)
1556           error_ptr->SetErrorString(
1557               "Failed to take the absolute value of the first stack item.");
1558         return false;
1559       }
1560       break;
1561 
1562     // OPCODE: DW_OP_and
1563     // OPERANDS: none
1564     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1565     // operation on the two, and pushes the result.
1566     case DW_OP_and:
1567       if (stack.size() < 2) {
1568         if (error_ptr)
1569           error_ptr->SetErrorString(
1570               "Expression stack needs at least 2 items for DW_OP_and.");
1571         return false;
1572       } else {
1573         tmp = stack.back();
1574         stack.pop_back();
1575         stack.back().ResolveValue(exe_ctx) =
1576             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1577       }
1578       break;
1579 
1580     // OPCODE: DW_OP_div
1581     // OPERANDS: none
1582     // DESCRIPTION: pops the top two stack values, divides the former second
1583     // entry by the former top of the stack using signed division, and pushes
1584     // the result.
1585     case DW_OP_div:
1586       if (stack.size() < 2) {
1587         if (error_ptr)
1588           error_ptr->SetErrorString(
1589               "Expression stack needs at least 2 items for DW_OP_div.");
1590         return false;
1591       } else {
1592         tmp = stack.back();
1593         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1594           if (error_ptr)
1595             error_ptr->SetErrorString("Divide by zero.");
1596           return false;
1597         } else {
1598           stack.pop_back();
1599           stack.back() =
1600               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1601           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1602             if (error_ptr)
1603               error_ptr->SetErrorString("Divide failed.");
1604             return false;
1605           }
1606         }
1607       }
1608       break;
1609 
1610     // OPCODE: DW_OP_minus
1611     // OPERANDS: none
1612     // DESCRIPTION: pops the top two stack values, subtracts the former top
1613     // of the stack from the former second entry, and pushes the result.
1614     case DW_OP_minus:
1615       if (stack.size() < 2) {
1616         if (error_ptr)
1617           error_ptr->SetErrorString(
1618               "Expression stack needs at least 2 items for DW_OP_minus.");
1619         return false;
1620       } else {
1621         tmp = stack.back();
1622         stack.pop_back();
1623         stack.back().ResolveValue(exe_ctx) =
1624             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1625       }
1626       break;
1627 
1628     // OPCODE: DW_OP_mod
1629     // OPERANDS: none
1630     // DESCRIPTION: pops the top two stack values and pushes the result of
1631     // the calculation: former second stack entry modulo the former top of the
1632     // stack.
1633     case DW_OP_mod:
1634       if (stack.size() < 2) {
1635         if (error_ptr)
1636           error_ptr->SetErrorString(
1637               "Expression stack needs at least 2 items for DW_OP_mod.");
1638         return false;
1639       } else {
1640         tmp = stack.back();
1641         stack.pop_back();
1642         stack.back().ResolveValue(exe_ctx) =
1643             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1644       }
1645       break;
1646 
1647     // OPCODE: DW_OP_mul
1648     // OPERANDS: none
1649     // DESCRIPTION: pops the top two stack entries, multiplies them
1650     // together, and pushes the result.
1651     case DW_OP_mul:
1652       if (stack.size() < 2) {
1653         if (error_ptr)
1654           error_ptr->SetErrorString(
1655               "Expression stack needs at least 2 items for DW_OP_mul.");
1656         return false;
1657       } else {
1658         tmp = stack.back();
1659         stack.pop_back();
1660         stack.back().ResolveValue(exe_ctx) =
1661             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1662       }
1663       break;
1664 
1665     // OPCODE: DW_OP_neg
1666     // OPERANDS: none
1667     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1668     case DW_OP_neg:
1669       if (stack.empty()) {
1670         if (error_ptr)
1671           error_ptr->SetErrorString(
1672               "Expression stack needs at least 1 item for DW_OP_neg.");
1673         return false;
1674       } else {
1675         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1676           if (error_ptr)
1677             error_ptr->SetErrorString("Unary negate failed.");
1678           return false;
1679         }
1680       }
1681       break;
1682 
1683     // OPCODE: DW_OP_not
1684     // OPERANDS: none
1685     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1686     // complement
1687     case DW_OP_not:
1688       if (stack.empty()) {
1689         if (error_ptr)
1690           error_ptr->SetErrorString(
1691               "Expression stack needs at least 1 item for DW_OP_not.");
1692         return false;
1693       } else {
1694         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1695           if (error_ptr)
1696             error_ptr->SetErrorString("Logical NOT failed.");
1697           return false;
1698         }
1699       }
1700       break;
1701 
1702     // OPCODE: DW_OP_or
1703     // OPERANDS: none
1704     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1705     // operation on the two, and pushes the result.
1706     case DW_OP_or:
1707       if (stack.size() < 2) {
1708         if (error_ptr)
1709           error_ptr->SetErrorString(
1710               "Expression stack needs at least 2 items for DW_OP_or.");
1711         return false;
1712       } else {
1713         tmp = stack.back();
1714         stack.pop_back();
1715         stack.back().ResolveValue(exe_ctx) =
1716             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1717       }
1718       break;
1719 
1720     // OPCODE: DW_OP_plus
1721     // OPERANDS: none
1722     // DESCRIPTION: pops the top two stack entries, adds them together, and
1723     // pushes the result.
1724     case DW_OP_plus:
1725       if (stack.size() < 2) {
1726         if (error_ptr)
1727           error_ptr->SetErrorString(
1728               "Expression stack needs at least 2 items for DW_OP_plus.");
1729         return false;
1730       } else {
1731         tmp = stack.back();
1732         stack.pop_back();
1733         stack.back().GetScalar() += tmp.GetScalar();
1734       }
1735       break;
1736 
1737     // OPCODE: DW_OP_plus_uconst
1738     // OPERANDS: none
1739     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1740     // constant operand and pushes the result.
