1 //===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Expression/DWARFExpression.h" 11 12 #include <vector> 13 14 #include "lldb/Core/DataEncoder.h" 15 #include "lldb/Core/dwarf.h" 16 #include "lldb/Core/Log.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/StreamString.h" 19 #include "lldb/Core/Scalar.h" 20 #include "lldb/Core/Value.h" 21 #include "lldb/Core/VMRange.h" 22 23 #include "lldb/Expression/ClangExpressionDeclMap.h" 24 #include "lldb/Expression/ClangExpressionVariable.h" 25 26 #include "lldb/Host/Endian.h" 27 #include "lldb/Host/Host.h" 28 29 #include "lldb/lldb-private-log.h" 30 31 #include "lldb/Symbol/ClangASTType.h" 32 #include "lldb/Symbol/ClangASTContext.h" 33 #include "lldb/Symbol/Type.h" 34 35 #include "lldb/Target/ABI.h" 36 #include "lldb/Target/ExecutionContext.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/RegisterContext.h" 39 #include "lldb/Target/StackFrame.h" 40 41 using namespace lldb; 42 using namespace lldb_private; 43 44 const char * 45 DW_OP_value_to_name (uint32_t val) 46 { 47 static char invalid[100]; 48 switch (val) { 49 case 0x03: return "DW_OP_addr"; 50 case 0x06: return "DW_OP_deref"; 51 case 0x08: return "DW_OP_const1u"; 52 case 0x09: return "DW_OP_const1s"; 53 case 0x0a: return "DW_OP_const2u"; 54 case 0x0b: return "DW_OP_const2s"; 55 case 0x0c: return "DW_OP_const4u"; 56 case 0x0d: return "DW_OP_const4s"; 57 case 0x0e: return "DW_OP_const8u"; 58 case 0x0f: return "DW_OP_const8s"; 59 case 0x10: return "DW_OP_constu"; 60 case 0x11: return "DW_OP_consts"; 61 case 0x12: return "DW_OP_dup"; 62 case 0x13: return "DW_OP_drop"; 63 case 0x14: return "DW_OP_over"; 64 case 0x15: return "DW_OP_pick"; 65 case 0x16: return "DW_OP_swap"; 66 case 0x17: return "DW_OP_rot"; 67 case 0x18: return "DW_OP_xderef"; 68 case 0x19: return "DW_OP_abs"; 69 case 0x1a: return "DW_OP_and"; 70 case 0x1b: return "DW_OP_div"; 71 case 0x1c: return "DW_OP_minus"; 72 case 0x1d: return "DW_OP_mod"; 73 case 0x1e: return "DW_OP_mul"; 74 case 0x1f: return "DW_OP_neg"; 75 case 0x20: return "DW_OP_not"; 76 case 0x21: return "DW_OP_or"; 77 case 0x22: return "DW_OP_plus"; 78 case 0x23: return "DW_OP_plus_uconst"; 79 case 0x24: return "DW_OP_shl"; 80 case 0x25: return "DW_OP_shr"; 81 case 0x26: return "DW_OP_shra"; 82 case 0x27: return "DW_OP_xor"; 83 case 0x2f: return "DW_OP_skip"; 84 case 0x28: return "DW_OP_bra"; 85 case 0x29: return "DW_OP_eq"; 86 case 0x2a: return "DW_OP_ge"; 87 case 0x2b: return "DW_OP_gt"; 88 case 0x2c: return "DW_OP_le"; 89 case 0x2d: return "DW_OP_lt"; 90 case 0x2e: return "DW_OP_ne"; 91 case 0x30: return "DW_OP_lit0"; 92 case 0x31: return "DW_OP_lit1"; 93 case 0x32: return "DW_OP_lit2"; 94 case 0x33: return "DW_OP_lit3"; 95 case 0x34: return "DW_OP_lit4"; 96 case 0x35: return "DW_OP_lit5"; 97 case 0x36: return "DW_OP_lit6"; 98 case 0x37: return "DW_OP_lit7"; 99 case 0x38: return "DW_OP_lit8"; 100 case 0x39: return "DW_OP_lit9"; 101 case 0x3a: return "DW_OP_lit10"; 102 case 0x3b: return "DW_OP_lit11"; 103 case 0x3c: return "DW_OP_lit12"; 104 case 0x3d: return "DW_OP_lit13"; 105 case 0x3e: return "DW_OP_lit14"; 106 case 0x3f: return "DW_OP_lit15"; 107 case 0x40: return "DW_OP_lit16"; 108 case 0x41: return "DW_OP_lit17"; 109 case 0x42: return "DW_OP_lit18"; 110 case 0x43: return "DW_OP_lit19"; 111 case 0x44: return "DW_OP_lit20"; 112 case 0x45: return "DW_OP_lit21"; 113 case 0x46: return "DW_OP_lit22"; 114 case 0x47: return "DW_OP_lit23"; 115 case 0x48: return "DW_OP_lit24"; 116 case 0x49: return "DW_OP_lit25"; 117 case 0x4a: return "DW_OP_lit26"; 118 case 0x4b: return "DW_OP_lit27"; 119 case 0x4c: return "DW_OP_lit28"; 120 case 0x4d: return "DW_OP_lit29"; 121 case 0x4e: return "DW_OP_lit30"; 122 case 0x4f: return "DW_OP_lit31"; 123 case 0x50: return "DW_OP_reg0"; 124 case 0x51: return "DW_OP_reg1"; 125 case 0x52: return "DW_OP_reg2"; 126 case 0x53: return "DW_OP_reg3"; 127 case 0x54: return "DW_OP_reg4"; 128 case 0x55: return "DW_OP_reg5"; 129 case 0x56: return "DW_OP_reg6"; 130 case 0x57: return "DW_OP_reg7"; 131 case 0x58: return "DW_OP_reg8"; 132 case 0x59: return "DW_OP_reg9"; 133 case 0x5a: return "DW_OP_reg10"; 134 case 0x5b: return "DW_OP_reg11"; 135 case 0x5c: return "DW_OP_reg12"; 136 case 0x5d: return "DW_OP_reg13"; 137 case 0x5e: return "DW_OP_reg14"; 138 case 0x5f: return "DW_OP_reg15"; 139 case 0x60: return "DW_OP_reg16"; 140 case 0x61: return "DW_OP_reg17"; 141 case 0x62: return "DW_OP_reg18"; 142 case 0x63: return "DW_OP_reg19"; 143 case 0x64: return "DW_OP_reg20"; 144 case 0x65: return "DW_OP_reg21"; 145 case 0x66: return "DW_OP_reg22"; 146 case 0x67: return "DW_OP_reg23"; 147 case 0x68: return "DW_OP_reg24"; 148 case 0x69: return "DW_OP_reg25"; 149 case 0x6a: return "DW_OP_reg26"; 150 case 0x6b: return "DW_OP_reg27"; 151 case 0x6c: return "DW_OP_reg28"; 152 case 0x6d: return "DW_OP_reg29"; 153 case 0x6e: return "DW_OP_reg30"; 154 case 0x6f: return "DW_OP_reg31"; 155 case 0x70: return "DW_OP_breg0"; 156 case 0x71: return "DW_OP_breg1"; 157 case 0x72: return "DW_OP_breg2"; 158 case 0x73: return "DW_OP_breg3"; 159 case 0x74: return "DW_OP_breg4"; 160 case 0x75: return "DW_OP_breg5"; 161 case 0x76: return "DW_OP_breg6"; 162 case 0x77: return "DW_OP_breg7"; 163 case 0x78: return "DW_OP_breg8"; 164 case 0x79: return "DW_OP_breg9"; 165 case 0x7a: return "DW_OP_breg10"; 166 case 0x7b: return "DW_OP_breg11"; 167 case 0x7c: return "DW_OP_breg12"; 168 case 0x7d: return "DW_OP_breg13"; 169 case 0x7e: return "DW_OP_breg14"; 170 case 0x7f: return "DW_OP_breg15"; 171 case 0x80: return "DW_OP_breg16"; 172 case 0x81: return "DW_OP_breg17"; 173 case 0x82: return "DW_OP_breg18"; 174 case 0x83: return "DW_OP_breg19"; 175 case 0x84: return "DW_OP_breg20"; 176 case 0x85: return "DW_OP_breg21"; 177 case 0x86: return "DW_OP_breg22"; 178 case 0x87: return "DW_OP_breg23"; 179 case 0x88: return "DW_OP_breg24"; 180 case 0x89: return "DW_OP_breg25"; 181 case 0x8a: return "DW_OP_breg26"; 182 case 0x8b: return "DW_OP_breg27"; 183 case 0x8c: return "DW_OP_breg28"; 184 case 0x8d: return "DW_OP_breg29"; 185 case 0x8e: return "DW_OP_breg30"; 186 case 0x8f: return "DW_OP_breg31"; 187 case 0x90: return "DW_OP_regx"; 188 case 0x91: return "DW_OP_fbreg"; 189 case 0x92: return "DW_OP_bregx"; 190 case 0x93: return "DW_OP_piece"; 191 case 0x94: return "DW_OP_deref_size"; 192 case 0x95: return "DW_OP_xderef_size"; 193 case 0x96: return "DW_OP_nop"; 194 case 0x97: return "DW_OP_push_object_address"; 195 case 0x98: return "DW_OP_call2"; 196 case 0x99: return "DW_OP_call4"; 197 case 0x9a: return "DW_OP_call_ref"; 198 // case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; 199 // case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; 200 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; 201 // case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; 202 // case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; 203 // case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; 204 // case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; 205 // case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; 206 // case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; 207 // case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; 208 // case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; 209 // case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; 210 // case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; 211 default: 212 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); 213 return invalid; 214 } 215 } 216 217 218 //---------------------------------------------------------------------- 219 // DWARFExpression constructor 220 //---------------------------------------------------------------------- 221 DWARFExpression::DWARFExpression() : 222 m_data(), 223 m_reg_kind (eRegisterKindDWARF), 224 m_loclist_slide (LLDB_INVALID_ADDRESS) 225 { 226 } 227 228 DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : 229 m_data(rhs.m_data), 230 m_reg_kind (rhs.m_reg_kind), 231 m_loclist_slide(rhs.m_loclist_slide) 232 { 233 } 234 235 236 DWARFExpression::DWARFExpression(const DataExtractor& data, uint32_t data_offset, uint32_t data_length) : 237 m_data(data, data_offset, data_length), 238 m_reg_kind (eRegisterKindDWARF), 239 m_loclist_slide(LLDB_INVALID_ADDRESS) 240 { 241 } 242 243 //---------------------------------------------------------------------- 