1 //===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Expression/DWARFExpression.h" 11 12 #include <vector> 13 14 #include "lldb/Core/DataEncoder.h" 15 #include "lldb/Core/dwarf.h" 16 #include "lldb/Core/Log.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/StreamString.h" 19 #include "lldb/Core/Scalar.h" 20 #include "lldb/Core/Value.h" 21 #include "lldb/Core/VMRange.h" 22 23 #include "lldb/Expression/ClangExpressionDeclMap.h" 24 #include "lldb/Expression/ClangExpressionVariable.h" 25 26 #include "lldb/Host/Endian.h" 27 #include "lldb/Host/Host.h" 28 29 #include "lldb/lldb-private-log.h" 30 31 #include "lldb/Symbol/ClangASTType.h" 32 #include "lldb/Symbol/ClangASTContext.h" 33 #include "lldb/Symbol/Type.h" 34 35 #include "lldb/Target/ABI.h" 36 #include "lldb/Target/ExecutionContext.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/RegisterContext.h" 39 #include "lldb/Target/StackFrame.h" 40 41 using namespace lldb; 42 using namespace lldb_private; 43 44 const char * 45 DW_OP_value_to_name (uint32_t val) 46 { 47 static char invalid[100]; 48 switch (val) { 49 case 0x03: return "DW_OP_addr"; 50 case 0x06: return "DW_OP_deref"; 51 case 0x08: return "DW_OP_const1u"; 52 case 0x09: return "DW_OP_const1s"; 53 case 0x0a: return "DW_OP_const2u"; 54 case 0x0b: return "DW_OP_const2s"; 55 case 0x0c: return "DW_OP_const4u"; 56 case 0x0d: return "DW_OP_const4s"; 57 case 0x0e: return "DW_OP_const8u"; 58 case 0x0f: return "DW_OP_const8s"; 59 case 0x10: return "DW_OP_constu"; 60 case 0x11: return "DW_OP_consts"; 61 case 0x12: return "DW_OP_dup"; 62 case 0x13: return "DW_OP_drop"; 63 case 0x14: return "DW_OP_over"; 64 case 0x15: return "DW_OP_pick"; 65 case 0x16: return "DW_OP_swap"; 66 case 0x17: return "DW_OP_rot"; 67 case 0x18: return "DW_OP_xderef"; 68 case 0x19: return "DW_OP_abs"; 69 case 0x1a: return "DW_OP_and"; 70 case 0x1b: return "DW_OP_div"; 71 case 0x1c: return "DW_OP_minus"; 72 case 0x1d: return "DW_OP_mod"; 73 case 0x1e: return "DW_OP_mul"; 74 case 0x1f: return "DW_OP_neg"; 75 case 0x20: return "DW_OP_not"; 76 case 0x21: return "DW_OP_or"; 77 case 0x22: return "DW_OP_plus"; 78 case 0x23: return "DW_OP_plus_uconst"; 79 case 0x24: return "DW_OP_shl"; 80 case 0x25: return "DW_OP_shr"; 81 case 0x26: return "DW_OP_shra"; 82 case 0x27: return "DW_OP_xor"; 83 case 0x2f: return "DW_OP_skip"; 84 case 0x28: return "DW_OP_bra"; 85 case 0x29: return "DW_OP_eq"; 86 case 0x2a: return "DW_OP_ge"; 87 case 0x2b: return "DW_OP_gt"; 88 case 0x2c: return "DW_OP_le"; 89 case 0x2d: return "DW_OP_lt"; 90 case 0x2e: return "DW_OP_ne"; 91 case 0x30: return "DW_OP_lit0"; 92 case 0x31: return "DW_OP_lit1"; 93 case 0x32: return "DW_OP_lit2"; 94 case 0x33: return "DW_OP_lit3"; 95 case 0x34: return "DW_OP_lit4"; 96 case 0x35: return "DW_OP_lit5"; 97 case 0x36: return "DW_OP_lit6"; 98 case 0x37: return "DW_OP_lit7"; 99 case 0x38: return "DW_OP_lit8"; 100 case 0x39: return "DW_OP_lit9"; 101 case 0x3a: return "DW_OP_lit10"; 102 case 0x3b: return "DW_OP_lit11"; 103 case 0x3c: return "DW_OP_lit12"; 104 case 0x3d: return "DW_OP_lit13"; 105 case 0x3e: return "DW_OP_lit14"; 106 case 0x3f: return "DW_OP_lit15"; 107 case 0x40: return "DW_OP_lit16"; 108 case 0x41: return "DW_OP_lit17"; 109 case 0x42: return "DW_OP_lit18"; 110 case 0x43: return "DW_OP_lit19"; 111 case 0x44: return "DW_OP_lit20"; 112 case 0x45: return "DW_OP_lit21"; 113 case 0x46: return "DW_OP_lit22"; 114 case 0x47: return "DW_OP_lit23"; 115 case 0x48: return "DW_OP_lit24"; 116 case 0x49: return "DW_OP_lit25"; 117 case 0x4a: return "DW_OP_lit26"; 118 case 0x4b: return "DW_OP_lit27"; 119 case 0x4c: return "DW_OP_lit28"; 120 case 0x4d: return "DW_OP_lit29"; 121 case 0x4e: return "DW_OP_lit30"; 122 case 0x4f: return "DW_OP_lit31"; 123 case 0x50: return "DW_OP_reg0"; 124 case 0x51: return "DW_OP_reg1"; 125 case 0x52: return "DW_OP_reg2"; 126 case 0x53: return "DW_OP_reg3"; 127 case 0x54: return "DW_OP_reg4"; 128 case 0x55: return "DW_OP_reg5"; 129 case 0x56: return "DW_OP_reg6"; 130 case 0x57: return "DW_OP_reg7"; 131 case 0x58: return "DW_OP_reg8"; 132 case 0x59: return "DW_OP_reg9"; 133 case 0x5a: return "DW_OP_reg10"; 134 case 0x5b: return "DW_OP_reg11"; 135 case 0x5c: return "DW_OP_reg12"; 136 case 0x5d: return "DW_OP_reg13"; 137 case 0x5e: return "DW_OP_reg14"; 138 case 0x5f: return "DW_OP_reg15"; 139 case 0x60: return "DW_OP_reg16"; 140 case 0x61: return "DW_OP_reg17"; 141 case 0x62: return "DW_OP_reg18"; 142 case 0x63: return "DW_OP_reg19"; 143 case 0x64: return "DW_OP_reg20"; 144 case 0x65: return "DW_OP_reg21"; 145 case 0x66: return "DW_OP_reg22"; 146 case 0x67: return "DW_OP_reg23"; 147 case 0x68: return "DW_OP_reg24"; 148 case 0x69: return "DW_OP_reg25"; 149 case 0x6a: return "DW_OP_reg26"; 150 case 0x6b: return "DW_OP_reg27"; 151 case 0x6c: return "DW_OP_reg28"; 152 case 0x6d: return "DW_OP_reg29"; 153 case 0x6e: return "DW_OP_reg30"; 154 case 0x6f: return "DW_OP_reg31"; 155 case 0x70: return "DW_OP_breg0"; 156 case 0x71: return "DW_OP_breg1"; 157 case 0x72: return "DW_OP_breg2"; 158 case 0x73: return "DW_OP_breg3"; 159 case 0x74: return "DW_OP_breg4"; 160 case 0x75: return "DW_OP_breg5"; 161 case 0x76: return "DW_OP_breg6"; 162 case 0x77: return "DW_OP_breg7"; 163 case 0x78: return "DW_OP_breg8"; 164 case 0x79: return "DW_OP_breg9"; 165 case 0x7a: return "DW_OP_breg10"; 166 case 0x7b: return "DW_OP_breg11"; 167 case 0x7c: return "DW_OP_breg12"; 168 case 0x7d: return "DW_OP_breg13"; 169 case 0x7e: return "DW_OP_breg14"; 170 case 0x7f: return "DW_OP_breg15"; 171 case 0x80: return "DW_OP_breg16"; 172 case 0x81: return "DW_OP_breg17"; 173 case 0x82: return "DW_OP_breg18"; 174 case 0x83: return "DW_OP_breg19"; 175 case 0x84: return "DW_OP_breg20"; 176 case 0x85: return "DW_OP_breg21"; 177 case 0x86: return "DW_OP_breg22"; 178 case 0x87: return "DW_OP_breg23"; 179 case 0x88: return "DW_OP_breg24"; 180 case 0x89: return "DW_OP_breg25"; 181 case 0x8a: return "DW_OP_breg26"; 182 case 0x8b: return "DW_OP_breg27"; 183 case 0x8c: return "DW_OP_breg28"; 184 case 0x8d: return "DW_OP_breg29"; 185 case 0x8e: return "DW_OP_breg30"; 186 case 0x8f: return "DW_OP_breg31"; 187 case 0x90: return "DW_OP_regx"; 188 case 0x91: return "DW_OP_fbreg"; 189 case 0x92: return "DW_OP_bregx"; 190 case 0x93: return "DW_OP_piece"; 191 case 0x94: return "DW_OP_deref_size"; 192 case 0x95: return "DW_OP_xderef_size"; 193 case 0x96: return "DW_OP_nop"; 194 case 0x97: return "DW_OP_push_object_address"; 195 case 0x98: return "DW_OP_call2"; 196 case 0x99: return "DW_OP_call4"; 197 case 0x9a: return "DW_OP_call_ref"; 198 // case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; 199 // case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; 200 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; 201 // case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; 202 // case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; 203 // case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; 204 // case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; 205 // case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; 206 // case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; 207 // case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; 208 // case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; 209 // case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; 210 // case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; 211 default: 212 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); 213 return invalid; 214 } 215 } 216 217 218 //---------------------------------------------------------------------- 219 // DWARFExpression constructor 220 //---------------------------------------------------------------------- 221 DWARFExpression::DWARFExpression() : 222 m_data(), 223 m_reg_kind (eRegisterKindDWARF), 224 m_loclist_slide (LLDB_INVALID_ADDRESS) 225 { 226 } 227 228 DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : 229 m_data(rhs.m_data), 230 m_reg_kind (rhs.m_reg_kind), 231 m_loclist_slide(rhs.m_loclist_slide) 232 { 233 } 234 235 236 DWARFExpression::DWARFExpression(const DataExtractor& data, uint32_t data_offset, uint32_t data_length) : 237 m_data(data, data_offset, data_length), 238 m_reg_kind (eRegisterKindDWARF), 239 m_loclist_slide(LLDB_INVALID_ADDRESS) 240 { 241 } 242 243 //---------------------------------------------------------------------- 244 // Destructor 245 //---------------------------------------------------------------------- 246 DWARFExpression::~DWARFExpression() 247 { 248 } 249 250 251 bool 252 DWARFExpression::IsValid() const 253 { 254 return m_data.GetByteSize() > 0; 255 } 256 257 void 258 DWARFExpression::SetOpcodeData (const DataExtractor& data) 259 { 260 m_data = data; 261 } 262 263 void 264 DWARFExpression::CopyOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length) 265 { 266 const uint8_t *bytes = data.PeekData(data_offset, data_length); 267 if (bytes) 268 { 269 m_data.SetData(DataBufferSP(new DataBufferHeap(bytes, data_length))); 270 m_data.SetByteOrder(data.GetByteOrder()); 271 m_data.SetAddressByteSize(data.GetAddressByteSize()); 272 } 273 } 274 275 void 276 DWARFExpression::SetOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length) 277 { 278 m_data.SetData(data, data_offset, data_length); 279 } 280 281 void 282 DWARFExpression::DumpLocation (Stream *s, uint32_t offset, uint32_t length, lldb::DescriptionLevel level, ABI *abi) const 283 { 284 if (!m_data.ValidOffsetForDataOfSize(offset, length)) 285 return; 286 const uint32_t start_offset = offset; 287 const uint32_t end_offset = offset + length; 288 while (m_data.ValidOffset(offset) && offset < end_offset) 289 { 290 const uint32_t op_offset = offset; 291 const uint8_t op = m_data.GetU8(&offset); 292 293 switch (level) 294 { 295 default: 296 break; 297 298 case lldb::eDescriptionLevelBrief: 299 if (offset > start_offset) 300 s->PutChar(' '); 301 break; 302 303 case lldb::eDescriptionLevelFull: 304 case lldb::eDescriptionLevelVerbose: 305 if (offset > start_offset) 306 s->EOL(); 307 s->Indent(); 308 if (level == lldb::eDescriptionLevelFull) 309 break; 310 // Fall through for verbose and print offset and DW_OP prefix.. 311 s->Printf("0x%8.8x: %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); 312 break; 313 } 314 315 switch (op) 316 { 317 case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address 318 case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 319 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant 320 case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant 321 case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant 322 case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant 323 case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant 324 case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant 325 case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant 326 case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant 327 case DW_OP_constu: s->Printf("DW_OP_constu(0x%llx) ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant 328 case DW_OP_consts: s->Printf("DW_OP_consts(0x%lld) ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant 329 case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 330 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 331 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 332 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index 333 case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 334 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 335 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 336 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 337 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a 338 case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b 339 case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c 340 case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d 341 case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e 342 case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f 343 case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 344 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 345 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 346 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 347 s->Printf("DW_OP_plus_uconst(0x%llx) ", m_data.GetULEB128(&offset)); 348 break; 349 350 case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 351 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 352 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 353 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 354 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant 355 case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant 356 case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 357 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a 358 case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b 359 case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c 360 