1741     case DW_OP_plus_uconst:
1742       if (stack.empty()) {
1743         if (error_ptr)
1744           error_ptr->SetErrorString(
1745               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1746         return false;
1747       } else {
1748         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1749         // Implicit conversion from a UINT to a Scalar...
1750         stack.back().GetScalar() += uconst_value;
1751         if (!stack.back().GetScalar().IsValid()) {
1752           if (error_ptr)
1753             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1754           return false;
1755         }
1756       }
1757       break;
1758 
1759     // OPCODE: DW_OP_shl
1760     // OPERANDS: none
1761     // DESCRIPTION:  pops the top two stack entries, shifts the former
1762     // second entry left by the number of bits specified by the former top of
1763     // the stack, and pushes the result.
1764     case DW_OP_shl:
1765       if (stack.size() < 2) {
1766         if (error_ptr)
1767           error_ptr->SetErrorString(
1768               "Expression stack needs at least 2 items for DW_OP_shl.");
1769         return false;
1770       } else {
1771         tmp = stack.back();
1772         stack.pop_back();
1773         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1774       }
1775       break;
1776 
1777     // OPCODE: DW_OP_shr
1778     // OPERANDS: none
1779     // DESCRIPTION: pops the top two stack entries, shifts the former second
1780     // entry right logically (filling with zero bits) by the number of bits
1781     // specified by the former top of the stack, and pushes the result.
1782     case DW_OP_shr:
1783       if (stack.size() < 2) {
1784         if (error_ptr)
1785           error_ptr->SetErrorString(
1786               "Expression stack needs at least 2 items for DW_OP_shr.");
1787         return false;
1788       } else {
1789         tmp = stack.back();
1790         stack.pop_back();
1791         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1792                 tmp.ResolveValue(exe_ctx))) {
1793           if (error_ptr)
1794             error_ptr->SetErrorString("DW_OP_shr failed.");
1795           return false;
1796         }
1797       }
1798       break;
1799 
1800     // OPCODE: DW_OP_shra
1801     // OPERANDS: none
1802     // DESCRIPTION: pops the top two stack entries, shifts the former second
1803     // entry right arithmetically (divide the magnitude by 2, keep the same
1804     // sign for the result) by the number of bits specified by the former top
1805     // of the stack, and pushes the result.
1806     case DW_OP_shra:
1807       if (stack.size() < 2) {
1808         if (error_ptr)
1809           error_ptr->SetErrorString(
1810               "Expression stack needs at least 2 items for DW_OP_shra.");
1811         return false;
1812       } else {
1813         tmp = stack.back();
1814         stack.pop_back();
1815         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1816       }
1817       break;
1818 
1819     // OPCODE: DW_OP_xor
1820     // OPERANDS: none
1821     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1822     // exclusive-or operation on the two, and pushes the result.
1823     case DW_OP_xor:
1824       if (stack.size() < 2) {
1825         if (error_ptr)
1826           error_ptr->SetErrorString(
1827               "Expression stack needs at least 2 items for DW_OP_xor.");
1828         return false;
1829       } else {
1830         tmp = stack.back();
1831         stack.pop_back();
1832         stack.back().ResolveValue(exe_ctx) =
1833             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1834       }
1835       break;
1836 
1837     // OPCODE: DW_OP_skip
1838     // OPERANDS: int16_t
1839     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1840     // signed integer constant. The 2-byte constant is the number of bytes of
1841     // the DWARF expression to skip forward or backward from the current
1842     // operation, beginning after the 2-byte constant.
1843     case DW_OP_skip: {
1844       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1845       lldb::offset_t new_offset = offset + skip_offset;
1846       if (opcodes.ValidOffset(new_offset))
1847         offset = new_offset;
1848       else {
1849         if (error_ptr)
1850           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1851         return false;
1852       }
1853     } break;
1854 
1855     // OPCODE: DW_OP_bra
1856     // OPERANDS: int16_t
1857     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1858     // signed integer constant. This operation pops the top of stack. If the
1859     // value popped is not the constant 0, the 2-byte constant operand is the
1860     // number of bytes of the DWARF expression to skip forward or backward from
1861     // the current operation, beginning after the 2-byte constant.
1862     case DW_OP_bra:
1863       if (stack.empty()) {
1864         if (error_ptr)
1865           error_ptr->SetErrorString(
1866               "Expression stack needs at least 1 item for DW_OP_bra.");
1867         return false;
1868       } else {
1869         tmp = stack.back();
1870         stack.pop_back();
1871         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1872         Scalar zero(0);
1873         if (tmp.ResolveValue(exe_ctx) != zero) {
1874           lldb::offset_t new_offset = offset + bra_offset;
1875           if (opcodes.ValidOffset(new_offset))
1876             offset = new_offset;
1877           else {
1878             if (error_ptr)
1879               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1880             return false;
1881           }
1882         }
1883       }
1884       break;
1885 
1886     // OPCODE: DW_OP_eq
1887     // OPERANDS: none
1888     // DESCRIPTION: pops the top two stack values, compares using the
1889     // equals (==) operator.
1890     // STACK RESULT: push the constant value 1 onto the stack if the result
1891     // of the operation is true or the constant value 0 if the result of the
1892     // operation is false.
1893     case DW_OP_eq:
1894       if (stack.size() < 2) {
1895         if (error_ptr)
1896           error_ptr->SetErrorString(
1897               "Expression stack needs at least 2 items for DW_OP_eq.");
1898         return false;
1899       } else {
1900         tmp = stack.back();
1901         stack.pop_back();
1902         stack.back().ResolveValue(exe_ctx) =
1903             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1904       }
1905       break;
1906 
1907     // OPCODE: DW_OP_ge
1908     // OPERANDS: none
1909     // DESCRIPTION: pops the top two stack values, compares using the
1910     // greater than or equal to (>=) operator.
1911     // STACK RESULT: push the constant value 1 onto the stack if the result
1912     // of the operation is true or the constant value 0 if the result of the
1913     // operation is false.