244 // Destructor 245 //---------------------------------------------------------------------- 246 DWARFExpression::~DWARFExpression() 247 { 248 } 249 250 251 bool 252 DWARFExpression::IsValid() const 253 { 254 return m_data.GetByteSize() > 0; 255 } 256 257 void 258 DWARFExpression::SetOpcodeData (const DataExtractor& data) 259 { 260 m_data = data; 261 } 262 263 void 264 DWARFExpression::SetOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length) 265 { 266 m_data.SetData(data, data_offset, data_length); 267 } 268 269 void 270 DWARFExpression::DumpLocation (Stream *s, uint32_t offset, uint32_t length, lldb::DescriptionLevel level, ABI *abi) const 271 { 272 if (!m_data.ValidOffsetForDataOfSize(offset, length)) 273 return; 274 const uint32_t start_offset = offset; 275 const uint32_t end_offset = offset + length; 276 while (m_data.ValidOffset(offset) && offset < end_offset) 277 { 278 const uint32_t op_offset = offset; 279 const uint8_t op = m_data.GetU8(&offset); 280 281 switch (level) 282 { 283 default: 284 break; 285 286 case lldb::eDescriptionLevelBrief: 287 if (offset > start_offset) 288 s->PutChar(' '); 289 break; 290 291 case lldb::eDescriptionLevelFull: 292 case lldb::eDescriptionLevelVerbose: 293 if (offset > start_offset) 294 s->EOL(); 295 s->Indent(); 296 if (level == lldb::eDescriptionLevelFull) 297 break; 298 // Fall through for verbose and print offset and DW_OP prefix.. 299 s->Printf("0x%8.8x: %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); 300 break; 301 } 302 303 switch (op) 304 { 305 case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address 306 case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 307 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant 308 case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant 309 case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant 310 case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant 311 case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant 312 case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant 313 case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant 314 case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant 315 case DW_OP_constu: s->Printf("DW_OP_constu(0x%llx) ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant 316 case DW_OP_consts: s->Printf("DW_OP_consts(0x%lld) ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant 317 case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 318 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 319 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 320 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index 321 case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 322 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 323 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 324 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 325 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a 326 case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b 327 case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c 328 case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d 329 case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e 330 case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f 331 case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 332 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 333 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 334 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 335 s->Printf("DW_OP_plus_uconst(0x%llx) ", m_data.GetULEB128(&offset)); 336 break; 337 338 case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 339 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 340 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 341 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 342 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant 343 case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant 344 case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 345 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a 346 case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b 347 case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c 348 case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d 349 case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e 350 351 case DW_OP_lit0: // 0x30 352 case DW_OP_lit1: // 0x31 353 case DW_OP_lit2: // 0x32 354 case DW_OP_lit3: // 0x33 355 case DW_OP_lit4: // 0x34 356 case DW_OP_lit5: // 0x35 357 case DW_OP_lit6: // 0x36 358 case DW_OP_lit7: // 0x37 359 case DW_OP_lit8: // 0x38 360 case DW_OP_lit9: // 0x39 361 case DW_OP_lit10: // 0x3A 362 case DW_OP_lit11: // 0x3B 363 case DW_OP_lit12: // 0x3C 364 case DW_OP_lit13: // 0x3D 365 case DW_OP_lit14: // 0x3E 366 case DW_OP_lit15: // 0x3F 367 case DW_OP_lit16: // 0x40 368 case DW_OP_lit17: // 0x41 369 case DW_OP_lit18: // 0x42 370 case DW_OP_lit19: // 0x43 371 case DW_OP_lit20: // 0x44 372 case DW_OP_lit21: // 0x45 373 case DW_OP_lit22: // 0x46 374 case DW_OP_lit23: // 0x47 375 case DW_OP_lit24: // 0x48 376 case DW_OP_lit25: // 0x49 377 case DW_OP_lit26: // 0x4A 378 case DW_OP_lit27: // 0x4B 379 case DW_OP_lit28: // 0x4C 380 case DW_OP_lit29: // 0x4D 381 case DW_OP_lit30: // 0x4E 382 case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f 383 384 case DW_OP_reg0: // 0x50 385 case DW_OP_reg1: // 0x51 386 case DW_OP_reg2: // 0x52 387 case DW_OP_reg3: // 0x53 388 case DW_OP_reg4: // 0x54 389 case DW_OP_reg5: // 0x55 390 case DW_OP_reg6: // 0x56 391 case DW_OP_reg7: // 0x57 392 case DW_OP_reg8: // 0x58 393 case DW_OP_reg9: // 0x59 394 case DW_OP_reg10: // 0x5A 395 case DW_OP_reg11: // 0x5B 396 case DW_OP_reg12: // 0x5C 397 case DW_OP_reg13: // 0x5D 398 case DW_OP_reg14: // 0x5E 399 case DW_OP_reg15: // 0x5F 400 case DW_OP_reg16: // 0x60 401 case DW_OP_reg17: // 0x61 402 case DW_OP_reg18: // 0x62 403 case DW_OP_reg19: // 0x63 404 case DW_OP_reg20: // 0x64 405 case DW_OP_reg21: // 0x65 406 case DW_OP_reg22: // 0x66 407 case DW_OP_reg23: // 0x67 408 case DW_OP_reg24: // 0x68 409 case DW_OP_reg25: // 0x69 410 case DW_OP_reg26: // 0x6A 411 case DW_OP_reg27: // 0x6B 412 case DW_OP_reg28: // 0x6C 413 case DW_OP_reg29: // 0x6D 414 case DW_OP_reg30: // 0x6E 415 case DW_OP_reg31: // 0x6F 416 { 417 uint32_t reg_num = op - DW_OP_reg0; 418 if (abi) 419 { 420 RegisterInfo reg_info; 421 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 422 { 423 if (reg_info.name) 424 { 425 s->PutCString (reg_info.name); 426 break; 427 } 428 else if (reg_info.alt_name) 429 { 430 s->PutCString (reg_info.alt_name); 431 break; 432 } 433 } 434 } 435 s->Printf("DW_OP_reg%u", reg_num); break; 436 } 437 break; 438 439 case DW_OP_breg0: 440 case DW_OP_breg1: 441 case DW_OP_breg2: 442 case DW_OP_breg3: 443 case DW_OP_breg4: 444 case DW_OP_breg5: 445 case DW_OP_breg6: 446 case DW_OP_breg7: 447 case DW_OP_breg8: 448 case DW_OP_breg9: 449 case DW_OP_breg10: 450 case DW_OP_breg11: 451 case DW_OP_breg12: 452 case DW_OP_breg13: 453 case DW_OP_breg14: 454 case DW_OP_breg15: 455 case DW_OP_breg16: 456 case DW_OP_breg17: 457 case DW_OP_breg18: 458 case DW_OP_breg19: 459 case DW_OP_breg20: 460 case DW_OP_breg21: 461 case DW_OP_breg22: 462 case DW_OP_breg23: 463 case DW_OP_breg24: 464 case DW_OP_breg25: 465 case DW_OP_breg26: 466 case DW_OP_breg27: 467 case DW_OP_breg28: 468 case DW_OP_breg29: 469 case DW_OP_breg30: 470 case DW_OP_breg31: 471 { 472 uint32_t reg_num = op - DW_OP_breg0; 473 int64_t reg_offset = m_data.GetSLEB128(&offset); 474 if (abi) 475 { 476 RegisterInfo reg_info; 477 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 478 { 479 if (reg_info.name) 480 { 481 s->Printf("[%s%+lli]", reg_info.name, reg_offset); 482 break; 483 } 484 else if (reg_info.alt_name) 485 { 486 s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); 487 break; 488 } 489 } 490 } 491 s->Printf("DW_OP_breg%i(0x%llx)", reg_num, reg_offset); 492 } 493 break; 494 495 case DW_OP_regx: // 0x90 1 ULEB128 register 496 { 497 uint64_t reg_num = m_data.GetULEB128(&offset); 498 if (abi) 499 { 500 RegisterInfo reg_info; 501 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 502 { 503 if (reg_info.name) 504 { 505 s->PutCString (reg_info.name); 506 break; 507 } 508 else if (reg_info.alt_name) 509 { 510 s->PutCString (reg_info.alt_name); 511 break; 512 } 