case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d 361 case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e 362 363 case DW_OP_lit0: // 0x30 364 case DW_OP_lit1: // 0x31 365 case DW_OP_lit2: // 0x32 366 case DW_OP_lit3: // 0x33 367 case DW_OP_lit4: // 0x34 368 case DW_OP_lit5: // 0x35 369 case DW_OP_lit6: // 0x36 370 case DW_OP_lit7: // 0x37 371 case DW_OP_lit8: // 0x38 372 case DW_OP_lit9: // 0x39 373 case DW_OP_lit10: // 0x3A 374 case DW_OP_lit11: // 0x3B 375 case DW_OP_lit12: // 0x3C 376 case DW_OP_lit13: // 0x3D 377 case DW_OP_lit14: // 0x3E 378 case DW_OP_lit15: // 0x3F 379 case DW_OP_lit16: // 0x40 380 case DW_OP_lit17: // 0x41 381 case DW_OP_lit18: // 0x42 382 case DW_OP_lit19: // 0x43 383 case DW_OP_lit20: // 0x44 384 case DW_OP_lit21: // 0x45 385 case DW_OP_lit22: // 0x46 386 case DW_OP_lit23: // 0x47 387 case DW_OP_lit24: // 0x48 388 case DW_OP_lit25: // 0x49 389 case DW_OP_lit26: // 0x4A 390 case DW_OP_lit27: // 0x4B 391 case DW_OP_lit28: // 0x4C 392 case DW_OP_lit29: // 0x4D 393 case DW_OP_lit30: // 0x4E 394 case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f 395 396 case DW_OP_reg0: // 0x50 397 case DW_OP_reg1: // 0x51 398 case DW_OP_reg2: // 0x52 399 case DW_OP_reg3: // 0x53 400 case DW_OP_reg4: // 0x54 401 case DW_OP_reg5: // 0x55 402 case DW_OP_reg6: // 0x56 403 case DW_OP_reg7: // 0x57 404 case DW_OP_reg8: // 0x58 405 case DW_OP_reg9: // 0x59 406 case DW_OP_reg10: // 0x5A 407 case DW_OP_reg11: // 0x5B 408 case DW_OP_reg12: // 0x5C 409 case DW_OP_reg13: // 0x5D 410 case DW_OP_reg14: // 0x5E 411 case DW_OP_reg15: // 0x5F 412 case DW_OP_reg16: // 0x60 413 case DW_OP_reg17: // 0x61 414 case DW_OP_reg18: // 0x62 415 case DW_OP_reg19: // 0x63 416 case DW_OP_reg20: // 0x64 417 case DW_OP_reg21: // 0x65 418 case DW_OP_reg22: // 0x66 419 case DW_OP_reg23: // 0x67 420 case DW_OP_reg24: // 0x68 421 case DW_OP_reg25: // 0x69 422 case DW_OP_reg26: // 0x6A 423 case DW_OP_reg27: // 0x6B 424 case DW_OP_reg28: // 0x6C 425 case DW_OP_reg29: // 0x6D 426 case DW_OP_reg30: // 0x6E 427 case DW_OP_reg31: // 0x6F 428 { 429 uint32_t reg_num = op - DW_OP_reg0; 430 if (abi) 431 { 432 RegisterInfo reg_info; 433 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 434 { 435 if (reg_info.name) 436 { 437 s->PutCString (reg_info.name); 438 break; 439 } 440 else if (reg_info.alt_name) 441 { 442 s->PutCString (reg_info.alt_name); 443 break; 444 } 445 } 446 } 447 s->Printf("DW_OP_reg%u", reg_num); break; 448 } 449 break; 450 451 case DW_OP_breg0: 452 case DW_OP_breg1: 453 case DW_OP_breg2: 454 case DW_OP_breg3: 455 case DW_OP_breg4: 456 case DW_OP_breg5: 457 case DW_OP_breg6: 458 case DW_OP_breg7: 459 case DW_OP_breg8: 460 case DW_OP_breg9: 461 case DW_OP_breg10: 462 case DW_OP_breg11: 463 case DW_OP_breg12: 464 case DW_OP_breg13: 465 case DW_OP_breg14: 466 case DW_OP_breg15: 467 case DW_OP_breg16: 468 case DW_OP_breg17: 469 case DW_OP_breg18: 470 case DW_OP_breg19: 471 case DW_OP_breg20: 472 case DW_OP_breg21: 473 case DW_OP_breg22: 474 case DW_OP_breg23: 475 case DW_OP_breg24: 476 case DW_OP_breg25: 477 case DW_OP_breg26: 478 case DW_OP_breg27: 479 case DW_OP_breg28: 480 case DW_OP_breg29: 481 case DW_OP_breg30: 482 case DW_OP_breg31: 483 { 484 uint32_t reg_num = op - DW_OP_breg0; 485 int64_t reg_offset = m_data.GetSLEB128(&offset); 486 if (abi) 487 { 488 RegisterInfo reg_info; 489 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 490 { 491 if (reg_info.name) 492 { 493 s->Printf("[%s%+lli]", reg_info.name, reg_offset); 494 break; 495 } 496 else if (reg_info.alt_name) 497 { 498 s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); 499 break; 500 } 501 } 502 } 503 s->Printf("DW_OP_breg%i(0x%llx)", reg_num, reg_offset); 504 } 505 break; 506 507 case DW_OP_regx: // 0x90 1 ULEB128 register 508 { 509 uint64_t reg_num = m_data.GetULEB128(&offset); 510 if (abi) 511 { 512 RegisterInfo reg_info; 513 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 514 { 515 if (reg_info.name) 516 { 517 s->PutCString (reg_info.name); 518 break; 519 } 520 else if (reg_info.alt_name) 521 { 522 s->PutCString (reg_info.alt_name); 523 break; 524 } 525 } 526 } 527 s->Printf("DW_OP_regx(%llu)", reg_num); break; 528 } 529 break; 530 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 531 s->Printf("DW_OP_fbreg(%lli)",m_data.GetSLEB128(&offset)); 532 break; 533 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 534 { 535 uint32_t reg_num = m_data.GetULEB128(&offset); 536 int64_t reg_offset = m_data.GetSLEB128(&offset); 537 if (abi) 538 { 539 RegisterInfo reg_info; 540 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 541 { 542 if (reg_info.name) 543 { 544 s->Printf("[%s%+lli]", reg_info.name, reg_offset); 545 break; 546 } 547 else if (reg_info.alt_name) 548 { 549 s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); 550 break; 551 } 552 } 553 } 554 s->Printf("DW_OP_bregx(reg=%u,offset=%lli)", reg_num, reg_offset); 555 } 556 break; 557 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 558 s->Printf("DW_OP_piece(0x%llx)", m_data.GetULEB128(&offset)); 559 break; 560 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 561 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); 562 break; 563 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 564 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); 565 break; 566 case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 567 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 568 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE 569 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); 570 break; 571 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE 572 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); 573 break; 574 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE 575 s->Printf("DW_OP_call_ref(0x%8.8llx)", m_data.GetAddress(&offset)); 576 break; 577 // case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3 578 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 579 // case DW_OP_bit_piece: // 0x9d DWARF3 2 580 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); 581 // break; 582 // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0 583 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff 584 // case DW_OP_APPLE_extern: 585 // s->Printf("DW_OP_APPLE_extern(%llu)", m_data.GetULEB128(&offset)); 586 // break; 587 // case DW_OP_APPLE_array_ref: 588 // s->PutCString("DW_OP_APPLE_array_ref"); 589 // break; 590 case DW_OP_APPLE_uninit: 591 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 592 break; 593 // case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) 594 // s->PutCString("DW_OP_APPLE_assign"); 595 // break; 596 // case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) 597 // s->PutCString("DW_OP_APPLE_address_of"); 598 // break; 599 // case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) 600 // s->PutCString("DW_OP_APPLE_value_of"); 601 // break; 602 // case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) 603 // s->PutCString("DW_OP_APPLE_deref_type"); 604 // break; 605 // case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index 606 // s->Printf("DW_OP_APPLE_expr_local(%llu)", m_data.GetULEB128(&offset)); 607 // break; 608 // case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 609 // { 610 // uint8_t float_length = m_data.GetU8(&offset); 611 // s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); 612 // m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 613 // s->PutChar(')'); 614 // // Consume the float data 615 // m_data.GetData(&offset, float_length); 616 // } 617 // break; 618 // case DW_OP_APPLE_scalar_cast: 619 // s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); 620 // break; 621 // case DW_OP_APPLE_clang_cast: 622 // { 623 // clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); 624 // s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); 625 // } 626 // break; 627 // case DW_OP_APPLE_clear: 628 // s->PutCString("DW_OP_APPLE_clear"); 629 // break; 630 // case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 631 // s->PutCString("DW_OP_APPLE_error"); 632 // break; 633 } 634 } 635 } 636 637 void 638 DWARFExpression::SetLocationListSlide (addr_t slide) 639 { 640 m_loclist_slide = slide; 641 } 642 643 int 644 DWARFExpression::GetRegisterKind () 645 { 646 return m_reg_kind; 647 } 648 649 void 650 DWARFExpression::SetRegisterKind (RegisterKind reg_kind) 651 { 652 m_reg_kind = reg_kind; 653 } 654 655 bool 656 DWARFExpression::IsLocationList() const 657 { 658 return m_loclist_slide != LLDB_INVALID_ADDRESS; 659 } 660 661 void 662 DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const 663 { 664 if (IsLocationList()) 665 { 666 // We have a location list 667 uint32_t offset = 0; 668 uint32_t count = 0; 669 addr_t curr_base_addr = location_list_base_addr; 670 while (m_data.ValidOffset(offset)) 671 { 672 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); 673 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); 674 if (begin_addr_offset < end_addr_offset) 675 { 676 if (count > 0) 677 s->PutCString(", "); 678 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); 679 addr_range.Dump(s, 0, 8); 680 s->PutChar('{'); 681 uint32_t location_length = m_data.GetU16(&offset); 682 DumpLocation (s, offset, location_length, level, abi); 683 s->PutChar('}'); 684 offset += location_length; 685 } 686 else if (begin_addr_offset == 0 && end_addr_offset == 0) 687 { 688 // The end of the location list is marked by both the start and end offset being zero 689 break; 690 } 691 else 692 { 693 if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || 694 (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) 695 { 696 curr_base_addr = end_addr_offset + location_list_base_addr; 697 // We have a new base address 698 if (count > 0) 699 s->PutCString(", "); 700 *s << "base_addr = " << end_addr_offset; 701 } 702 } 703 704 count++; 705 } 706 } 707 else 708 { 709 // We have a normal location that contains DW_OP location opcodes 710 DumpLocation (s, 0, m_data.GetByteSize(), level, abi); 711 } 712 } 713 714 static bool 715 ReadRegisterValueAsScalar 716 ( 717 RegisterContext *reg_ctx, 718 uint32_t reg_kind, 719 uint32_t reg_num, 720 Error *error_ptr, 721 Value &value 722 ) 723 { 724 if (reg_ctx == NULL) 725 { 726 if (error_ptr) 727 error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); 728 } 729 else 730 { 731 uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 732 if (native_reg == LLDB_INVALID_REGNUM) 733 { 734 if (error_ptr) 735 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); 736 } 737 else 738 { 739 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); 740 RegisterValue reg_value; 741 if (reg_ctx->ReadRegister (reg_info, reg_value)) 742 { 743 if (reg_value.GetScalarValue(value.GetScalar())) 744 { 745 value.SetValueType (Value::eValueTypeScalar); 746 value.SetContext (Value::eContextTypeRegisterInfo, 747 const_cast<RegisterInfo *>(reg_info)); 748 if (error_ptr) 749 error_ptr->Clear(); 750 return true; 751 } 752 else 753 { 754 // If we get this error, then we need to implement a value 755 // buffer in the dwarf expression evaluation function... 756 if (error_ptr) 757 error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value", 758 reg_info->name); 759 } 760 } 761 else 762 { 763 if (error_ptr) 764 error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); 765 } 766 } 767 } 768 return false; 769 } 770 771 //bool 772 //DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const 773 //{ 774 // return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); 775 //} 776 // 777 //bool 778 //DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const 779 //{ 780 // if (load_addr == LLDB_INVALID_ADDRESS) 781 // return false; 782 // 783 // if (IsLocationList()) 784 // { 785 // uint32_t offset = 0; 786 // 787 // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); 788 // 789 // if (loc_list_base_addr == LLDB_INVALID_ADDRESS) 790 // return false; 791 // 792 // while (m_data.ValidOffset(offset)) 793 // { 794 // // We need to figure out what the value is for the location. 