1914     case DW_OP_ge:
1915       if (stack.size() < 2) {
1916         if (error_ptr)
1917           error_ptr->SetErrorString(
1918               "Expression stack needs at least 2 items for DW_OP_ge.");
1919         return false;
1920       } else {
1921         tmp = stack.back();
1922         stack.pop_back();
1923         stack.back().ResolveValue(exe_ctx) =
1924             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1925       }
1926       break;
1927 
1928     // OPCODE: DW_OP_gt
1929     // OPERANDS: none
1930     // DESCRIPTION: pops the top two stack values, compares using the
1931     // greater than (>) operator.
1932     // STACK RESULT: push the constant value 1 onto the stack if the result
1933     // of the operation is true or the constant value 0 if the result of the
1934     // operation is false.
1935     case DW_OP_gt:
1936       if (stack.size() < 2) {
1937         if (error_ptr)
1938           error_ptr->SetErrorString(
1939               "Expression stack needs at least 2 items for DW_OP_gt.");
1940         return false;
1941       } else {
1942         tmp = stack.back();
1943         stack.pop_back();
1944         stack.back().ResolveValue(exe_ctx) =
1945             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1946       }
1947       break;
1948 
1949     // OPCODE: DW_OP_le
1950     // OPERANDS: none
1951     // DESCRIPTION: pops the top two stack values, compares using the
1952     // less than or equal to (<=) operator.
1953     // STACK RESULT: push the constant value 1 onto the stack if the result
1954     // of the operation is true or the constant value 0 if the result of the
1955     // operation is false.
1956     case DW_OP_le:
1957       if (stack.size() < 2) {
1958         if (error_ptr)
1959           error_ptr->SetErrorString(
1960               "Expression stack needs at least 2 items for DW_OP_le.");
1961         return false;
1962       } else {
1963         tmp = stack.back();
1964         stack.pop_back();
1965         stack.back().ResolveValue(exe_ctx) =
1966             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1967       }
1968       break;
1969 
1970     // OPCODE: DW_OP_lt
1971     // OPERANDS: none
1972     // DESCRIPTION: pops the top two stack values, compares using the
1973     // less than (<) operator.
1974     // STACK RESULT: push the constant value 1 onto the stack if the result
1975     // of the operation is true or the constant value 0 if the result of the
1976     // operation is false.
1977     case DW_OP_lt:
1978       if (stack.size() < 2) {
1979         if (error_ptr)
1980           error_ptr->SetErrorString(
1981               "Expression stack needs at least 2 items for DW_OP_lt.");
1982         return false;
1983       } else {
1984         tmp = stack.back();
1985         stack.pop_back();
1986         stack.back().ResolveValue(exe_ctx) =
1987             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1988       }
1989       break;
1990 
1991     // OPCODE: DW_OP_ne
1992     // OPERANDS: none
1993     // DESCRIPTION: pops the top two stack values, compares using the
1994     // not equal (!=) operator.
1995     // STACK RESULT: push the constant value 1 onto the stack if the result
1996     // of the operation is true or the constant value 0 if the result of the
1997     // operation is false.
1998     case DW_OP_ne:
1999       if (stack.size() < 2) {
2000         if (error_ptr)
2001           error_ptr->SetErrorString(
2002               "Expression stack needs at least 2 items for DW_OP_ne.");
2003         return false;
2004       } else {
2005         tmp = stack.back();
2006         stack.pop_back();
2007         stack.back().ResolveValue(exe_ctx) =
2008             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
2009       }
2010       break;
2011 
2012     // OPCODE: DW_OP_litn
2013     // OPERANDS: none
2014     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
2015     // STACK RESULT: push the unsigned literal constant value onto the top
2016     // of the stack.
2017     case DW_OP_lit0:
2018     case DW_OP_lit1:
2019     case DW_OP_lit2:
2020     case DW_OP_lit3:
2021     case DW_OP_lit4:
2022     case DW_OP_lit5:
2023     case DW_OP_lit6:
2024     case DW_OP_lit7:
2025     case DW_OP_lit8:
2026     case DW_OP_lit9:
2027     case DW_OP_lit10:
2028     case DW_OP_lit11:
2029     case DW_OP_lit12:
2030     case DW_OP_lit13:
2031     case DW_OP_lit14:
2032     case DW_OP_lit15:
2033     case DW_OP_lit16:
2034     case DW_OP_lit17:
2035     case DW_OP_lit18:
2036     case DW_OP_lit19:
2037     case DW_OP_lit20:
2038     case DW_OP_lit21:
2039     case DW_OP_lit22:
2040     case DW_OP_lit23:
2041     case DW_OP_lit24:
2042     case DW_OP_lit25:
2043     case DW_OP_lit26:
2044     case DW_OP_lit27:
2045     case DW_OP_lit28:
2046     case DW_OP_lit29:
2047     case DW_OP_lit30:
2048     case DW_OP_lit31:
2049       stack.push_back(to_generic(op - DW_OP_lit0));
2050       break;
2051 
2052     // OPCODE: DW_OP_regN
2053     // OPERANDS: none
2054     // DESCRIPTION: Push the value in register n on the top of the stack.
2055     case DW_OP_reg0:
2056     case DW_OP_reg1:
2057     case DW_OP_reg2:
2058     case DW_OP_reg3:
2059     case DW_OP_reg4:
2060     case DW_OP_reg5:
2061     case DW_OP_reg6:
2062     case DW_OP_reg7:
2063     case DW_OP_reg8:
2064     case DW_OP_reg9:
2065     case DW_OP_reg10:
2066     case DW_OP_reg11:
2067     case DW_OP_reg12:
2068     case DW_OP_reg13:
2069     case DW_OP_reg14:
2070     case DW_OP_reg15:
2071     case DW_OP_reg16:
2072     case DW_OP_reg17:
2073     case DW_OP_reg18:
2074     case DW_OP_reg19:
2075     case DW_OP_reg20:
2076     case DW_OP_reg21:
2077     case DW_OP_reg22:
2078     case DW_OP_reg23:
2079     case DW_OP_reg24:
2080     case DW_OP_reg25:
2081     case DW_OP_reg26:
2082     case DW_OP_reg27:
2083     case DW_OP_reg28:
2084     case DW_OP_reg29:
2085     case DW_OP_reg30:
2086     case DW_OP_reg31: {
2087       dwarf4_location_description_kind = Register;
2088       reg_num = op - DW_OP_reg0;
2089 
2090       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2091         stack.push_back(tmp);
2092       else
2093         return false;
2094     } break;
2095     // OPCODE: DW_OP_regx
2096     // OPERANDS:
2097     //      ULEB128 literal operand that encodes the register.