513 } 514 } 515 s->Printf("DW_OP_regx(%llu)", reg_num); break; 516 } 517 break; 518 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 519 s->Printf("DW_OP_fbreg(%lli)",m_data.GetSLEB128(&offset)); 520 break; 521 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 522 { 523 uint32_t reg_num = m_data.GetULEB128(&offset); 524 int64_t reg_offset = m_data.GetSLEB128(&offset); 525 if (abi) 526 { 527 RegisterInfo reg_info; 528 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 529 { 530 if (reg_info.name) 531 { 532 s->Printf("[%s%+lli]", reg_info.name, reg_offset); 533 break; 534 } 535 else if (reg_info.alt_name) 536 { 537 s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); 538 break; 539 } 540 } 541 } 542 s->Printf("DW_OP_bregx(reg=%u,offset=%lli)", reg_num, reg_offset); 543 } 544 break; 545 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 546 s->Printf("DW_OP_piece(0x%llx)", m_data.GetULEB128(&offset)); 547 break; 548 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 549 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); 550 break; 551 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 552 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); 553 break; 554 case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 555 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 556 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE 557 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); 558 break; 559 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE 560 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); 561 break; 562 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE 563 s->Printf("DW_OP_call_ref(0x%8.8llx)", m_data.GetAddress(&offset)); 564 break; 565 // case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3 566 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 567 // case DW_OP_bit_piece: // 0x9d DWARF3 2 568 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); 569 // break; 570 // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0 571 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff 572 // case DW_OP_APPLE_extern: 573 // s->Printf("DW_OP_APPLE_extern(%llu)", m_data.GetULEB128(&offset)); 574 // break; 575 // case DW_OP_APPLE_array_ref: 576 // s->PutCString("DW_OP_APPLE_array_ref"); 577 // break; 578 case DW_OP_APPLE_uninit: 579 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 580 break; 581 // case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) 582 // s->PutCString("DW_OP_APPLE_assign"); 583 // break; 584 // case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) 585 // s->PutCString("DW_OP_APPLE_address_of"); 586 // break; 587 // case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) 588 // s->PutCString("DW_OP_APPLE_value_of"); 589 // break; 590 // case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) 591 // s->PutCString("DW_OP_APPLE_deref_type"); 592 // break; 593 // case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index 594 // s->Printf("DW_OP_APPLE_expr_local(%llu)", m_data.GetULEB128(&offset)); 595 // break; 596 // case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 597 // { 598 // uint8_t float_length = m_data.GetU8(&offset); 599 // s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); 600 // m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 601 // s->PutChar(')'); 602 // // Consume the float data 603 // m_data.GetData(&offset, float_length); 604 // } 605 // break; 606 // case DW_OP_APPLE_scalar_cast: 607 // s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); 608 // break; 609 // case DW_OP_APPLE_clang_cast: 610 // { 611 // clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); 612 // s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); 613 // } 614 // break; 615 // case DW_OP_APPLE_clear: 616 // s->PutCString("DW_OP_APPLE_clear"); 617 // break; 618 // case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 619 // s->PutCString("DW_OP_APPLE_error"); 620 // break; 621 } 622 } 623 } 624 625 void 626 DWARFExpression::SetLocationListSlide (addr_t slide) 627 { 628 m_loclist_slide = slide; 629 } 630 631 int 632 DWARFExpression::GetRegisterKind () 633 { 634 return m_reg_kind; 635 } 636 637 void 638 DWARFExpression::SetRegisterKind (RegisterKind reg_kind) 639 { 640 m_reg_kind = reg_kind; 641 } 642 643 bool 644 DWARFExpression::IsLocationList() const 645 { 646 return m_loclist_slide != LLDB_INVALID_ADDRESS; 647 } 648 649 void 650 DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const 651 { 652 if (IsLocationList()) 653 { 654 // We have a location list 655 uint32_t offset = 0; 656 uint32_t count = 0; 657 addr_t curr_base_addr = location_list_base_addr; 658 while (m_data.ValidOffset(offset)) 659 { 660 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); 661 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); 662 if (begin_addr_offset < end_addr_offset) 663 { 664 if (count > 0) 665 s->PutCString(", "); 666 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); 667 addr_range.Dump(s, 0, 8); 668 s->PutChar('{'); 669 uint32_t location_length = m_data.GetU16(&offset); 670 DumpLocation (s, offset, location_length, level, abi); 671 s->PutChar('}'); 672 offset += location_length; 673 } 674 else if (begin_addr_offset == 0 && end_addr_offset == 0) 675 { 676 // The end of the location list is marked by both the start and end offset being zero 677 break; 678 } 679 else 680 { 681 if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || 682 (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) 683 { 684 curr_base_addr = end_addr_offset + location_list_base_addr; 685 // We have a new base address 686 if (count > 0) 687 s->PutCString(", "); 688 *s << "base_addr = " << end_addr_offset; 689 } 690 } 691 692 count++; 693 } 694 } 695 else 696 { 697 // We have a normal location that contains DW_OP location opcodes 698 DumpLocation (s, 0, m_data.GetByteSize(), level, abi); 699 } 700 } 701 702 static bool 703 ReadRegisterValueAsScalar 704 ( 705 RegisterContext *reg_ctx, 706 uint32_t reg_kind, 707 uint32_t reg_num, 708 Error *error_ptr, 709 Value &value 710 ) 711 { 712 if (reg_ctx == NULL) 713 { 714 if (error_ptr) 715 error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); 716 } 717 else 718 { 719 uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 720 if (native_reg == LLDB_INVALID_REGNUM) 721 { 722 if (error_ptr) 723 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); 724 } 725 else 726 { 727 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); 728 RegisterValue reg_value; 729 if (reg_ctx->ReadRegister (reg_info, reg_value)) 730 { 731 if (reg_value.GetScalarValue(value.GetScalar())) 732 { 733 value.SetValueType (Value::eValueTypeScalar); 734 value.SetContext (Value::eContextTypeRegisterInfo, 735 const_cast<RegisterInfo *>(reg_info)); 736 if (error_ptr) 737 error_ptr->Clear(); 738 return true; 739 } 740 else 741 { 742 // If we get this error, then we need to implement a value 743 // buffer in the dwarf expression evaluation function... 744 if (error_ptr) 745 error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value", 746 reg_info->name); 747 } 748 } 749 else 750 { 751 if (error_ptr) 752 error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); 753 } 754 } 755 } 756 return false; 757 } 758 759 //bool 760 //DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const 761 //{ 762 // return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); 763 //} 764 // 765 //bool 766 //DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const 767 //{ 768 // if (load_addr == LLDB_INVALID_ADDRESS) 769 // return false; 770 // 771 // if (IsLocationList()) 772 // { 773 // uint32_t offset = 0; 774 // 775 // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); 776 // 777 // if (loc_list_base_addr == LLDB_INVALID_ADDRESS) 778 // return false; 779 // 780 // while (m_data.ValidOffset(offset)) 781 // { 782 // // We need to figure out what the value is for the location. 