795 // addr_t lo_pc = m_data.GetAddress(&offset); 796 // addr_t hi_pc = m_data.GetAddress(&offset); 797 // if (lo_pc == 0 && hi_pc == 0) 798 // break; 799 // else 800 // { 801 // lo_pc += loc_list_base_addr; 802 // hi_pc += loc_list_base_addr; 803 // 804 // if (lo_pc <= load_addr && load_addr < hi_pc) 805 // return true; 806 // 807 // offset += m_data.GetU16(&offset); 808 // } 809 // } 810 // } 811 // return false; 812 //} 813 814 static uint32_t 815 GetOpcodeDataSize (const DataExtractor &data, const uint32_t data_offset, const uint8_t op) 816 { 817 uint32_t offset = data_offset; 818 switch (op) 819 { 820 case DW_OP_addr: 821 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) 822 return data.GetAddressByteSize(); 823 824 // Opcodes with no arguments 825 case DW_OP_deref: // 0x06 826 case DW_OP_dup: // 0x12 827 case DW_OP_drop: // 0x13 828 case DW_OP_over: // 0x14 829 case DW_OP_swap: // 0x16 830 case DW_OP_rot: // 0x17 831 case DW_OP_xderef: // 0x18 832 case DW_OP_abs: // 0x19 833 case DW_OP_and: // 0x1a 834 case DW_OP_div: // 0x1b 835 case DW_OP_minus: // 0x1c 836 case DW_OP_mod: // 0x1d 837 case DW_OP_mul: // 0x1e 838 case DW_OP_neg: // 0x1f 839 case DW_OP_not: // 0x20 840 case DW_OP_or: // 0x21 841 case DW_OP_plus: // 0x22 842 case DW_OP_shl: // 0x24 843 case DW_OP_shr: // 0x25 844 case DW_OP_shra: // 0x26 845 case DW_OP_xor: // 0x27 846 case DW_OP_eq: // 0x29 847 case DW_OP_ge: // 0x2a 848 case DW_OP_gt: // 0x2b 849 case DW_OP_le: // 0x2c 850 case DW_OP_lt: // 0x2d 851 case DW_OP_ne: // 0x2e 852 case DW_OP_lit0: // 0x30 853 case DW_OP_lit1: // 0x31 854 case DW_OP_lit2: // 0x32 855 case DW_OP_lit3: // 0x33 856 case DW_OP_lit4: // 0x34 857 case DW_OP_lit5: // 0x35 858 case DW_OP_lit6: // 0x36 859 case DW_OP_lit7: // 0x37 860 case DW_OP_lit8: // 0x38 861 case DW_OP_lit9: // 0x39 862 case DW_OP_lit10: // 0x3A 863 case DW_OP_lit11: // 0x3B 864 case DW_OP_lit12: // 0x3C 865 case DW_OP_lit13: // 0x3D 866 case DW_OP_lit14: // 0x3E 867 case DW_OP_lit15: // 0x3F 868 case DW_OP_lit16: // 0x40 869 case DW_OP_lit17: // 0x41 870 case DW_OP_lit18: // 0x42 871 case DW_OP_lit19: // 0x43 872 case DW_OP_lit20: // 0x44 873 case DW_OP_lit21: // 0x45 874 case DW_OP_lit22: // 0x46 875 case DW_OP_lit23: // 0x47 876 case DW_OP_lit24: // 0x48 877 case DW_OP_lit25: // 0x49 878 case DW_OP_lit26: // 0x4A 879 case DW_OP_lit27: // 0x4B 880 case DW_OP_lit28: // 0x4C 881 case DW_OP_lit29: // 0x4D 882 case DW_OP_lit30: // 0x4E 883 case DW_OP_lit31: // 0x4f 884 case DW_OP_reg0: // 0x50 885 case DW_OP_reg1: // 0x51 886 case DW_OP_reg2: // 0x52 887 case DW_OP_reg3: // 0x53 888 case DW_OP_reg4: // 0x54 889 case DW_OP_reg5: // 0x55 890 case DW_OP_reg6: // 0x56 891 case DW_OP_reg7: // 0x57 892 case DW_OP_reg8: // 0x58 893 case DW_OP_reg9: // 0x59 894 case DW_OP_reg10: // 0x5A 895 case DW_OP_reg11: // 0x5B 896 case DW_OP_reg12: // 0x5C 897 case DW_OP_reg13: // 0x5D 898 case DW_OP_reg14: // 0x5E 899 case DW_OP_reg15: // 0x5F 900 case DW_OP_reg16: // 0x60 901 case DW_OP_reg17: // 0x61 902 case DW_OP_reg18: // 0x62 903 case DW_OP_reg19: // 0x63 904 case DW_OP_reg20: // 0x64 905 case DW_OP_reg21: // 0x65 906 case DW_OP_reg22: // 0x66 907 case DW_OP_reg23: // 0x67 908 case DW_OP_reg24: // 0x68 909 case DW_OP_reg25: // 0x69 910 case DW_OP_reg26: // 0x6A 911 case DW_OP_reg27: // 0x6B 912 case DW_OP_reg28: // 0x6C 913 case DW_OP_reg29: // 0x6D 914 case DW_OP_reg30: // 0x6E 915 case DW_OP_reg31: // 0x6F 916 case DW_OP_nop: // 0x96 917 case DW_OP_push_object_address: // 0x97 DWARF3 918 case DW_OP_form_tls_address: // 0x9b DWARF3 919 case DW_OP_call_frame_cfa: // 0x9c DWARF3 920 case DW_OP_stack_value: // 0x9f DWARF4 921 return 0; 922 923 // Opcodes with a single 1 byte arguments 924 case DW_OP_const1u: // 0x08 1 1-byte constant 925 case DW_OP_const1s: // 0x09 1 1-byte constant 926 case DW_OP_pick: // 0x15 1 1-byte stack index 927 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 928 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 929 return 1; 930 931 // Opcodes with a single 2 byte arguments 932 case DW_OP_const2u: // 0x0a 1 2-byte constant 933 case DW_OP_const2s: // 0x0b 1 2-byte constant 934 case DW_OP_skip: // 0x2f 1 signed 2-byte constant 935 case DW_OP_bra: // 0x28 1 signed 2-byte constant 936 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) 937 return 2; 938 939 // Opcodes with a single 4 byte arguments 940 case DW_OP_const4u: // 0x0c 1 4-byte constant 941 case DW_OP_const4s: // 0x0d 1 4-byte constant 942 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) 943 return 4; 944 945 // Opcodes with a single 8 byte arguments 946 case DW_OP_const8u: // 0x0e 1 8-byte constant 947 case DW_OP_const8s: // 0x0f 1 8-byte constant 948 return 8; 949 950 // All opcodes that have a single ULEB (signed or unsigned) argument 951 case DW_OP_constu: // 0x10 1 ULEB128 constant 952 case DW_OP_consts: // 0x11 1 SLEB128 constant 953 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 954 case DW_OP_breg0: // 0x70 1 ULEB128 register 955 case DW_OP_breg1: // 0x71 1 ULEB128 register 956 case DW_OP_breg2: // 0x72 1 ULEB128 register 957 case DW_OP_breg3: // 0x73 1 ULEB128 register 958 case DW_OP_breg4: // 0x74 1 ULEB128 register 959 case DW_OP_breg5: // 0x75 1 ULEB128 register 960 case DW_OP_breg6: // 0x76 1 ULEB128 register 961 case DW_OP_breg7: // 0x77 1 ULEB128 register 962 case DW_OP_breg8: // 0x78 1 ULEB128 register 963 case DW_OP_breg9: // 0x79 1 ULEB128 register 964 case DW_OP_breg10: // 0x7a 1 ULEB128 register 965 case DW_OP_breg11: // 0x7b 1 ULEB128 register 966 case DW_OP_breg12: // 0x7c 1 ULEB128 register 967 case DW_OP_breg13: // 0x7d 1 ULEB128 register 968 case DW_OP_breg14: // 0x7e 1 ULEB128 register 969 case DW_OP_breg15: // 0x7f 1 ULEB128 register 970 case DW_OP_breg16: // 0x80 1 ULEB128 register 971 case DW_OP_breg17: // 0x81 1 ULEB128 register 972 case DW_OP_breg18: // 0x82 1 ULEB128 register 973 case DW_OP_breg19: // 0x83 1 ULEB128 register 974 case DW_OP_breg20: // 0x84 1 ULEB128 register 975 case DW_OP_breg21: // 0x85 1 ULEB128 register 976 case DW_OP_breg22: // 0x86 1 ULEB128 register 977 case DW_OP_breg23: // 0x87 1 ULEB128 register 978 case DW_OP_breg24: // 0x88 1 ULEB128 register 979 case DW_OP_breg25: // 0x89 1 ULEB128 register 980 case DW_OP_breg26: // 0x8a 1 ULEB128 register 981 case DW_OP_breg27: // 0x8b 1 ULEB128 register 982 case DW_OP_breg28: // 0x8c 1 ULEB128 register 983 case DW_OP_breg29: // 0x8d 1 ULEB128 register 984 case DW_OP_breg30: // 0x8e 1 ULEB128 register 985 case DW_OP_breg31: // 0x8f 1 ULEB128 register 986 case DW_OP_regx: // 0x90 1 ULEB128 register 987 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 988 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 989 data.Skip_LEB128(&offset); 990 return offset - data_offset; 991 992 // All opcodes that have a 2 ULEB (signed or unsigned) arguments 993 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 994 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); 995 data.Skip_LEB128(&offset); 996 data.Skip_LEB128(&offset); 997 return offset - data_offset; 998 999 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size (DWARF4) 1000 { 1001 uint64_t block_len = data.Skip_LEB128(&offset); 1002 offset += block_len; 1003 return offset - data_offset; 1004 } 1005 1006 default: 1007 break; 1008 } 1009 return UINT32_MAX; 1010 } 1011 1012 bool 1013 DWARFExpression::LocationContains_DW_OP_addr (lldb::addr_t file_addr, bool &error) const 1014 { 1015 error = false; 1016 if (IsLocationList()) 1017 return false; 1018 uint32_t offset = 0; 1019 while (m_data.ValidOffset(offset)) 1020 { 1021 const uint8_t op = m_data.GetU8(&offset); 1022 1023 if (op == DW_OP_addr) 1024 { 1025 if (file_addr == LLDB_INVALID_ADDRESS) 1026 return true; 1027 addr_t op_file_addr = m_data.GetAddress(&offset); 1028 if (op_file_addr == file_addr) 1029 return true; 1030 } 1031 else 1032 { 1033 const uint32_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1034 if (op_arg_size == UINT32_MAX) 1035 { 1036 error = true; 1037 break; 1038 } 1039 offset += op_arg_size; 1040 } 1041 } 1042 return false; 1043 } 1044 1045 bool 1046 DWARFExpression::Update_DW_OP_addr (lldb::addr_t file_addr) 1047 { 1048 if (IsLocationList()) 1049 return false; 1050 uint32_t offset = 0; 1051 while (m_data.ValidOffset(offset)) 1052 { 1053 const uint8_t op = m_data.GetU8(&offset); 1054 1055 if (op == DW_OP_addr) 1056 { 1057 const uint8_t addr_byte_size = m_data.GetAddressByteSize(); 1058 // We have to make a copy of the data as we don't know if this 1059 // data is from a read only memory mapped buffer, so we duplicate 1060 // all of the data first, then modify it, and if all goes well, 1061 // we then replace the data for this expression 1062 1063 // So first we copy the data into a heap buffer 1064 std::auto_ptr<DataBufferHeap> head_data_ap (new DataBufferHeap (m_data.GetDataStart(), 1065 m_data.GetByteSize())); 1066 1067 // Make en encoder so we can write the address into the buffer using 1068 // the correct byte order (endianness) 1069 DataEncoder encoder (head_data_ap->GetBytes(), 1070 head_data_ap->GetByteSize(), 1071 m_data.GetByteOrder(), 1072 addr_byte_size); 1073 1074 // Replace the address in the new buffer 1075 if (encoder.PutMaxU64 (offset, addr_byte_size, file_addr) == UINT32_MAX) 1076 return false; 1077 1078 // All went well, so now we can reset the data using a shared 1079 // pointer to the heap data so "m_data" will now correctly 1080 // manage the heap data. 1081 m_data.SetData (DataBufferSP (head_data_ap.release())); 1082 return true; 1083 } 1084 else 1085 { 1086 const uint32_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1087 if (op_arg_size == UINT32_MAX) 1088 break; 1089 offset += op_arg_size; 1090 } 1091 } 1092 return false; 1093 } 1094 1095 bool 1096 DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const 1097 { 1098 if (addr == LLDB_INVALID_ADDRESS) 1099 return false; 1100 1101 if (IsLocationList()) 1102 { 1103 uint32_t offset = 0; 1104 1105 if (loclist_base_addr == LLDB_INVALID_ADDRESS) 1106 return false; 1107 1108 while (m_data.ValidOffset(offset)) 1109 { 1110 // We need to figure out what the value is for the location. 1111 addr_t lo_pc = m_data.GetAddress(&offset); 1112 addr_t hi_pc = m_data.GetAddress(&offset); 1113 if (lo_pc == 0 && hi_pc == 0) 1114 break; 1115 else 1116 { 1117 lo_pc += loclist_base_addr - m_loclist_slide; 1118 hi_pc += loclist_base_addr - m_loclist_slide; 1119 1120 if (lo_pc <= addr && addr < hi_pc) 1121 return true; 1122 1123 offset += m_data.GetU16(&offset); 1124 } 1125 } 1126 } 1127 return false; 1128 } 1129 1130 bool 1131 DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, uint32_t &offset, uint32_t &length) 1132 { 1133 offset = 0; 1134 if (!IsLocationList()) 1135 { 1136 length = m_data.GetByteSize(); 1137 return true; 1138 } 1139 1140 if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) 1141 { 1142 addr_t curr_base_addr = base_addr; 1143 1144 while (m_data.ValidOffset(offset)) 1145 { 1146 // We need to figure out what the value is for the location. 1147 addr_t lo_pc = m_data.GetAddress(&offset); 1148 addr_t hi_pc = m_data.GetAddress(&offset); 1149 if (lo_pc == 0 && hi_pc == 0) 1150 { 1151 break; 1152 } 1153 else 1154 { 1155 lo_pc += curr_base_addr - m_loclist_slide; 1156 hi_pc += curr_base_addr - m_loclist_slide; 1157 1158 length = m_data.GetU16(&offset); 1159 1160 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1161 return true; 1162 1163 offset += length; 1164 } 1165 } 1166 } 1167 offset = UINT32_MAX; 1168 length = 0; 1169 return false; 1170 } 1171 1172 bool 1173 DWARFExpression::DumpLocationForAddress (Stream *s, 1174 lldb::DescriptionLevel level, 1175 addr_t base_addr, 1176 addr_t address, 1177 ABI *abi) 1178 { 1179 uint32_t offset = 0; 1180 uint32_t length = 0; 1181 1182 if (GetLocation (base_addr, address, offset, length)) 1183 { 1184 if (length > 0) 1185 { 1186 DumpLocation(s, offset, length, level, abi); 1187 return true; 1188 } 1189 } 1190 return false; 1191 } 1192 1193 bool 1194 DWARFExpression::Evaluate 1195 ( 1196 ExecutionContextScope *exe_scope, 1197 clang::ASTContext *ast_context, 1198 ClangExpressionVariableList *expr_locals, 1199 ClangExpressionDeclMap *decl_map, 1200 lldb::addr_t loclist_base_load_addr, 1201 const Value* initial_value_ptr, 1202 Value& result, 1203 Error *error_ptr 1204 ) const 1205 { 1206 ExecutionContext exe_ctx (exe_scope); 1207 return Evaluate(&exe_ctx, ast_context, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); 1208 } 1209 1210 bool 1211 DWARFExpression::Evaluate 1212 ( 1213 ExecutionContext *exe_ctx, 1214 clang::ASTContext *ast_context, 1215 ClangExpressionVariableList *expr_locals, 1216 ClangExpressionDeclMap *decl_map, 1217 RegisterContext *reg_ctx, 1218 lldb::addr_t loclist_base_load_addr, 1219 const Value* initial_value_ptr, 1220 Value& result, 1221 Error *error_ptr 1222 ) const 1223 { 1224 if (IsLocationList()) 1225 { 1226 uint32_t offset = 0; 1227 addr_t pc; 1228 StackFrame *frame = NULL; 1229 if (reg_ctx) 1230 pc = reg_ctx->GetPC(); 1231 else 1232 { 1233 frame = exe_ctx->GetFramePtr(); 1234 if (!frame) 1235 return false; 1236 RegisterContextSP reg_ctx_sp = frame->GetRegisterContext(); 1237 if (!reg_ctx_sp) 1238 return false; 1239 pc = reg_ctx_sp->GetPC(); 1240 } 1241 1242 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) 1243 { 1244 if (pc == LLDB_INVALID_ADDRESS) 1245 { 1246 if (error_ptr) 1247 error_ptr->SetErrorString("Invalid PC in frame."); 1248 return false; 1249 } 1250 1251 addr_t curr_loclist_base_load_addr = loclist_base_load_addr; 1252 1253 while (m_data.ValidOffset(offset)) 1254 { 1255 // We need to figure out what the value is for the location. 