2098     // DESCRIPTION: Push the value in register on the top of the stack.
2099     case DW_OP_regx: {
2100       dwarf4_location_description_kind = Register;
2101       reg_num = opcodes.GetULEB128(&offset);
2102       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2103         stack.push_back(tmp);
2104       else
2105         return false;
2106     } break;
2107 
2108     // OPCODE: DW_OP_bregN
2109     // OPERANDS:
2110     //      SLEB128 offset from register N
2111     // DESCRIPTION: Value is in memory at the address specified by register
2112     // N plus an offset.
2113     case DW_OP_breg0:
2114     case DW_OP_breg1:
2115     case DW_OP_breg2:
2116     case DW_OP_breg3:
2117     case DW_OP_breg4:
2118     case DW_OP_breg5:
2119     case DW_OP_breg6:
2120     case DW_OP_breg7:
2121     case DW_OP_breg8:
2122     case DW_OP_breg9:
2123     case DW_OP_breg10:
2124     case DW_OP_breg11:
2125     case DW_OP_breg12:
2126     case DW_OP_breg13:
2127     case DW_OP_breg14:
2128     case DW_OP_breg15:
2129     case DW_OP_breg16:
2130     case DW_OP_breg17:
2131     case DW_OP_breg18:
2132     case DW_OP_breg19:
2133     case DW_OP_breg20:
2134     case DW_OP_breg21:
2135     case DW_OP_breg22:
2136     case DW_OP_breg23:
2137     case DW_OP_breg24:
2138     case DW_OP_breg25:
2139     case DW_OP_breg26:
2140     case DW_OP_breg27:
2141     case DW_OP_breg28:
2142     case DW_OP_breg29:
2143     case DW_OP_breg30:
2144     case DW_OP_breg31: {
2145       reg_num = op - DW_OP_breg0;
2146 
2147       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2148                                     tmp)) {
2149         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2150         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2151         tmp.ClearContext();
2152         stack.push_back(tmp);
2153         stack.back().SetValueType(Value::ValueType::LoadAddress);
2154       } else
2155         return false;
2156     } break;
2157     // OPCODE: DW_OP_bregx
2158     // OPERANDS: 2
2159     //      ULEB128 literal operand that encodes the register.
2160     //      SLEB128 offset from register N
2161     // DESCRIPTION: Value is in memory at the address specified by register
2162     // N plus an offset.
2163     case DW_OP_bregx: {
2164       reg_num = opcodes.GetULEB128(&offset);
2165 
2166       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2167                                     tmp)) {
2168         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2169         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2170         tmp.ClearContext();
2171         stack.push_back(tmp);
2172         stack.back().SetValueType(Value::ValueType::LoadAddress);
2173       } else
2174         return false;
2175     } break;
2176 
2177     case DW_OP_fbreg:
2178       if (exe_ctx) {
2179         if (frame) {
2180           Scalar value;
2181           if (frame->GetFrameBaseValue(value, error_ptr)) {
2182             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2183             value += fbreg_offset;
2184             stack.push_back(value);
2185             stack.back().SetValueType(Value::ValueType::LoadAddress);
2186           } else
2187             return false;
2188         } else {
2189           if (error_ptr)
2190             error_ptr->SetErrorString(
2191                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2192           return false;
2193         }
2194       } else {
2195         if (error_ptr)
2196           error_ptr->SetErrorString(
2197               "NULL execution context for DW_OP_fbreg.\n");
2198         return false;
2199       }
2200 
2201       break;
2202 
2203     // OPCODE: DW_OP_nop
2204     // OPERANDS: none
2205     // DESCRIPTION: A place holder. It has no effect on the location stack
2206     // or any of its values.
2207     case DW_OP_nop:
2208       break;
2209 
2210     // OPCODE: DW_OP_piece
2211     // OPERANDS: 1
2212     //      ULEB128: byte size of the piece
2213     // DESCRIPTION: The operand describes the size in bytes of the piece of
2214     // the object referenced by the DWARF expression whose result is at the top
2215     // of the stack. If the piece is located in a register, but does not occupy
2216     // the entire register, the placement of the piece within that register is
2217     // defined by the ABI.
2218     //
2219     // Many compilers store a single variable in sets of registers, or store a
2220     // variable partially in memory and partially in registers. DW_OP_piece
2221     // provides a way of describing how large a part of a variable a particular
2222     // DWARF expression refers to.
2223     case DW_OP_piece: {
2224       LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2225       // Reset for the next piece.
2226       dwarf4_location_description_kind = Memory;
2227 
2228       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2229 
2230       if (piece_byte_size > 0) {
2231         Value curr_piece;
2232 
2233         if (stack.empty()) {
2234           UpdateValueTypeFromLocationDescription(
2235               log, dwarf_cu, LocationDescriptionKind::Empty);
2236           // In a multi-piece expression, this means that the current piece is
2237           // not available. Fill with zeros for now by resizing the data and
2238           // appending it
2239           curr_piece.ResizeData(piece_byte_size);
2240           // Note that "0" is not a correct value for the unknown bits.
2241           // It would be better to also return a mask of valid bits together
2242           // with the expression result, so the debugger can print missing
2243           // members as "<optimized out>" or something.