783 // addr_t lo_pc = m_data.GetAddress(&offset); 784 // addr_t hi_pc = m_data.GetAddress(&offset); 785 // if (lo_pc == 0 && hi_pc == 0) 786 // break; 787 // else 788 // { 789 // lo_pc += loc_list_base_addr; 790 // hi_pc += loc_list_base_addr; 791 // 792 // if (lo_pc <= load_addr && load_addr < hi_pc) 793 // return true; 794 // 795 // offset += m_data.GetU16(&offset); 796 // } 797 // } 798 // } 799 // return false; 800 //} 801 802 static uint32_t 803 GetOpcodeDataSize (const DataExtractor &data, const uint32_t data_offset, const uint8_t op) 804 { 805 uint32_t offset = data_offset; 806 switch (op) 807 { 808 case DW_OP_addr: 809 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) 810 return data.GetAddressByteSize(); 811 812 // Opcodes with no arguments 813 case DW_OP_deref: // 0x06 814 case DW_OP_dup: // 0x12 815 case DW_OP_drop: // 0x13 816 case DW_OP_over: // 0x14 817 case DW_OP_swap: // 0x16 818 case DW_OP_rot: // 0x17 819 case DW_OP_xderef: // 0x18 820 case DW_OP_abs: // 0x19 821 case DW_OP_and: // 0x1a 822 case DW_OP_div: // 0x1b 823 case DW_OP_minus: // 0x1c 824 case DW_OP_mod: // 0x1d 825 case DW_OP_mul: // 0x1e 826 case DW_OP_neg: // 0x1f 827 case DW_OP_not: // 0x20 828 case DW_OP_or: // 0x21 829 case DW_OP_plus: // 0x22 830 case DW_OP_shl: // 0x24 831 case DW_OP_shr: // 0x25 832 case DW_OP_shra: // 0x26 833 case DW_OP_xor: // 0x27 834 case DW_OP_eq: // 0x29 835 case DW_OP_ge: // 0x2a 836 case DW_OP_gt: // 0x2b 837 case DW_OP_le: // 0x2c 838 case DW_OP_lt: // 0x2d 839 case DW_OP_ne: // 0x2e 840 case DW_OP_lit0: // 0x30 841 case DW_OP_lit1: // 0x31 842 case DW_OP_lit2: // 0x32 843 case DW_OP_lit3: // 0x33 844 case DW_OP_lit4: // 0x34 845 case DW_OP_lit5: // 0x35 846 case DW_OP_lit6: // 0x36 847 case DW_OP_lit7: // 0x37 848 case DW_OP_lit8: // 0x38 849 case DW_OP_lit9: // 0x39 850 case DW_OP_lit10: // 0x3A 851 case DW_OP_lit11: // 0x3B 852 case DW_OP_lit12: // 0x3C 853 case DW_OP_lit13: // 0x3D 854 case DW_OP_lit14: // 0x3E 855 case DW_OP_lit15: // 0x3F 856 case DW_OP_lit16: // 0x40 857 case DW_OP_lit17: // 0x41 858 case DW_OP_lit18: // 0x42 859 case DW_OP_lit19: // 0x43 860 case DW_OP_lit20: // 0x44 861 case DW_OP_lit21: // 0x45 862 case DW_OP_lit22: // 0x46 863 case DW_OP_lit23: // 0x47 864 case DW_OP_lit24: // 0x48 865 case DW_OP_lit25: // 0x49 866 case DW_OP_lit26: // 0x4A 867 case DW_OP_lit27: // 0x4B 868 case DW_OP_lit28: // 0x4C 869 case DW_OP_lit29: // 0x4D 870 case DW_OP_lit30: // 0x4E 871 case DW_OP_lit31: // 0x4f 872 case DW_OP_reg0: // 0x50 873 case DW_OP_reg1: // 0x51 874 case DW_OP_reg2: // 0x52 875 case DW_OP_reg3: // 0x53 876 case DW_OP_reg4: // 0x54 877 case DW_OP_reg5: // 0x55 878 case DW_OP_reg6: // 0x56 879 case DW_OP_reg7: // 0x57 880 case DW_OP_reg8: // 0x58 881 case DW_OP_reg9: // 0x59 882 case DW_OP_reg10: // 0x5A 883 case DW_OP_reg11: // 0x5B 884 case DW_OP_reg12: // 0x5C 885 case DW_OP_reg13: // 0x5D 886 case DW_OP_reg14: // 0x5E 887 case DW_OP_reg15: // 0x5F 888 case DW_OP_reg16: // 0x60 889 case DW_OP_reg17: // 0x61 890 case DW_OP_reg18: // 0x62 891 case DW_OP_reg19: // 0x63 892 case DW_OP_reg20: // 0x64 893 case DW_OP_reg21: // 0x65 894 case DW_OP_reg22: // 0x66 895 case DW_OP_reg23: // 0x67 896 case DW_OP_reg24: // 0x68 897 case DW_OP_reg25: // 0x69 898 case DW_OP_reg26: // 0x6A 899 case DW_OP_reg27: // 0x6B 900 case DW_OP_reg28: // 0x6C 901 case DW_OP_reg29: // 0x6D 902 case DW_OP_reg30: // 0x6E 903 case DW_OP_reg31: // 0x6F 904 case DW_OP_nop: // 0x96 905 case DW_OP_push_object_address: // 0x97 DWARF3 906 case DW_OP_form_tls_address: // 0x9b DWARF3 907 case DW_OP_call_frame_cfa: // 0x9c DWARF3 908 case DW_OP_stack_value: // 0x9f DWARF4 909 return 0; 910 911 // Opcodes with a single 1 byte arguments 912 case DW_OP_const1u: // 0x08 1 1-byte constant 913 case DW_OP_const1s: // 0x09 1 1-byte constant 914 case DW_OP_pick: // 0x15 1 1-byte stack index 915 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 916 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 917 return 1; 918 919 // Opcodes with a single 2 byte arguments 920 case DW_OP_const2u: // 0x0a 1 2-byte constant 921 case DW_OP_const2s: // 0x0b 1 2-byte constant 922 case DW_OP_skip: // 0x2f 1 signed 2-byte constant 923 case DW_OP_bra: // 0x28 1 signed 2-byte constant 924 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) 925 return 2; 926 927 // Opcodes with a single 4 byte arguments 928 case DW_OP_const4u: // 0x0c 1 4-byte constant 929 case DW_OP_const4s: // 0x0d 1 4-byte constant 930 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) 931 return 4; 932 933 // Opcodes with a single 8 byte arguments 934 case DW_OP_const8u: // 0x0e 1 8-byte constant 935 case DW_OP_const8s: // 0x0f 1 8-byte constant 936 return 8; 937 938 // All opcodes that have a single ULEB (signed or unsigned) argument 939 case DW_OP_constu: // 0x10 1 ULEB128 constant 940 case DW_OP_consts: // 0x11 1 SLEB128 constant 941 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 942 case DW_OP_breg0: // 0x70 1 ULEB128 register 943 case DW_OP_breg1: // 0x71 1 ULEB128 register 944 case DW_OP_breg2: // 0x72 1 ULEB128 register 945 case DW_OP_breg3: // 0x73 1 ULEB128 register 946 case DW_OP_breg4: // 0x74 1 ULEB128 register 947 case DW_OP_breg5: // 0x75 1 ULEB128 register 948 case DW_OP_breg6: // 0x76 1 ULEB128 register 949 case DW_OP_breg7: // 0x77 1 ULEB128 register 950 case DW_OP_breg8: // 0x78 1 ULEB128 register 951 case DW_OP_breg9: // 0x79 1 ULEB128 register 952 case DW_OP_breg10: // 0x7a 1 ULEB128 register 953 case DW_OP_breg11: // 0x7b 1 ULEB128 register 954 case DW_OP_breg12: // 0x7c 1 ULEB128 register 955 case DW_OP_breg13: // 0x7d 1 ULEB128 register 956 case DW_OP_breg14: // 0x7e 1 ULEB128 register 957 case DW_OP_breg15: // 0x7f 1 ULEB128 register 958 case DW_OP_breg16: // 0x80 1 ULEB128 register 959 case DW_OP_breg17: // 0x81 1 ULEB128 register 960 case DW_OP_breg18: // 0x82 1 ULEB128 register 961 case DW_OP_breg19: // 0x83 1 ULEB128 register 962 case DW_OP_breg20: // 0x84 1 ULEB128 register 963 case DW_OP_breg21: // 0x85 1 ULEB128 register 964 case DW_OP_breg22: // 0x86 1 ULEB128 register 965 case DW_OP_breg23: // 0x87 1 ULEB128 register 966 case DW_OP_breg24: // 0x88 1 ULEB128 register 967 case DW_OP_breg25: // 0x89 1 ULEB128 register 968 case DW_OP_breg26: // 0x8a 1 ULEB128 register 969 case DW_OP_breg27: // 0x8b 1 ULEB128 register 970 case DW_OP_breg28: // 0x8c 1 ULEB128 register 971 case DW_OP_breg29: // 0x8d 1 ULEB128 register 972 case DW_OP_breg30: // 0x8e 1 ULEB128 register 973 case DW_OP_breg31: // 0x8f 1 ULEB128 register 974 case DW_OP_regx: // 0x90 1 ULEB128 register 975 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 976 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 977 data.Skip_LEB128(&offset); 978 return offset - data_offset; 979 980 // All opcodes that have a 2 ULEB (signed or unsigned) arguments 981 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 982 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); 983 data.Skip_LEB128(&offset); 984 data.Skip_LEB128(&offset); 985 return offset - data_offset; 986 987 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size (DWARF4) 988 { 989 uint64_t block_len = data.Skip_LEB128(&offset); 990 offset += block_len; 991 return offset - data_offset; 992 } 993 994 default: 995 break; 996 } 997 return UINT32_MAX; 998 } 999 1000 bool 1001 DWARFExpression::LocationContains_DW_OP_addr (lldb::addr_t file_addr, bool &error) const 1002 { 1003 error = false; 1004 if (IsLocationList()) 1005 return false; 1006 uint32_t offset = 0; 1007 while (m_data.ValidOffset(offset)) 1008 { 1009 const uint8_t op = m_data.GetU8(&offset); 1010 1011 if (op == DW_OP_addr) 1012 { 1013 if (file_addr == LLDB_INVALID_ADDRESS) 1014 return true; 1015 addr_t op_file_addr = m_data.GetAddress(&offset); 1016 if (op_file_addr == file_addr) 1017 return true; 1018 } 1019 else 1020 { 1021 const uint32_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1022 if (op_arg_size == UINT32_MAX) 1023 { 1024 error = true; 1025 break; 1026 } 1027 offset += op_arg_size; 1028 } 1029 } 1030 return false; 1031 } 1032 1033 bool 1034 DWARFExpression::Update_DW_OP_addr (lldb::addr_t file_addr) 1035 { 1036 if (IsLocationList()) 1037 return false; 1038 uint32_t offset = 0; 1039 while (m_data.ValidOffset(offset)) 1040 { 1041 const uint8_t op = m_data.GetU8(&offset); 1042 1043 if (op == DW_OP_addr) 1044 { 1045 const uint8_t addr_byte_size = m_data.GetAddressByteSize(); 1046 // We have to make a copy of the data as we don't know if this 1047 // data is from a read only memory mapped buffer, so we duplicate 1048 // all of the data first, then modify it, and if all goes well, 1049 // we then replace the data for this expression 1050 1051 // So first we copy the data into