1256 addr_t lo_pc = m_data.GetAddress(&offset); 1257 addr_t hi_pc = m_data.GetAddress(&offset); 1258 if (lo_pc == 0 && hi_pc == 0) 1259 { 1260 break; 1261 } 1262 else 1263 { 1264 lo_pc += curr_loclist_base_load_addr - m_loclist_slide; 1265 hi_pc += curr_loclist_base_load_addr - m_loclist_slide; 1266 1267 uint16_t length = m_data.GetU16(&offset); 1268 1269 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1270 { 1271 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); 1272 } 1273 offset += length; 1274 } 1275 } 1276 } 1277 if (error_ptr) 1278 error_ptr->SetErrorString ("variable not available"); 1279 return false; 1280 } 1281 1282 // Not a location list, just a single expression. 1283 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); 1284 } 1285 1286 1287 1288 bool 1289 DWARFExpression::Evaluate 1290 ( 1291 ExecutionContext *exe_ctx, 1292 clang::ASTContext *ast_context, 1293 ClangExpressionVariableList *expr_locals, 1294 ClangExpressionDeclMap *decl_map, 1295 RegisterContext *reg_ctx, 1296 const DataExtractor& opcodes, 1297 const uint32_t opcodes_offset, 1298 const uint32_t opcodes_length, 1299 const uint32_t reg_kind, 1300 const Value* initial_value_ptr, 1301 Value& result, 1302 Error *error_ptr 1303 ) 1304 { 1305 std::vector<Value> stack; 1306 1307 Process *process = NULL; 1308 StackFrame *frame = NULL; 1309 1310 if (exe_ctx) 1311 { 1312 process = exe_ctx->GetProcessPtr(); 1313 frame = exe_ctx->GetFramePtr(); 1314 } 1315 if (reg_ctx == NULL && frame) 1316 reg_ctx = frame->GetRegisterContext().get(); 1317 1318 if (initial_value_ptr) 1319 stack.push_back(*initial_value_ptr); 1320 1321 uint32_t offset = opcodes_offset; 1322 const uint32_t end_offset = opcodes_offset + opcodes_length; 1323 Value tmp; 1324 uint32_t reg_num; 1325 1326 // Make sure all of the data is available in opcodes. 1327 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) 1328 { 1329 if (error_ptr) 1330 error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer."); 1331 return false; 1332 } 1333 LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1334 1335 1336 while (opcodes.ValidOffset(offset) && offset < end_offset) 1337 { 1338 const uint32_t op_offset = offset; 1339 const uint8_t op = opcodes.GetU8(&offset); 1340 1341 if (log && log->GetVerbose()) 1342 { 1343 size_t count = stack.size(); 1344 log->Printf("Stack before operation has %lu values:", count); 1345 for (size_t i=0; i<count; ++i) 1346 { 1347 StreamString new_value; 1348 new_value.Printf("[%zu]", i); 1349 stack[i].Dump(&new_value); 1350 log->Printf(" %s", new_value.GetData()); 1351 } 1352 log->Printf("0x%8.8x: %s", op_offset, DW_OP_value_to_name(op)); 1353 } 1354 switch (op) 1355 { 1356 //---------------------------------------------------------------------- 1357 // The DW_OP_addr operation has a single operand that encodes a machine 1358 // address and whose size is the size of an address on the target machine. 1359 //---------------------------------------------------------------------- 1360 case DW_OP_addr: 1361 stack.push_back(Scalar(opcodes.GetAddress(&offset))); 1362 stack.back().SetValueType (Value::eValueTypeFileAddress); 1363 break; 1364 1365 //---------------------------------------------------------------------- 1366 // The DW_OP_addr_sect_offset4 is used for any location expressions in 1367 // shared libraries that have a location like: 1368 // DW_OP_addr(0x1000) 1369 // If this address resides in a shared library, then this virtual 1370 // address won't make sense when it is evaluated in the context of a 1371 // running process where shared libraries have been slid. To account for 1372 // this, this new address type where we can store the section pointer 1373 // and a 4 byte offset. 1374 //---------------------------------------------------------------------- 1375 // case DW_OP_addr_sect_offset4: 1376 // { 1377 // result_type = eResultTypeFileAddress; 1378 // lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); 1379 // lldb::addr_t sect_offset = opcodes.GetU32(&offset); 1380 // 1381 // Address so_addr (sect, sect_offset); 1382 // lldb::addr_t load_addr = so_addr.GetLoadAddress(); 1383 // if (load_addr != LLDB_INVALID_ADDRESS) 1384 // { 1385 // // We successfully resolve a file address to a load 1386 // // address. 1387 // stack.push_back(load_addr); 1388 // break; 1389 // } 1390 // else 1391 // { 1392 // // We were able 1393 // if (error_ptr) 1394 // error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 1395 // return false; 1396 // } 1397 // } 1398 // break; 1399 1400 //---------------------------------------------------------------------- 1401 // OPCODE: DW_OP_deref 1402 // OPERANDS: none 1403 // DESCRIPTION: Pops the top stack entry and treats it as an address. 1404 // The value retrieved from that address is pushed. The size of the 1405 // data retrieved from the dereferenced address is the size of an 1406 // address on the target machine. 1407 //---------------------------------------------------------------------- 1408 case DW_OP_deref: 1409 { 1410 Value::ValueType value_type = stack.back().GetValueType(); 1411 switch (value_type) 1412 { 1413 case Value::eValueTypeHostAddress: 1414 { 1415 void *src = (void *)stack.back().GetScalar().ULongLong(); 1416 intptr_t ptr; 1417 ::memcpy (&ptr, src, sizeof(void *)); 1418 stack.back().GetScalar() = ptr; 1419 stack.back().ClearContext(); 1420 } 1421 break; 1422 case Value::eValueTypeLoadAddress: 1423 if (exe_ctx) 1424 { 1425 if (process) 1426 { 1427 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1428 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1429 uint32_t addr_size = process->GetAddressByteSize(); 1430 Error error; 1431 if (process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size) 1432 { 1433 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), addr_size); 1434 uint32_t addr_data_offset = 0; 1435 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1436 stack.back().ClearContext(); 1437 } 1438 else 1439 { 1440 if (error_ptr) 1441 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1442 pointer_addr, 1443 error.AsCString()); 1444 return false; 1445 } 1446 } 1447 else 1448 { 1449 if (error_ptr) 1450 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1451 return false; 1452 } 1453 } 1454 else 1455 { 1456 if (error_ptr) 1457 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1458 return false; 1459 } 1460 break; 1461 1462 default: 1463 break; 1464 } 1465 1466 } 1467 break; 1468 1469 //---------------------------------------------------------------------- 1470 // OPCODE: DW_OP_deref_size 1471 // OPERANDS: 1 1472 // 1 - uint8_t that specifies the size of the data to dereference. 1473 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 1474 // stack entry and treats it as an address. The value retrieved from that 1475 // address is pushed. In the DW_OP_deref_size operation, however, the 1476 // size in bytes of the data retrieved from the dereferenced address is 1477 // specified by the single operand. This operand is a 1-byte unsigned 1478 // integral constant whose value may not be larger than the size of an 1479 // address on the target machine. The data retrieved is zero extended 1480 // to the size of an address on the target machine before being pushed 1481 // on the expression stack. 1482 //---------------------------------------------------------------------- 1483 case DW_OP_deref_size: 1484 { 1485 uint8_t size = opcodes.GetU8(&offset); 1486 Value::ValueType value_type = stack.back().GetValueType(); 1487 switch (value_type) 1488 { 1489 case Value::eValueTypeHostAddress: 1490 { 1491 void *src = (void *)stack.back().GetScalar().ULongLong(); 1492 intptr_t ptr; 1493 ::memcpy (&ptr, src, sizeof(void *)); 1494 // I can't decide whether the size operand should apply to the bytes in their 1495 // lldb-host endianness or the target endianness.. I doubt this'll ever come up 1496 // but I'll opt for assuming big endian regardless. 1497 switch (size) 1498 { 1499 case 1: ptr = ptr & 0xff; break; 1500 case 2: ptr = ptr & 0xffff; break; 1501 case 3: ptr = ptr & 0xffffff; break; 1502 case 4: ptr = ptr & 0xffffffff; break; 1503 // the casts are added to work around the case where intptr_t is a 32 bit quantity; 1504 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. 1505 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; 1506 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; 1507 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; 1508 default: break; 1509 } 1510 stack.back().GetScalar() = ptr; 1511 stack.back().ClearContext(); 1512 } 1513 break; 1514 case Value::eValueTypeLoadAddress: 1515 if (exe_ctx) 1516 { 1517 if (process) 1518 { 1519 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1520 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1521 Error error; 1522 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) 1523 { 1524 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size); 1525 uint32_t addr_data_offset = 0; 1526 switch (size) 1527 { 1528 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; 1529 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; 1530 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; 1531 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; 1532 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1533 } 1534 stack.back().ClearContext(); 1535 } 1536 else 1537 { 1538 if (error_ptr) 1539 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1540 pointer_addr, 1541 error.AsCString()); 1542 return false; 1543 } 1544 } 1545 else 1546 { 1547 if (error_ptr) 1548 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1549 return false; 1550 } 1551 } 1552 else 1553 { 1554 if (error_ptr) 1555 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1556 return false; 1557 } 1558 break; 1559 1560 default: 1561 break; 1562 } 1563 1564 } 1565 break; 1566 1567 //---------------------------------------------------------------------- 1568 // OPCODE: DW_OP_xderef_size 1569 // OPERANDS: 1 1570 // 1 - uint8_t that specifies the size of the data to dereference. 1571 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1572 // the top of the stack is treated as an address. The second stack 1573 // entry is treated as an "address space identifier" for those 1574 // architectures that support multiple address spaces. The top two 1575 // stack elements are popped, a data item is retrieved through an 1576 // implementation-defined address calculation and pushed as the new 1577 // stack top. In the DW_OP_xderef_size operation, however, the size in 1578 // bytes of the data retrieved from the dereferenced address is 1579 // specified by the single operand. This operand is a 1-byte unsigned 1580 // integral constant whose value may not be larger than the size of an 1581 // address on the target machine. The data retrieved is zero extended 1582 // to the size of an address on the target machine before being pushed 1583 // on the expression stack. 1584 //---------------------------------------------------------------------- 1585 case DW_OP_xderef_size: 1586 if (error_ptr) 1587 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1588 return false; 1589 //---------------------------------------------------------------------- 1590 // OPCODE: DW_OP_xderef 1591 // OPERANDS: none 1592 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1593 // the top of the stack is treated as an address. The second stack entry 1594 // is treated as an "address space identifier" for those architectures 1595 // that support multiple address spaces. The top two stack elements are 1596 // popped, a data item is retrieved through an implementation-defined 1597 // address calculation and pushed as the new stack top. The size of the 1598 // data retrieved from the dereferenced address is the size of an address 1599 // on the target machine. 