2244           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2245           pieces.AppendDataToHostBuffer(curr_piece);
2246         } else {
2247           Status error;
2248           // Extract the current piece into "curr_piece"
2249           Value curr_piece_source_value(stack.back());
2250           stack.pop_back();
2251           UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2252                                                  &curr_piece_source_value);
2253 
2254           const Value::ValueType curr_piece_source_value_type =
2255               curr_piece_source_value.GetValueType();
2256           switch (curr_piece_source_value_type) {
2257           case Value::ValueType::Invalid:
2258             return false;
2259           case Value::ValueType::LoadAddress:
2260             if (process) {
2261               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2262                 lldb::addr_t load_addr =
2263                     curr_piece_source_value.GetScalar().ULongLong(
2264                         LLDB_INVALID_ADDRESS);
2265                 if (process->ReadMemory(
2266                         load_addr, curr_piece.GetBuffer().GetBytes(),
2267                         piece_byte_size, error) != piece_byte_size) {
2268                   if (error_ptr)
2269                     error_ptr->SetErrorStringWithFormat(
2270                         "failed to read memory DW_OP_piece(%" PRIu64
2271                         ") from 0x%" PRIx64,
2272                         piece_byte_size, load_addr);
2273                   return false;
2274                 }
2275               } else {
2276                 if (error_ptr)
2277                   error_ptr->SetErrorStringWithFormat(
2278                       "failed to resize the piece memory buffer for "
2279                       "DW_OP_piece(%" PRIu64 ")",
2280                       piece_byte_size);
2281                 return false;
2282               }
2283             }
2284             break;
2285 
2286           case Value::ValueType::FileAddress:
2287           case Value::ValueType::HostAddress:
2288             if (error_ptr) {
2289               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2290                   LLDB_INVALID_ADDRESS);
2291               error_ptr->SetErrorStringWithFormat(
2292                   "failed to read memory DW_OP_piece(%" PRIu64
2293                   ") from %s address 0x%" PRIx64,
2294                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2295                                            Value::ValueType::FileAddress
2296                                        ? "file"
2297                                        : "host",
2298                   addr);
2299             }
2300             return false;
2301 
2302           case Value::ValueType::Scalar: {
2303             uint32_t bit_size = piece_byte_size * 8;
2304             uint32_t bit_offset = 0;
2305             Scalar &scalar = curr_piece_source_value.GetScalar();
2306             if (!scalar.ExtractBitfield(
2307                     bit_size, bit_offset)) {
2308               if (error_ptr)
2309                 error_ptr->SetErrorStringWithFormat(
2310                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2311                     " byte scalar value.",
2312                     piece_byte_size,
2313                     (uint64_t)curr_piece_source_value.GetScalar()
2314                         .GetByteSize());
2315               return false;
2316             }
2317             // Create curr_piece with bit_size. By default Scalar
2318             // grows to the nearest host integer type.
2319             llvm::APInt fail_value(1, 0, false);
2320             llvm::APInt ap_int = scalar.UInt128(fail_value);
2321             assert(ap_int.getBitWidth() >= bit_size);
2322             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2323                                          ap_int.getNumWords()};
2324             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2325           } break;
2326           }
2327 
2328           // Check if this is the first piece?
2329           if (op_piece_offset == 0) {
2330             // This is the first piece, we should push it back onto the stack
2331             // so subsequent pieces will be able to access this piece and add
2332             // to it.
2333             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2334               if (error_ptr)
2335                 error_ptr->SetErrorString("failed to append piece data");
2336               return false;
2337             }
2338           } else {
2339             // If this is the second or later piece there should be a value on
2340             // the stack.
2341             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2342               if (error_ptr)
2343                 error_ptr->SetErrorStringWithFormat(
2344                     "DW_OP_piece for offset %" PRIu64
2345                     " but top of stack is of size %" PRIu64,
2346                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2347               return false;
2348             }
2349 
2350             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2351               if (error_ptr)
2352                 error_ptr->SetErrorString("failed to append piece data");
2353               return false;
2354             }
2355           }
2356         }
2357         op_piece_offset += piece_byte_size;
2358       }
2359     } break;
2360 
2361     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2362       if (stack.size() < 1) {
2363         UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2364                                                LocationDescriptionKind::Empty);
2365         // Reset for the next piece.
2366         dwarf4_location_description_kind = Memory;
2367         if (error_ptr)
2368           error_ptr->SetErrorString(
2369               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2370         return false;
2371       } else {
2372         UpdateValueTypeFromLocationDescription(
2373             log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2374         // Reset for the next piece.
2375         dwarf4_location_description_kind = Memory;
2376         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2377         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2378         switch (stack.back().GetValueType()) {
2379         case Value::ValueType::Invalid:
2380           return false;
2381         case Value::ValueType::Scalar: {
2382           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2383                                                         piece_bit_offset)) {
2384             if (error_ptr)
2385               error_ptr->SetErrorStringWithFormat(
2386                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2387                   " bit offset from a %" PRIu64 " bit scalar value.",
2388                   piece_bit_size, piece_bit_offset,
2389                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2390             return false;
2391           }
2392         } break;
2393 
2394         case Value::ValueType::FileAddress:
2395         case Value::ValueType::LoadAddress:
2396         case Value::ValueType::HostAddress:
2397           if (error_ptr) {
2398             error_ptr->SetErrorStringWithFormat(
2399                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2400                 ", bit_offset = %" PRIu64 ") from an address value.",
2401                 piece_bit_size, piece_bit_offset);
2402           }
2403           return false;
2404         }
2405       }
2406       break;
2407 
2408     // OPCODE: DW_OP_implicit_value
2409     // OPERANDS: 2
2410     //      ULEB128  size of the value block in bytes
2411     //      uint8_t* block bytes encoding value in target's memory
2412     //      representation
2413     // DESCRIPTION: Value is immediately stored in block in the debug info with
2414     // the memory representation of the target.