a heap buffer 1052 std::auto_ptr<DataBufferHeap> head_data_ap (new DataBufferHeap (m_data.GetDataStart(), 1053 m_data.GetByteSize())); 1054 1055 // Make en encoder so we can write the address into the buffer using 1056 // the correct byte order (endianness) 1057 DataEncoder encoder (head_data_ap->GetBytes(), 1058 head_data_ap->GetByteSize(), 1059 m_data.GetByteOrder(), 1060 addr_byte_size); 1061 1062 // Replace the address in the new buffer 1063 if (encoder.PutMaxU64 (offset, addr_byte_size, file_addr) == UINT32_MAX) 1064 return false; 1065 1066 // All went well, so now we can reset the data using a shared 1067 // pointer to the heap data so "m_data" will now correctly 1068 // manage the heap data. 1069 m_data.SetData (DataBufferSP (head_data_ap.release())); 1070 return true; 1071 } 1072 else 1073 { 1074 const uint32_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1075 if (op_arg_size == UINT32_MAX) 1076 break; 1077 offset += op_arg_size; 1078 } 1079 } 1080 return false; 1081 } 1082 1083 bool 1084 DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const 1085 { 1086 if (addr == LLDB_INVALID_ADDRESS) 1087 return false; 1088 1089 if (IsLocationList()) 1090 { 1091 uint32_t offset = 0; 1092 1093 if (loclist_base_addr == LLDB_INVALID_ADDRESS) 1094 return false; 1095 1096 while (m_data.ValidOffset(offset)) 1097 { 1098 // We need to figure out what the value is for the location. 1099 addr_t lo_pc = m_data.GetAddress(&offset); 1100 addr_t hi_pc = m_data.GetAddress(&offset); 1101 if (lo_pc == 0 && hi_pc == 0) 1102 break; 1103 else 1104 { 1105 lo_pc += loclist_base_addr - m_loclist_slide; 1106 hi_pc += loclist_base_addr - m_loclist_slide; 1107 1108 if (lo_pc <= addr && addr < hi_pc) 1109 return true; 1110 1111 offset += m_data.GetU16(&offset); 1112 } 1113 } 1114 } 1115 return false; 1116 } 1117 1118 bool 1119 DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, uint32_t &offset, uint32_t &length) 1120 { 1121 offset = 0; 1122 if (!IsLocationList()) 1123 { 1124 length = m_data.GetByteSize(); 1125 return true; 1126 } 1127 1128 if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) 1129 { 1130 addr_t curr_base_addr = base_addr; 1131 1132 while (m_data.ValidOffset(offset)) 1133 { 1134 // We need to figure out what the value is for the location. 1135 addr_t lo_pc = m_data.GetAddress(&offset); 1136 addr_t hi_pc = m_data.GetAddress(&offset); 1137 if (lo_pc == 0 && hi_pc == 0) 1138 { 1139 break; 1140 } 1141 else 1142 { 1143 lo_pc += curr_base_addr - m_loclist_slide; 1144 hi_pc += curr_base_addr - m_loclist_slide; 1145 1146 length = m_data.GetU16(&offset); 1147 1148 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1149 return true; 1150 1151 offset += length; 1152 } 1153 } 1154 } 1155 offset = UINT32_MAX; 1156 length = 0; 1157 return false; 1158 } 1159 1160 bool 1161 DWARFExpression::DumpLocationForAddress (Stream *s, 1162 lldb::DescriptionLevel level, 1163 addr_t base_addr, 1164 addr_t address, 1165 ABI *abi) 1166 { 1167 uint32_t offset = 0; 1168 uint32_t length = 0; 1169 1170 if (GetLocation (base_addr, address, offset, length)) 1171 { 1172 if (length > 0) 1173 { 1174 DumpLocation(s, offset, length, level, abi); 1175 return true; 1176 } 1177 } 1178 return false; 1179 } 1180 1181 bool 1182 DWARFExpression::Evaluate 1183 ( 1184 ExecutionContextScope *exe_scope, 1185 clang::ASTContext *ast_context, 1186 ClangExpressionVariableList *expr_locals, 1187 ClangExpressionDeclMap *decl_map, 1188 lldb::addr_t loclist_base_load_addr, 1189 const Value* initial_value_ptr, 1190 Value& result, 1191 Error *error_ptr 1192 ) const 1193 { 1194 ExecutionContext exe_ctx (exe_scope); 1195 return Evaluate(&exe_ctx, ast_context, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); 1196 } 1197 1198 bool 1199 DWARFExpression::Evaluate 1200 ( 1201 ExecutionContext *exe_ctx, 1202 clang::ASTContext *ast_context, 1203 ClangExpressionVariableList *expr_locals, 1204 ClangExpressionDeclMap *decl_map, 1205 RegisterContext *reg_ctx, 1206 lldb::addr_t loclist_base_load_addr, 1207 const Value* initial_value_ptr, 1208 Value& result, 1209 Error *error_ptr 1210 ) const 1211 { 1212 if (IsLocationList()) 1213 { 1214 uint32_t offset = 0; 1215 addr_t pc; 1216 StackFrame *frame = NULL; 1217 if (reg_ctx) 1218 pc = reg_ctx->GetPC(); 1219 else 1220 { 1221 frame = exe_ctx->GetFramePtr(); 1222 if (!frame) 1223 return false; 1224 RegisterContextSP reg_ctx_sp = frame->GetRegisterContext(); 1225 if (!reg_ctx_sp) 1226 return false; 1227 pc = reg_ctx_sp->GetPC(); 1228 } 1229 1230 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) 1231 { 1232 if (pc == LLDB_INVALID_ADDRESS) 1233 { 1234 if (error_ptr) 1235 error_ptr->SetErrorString("Invalid PC in frame."); 1236 return false; 1237 } 1238 1239 addr_t curr_loclist_base_load_addr = loclist_base_load_addr; 1240 1241 while (m_data.ValidOffset(offset)) 1242 { 1243 // We need to figure out what the value is for the location. 1244 addr_t lo_pc = m_data.GetAddress(&offset); 1245 addr_t hi_pc = m_data.GetAddress(&offset); 1246 if (lo_pc == 0 && hi_pc == 0) 1247 { 1248 break; 1249 } 1250 else 1251 { 1252 lo_pc += curr_loclist_base_load_addr - m_loclist_slide; 1253 hi_pc += curr_loclist_base_load_addr - m_loclist_slide; 1254 1255 uint16_t length = m_data.GetU16(&offset); 1256 1257 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1258 { 1259 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); 1260 } 1261 offset += length; 1262 } 1263 } 1264 } 1265 if (error_ptr) 1266 error_ptr->SetErrorString ("variable not available"); 1267 return false; 1268 } 1269 1270 // Not a location list, just a single expression. 1271 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); 1272 } 1273 1274 1275 1276 bool 1277 DWARFExpression::Evaluate 1278 ( 1279 ExecutionContext *exe_ctx, 1280 clang::ASTContext *ast_context, 1281 ClangExpressionVariableList *expr_locals, 1282 ClangExpressionDeclMap *decl_map, 1283 RegisterContext *reg_ctx, 1284 const DataExtractor& opcodes, 1285 const uint32_t opcodes_offset, 1286 const uint32_t opcodes_length, 1287 const uint32_t reg_kind, 1288 const Value* initial_value_ptr, 1289 Value& result, 1290 Error *error_ptr 1291 ) 1292 { 1293 std::vector<Value> stack; 1294 1295 Process *process = NULL; 1296 StackFrame *frame = NULL; 1297 1298 if (exe_ctx) 1299 { 1300 process = exe_ctx->GetProcessPtr(); 1301 frame = exe_ctx->GetFramePtr(); 1302 } 1303 if (reg_ctx == NULL && frame) 1304 reg_ctx = frame->GetRegisterContext().get(); 1305 1306 if (initial_value_ptr) 1307 stack.push_back(*initial_value_ptr); 1308 1309 uint32_t offset = opcodes_offset; 1310 const uint32_t end_offset = opcodes_offset + opcodes_length; 1311 Value tmp; 1312 uint32_t reg_num; 1313 1314 // Make sure all of the data is available in opcodes. 1315 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) 1316 { 1317 if (error_ptr) 1318 error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer."); 1319 return false; 1320 } 1321 LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1322 1323 1324 while (opcodes.ValidOffset(offset) && offset < end_offset) 1325 { 1326 const uint32_t op_offset = offset; 1327 const uint8_t op = opcodes.GetU8(&offset); 1328 1329 if (log && log->GetVerbose()) 1330 { 1331 size_t count = stack.size(); 1332 log->Printf("Stack before operation has %lu values:", count); 1333 for (size_t i=0; i<count; ++i) 1334 { 1335 StreamString new_value; 1336 new_value.Printf("[%zu]", i); 1337 stack[i].Dump(&new_value); 1338 log->Printf(" %s", new_value.GetData()); 1339 } 1340 log->Printf("0x%8.8x: %s", op_offset, DW_OP_value_to_name(op)); 1341 } 1342 switch (op) 1343 { 1344 //---------------------------------------------------------------------- 1345 // The DW_OP_addr operation has a single operand that encodes a machine 1346 // address and whose size is the size of an address on the target machine. 1347 //---------------------------------------------------------------------- 1348 case DW_OP_addr: 1349 stack.push_back(Scalar(opcodes.GetAddress(&offset))); 1350 stack.back().SetValueType (Value::eValueTypeFileAddress); 1351 break; 1352 1353 //---------------------------------------------------------------------- 1354 // The DW_OP_addr_sect_offset4 is used for any location expressions in 1355 // shared libraries that have a location like: 1356 // DW_OP_addr(0x1000) 1357 // If this address resides in a shared library, then this virtual 1358 // address won't make sense when it is evaluated in the context of a 1359 // running process where shared libraries have been slid. To account for 1360 // this, this new address type where we can store the section pointer 1361 // and a 4 byte offset. 