1600 //---------------------------------------------------------------------- 1601 case DW_OP_xderef: 1602 if (error_ptr) 1603 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1604 return false; 1605 1606 //---------------------------------------------------------------------- 1607 // All DW_OP_constXXX opcodes have a single operand as noted below: 1608 // 1609 // Opcode Operand 1 1610 // --------------- ---------------------------------------------------- 1611 // DW_OP_const1u 1-byte unsigned integer constant 1612 // DW_OP_const1s 1-byte signed integer constant 1613 // DW_OP_const2u 2-byte unsigned integer constant 1614 // DW_OP_const2s 2-byte signed integer constant 1615 // DW_OP_const4u 4-byte unsigned integer constant 1616 // DW_OP_const4s 4-byte signed integer constant 1617 // DW_OP_const8u 8-byte unsigned integer constant 1618 // DW_OP_const8s 8-byte signed integer constant 1619 // DW_OP_constu unsigned LEB128 integer constant 1620 // DW_OP_consts signed LEB128 integer constant 1621 //---------------------------------------------------------------------- 1622 case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break; 1623 case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break; 1624 case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break; 1625 case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break; 1626 case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break; 1627 case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break; 1628 case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break; 1629 case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break; 1630 case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break; 1631 case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break; 1632 1633 //---------------------------------------------------------------------- 1634 // OPCODE: DW_OP_dup 1635 // OPERANDS: none 1636 // DESCRIPTION: duplicates the value at the top of the stack 1637 //---------------------------------------------------------------------- 1638 case DW_OP_dup: 1639 if (stack.empty()) 1640 { 1641 if (error_ptr) 1642 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1643 return false; 1644 } 1645 else 1646 stack.push_back(stack.back()); 1647 break; 1648 1649 //---------------------------------------------------------------------- 1650 // OPCODE: DW_OP_drop 1651 // OPERANDS: none 1652 // DESCRIPTION: pops the value at the top of the stack 1653 //---------------------------------------------------------------------- 1654 case DW_OP_drop: 1655 if (stack.empty()) 1656 { 1657 if (error_ptr) 1658 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1659 return false; 1660 } 1661 else 1662 stack.pop_back(); 1663 break; 1664 1665 //---------------------------------------------------------------------- 1666 // OPCODE: DW_OP_over 1667 // OPERANDS: none 1668 // DESCRIPTION: Duplicates the entry currently second in the stack at 1669 // the top of the stack. 1670 //---------------------------------------------------------------------- 1671 case DW_OP_over: 1672 if (stack.size() < 2) 1673 { 1674 if (error_ptr) 1675 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); 1676 return false; 1677 } 1678 else 1679 stack.push_back(stack[stack.size() - 2]); 1680 break; 1681 1682 1683 //---------------------------------------------------------------------- 1684 // OPCODE: DW_OP_pick 1685 // OPERANDS: uint8_t index into the current stack 1686 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1687 // inclusive) is pushed on the stack 1688 //---------------------------------------------------------------------- 1689 case DW_OP_pick: 1690 { 1691 uint8_t pick_idx = opcodes.GetU8(&offset); 1692 if (pick_idx < stack.size()) 1693 stack.push_back(stack[pick_idx]); 1694 else 1695 { 1696 if (error_ptr) 1697 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); 1698 return false; 1699 } 1700 } 1701 break; 1702 1703 //---------------------------------------------------------------------- 1704 // OPCODE: DW_OP_swap 1705 // OPERANDS: none 1706 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1707 // of the stack becomes the second stack entry, and the second entry 1708 // becomes the top of the stack 1709 //---------------------------------------------------------------------- 1710 case DW_OP_swap: 1711 if (stack.size() < 2) 1712 { 1713 if (error_ptr) 1714 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); 1715 return false; 1716 } 1717 else 1718 { 1719 tmp = stack.back(); 1720 stack.back() = stack[stack.size() - 2]; 1721 stack[stack.size() - 2] = tmp; 1722 } 1723 break; 1724 1725 //---------------------------------------------------------------------- 1726 // OPCODE: DW_OP_rot 1727 // OPERANDS: none 1728 // DESCRIPTION: Rotates the first three stack entries. The entry at 1729 // the top of the stack becomes the third stack entry, the second 1730 // entry becomes the top of the stack, and the third entry becomes 1731 // the second entry. 1732 //---------------------------------------------------------------------- 1733 case DW_OP_rot: 1734 if (stack.size() < 3) 1735 { 1736 if (error_ptr) 1737 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); 1738 return false; 1739 } 1740 else 1741 { 1742 size_t last_idx = stack.size() - 1; 1743 Value old_top = stack[last_idx]; 1744 stack[last_idx] = stack[last_idx - 1]; 1745 stack[last_idx - 1] = stack[last_idx - 2]; 1746 stack[last_idx - 2] = old_top; 1747 } 1748 break; 1749 1750 //---------------------------------------------------------------------- 1751 // OPCODE: DW_OP_abs 1752 // OPERANDS: none 1753 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1754 // value and pushes its absolute value. If the absolute value can not be 1755 // represented, the result is undefined. 1756 //---------------------------------------------------------------------- 1757 case DW_OP_abs: 1758 if (stack.empty()) 1759 { 1760 if (error_ptr) 1761 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); 1762 return false; 1763 } 1764 else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false) 1765 { 1766 if (error_ptr) 1767 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); 1768 return false; 1769 } 1770 break; 1771 1772 //---------------------------------------------------------------------- 1773 // OPCODE: DW_OP_and 1774 // OPERANDS: none 1775 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1776 // operation on the two, and pushes the result. 1777 //---------------------------------------------------------------------- 1778 case DW_OP_and: 1779 if (stack.size() < 2) 1780 { 1781 if (error_ptr) 1782 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); 1783 return false; 1784 } 1785 else 1786 { 1787 tmp = stack.back(); 1788 stack.pop_back(); 1789 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context); 1790 } 1791 break; 1792 1793 //---------------------------------------------------------------------- 1794 // OPCODE: DW_OP_div 1795 // OPERANDS: none 1796 // DESCRIPTION: pops the top two stack values, divides the former second 1797 // entry by the former top of the stack using signed division, and 1798 // pushes the result. 1799 //---------------------------------------------------------------------- 1800 case DW_OP_div: 1801 if (stack.size() < 2) 1802 { 1803 if (error_ptr) 1804 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); 1805 return false; 1806 } 1807 else 1808 { 1809 tmp = stack.back(); 1810 if (tmp.ResolveValue(exe_ctx, ast_context).IsZero()) 1811 { 1812 if (error_ptr) 1813 error_ptr->SetErrorString("Divide by zero."); 1814 return false; 1815 } 1816 else 1817 { 1818 stack.pop_back(); 1819 stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context); 1820 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1821 { 1822 if (error_ptr) 1823 error_ptr->SetErrorString("Divide failed."); 1824 return false; 1825 } 1826 } 1827 } 1828 break; 1829 1830 //---------------------------------------------------------------------- 1831 // OPCODE: DW_OP_minus 1832 // OPERANDS: none 1833 // DESCRIPTION: pops the top two stack values, subtracts the former top 1834 // of the stack from the former second entry, and pushes the result. 1835 //---------------------------------------------------------------------- 1836 case DW_OP_minus: 1837 if (stack.size() < 2) 1838 { 1839 if (error_ptr) 1840 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); 1841 return false; 1842 } 1843 else 1844 { 1845 tmp = stack.back(); 1846 stack.pop_back(); 1847 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context); 1848 } 1849 break; 1850 1851 //---------------------------------------------------------------------- 1852 // OPCODE: DW_OP_mod 1853 // OPERANDS: none 1854 // DESCRIPTION: pops the top two stack values and pushes the result of 1855 // the calculation: former second stack entry modulo the former top of 1856 // the stack. 1857 //---------------------------------------------------------------------- 1858 case DW_OP_mod: 1859 if (stack.size() < 2) 1860 { 1861 if (error_ptr) 1862 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); 1863 return false; 1864 } 1865 else 1866 { 1867 tmp = stack.back(); 1868 stack.pop_back(); 1869 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context); 1870 } 1871 break; 1872 1873 1874 //---------------------------------------------------------------------- 1875 // OPCODE: DW_OP_mul 1876 // OPERANDS: none 1877 // DESCRIPTION: pops the top two stack entries, multiplies them 1878 // together, and pushes the result. 1879 //---------------------------------------------------------------------- 1880 case DW_OP_mul: 1881 if (stack.size() < 2) 1882 { 1883 if (error_ptr) 1884 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); 1885 return false; 1886 } 1887 else 1888 { 1889 tmp = stack.back(); 1890 stack.pop_back(); 1891 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context); 1892 } 1893 break; 1894 1895 //---------------------------------------------------------------------- 1896 // OPCODE: DW_OP_neg 1897 // OPERANDS: none 1898 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1899 //---------------------------------------------------------------------- 1900 case DW_OP_neg: 1901 if (stack.empty()) 1902 { 1903 if (error_ptr) 1904 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); 1905 return false; 1906 } 1907 else 1908 { 1909 if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false) 1910 { 1911 if (error_ptr) 1912 error_ptr->SetErrorString("Unary negate failed."); 1913 return false; 1914 } 1915 } 1916 break; 1917 1918 //---------------------------------------------------------------------- 1919 // OPCODE: DW_OP_not 1920 // OPERANDS: none 1921 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1922 // complement 1923 //---------------------------------------------------------------------- 1924 case DW_OP_not: 1925 if (stack.empty()) 1926 { 1927 if (error_ptr) 1928 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); 1929 return false; 1930 } 1931 else 1932 { 1933 if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false) 1934 { 1935 if (error_ptr) 1936 error_ptr->SetErrorString("Logical NOT failed."); 1937 return false; 1938 } 1939 } 1940 break; 1941 1942 //---------------------------------------------------------------------- 1943 // OPCODE: DW_OP_or 1944 // OPERANDS: none 1945 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 1946 // operation on the two, and pushes the result. 1947 //---------------------------------------------------------------------- 1948 case DW_OP_or: 1949 if (stack.size() < 2) 1950 { 1951 if (error_ptr) 1952 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); 1953 return false; 1954 } 1955 else 1956 { 1957 tmp = stack.back(); 1958 stack.pop_back(); 1959 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context); 1960 } 1961 break; 1962 1963 //---------------------------------------------------------------------- 1964 // OPCODE: DW_OP_plus 1965 // OPERANDS: none 1966 // DESCRIPTION: pops the top two stack entries, adds them together, and 1967 // pushes the result. 1968 //---------------------------------------------------------------------- 1969 case DW_OP_plus: 1970 if (stack.size() < 2) 1971 { 1972 if (error_ptr) 1973 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); 1974 return false; 1975 } 1976 else 1977 { 1978 tmp = stack.back(); 1979 stack.pop_back(); 1980 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context); 1981 } 1982 break; 1983 1984 //---------------------------------------------------------------------- 1985 // OPCODE: DW_OP_plus_uconst 1986 // OPERANDS: none 1987 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 1988 // constant operand and pushes the result. 1989 //---------------------------------------------------------------------- 1990 case DW_OP_plus_uconst: 1991 if (stack.empty()) 1992 { 1993 if (error_ptr) 1994 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); 1995 return false; 1996 } 1997 else 1998 { 1999 uint32_t uconst_value = opcodes.GetULEB128(&offset); 2000 // Implicit conversion from a UINT to a Scalar... 2001 stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value; 2002 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 2003 { 2004 if (error_ptr) 2005 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 2006 return false; 2007 } 2008 } 2009 break; 2010 2011 //---------------------------------------------------------------------- 2012 // OPCODE: DW_OP_shl 2013 // OPERANDS: none 2014 // DESCRIPTION: pops the top two stack entries, shifts the former 2015 // second entry left by the number of bits specified by the former top 2016 // of the stack, and pushes the result. 2017 //---------------------------------------------------------------------- 2018 case DW_OP_shl: 2019 if (stack.size() < 2) 2020 { 2021 if (error_ptr) 2022 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); 2023 return false; 2024 } 2025 else 2026 { 2027 tmp = stack.back(); 2028 stack.pop_back(); 2029 stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context); 2030 } 2031 break; 2032 2033 //---------------------------------------------------------------------- 2034 // OPCODE: DW_OP_shr 2035 // OPERANDS: none 2036 // DESCRIPTION: pops the top two stack entries, shifts the former second 2037 // entry right logically (filling with zero bits) by the number of bits 2038 // specified by the former top of the stack, and pushes the result. 