2415     case DW_OP_implicit_value: {
2416       dwarf4_location_description_kind = Implicit;
2417 
2418       const uint32_t len = opcodes.GetULEB128(&offset);
2419       const void *data = opcodes.GetData(&offset, len);
2420 
2421       if (!data) {
2422         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2423         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2424                     DW_OP_value_to_name(op));
2425         return false;
2426       }
2427 
2428       Value result(data, len);
2429       stack.push_back(result);
2430       break;
2431     }
2432 
2433     case DW_OP_implicit_pointer: {
2434       dwarf4_location_description_kind = Implicit;
2435       LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2436       return false;
2437     }
2438 
2439     // OPCODE: DW_OP_push_object_address
2440     // OPERANDS: none
2441     // DESCRIPTION: Pushes the address of the object currently being
2442     // evaluated as part of evaluation of a user presented expression. This
2443     // object may correspond to an independent variable described by its own
2444     // DIE or it may be a component of an array, structure, or class whose
2445     // address has been dynamically determined by an earlier step during user
2446     // expression evaluation.
2447     case DW_OP_push_object_address:
2448       if (object_address_ptr)
2449         stack.push_back(*object_address_ptr);
2450       else {
2451         if (error_ptr)
2452           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2453                                     "specifying an object address");
2454         return false;
2455       }
2456       break;
2457 
2458     // OPCODE: DW_OP_call2
2459     // OPERANDS:
2460     //      uint16_t compile unit relative offset of a DIE
2461     // DESCRIPTION: Performs subroutine calls during evaluation
2462     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2463     // debugging information entry in the current compilation unit.
2464     //
2465     // Operand interpretation is exactly like that for DW_FORM_ref2.
2466     //
2467     // This operation transfers control of DWARF expression evaluation to the
2468     // DW_AT_location attribute of the referenced DIE. If there is no such
2469     // attribute, then there is no effect. Execution of the DWARF expression of
2470     // a DW_AT_location attribute may add to and/or remove from values on the
2471     // stack. Execution returns to the point following the call when the end of
2472     // the attribute is reached. Values on the stack at the time of the call
2473     // may be used as parameters by the called expression and values left on
2474     // the stack by the called expression may be used as return values by prior
2475     // agreement between the calling and called expressions.
2476     case DW_OP_call2:
2477       if (error_ptr)
2478         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2479       return false;
2480     // OPCODE: DW_OP_call4
2481     // OPERANDS: 1
2482     //      uint32_t compile unit relative offset of a DIE
2483     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2484     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2485     // a debugging information entry in  the current compilation unit.
2486     //
2487     // Operand interpretation DW_OP_call4 is exactly like that for
2488     // DW_FORM_ref4.
2489     //
2490     // This operation transfers control of DWARF expression evaluation to the
2491     // DW_AT_location attribute of the referenced DIE. If there is no such
2492     // attribute, then there is no effect. Execution of the DWARF expression of
2493     // a DW_AT_location attribute may add to and/or remove from values on the
2494     // stack. Execution returns to the point following the call when the end of
2495     // the attribute is reached. Values on the stack at the time of the call
2496     // may be used as parameters by the called expression and values left on
2497     // the stack by the called expression may be used as return values by prior
2498     // agreement between the calling and called expressions.
2499     case DW_OP_call4:
2500       if (error_ptr)
2501         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2502       return false;
2503 
2504     // OPCODE: DW_OP_stack_value
2505     // OPERANDS: None
2506     // DESCRIPTION: Specifies that the object does not exist in memory but
2507     // rather is a constant value.  The value from the top of the stack is the
2508     // value to be used.  This is the actual object value and not the location.
2509     case DW_OP_stack_value:
2510       dwarf4_location_description_kind = Implicit;
2511       if (stack.empty()) {
2512         if (error_ptr)
2513           error_ptr->SetErrorString(
2514               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2515         return false;
2516       }
2517       stack.back().SetValueType(Value::ValueType::Scalar);
2518       break;
2519 
2520     // OPCODE: DW_OP_convert
2521     // OPERANDS: 1
2522     //      A ULEB128 that is either a DIE offset of a
2523     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2524     //
2525     // DESCRIPTION: Pop the top stack element, convert it to a
2526     // different type, and push the result.
2527     case DW_OP_convert: {
2528       if (stack.size() < 1) {
2529         if (error_ptr)
2530           error_ptr->SetErrorString(
2531               "Expression stack needs at least 1 item for DW_OP_convert.");
2532         return false;
2533       }
2534       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2535       uint64_t bit_size;
2536       bool sign;
2537       if (die_offset == 0) {
2538         // The generic type has the size of an address on the target
2539         // machine and an unspecified signedness. Scalar has no
2540         // "unspecified signedness", so we use unsigned types.
2541         if (!module_sp) {
2542           if (error_ptr)
2543             error_ptr->SetErrorString("No module");
2544           return false;
2545         }
2546         sign = false;
2547         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2548         if (!bit_size) {
2549           if (error_ptr)
2550             error_ptr->SetErrorString("unspecified architecture");
2551           return false;
2552         }
2553       } else {
2554         // Retrieve the type DIE that the value is being converted to.
2555         // FIXME: the constness has annoying ripple effects.
2556         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2557         if (!die) {
2558           if (error_ptr)
2559             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2560           return false;
2561         }
2562         uint64_t encoding =
2563             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2564         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2565         if (!bit_size)
2566           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2567         if (!bit_size) {
2568           if (error_ptr)
2569             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2570           return false;
2571         }
2572         switch (encoding) {
2573         case DW_ATE_signed:
2574         case DW_ATE_signed_char:
2575           sign = true;
2576           break;
2577         case DW_ATE_unsigned:
2578         case DW_ATE_unsigned_char:
2579           sign = false;
2580           break;
2581         default:
2582           if (error_ptr)
2583             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2584           return false;
2585         }
2586       }
2587       Scalar &top = stack.back().ResolveValue(exe_ctx);
2588       top.TruncOrExtendTo(bit_size, sign);
2589       break;
2590     }
2591 
2592     // OPCODE: DW_OP_call_frame_cfa
2593     // OPERANDS: None
2594     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2595     // the canonical frame address consistent with the call frame information
2596     // located in .debug_frame (or in the FDEs of the eh_frame section).