1362 //---------------------------------------------------------------------- 1363 // case DW_OP_addr_sect_offset4: 1364 // { 1365 // result_type = eResultTypeFileAddress; 1366 // lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); 1367 // lldb::addr_t sect_offset = opcodes.GetU32(&offset); 1368 // 1369 // Address so_addr (sect, sect_offset); 1370 // lldb::addr_t load_addr = so_addr.GetLoadAddress(); 1371 // if (load_addr != LLDB_INVALID_ADDRESS) 1372 // { 1373 // // We successfully resolve a file address to a load 1374 // // address. 1375 // stack.push_back(load_addr); 1376 // break; 1377 // } 1378 // else 1379 // { 1380 // // We were able 1381 // if (error_ptr) 1382 // error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 1383 // return false; 1384 // } 1385 // } 1386 // break; 1387 1388 //---------------------------------------------------------------------- 1389 // OPCODE: DW_OP_deref 1390 // OPERANDS: none 1391 // DESCRIPTION: Pops the top stack entry and treats it as an address. 1392 // The value retrieved from that address is pushed. The size of the 1393 // data retrieved from the dereferenced address is the size of an 1394 // address on the target machine. 1395 //---------------------------------------------------------------------- 1396 case DW_OP_deref: 1397 { 1398 Value::ValueType value_type = stack.back().GetValueType(); 1399 switch (value_type) 1400 { 1401 case Value::eValueTypeHostAddress: 1402 { 1403 void *src = (void *)stack.back().GetScalar().ULongLong(); 1404 intptr_t ptr; 1405 ::memcpy (&ptr, src, sizeof(void *)); 1406 stack.back().GetScalar() = ptr; 1407 stack.back().ClearContext(); 1408 } 1409 break; 1410 case Value::eValueTypeLoadAddress: 1411 if (exe_ctx) 1412 { 1413 if (process) 1414 { 1415 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1416 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1417 uint32_t addr_size = process->GetAddressByteSize(); 1418 Error error; 1419 if (process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size) 1420 { 1421 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), addr_size); 1422 uint32_t addr_data_offset = 0; 1423 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1424 stack.back().ClearContext(); 1425 } 1426 else 1427 { 1428 if (error_ptr) 1429 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1430 pointer_addr, 1431 error.AsCString()); 1432 return false; 1433 } 1434 } 1435 else 1436 { 1437 if (error_ptr) 1438 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1439 return false; 1440 } 1441 } 1442 else 1443 { 1444 if (error_ptr) 1445 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1446 return false; 1447 } 1448 break; 1449 1450 default: 1451 break; 1452 } 1453 1454 } 1455 break; 1456 1457 //---------------------------------------------------------------------- 1458 // OPCODE: DW_OP_deref_size 1459 // OPERANDS: 1 1460 // 1 - uint8_t that specifies the size of the data to dereference. 1461 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 1462 // stack entry and treats it as an address. The value retrieved from that 1463 // address is pushed. In the DW_OP_deref_size operation, however, the 1464 // size in bytes of the data retrieved from the dereferenced address is 1465 // specified by the single operand. This operand is a 1-byte unsigned 1466 // integral constant whose value may not be larger than the size of an 1467 // address on the target machine. The data retrieved is zero extended 1468 // to the size of an address on the target machine before being pushed 1469 // on the expression stack. 1470 //---------------------------------------------------------------------- 1471 case DW_OP_deref_size: 1472 { 1473 uint8_t size = opcodes.GetU8(&offset); 1474 Value::ValueType value_type = stack.back().GetValueType(); 1475 switch (value_type) 1476 { 1477 case Value::eValueTypeHostAddress: 1478 { 1479 void *src = (void *)stack.back().GetScalar().ULongLong(); 1480 intptr_t ptr; 1481 ::memcpy (&ptr, src, sizeof(void *)); 1482 // I can't decide whether the size operand should apply to the bytes in their 1483 // lldb-host endianness or the target endianness.. I doubt this'll ever come up 1484 // but I'll opt for assuming big endian regardless. 1485 switch (size) 1486 { 1487 case 1: ptr = ptr & 0xff; break; 1488 case 2: ptr = ptr & 0xffff; break; 1489 case 3: ptr = ptr & 0xffffff; break; 1490 case 4: ptr = ptr & 0xffffffff; break; 1491 // the casts are added to work around the case where intptr_t is a 32 bit quantity; 1492 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. 1493 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; 1494 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; 1495 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; 1496 default: break; 1497 } 1498 stack.back().GetScalar() = ptr; 1499 stack.back().ClearContext(); 1500 } 1501 break; 1502 case Value::eValueTypeLoadAddress: 1503 if (exe_ctx) 1504 { 1505 if (process) 1506 { 1507 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1508 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1509 Error error; 1510 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) 1511 { 1512 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size); 1513 uint32_t addr_data_offset = 0; 1514 switch (size) 1515 { 1516 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; 1517 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; 1518 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; 1519 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; 1520 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1521 } 1522 stack.back().ClearContext(); 1523 } 1524 else 1525 { 1526 if (error_ptr) 1527 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1528 pointer_addr, 1529 error.AsCString()); 1530 return false; 1531 } 1532 } 1533 else 1534 { 1535 if (error_ptr) 1536 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1537 return false; 1538 } 1539 } 1540 else 1541 { 1542 if (error_ptr) 1543 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1544 return false; 1545 } 1546 break; 1547 1548 default: 1549 break; 1550 } 1551 1552 } 1553 break; 1554 1555 //---------------------------------------------------------------------- 1556 // OPCODE: DW_OP_xderef_size 1557 // OPERANDS: 1 1558 // 1 - uint8_t that specifies the size of the data to dereference. 1559 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1560 // the top of the stack is treated as an address. The second stack 1561 // entry is treated as an "address space identifier" for those 1562 // architectures that support multiple address spaces. The top two 1563 // stack elements are popped, a data item is retrieved through an 1564 // implementation-defined address calculation and pushed as the new 1565 // stack top. In the DW_OP_xderef_size operation, however, the size in 1566 // bytes of the data retrieved from the dereferenced address is 1567 // specified by the single operand. This operand is a 1-byte unsigned 1568 // integral constant whose value may not be larger than the size of an 1569 // address on the target machine. The data retrieved is zero extended 1570 // to the size of an address on the target machine before being pushed 1571 // on the expression stack. 1572 //---------------------------------------------------------------------- 1573 case DW_OP_xderef_size: 1574 if (error_ptr) 1575 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1576 return false; 1577 //---------------------------------------------------------------------- 1578 // OPCODE: DW_OP_xderef 1579 // OPERANDS: none 1580 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1581 // the top of the stack is treated as an address. The second stack entry 1582 // is treated as an "address space identifier" for those architectures 1583 // that support multiple address spaces. The top two stack elements are 1584 // popped, a data item is retrieved through an implementation-defined 1585 // address calculation and pushed as the new stack top. The size of the 1586 // data retrieved from the dereferenced address is the size of an address 1587 // on the target machine. 