2039 //---------------------------------------------------------------------- 2040 case DW_OP_shr: 2041 if (stack.size() < 2) 2042 { 2043 if (error_ptr) 2044 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); 2045 return false; 2046 } 2047 else 2048 { 2049 tmp = stack.back(); 2050 stack.pop_back(); 2051 if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false) 2052 { 2053 if (error_ptr) 2054 error_ptr->SetErrorString("DW_OP_shr failed."); 2055 return false; 2056 } 2057 } 2058 break; 2059 2060 //---------------------------------------------------------------------- 2061 // OPCODE: DW_OP_shra 2062 // OPERANDS: none 2063 // DESCRIPTION: pops the top two stack entries, shifts the former second 2064 // entry right arithmetically (divide the magnitude by 2, keep the same 2065 // sign for the result) by the number of bits specified by the former 2066 // top of the stack, and pushes the result. 2067 //---------------------------------------------------------------------- 2068 case DW_OP_shra: 2069 if (stack.size() < 2) 2070 { 2071 if (error_ptr) 2072 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); 2073 return false; 2074 } 2075 else 2076 { 2077 tmp = stack.back(); 2078 stack.pop_back(); 2079 stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context); 2080 } 2081 break; 2082 2083 //---------------------------------------------------------------------- 2084 // OPCODE: DW_OP_xor 2085 // OPERANDS: none 2086 // DESCRIPTION: pops the top two stack entries, performs the bitwise 2087 // exclusive-or operation on the two, and pushes the result. 2088 //---------------------------------------------------------------------- 2089 case DW_OP_xor: 2090 if (stack.size() < 2) 2091 { 2092 if (error_ptr) 2093 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); 2094 return false; 2095 } 2096 else 2097 { 2098 tmp = stack.back(); 2099 stack.pop_back(); 2100 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context); 2101 } 2102 break; 2103 2104 2105 //---------------------------------------------------------------------- 2106 // OPCODE: DW_OP_skip 2107 // OPERANDS: int16_t 2108 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 2109 // signed integer constant. The 2-byte constant is the number of bytes 2110 // of the DWARF expression to skip forward or backward from the current 2111 // operation, beginning after the 2-byte constant. 2112 //---------------------------------------------------------------------- 2113 case DW_OP_skip: 2114 { 2115 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 2116 uint32_t new_offset = offset + skip_offset; 2117 if (new_offset >= opcodes_offset && new_offset < end_offset) 2118 offset = new_offset; 2119 else 2120 { 2121 if (error_ptr) 2122 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 2123 return false; 2124 } 2125 } 2126 break; 2127 2128 //---------------------------------------------------------------------- 2129 // OPCODE: DW_OP_bra 2130 // OPERANDS: int16_t 2131 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 2132 // signed integer constant. This operation pops the top of stack. If 2133 // the value popped is not the constant 0, the 2-byte constant operand 2134 // is the number of bytes of the DWARF expression to skip forward or 2135 // backward from the current operation, beginning after the 2-byte 2136 // constant. 2137 //---------------------------------------------------------------------- 2138 case DW_OP_bra: 2139 { 2140 tmp = stack.back(); 2141 stack.pop_back(); 2142 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 2143 Scalar zero(0); 2144 if (tmp.ResolveValue(exe_ctx, ast_context) != zero) 2145 { 2146 uint32_t new_offset = offset + bra_offset; 2147 if (new_offset >= opcodes_offset && new_offset < end_offset) 2148 offset = new_offset; 2149 else 2150 { 2151 if (error_ptr) 2152 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 2153 return false; 2154 } 2155 } 2156 } 2157 break; 2158 2159 //---------------------------------------------------------------------- 2160 // OPCODE: DW_OP_eq 2161 // OPERANDS: none 2162 // DESCRIPTION: pops the top two stack values, compares using the 2163 // equals (==) operator. 2164 // STACK RESULT: push the constant value 1 onto the stack if the result 2165 // of the operation is true or the constant value 0 if the result of the 2166 // operation is false. 2167 //---------------------------------------------------------------------- 2168 case DW_OP_eq: 2169 if (stack.size() < 2) 2170 { 2171 if (error_ptr) 2172 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); 2173 return false; 2174 } 2175 else 2176 { 2177 tmp = stack.back(); 2178 stack.pop_back(); 2179 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context); 2180 } 2181 break; 2182 2183 //---------------------------------------------------------------------- 2184 // OPCODE: DW_OP_ge 2185 // OPERANDS: none 2186 // DESCRIPTION: pops the top two stack values, compares using the 2187 // greater than or equal to (>=) operator. 2188 // STACK RESULT: push the constant value 1 onto the stack if the result 2189 // of the operation is true or the constant value 0 if the result of the 2190 // operation is false. 2191 //---------------------------------------------------------------------- 2192 case DW_OP_ge: 2193 if (stack.size() < 2) 2194 { 2195 if (error_ptr) 2196 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); 2197 return false; 2198 } 2199 else 2200 { 2201 tmp = stack.back(); 2202 stack.pop_back(); 2203 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context); 2204 } 2205 break; 2206 2207 //---------------------------------------------------------------------- 2208 // OPCODE: DW_OP_gt 2209 // OPERANDS: none 2210 // DESCRIPTION: pops the top two stack values, compares using the 2211 // greater than (>) operator. 2212 // STACK RESULT: push the constant value 1 onto the stack if the result 2213 // of the operation is true or the constant value 0 if the result of the 2214 // operation is false. 2215 //---------------------------------------------------------------------- 2216 case DW_OP_gt: 2217 if (stack.size() < 2) 2218 { 2219 if (error_ptr) 2220 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); 2221 return false; 2222 } 2223 else 2224 { 2225 tmp = stack.back(); 2226 stack.pop_back(); 2227 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context); 2228 } 2229 break; 2230 2231 //---------------------------------------------------------------------- 2232 // OPCODE: DW_OP_le 2233 // OPERANDS: none 2234 // DESCRIPTION: pops the top two stack values, compares using the 2235 // less than or equal to (<=) operator. 2236 // STACK RESULT: push the constant value 1 onto the stack if the result 2237 // of the operation is true or the constant value 0 if the result of the 2238 // operation is false. 2239 //---------------------------------------------------------------------- 2240 case DW_OP_le: 2241 if (stack.size() < 2) 2242 { 2243 if (error_ptr) 2244 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); 2245 return false; 2246 } 2247 else 2248 { 2249 tmp = stack.back(); 2250 stack.pop_back(); 2251 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context); 2252 } 2253 break; 2254 2255 //---------------------------------------------------------------------- 2256 // OPCODE: DW_OP_lt 2257 // OPERANDS: none 2258 // DESCRIPTION: pops the top two stack values, compares using the 2259 // less than (<) operator. 2260 // STACK RESULT: push the constant value 1 onto the stack if the result 2261 // of the operation is true or the constant value 0 if the result of the 2262 // operation is false. 2263 //---------------------------------------------------------------------- 2264 case DW_OP_lt: 2265 if (stack.size() < 2) 2266 { 2267 if (error_ptr) 2268 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); 2269 return false; 2270 } 2271 else 2272 { 2273 tmp = stack.back(); 2274 stack.pop_back(); 2275 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context); 2276 } 2277 break; 2278 2279 //---------------------------------------------------------------------- 2280 // OPCODE: DW_OP_ne 2281 // OPERANDS: none 2282 // DESCRIPTION: pops the top two stack values, compares using the 2283 // not equal (!=) operator. 2284 // STACK RESULT: push the constant value 1 onto the stack if the result 2285 // of the operation is true or the constant value 0 if the result of the 2286 // operation is false. 2287 //---------------------------------------------------------------------- 2288 case DW_OP_ne: 2289 if (stack.size() < 2) 2290 { 2291 if (error_ptr) 2292 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); 2293 return false; 2294 } 2295 else 2296 { 2297 tmp = stack.back(); 2298 stack.pop_back(); 2299 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context); 2300 } 2301 break; 2302 2303 //---------------------------------------------------------------------- 2304 // OPCODE: DW_OP_litn 2305 // OPERANDS: none 2306 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 2307 // STACK RESULT: push the unsigned literal constant value onto the top 2308 // of the stack. 2309 //---------------------------------------------------------------------- 2310 case DW_OP_lit0: 2311 case DW_OP_lit1: 2312 case DW_OP_lit2: 2313 case DW_OP_lit3: 2314 case DW_OP_lit4: 2315 case DW_OP_lit5: 2316 case DW_OP_lit6: 2317 case DW_OP_lit7: 2318 case DW_OP_lit8: 2319 case DW_OP_lit9: 2320 case DW_OP_lit10: 2321 case DW_OP_lit11: 2322 case DW_OP_lit12: 2323 case DW_OP_lit13: 2324 case DW_OP_lit14: 2325 case DW_OP_lit15: 2326 case DW_OP_lit16: 2327 case DW_OP_lit17: 2328 case DW_OP_lit18: 2329 case DW_OP_lit19: 2330 case DW_OP_lit20: 2331 case DW_OP_lit21: 2332 case DW_OP_lit22: 2333 case DW_OP_lit23: 2334 case DW_OP_lit24: 2335 case DW_OP_lit25: 2336 case DW_OP_lit26: 2337 case DW_OP_lit27: 2338 case DW_OP_lit28: 2339 case DW_OP_lit29: 2340 case DW_OP_lit30: 2341 case DW_OP_lit31: 2342 stack.push_back(Scalar(op - DW_OP_lit0)); 2343 break; 2344 2345 //---------------------------------------------------------------------- 2346 // OPCODE: DW_OP_regN 2347 // OPERANDS: none 2348 // DESCRIPTION: Push the value in register n on the top of the stack. 2349 //---------------------------------------------------------------------- 2350 case DW_OP_reg0: 2351 case DW_OP_reg1: 2352 case DW_OP_reg2: 2353 case DW_OP_reg3: 2354 case DW_OP_reg4: 2355 case DW_OP_reg5: 2356 case DW_OP_reg6: 2357 case DW_OP_reg7: 2358 case DW_OP_reg8: 2359 case DW_OP_reg9: 2360 case DW_OP_reg10: 2361 case DW_OP_reg11: 2362 case DW_OP_reg12: 2363 case DW_OP_reg13: 2364 case DW_OP_reg14: 2365 case DW_OP_reg15: 2366 case DW_OP_reg16: 2367 case DW_OP_reg17: 2368 case DW_OP_reg18: 2369 case DW_OP_reg19: 2370 case DW_OP_reg20: 2371 case DW_OP_reg21: 2372 case DW_OP_reg22: 2373 case DW_OP_reg23: 2374 case DW_OP_reg24: 2375 case DW_OP_reg25: 2376 case DW_OP_reg26: 2377 case DW_OP_reg27: 2378 case DW_OP_reg28: 2379 case DW_OP_reg29: 2380 case DW_OP_reg30: 2381 case DW_OP_reg31: 2382 { 2383 reg_num = op - DW_OP_reg0; 2384 2385 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2386 stack.push_back(tmp); 2387 else 2388 return false; 2389 } 2390 break; 2391 //---------------------------------------------------------------------- 2392 // OPCODE: DW_OP_regx 2393 // OPERANDS: 2394 // ULEB128 literal operand that encodes the register. 2395 // DESCRIPTION: Push the value in register on the top of the stack. 2396 //---------------------------------------------------------------------- 2397 case DW_OP_regx: 2398 { 2399 reg_num = opcodes.GetULEB128(&offset); 2400 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2401 stack.push_back(tmp); 2402 else 2403 return false; 2404 } 2405 break; 2406 2407 //---------------------------------------------------------------------- 2408 // OPCODE: DW_OP_bregN 2409 // OPERANDS: 2410 // SLEB128 offset from register N 2411 // DESCRIPTION: Value is in memory at the address specified by register 2412 // N plus an offset. 2413 //---------------------------------------------------------------------- 2414 case DW_OP_breg0: 2415 case DW_OP_breg1: 2416 case DW_OP_breg2: 2417 case DW_OP_breg3: 2418 case DW_OP_breg4: 2419 case DW_OP_breg5: 2420 case DW_OP_breg6: 2421 case DW_OP_breg7: 2422 case DW_OP_breg8: 2423 case DW_OP_breg9: 2424 case DW_OP_breg10: 2425 case DW_OP_breg11: 2426 case DW_OP_breg12: 2427 case DW_OP_breg13: 2428 case DW_OP_breg14: 2429 case DW_OP_breg15: 2430 case DW_OP_breg16: 2431 case DW_OP_breg17: 2432 case DW_OP_breg18: 2433 case DW_OP_breg19: 2434 case DW_OP_breg20: 2435 case DW_OP_breg21: 2436 case DW_OP_breg22: 2437 case DW_OP_breg23: 2438 case DW_OP_breg24: 2439 case DW_OP_breg25: 2440 case DW_OP_breg26: 2441 case DW_OP_breg27: 2442 case DW_OP_breg28: 2443 case DW_OP_breg29: 2444 case DW_OP_breg30: 2445 case DW_OP_breg31: 2446 { 2447 reg_num = op - DW_OP_breg0; 2448 2449 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2450 { 2451 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2452 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2453 tmp.ClearContext(); 2454 stack.push_back(tmp); 2455 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2456 } 2457 else 2458 return false; 2459 } 2460 break; 2461 //---------------------------------------------------------------------- 2462 // OPCODE: DW_OP_bregx 2463 // OPERANDS: 2 2464 // ULEB128 literal operand that encodes the register. 