2597     case DW_OP_call_frame_cfa:
2598       if (frame) {
2599         // Note that we don't have to parse FDEs because this DWARF expression
2600         // is commonly evaluated with a valid stack frame.
2601         StackID id = frame->GetStackID();
2602         addr_t cfa = id.GetCallFrameAddress();
2603         if (cfa != LLDB_INVALID_ADDRESS) {
2604           stack.push_back(Scalar(cfa));
2605           stack.back().SetValueType(Value::ValueType::LoadAddress);
2606         } else if (error_ptr)
2607           error_ptr->SetErrorString("Stack frame does not include a canonical "
2608                                     "frame address for DW_OP_call_frame_cfa "
2609                                     "opcode.");
2610       } else {
2611         if (error_ptr)
2612           error_ptr->SetErrorString("Invalid stack frame in context for "
2613                                     "DW_OP_call_frame_cfa opcode.");
2614         return false;
2615       }
2616       break;
2617 
2618     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2619     // opcode, DW_OP_GNU_push_tls_address)
2620     // OPERANDS: none
2621     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2622     // an address in the current thread's thread-local storage block, and
2623     // pushes it on the stack.
2624     case DW_OP_form_tls_address:
2625     case DW_OP_GNU_push_tls_address: {
2626       if (stack.size() < 1) {
2627         if (error_ptr) {
2628           if (op == DW_OP_form_tls_address)
2629             error_ptr->SetErrorString(
2630                 "DW_OP_form_tls_address needs an argument.");
2631           else
2632             error_ptr->SetErrorString(
2633                 "DW_OP_GNU_push_tls_address needs an argument.");
2634         }
2635         return false;
2636       }
2637 
2638       if (!exe_ctx || !module_sp) {
2639         if (error_ptr)
2640           error_ptr->SetErrorString("No context to evaluate TLS within.");
2641         return false;
2642       }
2643 
2644       Thread *thread = exe_ctx->GetThreadPtr();
2645       if (!thread) {
2646         if (error_ptr)
2647           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2648         return false;
2649       }
2650 
2651       // Lookup the TLS block address for this thread and module.
2652       const addr_t tls_file_addr =
2653           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2654       const addr_t tls_load_addr =
2655           thread->GetThreadLocalData(module_sp, tls_file_addr);
2656 
2657       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2658         if (error_ptr)
2659           error_ptr->SetErrorString(
2660               "No TLS data currently exists for this thread.");
2661         return false;
2662       }
2663 
2664       stack.back().GetScalar() = tls_load_addr;
2665       stack.back().SetValueType(Value::ValueType::LoadAddress);
2666     } break;
2667 
2668     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2669     // OPERANDS: 1
2670     //      ULEB128: index to the .debug_addr section
2671     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2672     // section with the base address specified by the DW_AT_addr_base attribute
2673     // and the 0 based index is the ULEB128 encoded index.
2674     case DW_OP_addrx:
2675     case DW_OP_GNU_addr_index: {
2676       if (!dwarf_cu) {
2677         if (error_ptr)
2678           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2679                                     "compile unit being specified");
2680         return false;
2681       }
2682       uint64_t index = opcodes.GetULEB128(&offset);
2683       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2684       stack.push_back(Scalar(value));
2685       stack.back().SetValueType(Value::ValueType::FileAddress);
2686     } break;
2687 
2688     // OPCODE: DW_OP_GNU_const_index
2689     // OPERANDS: 1
2690     //      ULEB128: index to the .debug_addr section
2691     // DESCRIPTION: Pushes an constant with the size of a machine address to
2692     // the stack from the .debug_addr section with the base address specified
2693     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2694     // encoded index.
2695     case DW_OP_GNU_const_index: {
2696       if (!dwarf_cu) {
2697         if (error_ptr)
2698           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2699                                     "compile unit being specified");
2700         return false;
2701       }
2702       uint64_t index = opcodes.GetULEB128(&offset);
2703       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2704       stack.push_back(Scalar(value));
2705     } break;
2706 
2707     case DW_OP_GNU_entry_value:
2708     case DW_OP_entry_value: {
2709       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2710                                       error_ptr, log)) {
2711         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2712                     DW_OP_value_to_name(op));
2713         return false;
2714       }
2715       break;
2716     }
2717 
2718     default:
2719       if (error_ptr)
2720         error_ptr->SetErrorStringWithFormatv(
2721             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2722       return false;
2723     }
2724   }
2725 
2726   if (stack.empty()) {
2727     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2728     // or DW_OP_bit_piece opcodes
2729     if (pieces.GetBuffer().GetByteSize()) {
2730       result = pieces;
2731       return true;
2732     }
2733     if (error_ptr)
2734       error_ptr->SetErrorString("Stack empty after evaluation.");
2735     return false;
2736   }
2737 
2738   UpdateValueTypeFromLocationDescription(
2739       log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2740 
2741   if (log && log->GetVerbose()) {
2742     size_t count = stack.size();
2743     LLDB_LOGF(log,
2744               "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2745     for (size_t i = 0; i < count; ++i) {
2746       StreamString new_value;
2747       new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2748       stack[i].Dump(&new_value);
2749       LLDB_LOGF(log, "  %s", new_value.GetData());
2750     }
2751   }
2752   result = stack.back();
2753   return true; // Return true on success
2754 }
2755 
2756 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
2757                                      ByteOrder byte_order, uint32_t addr_size) {
2758   auto buffer_sp =
2759       std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
2760   return DataExtractor(buffer_sp, byte_order, addr_size);
2761 }
2762 
2763 bool DWARFExpression::DumpLocations(Stream *s, lldb::DescriptionLevel level,
2764                                     addr_t load_function_start, addr_t addr,
2765                                     ABI *abi) {
2766   if (!IsLocationList()) {