1588 //---------------------------------------------------------------------- 1589 case DW_OP_xderef: 1590 if (error_ptr) 1591 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1592 return false; 1593 1594 //---------------------------------------------------------------------- 1595 // All DW_OP_constXXX opcodes have a single operand as noted below: 1596 // 1597 // Opcode Operand 1 1598 // --------------- ---------------------------------------------------- 1599 // DW_OP_const1u 1-byte unsigned integer constant 1600 // DW_OP_const1s 1-byte signed integer constant 1601 // DW_OP_const2u 2-byte unsigned integer constant 1602 // DW_OP_const2s 2-byte signed integer constant 1603 // DW_OP_const4u 4-byte unsigned integer constant 1604 // DW_OP_const4s 4-byte signed integer constant 1605 // DW_OP_const8u 8-byte unsigned integer constant 1606 // DW_OP_const8s 8-byte signed integer constant 1607 // DW_OP_constu unsigned LEB128 integer constant 1608 // DW_OP_consts signed LEB128 integer constant 1609 //---------------------------------------------------------------------- 1610 case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break; 1611 case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break; 1612 case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break; 1613 case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break; 1614 case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break; 1615 case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break; 1616 case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break; 1617 case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break; 1618 case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break; 1619 case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break; 1620 1621 //---------------------------------------------------------------------- 1622 // OPCODE: DW_OP_dup 1623 // OPERANDS: none 1624 // DESCRIPTION: duplicates the value at the top of the stack 1625 //---------------------------------------------------------------------- 1626 case DW_OP_dup: 1627 if (stack.empty()) 1628 { 1629 if (error_ptr) 1630 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1631 return false; 1632 } 1633 else 1634 stack.push_back(stack.back()); 1635 break; 1636 1637 //---------------------------------------------------------------------- 1638 // OPCODE: DW_OP_drop 1639 // OPERANDS: none 1640 // DESCRIPTION: pops the value at the top of the stack 1641 //---------------------------------------------------------------------- 1642 case DW_OP_drop: 1643 if (stack.empty()) 1644 { 1645 if (error_ptr) 1646 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1647 return false; 1648 } 1649 else 1650 stack.pop_back(); 1651 break; 1652 1653 //---------------------------------------------------------------------- 1654 // OPCODE: DW_OP_over 1655 // OPERANDS: none 1656 // DESCRIPTION: Duplicates the entry currently second in the stack at 1657 // the top of the stack. 1658 //---------------------------------------------------------------------- 1659 case DW_OP_over: 1660 if (stack.size() < 2) 1661 { 1662 if (error_ptr) 1663 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); 1664 return false; 1665 } 1666 else 1667 stack.push_back(stack[stack.size() - 2]); 1668 break; 1669 1670 1671 //---------------------------------------------------------------------- 1672 // OPCODE: DW_OP_pick 1673 // OPERANDS: uint8_t index into the current stack 1674 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1675 // inclusive) is pushed on the stack 1676 //---------------------------------------------------------------------- 1677 case DW_OP_pick: 1678 { 1679 uint8_t pick_idx = opcodes.GetU8(&offset); 1680 if (pick_idx < stack.size()) 1681 stack.push_back(stack[pick_idx]); 1682 else 1683 { 1684 if (error_ptr) 1685 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); 1686 return false; 1687 } 1688 } 1689 break; 1690 1691 //---------------------------------------------------------------------- 1692 // OPCODE: DW_OP_swap 1693 // OPERANDS: none 1694 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1695 // of the stack becomes the second stack entry, and the second entry 1696 // becomes the top of the stack 1697 //---------------------------------------------------------------------- 1698 case DW_OP_swap: 1699 if (stack.size() < 2) 1700 { 1701 if (error_ptr) 1702 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); 1703 return false; 1704 } 1705 else 1706 { 1707 tmp = stack.back(); 1708 stack.back() = stack[stack.size() - 2]; 1709 stack[stack.size() - 2] = tmp; 1710 } 1711 break; 1712 1713 //---------------------------------------------------------------------- 1714 // OPCODE: DW_OP_rot 1715 // OPERANDS: none 1716 // DESCRIPTION: Rotates the first three stack entries. The entry at 1717 // the top of the stack becomes the third stack entry, the second 1718 // entry becomes the top of the stack, and the third entry becomes 1719 // the second entry. 1720 //---------------------------------------------------------------------- 1721 case DW_OP_rot: 1722 if (stack.size() < 3) 1723 { 1724 if (error_ptr) 1725 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); 1726 return false; 1727 } 1728 else 1729 { 1730 size_t last_idx = stack.size() - 1; 1731 Value old_top = stack[last_idx]; 1732 stack[last_idx] = stack[last_idx - 1]; 1733 stack[last_idx - 1] = stack[last_idx - 2]; 1734 stack[last_idx - 2] = old_top; 1735 } 1736 break; 1737 1738 //---------------------------------------------------------------------- 1739 // OPCODE: DW_OP_abs 1740 // OPERANDS: none 1741 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1742 // value and pushes its absolute value. If the absolute value can not be 1743 // represented, the result is undefined. 1744 //---------------------------------------------------------------------- 1745 case DW_OP_abs: 1746 if (stack.empty()) 1747 { 1748 if (error_ptr) 1749 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); 1750 return false; 1751 } 1752 else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false) 1753 { 1754 if (error_ptr) 1755 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); 1756 return false; 1757 } 1758 break; 1759 1760 //---------------------------------------------------------------------- 1761 // OPCODE: DW_OP_and 1762 // OPERANDS: none 1763 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1764 // operation on the two, and pushes the result. 1765 //---------------------------------------------------------------------- 1766 case DW_OP_and: 1767 if (stack.size() < 2) 1768 { 1769 if (error_ptr) 1770 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); 1771 return false; 1772 } 1773 else 1774 { 1775 tmp = stack.back(); 1776 stack.pop_back(); 1777 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context); 1778 } 1779 break; 1780 1781 //---------------------------------------------------------------------- 1782 // OPCODE: DW_OP_div 1783 // OPERANDS: none 1784 // DESCRIPTION: pops the top two stack values, divides the former second 1785 // entry by the former top of the stack using signed division, and 1786 // pushes the result. 1787 //---------------------------------------------------------------------- 1788 case DW_OP_div: 1789 if (stack.size() < 2) 1790 { 1791 if (error_ptr) 1792 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); 1793 return false; 1794 } 1795 else 1796 { 1797 tmp = stack.back(); 1798 if (tmp.ResolveValue(exe_ctx, ast_context).IsZero()) 1799 { 1800 if (error_ptr) 1801 error_ptr->SetErrorString("Divide by zero."); 1802 return false; 1803 } 1804 else 1805 { 1806 stack.pop_back(); 1807 stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context); 1808 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1809 { 1810 if (error_ptr) 1811 error_ptr->SetErrorString("Divide failed."); 1812 return false; 1813 } 1814 } 1815 } 1816 break; 1817 1818 //---------------------------------------------------------------------- 1819 // OPCODE: DW_OP_minus 1820 // OPERANDS: none 1821 // DESCRIPTION: pops the top two stack values, subtracts the former top 1822 // of the stack from the former second entry, and pushes the result. 