2465 // SLEB128 offset from register N 2466 // DESCRIPTION: Value is in memory at the address specified by register 2467 // N plus an offset. 2468 //---------------------------------------------------------------------- 2469 case DW_OP_bregx: 2470 { 2471 reg_num = opcodes.GetULEB128(&offset); 2472 2473 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2474 { 2475 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2476 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2477 tmp.ClearContext(); 2478 stack.push_back(tmp); 2479 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2480 } 2481 else 2482 return false; 2483 } 2484 break; 2485 2486 case DW_OP_fbreg: 2487 if (exe_ctx) 2488 { 2489 if (frame) 2490 { 2491 Scalar value; 2492 if (frame->GetFrameBaseValue(value, error_ptr)) 2493 { 2494 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2495 value += fbreg_offset; 2496 stack.push_back(value); 2497 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2498 } 2499 else 2500 return false; 2501 } 2502 else 2503 { 2504 if (error_ptr) 2505 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); 2506 return false; 2507 } 2508 } 2509 else 2510 { 2511 if (error_ptr) 2512 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_fbreg.\n"); 2513 return false; 2514 } 2515 2516 break; 2517 2518 //---------------------------------------------------------------------- 2519 // OPCODE: DW_OP_nop 2520 // OPERANDS: none 2521 // DESCRIPTION: A place holder. It has no effect on the location stack 2522 // or any of its values. 2523 //---------------------------------------------------------------------- 2524 case DW_OP_nop: 2525 break; 2526 2527 //---------------------------------------------------------------------- 2528 // OPCODE: DW_OP_piece 2529 // OPERANDS: 1 2530 // ULEB128: byte size of the piece 2531 // DESCRIPTION: The operand describes the size in bytes of the piece of 2532 // the object referenced by the DWARF expression whose result is at the 2533 // top of the stack. If the piece is located in a register, but does not 2534 // occupy the entire register, the placement of the piece within that 2535 // register is defined by the ABI. 2536 // 2537 // Many compilers store a single variable in sets of registers, or store 2538 // a variable partially in memory and partially in registers. 2539 // DW_OP_piece provides a way of describing how large a part of a 2540 // variable a particular DWARF expression refers to. 2541 //---------------------------------------------------------------------- 2542 case DW_OP_piece: 2543 if (error_ptr) 2544 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece."); 2545 return false; 2546 2547 //---------------------------------------------------------------------- 2548 // OPCODE: DW_OP_push_object_address 2549 // OPERANDS: none 2550 // DESCRIPTION: Pushes the address of the object currently being 2551 // evaluated as part of evaluation of a user presented expression. 2552 // This object may correspond to an independent variable described by 2553 // its own DIE or it may be a component of an array, structure, or class 2554 // whose address has been dynamically determined by an earlier step 2555 // during user expression evaluation. 2556 //---------------------------------------------------------------------- 2557 case DW_OP_push_object_address: 2558 if (error_ptr) 2559 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); 2560 return false; 2561 2562 //---------------------------------------------------------------------- 2563 // OPCODE: DW_OP_call2 2564 // OPERANDS: 2565 // uint16_t compile unit relative offset of a DIE 2566 // DESCRIPTION: Performs subroutine calls during evaluation 2567 // of a DWARF expression. The operand is the 2-byte unsigned offset 2568 // of a debugging information entry in the current compilation unit. 2569 // 2570 // Operand interpretation is exactly like that for DW_FORM_ref2. 2571 // 2572 // This operation transfers control of DWARF expression evaluation 2573 // to the DW_AT_location attribute of the referenced DIE. If there is 2574 // no such attribute, then there is no effect. Execution of the DWARF 2575 // expression of a DW_AT_location attribute may add to and/or remove from 2576 // values on the stack. Execution returns to the point following the call 2577 // when the end of the attribute is reached. Values on the stack at the 2578 // time of the call may be used as parameters by the called expression 2579 // and values left on the stack by the called expression may be used as 2580 // return values by prior agreement between the calling and called 2581 // expressions. 2582 //---------------------------------------------------------------------- 2583 case DW_OP_call2: 2584 if (error_ptr) 2585 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); 2586 return false; 2587 //---------------------------------------------------------------------- 2588 // OPCODE: DW_OP_call4 2589 // OPERANDS: 1 2590 // uint32_t compile unit relative offset of a DIE 2591 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2592 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset 2593 // of a debugging information entry in the current compilation unit. 2594 // 2595 // Operand interpretation DW_OP_call4 is exactly like that for 2596 // DW_FORM_ref4. 2597 // 2598 // This operation transfers control of DWARF expression evaluation 2599 // to the DW_AT_location attribute of the referenced DIE. If there is 2600 // no such attribute, then there is no effect. Execution of the DWARF 2601 // expression of a DW_AT_location attribute may add to and/or remove from 2602 // values on the stack. Execution returns to the point following the call 2603 // when the end of the attribute is reached. Values on the stack at the 2604 // time of the call may be used as parameters by the called expression 2605 // and values left on the stack by the called expression may be used as 2606 // return values by prior agreement between the calling and called 2607 // expressions. 2608 //---------------------------------------------------------------------- 2609 case DW_OP_call4: 2610 if (error_ptr) 2611 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); 2612 return false; 2613 2614 #if 0 2615 //---------------------------------------------------------------------- 2616 // OPCODE: DW_OP_call_ref 2617 // OPERANDS: 2618 // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t 2619 // absolute DIE offset for 64 bit DWARF. 2620 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2621 // expression. Takes a single operand. In the 32-bit DWARF format, the 2622 // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it 2623 // is an 8-byte unsigned value. The operand is used as the offset of a 2624 // debugging information entry in a .debug_info section which may be 2625 // contained in a shared object for executable other than that 2626 // containing the operator. For references from one shared object or 2627 // executable to another, the relocation must be performed by the 2628 // consumer. 2629 // 2630 // Operand interpretation of DW_OP_call_ref is exactly like that for 2631 // DW_FORM_ref_addr. 2632 // 2633 // This operation transfers control of DWARF expression evaluation 2634 // to the DW_AT_location attribute of the referenced DIE. If there is 2635 // no such attribute, then there is no effect. Execution of the DWARF 2636 // expression of a DW_AT_location attribute may add to and/or remove from 2637 // values on the stack. Execution returns to the point following the call 2638 // when the end of the attribute is reached. Values on the stack at the 2639 // time of the call may be used as parameters by the called expression 2640 // and values left on the stack by the called expression may be used as 2641 // return values by prior agreement between the calling and called 2642 // expressions. 2643 //---------------------------------------------------------------------- 2644 case DW_OP_call_ref: 2645 if (error_ptr) 2646 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref."); 2647 return false; 2648 2649 //---------------------------------------------------------------------- 2650 // OPCODE: DW_OP_APPLE_array_ref 2651 // OPERANDS: none 2652 // DESCRIPTION: Pops a value off the stack and uses it as the array 2653 // index. Pops a second value off the stack and uses it as the array 2654 // itself. Pushes a value onto the stack representing the element of 2655 // the array specified by the index. 2656 //---------------------------------------------------------------------- 2657 case DW_OP_APPLE_array_ref: 2658 { 2659 if (stack.size() < 2) 2660 { 2661 if (error_ptr) 2662 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref."); 2663 return false; 2664 } 2665 2666 Value index_val = stack.back(); 2667 stack.pop_back(); 2668 Value array_val = stack.back(); 2669 stack.pop_back(); 2670 2671 Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context); 2672 int64_t index = index_scalar.SLongLong(LLONG_MAX); 2673 2674 if (index == LLONG_MAX) 2675 { 2676 if (error_ptr) 2677 error_ptr->SetErrorString("Invalid array index."); 2678 return false; 2679 } 2680 2681 if (array_val.GetContextType() != Value::eContextTypeClangType) 2682 { 2683 if (error_ptr) 2684 error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time."); 2685 return false; 2686 } 2687 2688 if (array_val.GetValueType() != Value::eValueTypeLoadAddress && 2689 array_val.GetValueType() != Value::eValueTypeHostAddress) 2690 { 2691 if (error_ptr) 2692 error_ptr->SetErrorString("Array must be stored in memory."); 2693 return false; 2694 } 2695 2696 void *array_type = array_val.GetClangType(); 2697 2698 void *member_type; 2699 uint64_t size = 0; 2700 2701 if ((!ClangASTContext::IsPointerType(array_type, &member_type)) && 2702 (!ClangASTContext::IsArrayType(array_type, &member_type, &size))) 2703 { 2704 if (error_ptr) 2705 error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array."); 2706 return false; 2707 } 2708 2709 if (size && (index >= size || index < 0)) 2710 { 2711 if (error_ptr) 2712 error_ptr->SetErrorStringWithFormat("Out of bounds array access. %lld is not in [0, %llu]", index, size); 2713 return false; 2714 } 2715 2716 uint64_t member_bit_size = ClangASTType::GetClangTypeBitWidth(ast_context, member_type); 2717 uint64_t member_bit_align = ClangASTType::GetTypeBitAlign(ast_context, member_type); 2718 uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align; 2719 if (member_bit_incr % 8) 2720 { 2721 if (error_ptr) 2722 error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned"); 2723 return false; 2724 } 2725 int64_t member_offset = (int64_t)(member_bit_incr / 8) * index; 2726 2727 Value member; 2728 2729 member.SetContext(Value::eContextTypeClangType, member_type); 2730 member.SetValueType(array_val.GetValueType()); 2731 2732 addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2733 addr_t member_loc = array_base + member_offset; 2734 member.GetScalar() = (uint64_t)member_loc; 2735 2736 stack.push_back(member); 2737 } 2738 break; 2739 2740 //---------------------------------------------------------------------- 2741 // OPCODE: DW_OP_APPLE_uninit 2742 // OPERANDS: none 2743 // DESCRIPTION: Lets us know that the value is currently not initialized 2744 //---------------------------------------------------------------------- 2745 case DW_OP_APPLE_uninit: 2746 //return eResultTypeErrorUninitialized; 2747 break; // Ignore this as we have seen cases where this value is incorrectly added 2748 2749 //---------------------------------------------------------------------- 2750 // OPCODE: DW_OP_APPLE_assign 2751 // OPERANDS: none 2752 // DESCRIPTION: Pops a value off of the stack and assigns it to the next 2753 // item on the stack which must be something assignable (inferior 2754 // Variable, inferior Type with address, inferior register, or 2755 // expression local variable. 