2767     DumpLocation(s, m_data, level, abi);
2768     return true;
2769   }
2770   bool dump_all = addr == LLDB_INVALID_ADDRESS;
2771   llvm::ListSeparator separator;
2772   auto callback = [&](llvm::DWARFLocationExpression loc) -> bool {
2773     if (loc.Range &&
2774         (dump_all || (loc.Range->LowPC <= addr && addr < loc.Range->HighPC))) {
2775       uint32_t addr_size = m_data.GetAddressByteSize();
2776       DataExtractor data = ToDataExtractor(loc, m_data.GetByteOrder(),
2777                                            m_data.GetAddressByteSize());
2778       s->AsRawOstream() << separator;
2779       s->PutCString("[");
2780       s->AsRawOstream() << llvm::format_hex(loc.Range->LowPC,
2781                                             2 + 2 * addr_size);
2782       s->PutCString(", ");
2783       s->AsRawOstream() << llvm::format_hex(loc.Range->HighPC,
2784                                             2 + 2 * addr_size);
2785       s->PutCString(") -> ");
2786       DumpLocation(s, data, level, abi);
2787       return dump_all;
2788     }
2789     return true;
2790   };
2791   if (!GetLocationExpressions(load_function_start, callback))
2792     return false;
2793   return true;
2794 }
2795 
2796 bool DWARFExpression::GetLocationExpressions(
2797     addr_t load_function_start,
2798     llvm::function_ref<bool(llvm::DWARFLocationExpression)> callback) const {
2799   if (load_function_start == LLDB_INVALID_ADDRESS)
2800     return false;
2801 
2802   Log *log = GetLog(LLDBLog::Expressions);
2803 
2804   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2805       m_dwarf_cu->GetLocationTable(m_data);
2806 
2807   uint64_t offset = 0;
2808   auto lookup_addr =
2809       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2810     addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
2811     if (address == LLDB_INVALID_ADDRESS)
2812       return llvm::None;
2813     return llvm::object::SectionedAddress{address};
2814   };
2815   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2816     if (!loc) {
2817       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2818       return true;
2819     }
2820     if (loc->Range) {
2821       // This relocates low_pc and high_pc by adding the difference between the
2822       // function file address, and the actual address it is loaded in memory.
2823       addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
2824       loc->Range->LowPC += slide;
2825       loc->Range->HighPC += slide;
2826     }
2827     return callback(*loc);
2828   };
2829   llvm::Error error = loctable_up->visitAbsoluteLocationList(
2830       offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
2831       lookup_addr, process_list);
2832   if (error) {
2833     LLDB_LOG_ERROR(log, std::move(error), "{0}");
2834     return false;
2835   }
2836   return true;
2837 }
2838 
2839 llvm::Optional<DataExtractor>
2840 DWARFExpression::GetLocationExpression(addr_t load_function_start,
2841                                        addr_t addr) const {
2842   llvm::Optional<DataExtractor> data;
2843   auto callback = [&](llvm::DWARFLocationExpression loc) {
2844     if (loc.Range && loc.Range->LowPC <= addr && addr < loc.Range->HighPC) {
2845       data = ToDataExtractor(loc, m_data.GetByteOrder(),
2846                              m_data.GetAddressByteSize());
2847     }
2848     return !data;
2849   };
2850   GetLocationExpressions(load_function_start, callback);
2851   return data;
2852 }
2853 
2854 bool DWARFExpression::MatchesOperand(StackFrame &frame,
2855                                      const Instruction::Operand &operand) {
2856   using namespace OperandMatchers;
2857 
2858   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2859   if (!reg_ctx_sp) {
2860     return false;
2861   }
2862 
2863   DataExtractor opcodes;
2864   if (IsLocationList()) {
2865     SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
2866     if (!sc.function)
2867       return false;
2868 
2869     addr_t load_function_start =
2870         sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
2871     if (load_function_start == LLDB_INVALID_ADDRESS)
2872       return false;
2873 
2874     addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
2875         frame.CalculateTarget().get());
2876 
2877     if (llvm::Optional<DataExtractor> expr =
2878             GetLocationExpression(load_function_start, pc))
2879       opcodes = std::move(*expr);
2880     else
2881       return false;
2882   } else
2883     opcodes = m_data;
2884 
2885 
2886   lldb::offset_t op_offset = 0;
2887   uint8_t opcode = opcodes.GetU8(&op_offset);
2888 
2889   if (opcode == DW_OP_fbreg) {
2890     int64_t offset = opcodes.GetSLEB128(&op_offset);
2891 
2892     DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
2893     if (!fb_expr) {
2894       return false;
2895     }
2896 
2897     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2898       return fb_expr->MatchesOperand(frame, child);
2899     };
2900 
2901     if (!offset &&
2902         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2903                      recurse)(operand)) {
2904       return true;
2905     }
2906 
2907     return MatchUnaryOp(
2908         MatchOpType(Instruction::Operand::Type::Dereference),
2909         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2910                       MatchImmOp(offset), recurse))(operand);
2911   }
2912 
2913   bool dereference = false;
2914   const RegisterInfo *reg = nullptr;
2915   int64_t offset = 0;
2916 
2917   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2918     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2919   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2920     offset = opcodes.GetSLEB128(&op_offset);
2921     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2922   } else if (opcode == DW_OP_regx) {
2923     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2924     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2925   } else if (opcode == DW_OP_bregx) {
2926     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2927     offset = opcodes.GetSLEB128(&op_offset);
2928     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2929   } else {
2930     return false;
2931   }
2932 
2933   if (!reg) {
2934     return false;
2935   }
2936 
2937   if (dereference) {
2938     if (!offset &&
2939         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2940                      MatchRegOp(*reg))(operand)) {
2941       return true;
2942     }
2943 
2944     return MatchUnaryOp(
2945         MatchOpType(Instruction::Operand::Type::Dereference),
2946         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2947                       MatchRegOp(*reg),
2948                       MatchImmOp(offset)))(operand);
2949   } else {
2950     return MatchRegOp(*reg)(operand);
2951   }
2952 }
2953