2756 //---------------------------------------------------------------------- 2757 case DW_OP_APPLE_assign: 2758 if (stack.size() < 2) 2759 { 2760 if (error_ptr) 2761 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign."); 2762 return false; 2763 } 2764 else 2765 { 2766 tmp = stack.back(); 2767 stack.pop_back(); 2768 Value::ContextType context_type = stack.back().GetContextType(); 2769 StreamString new_value(Stream::eBinary, 4, lldb::endian::InlHostByteOrder()); 2770 switch (context_type) 2771 { 2772 case Value::eContextTypeClangType: 2773 { 2774 void *clang_type = stack.back().GetClangType(); 2775 2776 if (ClangASTContext::IsAggregateType (clang_type)) 2777 { 2778 Value::ValueType source_value_type = tmp.GetValueType(); 2779 Value::ValueType target_value_type = stack.back().GetValueType(); 2780 2781 addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong(); 2782 addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong(); 2783 2784 size_t byte_size = (ClangASTType::GetClangTypeBitWidth(ast_context, clang_type) + 7) / 8; 2785 2786 switch (source_value_type) 2787 { 2788 case Value::eValueTypeScalar: 2789 case Value::eValueTypeFileAddress: 2790 break; 2791 2792 case Value::eValueTypeLoadAddress: 2793 switch (target_value_type) 2794 { 2795 case Value::eValueTypeLoadAddress: 2796 { 2797 DataBufferHeap data; 2798 data.SetByteSize(byte_size); 2799 2800 Error error; 2801 if (process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size) 2802 { 2803 if (error_ptr) 2804 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2805 return false; 2806 } 2807 2808 if (process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size) 2809 { 2810 if (error_ptr) 2811 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2812 return false; 2813 } 2814 } 2815 break; 2816 case Value::eValueTypeHostAddress: 2817 if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2818 { 2819 if (error_ptr) 2820 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2821 return false; 2822 } 2823 else 2824 { 2825 Error error; 2826 if (process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size) 2827 { 2828 if (error_ptr) 2829 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2830 return false; 2831 } 2832 } 2833 break; 2834 default: 2835 return false; 2836 } 2837 break; 2838 case Value::eValueTypeHostAddress: 2839 switch (target_value_type) 2840 { 2841 case Value::eValueTypeLoadAddress: 2842 if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2843 { 2844 if (error_ptr) 2845 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2846 return false; 2847 } 2848 else 2849 { 2850 Error error; 2851 if (process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size) 2852 { 2853 if (error_ptr) 2854 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2855 return false; 2856 } 2857 } 2858 case Value::eValueTypeHostAddress: 2859 memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size); 2860 break; 2861 default: 2862 return false; 2863 } 2864 } 2865 } 2866 else 2867 { 2868 if (!ClangASTType::SetValueFromScalar (ast_context, 2869 clang_type, 2870 tmp.ResolveValue(exe_ctx, ast_context), 2871 new_value)) 2872 { 2873 if (error_ptr) 2874 error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n"); 2875 return false; 2876 } 2877 2878 Value::ValueType value_type = stack.back().GetValueType(); 2879 2880 switch (value_type) 2881 { 2882 case Value::eValueTypeLoadAddress: 2883 case Value::eValueTypeHostAddress: 2884 { 2885 AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost); 2886 lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2887 if (!ClangASTType::WriteToMemory (ast_context, 2888 clang_type, 2889 exe_ctx, 2890 addr, 2891 address_type, 2892 new_value)) 2893 { 2894 if (error_ptr) 2895 error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%llx.\n", addr); 2896 return false; 2897 } 2898 } 2899 break; 2900 2901 default: 2902 break; 2903 } 2904 } 2905 } 2906 break; 2907 2908 default: 2909 if (error_ptr) 2910 error_ptr->SetErrorString ("Assign failed."); 2911 return false; 2912 } 2913 } 2914 break; 2915 2916 //---------------------------------------------------------------------- 2917 // OPCODE: DW_OP_APPLE_address_of 2918 // OPERANDS: none 2919 // DESCRIPTION: Pops a value off of the stack and pushed its address. 2920 // The top item on the stack must be a variable, or already be a memory 2921 // location. 2922 //---------------------------------------------------------------------- 2923 case DW_OP_APPLE_address_of: 2924 if (stack.empty()) 2925 { 2926 if (error_ptr) 2927 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of."); 2928 return false; 2929 } 2930 else 2931 { 2932 Value::ValueType value_type = stack.back().GetValueType(); 2933 switch (value_type) 2934 { 2935 default: 2936 case Value::eValueTypeScalar: // raw scalar value 2937 if (error_ptr) 2938 error_ptr->SetErrorString("Top stack item isn't a memory based object."); 2939 return false; 2940 2941 case Value::eValueTypeLoadAddress: // load address value 2942 case Value::eValueTypeFileAddress: // file address value 2943 case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb) 2944 // Taking the address of an object reduces it to the address 2945 // of the value and removes any extra context it had. 2946 //stack.back().SetValueType(Value::eValueTypeScalar); 2947 stack.back().ClearContext(); 2948 break; 2949 } 2950 } 2951 break; 2952 2953 //---------------------------------------------------------------------- 2954 // OPCODE: DW_OP_APPLE_value_of 2955 // OPERANDS: none 2956 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2957 // The top item on the stack must be a variable, expression variable. 2958 //---------------------------------------------------------------------- 2959 case DW_OP_APPLE_value_of: 2960 if (stack.empty()) 2961 { 2962 if (error_ptr) 2963 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of."); 2964 return false; 2965 } 2966 else if (!stack.back().ValueOf(exe_ctx, ast_context)) 2967 { 2968 if (error_ptr) 2969 error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of."); 2970 return false; 2971 } 2972 break; 2973 2974 //---------------------------------------------------------------------- 2975 // OPCODE: DW_OP_APPLE_deref_type 2976 // OPERANDS: none 2977 // DESCRIPTION: gets the value pointed to by the top stack item 2978 //---------------------------------------------------------------------- 2979 case DW_OP_APPLE_deref_type: 2980 { 2981 if (stack.empty()) 2982 { 2983 if (error_ptr) 2984 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type."); 2985 return false; 2986 } 2987 2988 tmp = stack.back(); 2989 stack.pop_back(); 2990 2991 if (tmp.GetContextType() != Value::eContextTypeClangType) 2992 { 2993 if (error_ptr) 2994 error_ptr->SetErrorString("Item at top of expression stack must have a Clang type"); 2995 return false; 2996 } 2997 2998 void *ptr_type = tmp.GetClangType(); 2999 void *target_type; 3000 3001 if (!ClangASTContext::IsPointerType(ptr_type, &target_type)) 3002 { 3003 if (error_ptr) 3004 error_ptr->SetErrorString("Dereferencing a non-pointer type"); 3005 return false; 3006 } 3007 3008 // TODO do we want all pointers to be dereferenced as load addresses? 3009 Value::ValueType value_type = tmp.GetValueType(); 3010 3011 tmp.ResolveValue(exe_ctx, ast_context); 3012 3013 tmp.SetValueType(value_type); 3014 tmp.SetContext(Value::eContextTypeClangType, target_type); 3015 3016 stack.push_back(tmp); 3017 } 3018 break; 3019 3020 //---------------------------------------------------------------------- 3021 // OPCODE: DW_OP_APPLE_expr_local 3022 // OPERANDS: ULEB128 3023 // DESCRIPTION: pushes the expression local variable index onto the 3024 // stack and set the appropriate context so we know the stack item is 3025 // an expression local variable index. 3026 //---------------------------------------------------------------------- 3027 case DW_OP_APPLE_expr_local: 3028 { 3029 /* 3030 uint32_t idx = opcodes.GetULEB128(&offset); 3031 if (expr_locals == NULL) 3032 { 3033 if (error_ptr) 3034 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx); 3035 return false; 3036 } 3037 Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx); 3038 if (expr_local_variable == NULL) 3039 { 3040 if (error_ptr) 3041 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx); 3042 return false; 3043 } 3044 // The proxy code has been removed. If it is ever re-added, please 3045 // use shared pointers or return by value to avoid possible memory 3046 // leak (there is no leak here, but in general, no returning pointers 3047 // that must be manually freed please. 3048 Value *proxy = expr_local_variable->CreateProxy(); 3049 stack.push_back(*proxy); 3050 delete proxy; 3051 //stack.back().SetContext (Value::eContextTypeClangType, expr_local_variable->GetClangType()); 3052 */ 3053 } 3054 break; 3055 3056 //---------------------------------------------------------------------- 3057 // OPCODE: DW_OP_APPLE_extern 3058 // OPERANDS: ULEB128 3059 // DESCRIPTION: pushes a proxy for the extern object index onto the 3060 // stack. 3061 //---------------------------------------------------------------------- 3062 case DW_OP_APPLE_extern: 3063 { 3064 /* 3065 uint32_t idx = opcodes.GetULEB128(&offset); 3066 if (!decl_map) 3067 { 3068 if (error_ptr) 3069 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx); 3070 return false; 3071 } 3072 Value *extern_var = decl_map->GetValueForIndex(idx); 3073 if (!extern_var) 3074 { 3075 if (error_ptr) 3076 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx); 3077 return false; 3078 } 3079 // The proxy code has been removed. If it is ever re-added, please 3080 // use shared pointers or return by value to avoid possible memory 3081 // leak (there is no leak here, but in general, no returning pointers 3082 // that must be manually freed please. 3083 Value *proxy = extern_var->CreateProxy(); 3084 stack.push_back(*proxy); 3085 delete proxy; 3086 */ 3087 } 3088 break; 3089 3090 case DW_OP_APPLE_scalar_cast: 3091 if (stack.empty()) 3092 { 3093 if (error_ptr) 3094 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast."); 3095 return false; 3096 } 3097 else 3098 { 3099 // Simple scalar cast 3100 if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset))) 3101 { 3102 if (error_ptr) 3103 error_ptr->SetErrorString("Cast failed."); 3104 return false; 3105 } 3106 } 3107 break; 3108 3109 3110 case DW_OP_APPLE_clang_cast: 3111 if (stack.empty()) 3112 { 3113 if (error_ptr) 3114 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast."); 3115 return false; 3116 } 3117 else 3118 { 3119 void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*)); 3120 stack.back().SetContext (Value::eContextTypeClangType, clang_type); 3121 } 3122 break; 3123 //---------------------------------------------------------------------- 3124 // OPCODE: DW_OP_APPLE_constf 3125 // OPERANDS: 1 byte float length, followed by that many bytes containing 3126 // the constant float data. 3127 // DESCRIPTION: Push a float value onto the expression stack. 3128 //---------------------------------------------------------------------- 3129 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 3130 { 3131 uint8_t float_length = opcodes.GetU8(&offset); 3132 if (sizeof(float) == float_length) 3133 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset); 3134 else if (sizeof(double) == float_length) 3135 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset); 3136 else if (sizeof(long double) == float_length) 3137 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset); 3138 else 3139 { 3140 StreamString new_value; 3141 opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 3142 3143 if (error_ptr) 3144 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData()); 3145 return false; 3146 } 3147 tmp.SetValueType(Value::eValueTypeScalar); 3148 tmp.ClearContext(); 3149 stack.push_back(tmp); 3150 } 3151 break; 3152 //---------------------------------------------------------------------- 3153 // OPCODE: DW_OP_APPLE_clear 3154 // OPERANDS: none 3155 // DESCRIPTION: Clears the expression stack. 3156 //---------------------------------------------------------------------- 3157 case DW_OP_APPLE_clear: 3158 stack.clear(); 3159 break; 3160 3161 //---------------------------------------------------------------------- 3162 // OPCODE: DW_OP_APPLE_error 3163 // OPERANDS: none 3164 // DESCRIPTION: Pops a value off of the stack and pushed its value. 3165 // The top item on the stack must be a variable, expression variable. 3166 //---------------------------------------------------------------------- 3167 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 3168 if (error_ptr) 3169 error_ptr->SetErrorString ("Generic error."); 3170 return false; 3171 #endif // #if 0 3172 3173 } 3174 } 3175 3176 if (stack.empty()) 3177 { 3178 if (error_ptr) 3179 error_ptr->SetErrorString ("Stack empty after evaluation."); 3180 return false; 3181 } 3182 else if (log && log->GetVerbose()) 3183 { 3184 size_t count = stack.size(); 3185 log->Printf("Stack after operation has %lu values:", count); 3186 for (size_t i=0; i<count; ++i) 3187 { 3188 StreamString new_value; 3189 new_value.Printf("[%zu]", i); 3190 stack[i].Dump(&new_value); 3191 log->Printf(" %s", new_value.GetData()); 3192 } 3193 } 3194 3195 result = stack.back(); 3196 return true; // Return true on success 3197 } 3198 3199