1823 //---------------------------------------------------------------------- 1824 case DW_OP_minus: 1825 if (stack.size() < 2) 1826 { 1827 if (error_ptr) 1828 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); 1829 return false; 1830 } 1831 else 1832 { 1833 tmp = stack.back(); 1834 stack.pop_back(); 1835 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context); 1836 } 1837 break; 1838 1839 //---------------------------------------------------------------------- 1840 // OPCODE: DW_OP_mod 1841 // OPERANDS: none 1842 // DESCRIPTION: pops the top two stack values and pushes the result of 1843 // the calculation: former second stack entry modulo the former top of 1844 // the stack. 1845 //---------------------------------------------------------------------- 1846 case DW_OP_mod: 1847 if (stack.size() < 2) 1848 { 1849 if (error_ptr) 1850 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); 1851 return false; 1852 } 1853 else 1854 { 1855 tmp = stack.back(); 1856 stack.pop_back(); 1857 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context); 1858 } 1859 break; 1860 1861 1862 //---------------------------------------------------------------------- 1863 // OPCODE: DW_OP_mul 1864 // OPERANDS: none 1865 // DESCRIPTION: pops the top two stack entries, multiplies them 1866 // together, and pushes the result. 1867 //---------------------------------------------------------------------- 1868 case DW_OP_mul: 1869 if (stack.size() < 2) 1870 { 1871 if (error_ptr) 1872 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); 1873 return false; 1874 } 1875 else 1876 { 1877 tmp = stack.back(); 1878 stack.pop_back(); 1879 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context); 1880 } 1881 break; 1882 1883 //---------------------------------------------------------------------- 1884 // OPCODE: DW_OP_neg 1885 // OPERANDS: none 1886 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1887 //---------------------------------------------------------------------- 1888 case DW_OP_neg: 1889 if (stack.empty()) 1890 { 1891 if (error_ptr) 1892 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); 1893 return false; 1894 } 1895 else 1896 { 1897 if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false) 1898 { 1899 if (error_ptr) 1900 error_ptr->SetErrorString("Unary negate failed."); 1901 return false; 1902 } 1903 } 1904 break; 1905 1906 //---------------------------------------------------------------------- 1907 // OPCODE: DW_OP_not 1908 // OPERANDS: none 1909 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1910 // complement 1911 //---------------------------------------------------------------------- 1912 case DW_OP_not: 1913 if (stack.empty()) 1914 { 1915 if (error_ptr) 1916 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); 1917 return false; 1918 } 1919 else 1920 { 1921 if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false) 1922 { 1923 if (error_ptr) 1924 error_ptr->SetErrorString("Logical NOT failed."); 1925 return false; 1926 } 1927 } 1928 break; 1929 1930 //---------------------------------------------------------------------- 1931 // OPCODE: DW_OP_or 1932 // OPERANDS: none 1933 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 1934 // operation on the two, and pushes the result. 1935 //---------------------------------------------------------------------- 1936 case DW_OP_or: 1937 if (stack.size() < 2) 1938 { 1939 if (error_ptr) 1940 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); 1941 return false; 1942 } 1943 else 1944 { 1945 tmp = stack.back(); 1946 stack.pop_back(); 1947 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context); 1948 } 1949 break; 1950 1951 //---------------------------------------------------------------------- 1952 // OPCODE: DW_OP_plus 1953 // OPERANDS: none 1954 // DESCRIPTION: pops the top two stack entries, adds them together, and 1955 // pushes the result. 1956 //---------------------------------------------------------------------- 1957 case DW_OP_plus: 1958 if (stack.size() < 2) 1959 { 1960 if (error_ptr) 1961 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); 1962 return false; 1963 } 1964 else 1965 { 1966 tmp = stack.back(); 1967 stack.pop_back(); 1968 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context); 1969 } 1970 break; 1971 1972 //---------------------------------------------------------------------- 1973 // OPCODE: DW_OP_plus_uconst 1974 // OPERANDS: none 1975 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 1976 // constant operand and pushes the result. 1977 //---------------------------------------------------------------------- 1978 case DW_OP_plus_uconst: 1979 if (stack.empty()) 1980 { 1981 if (error_ptr) 1982 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); 1983 return false; 1984 } 1985 else 1986 { 1987 uint32_t uconst_value = opcodes.GetULEB128(&offset); 1988 // Implicit conversion from a UINT to a Scalar... 1989 stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value; 1990 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1991 { 1992 if (error_ptr) 1993 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 1994 return false; 1995 } 1996 } 1997 break; 1998 1999 //---------------------------------------------------------------------- 2000 // OPCODE: DW_OP_shl 2001 // OPERANDS: none 2002 // DESCRIPTION: pops the top two stack entries, shifts the former 2003 // second entry left by the number of bits specified by the former top 2004 // of the stack, and pushes the result. 2005 //---------------------------------------------------------------------- 2006 case DW_OP_shl: 2007 if (stack.size() < 2) 2008 { 2009 if (error_ptr) 2010 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); 2011 return false; 2012 } 2013 else 2014 { 2015 tmp = stack.back(); 2016 stack.pop_back(); 2017 stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context); 2018 } 2019 break; 2020 2021 //---------------------------------------------------------------------- 2022 // OPCODE: DW_OP_shr 2023 // OPERANDS: none 2024 // DESCRIPTION: pops the top two stack entries, shifts the former second 2025 // entry right logically (filling with zero bits) by the number of bits 2026 // specified by the former top of the stack, and pushes the result. 2027 //---------------------------------------------------------------------- 2028 case DW_OP_shr: 2029 if (stack.size() < 2) 2030 { 2031 if (error_ptr) 2032 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); 2033 return false; 2034 } 2035 else 2036 { 2037 tmp = stack.back(); 2038 stack.pop_back(); 2039 if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false) 2040 { 2041 if (error_ptr) 2042 error_ptr->SetErrorString("DW_OP_shr failed."); 2043 return false; 2044 } 2045 } 2046 break; 2047 2048 //---------------------------------------------------------------------- 2049 // OPCODE: DW_OP_shra 2050 // OPERANDS: none 2051 // DESCRIPTION: pops the top two stack entries, shifts the former second 2052 // entry right arithmetically (divide the magnitude by 2, keep the same 2053 // sign for the result) by the number of bits specified by the former 2054 // top of the stack, and pushes the result. 2055 //---------------------------------------------------------------------- 2056 case DW_OP_shra: 2057 if (stack.size() < 2) 2058 { 2059 if (error_ptr) 2060 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); 2061 return false; 2062 } 2063 else 2064 { 2065 tmp = stack.back(); 2066 stack.pop_back(); 2067 stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context); 2068 } 2069 break; 2070 2071 //---------------------------------------------------------------------- 2072 // OPCODE: DW_OP_xor 2073 // OPERANDS: none 2074 // DESCRIPTION: pops the top two stack entries, performs the bitwise 2075 // exclusive-or operation on the two, and pushes the result. 2076 //---------------------------------------------------------------------- 2077 case DW_OP_xor: 2078 if (stack.size() < 2) 2079 { 2080 if (error_ptr) 2081 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); 2082 return false; 2083 } 2084 else 2085 { 2086 tmp = stack.back(); 2087 stack.pop_back(); 2088 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context); 2089 } 2090 break; 2091 2092 2093 //---------------------------------------------------------------------- 2094 // OPCODE: DW_OP_skip 2095 // OPERANDS: int16_t 2096 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 2097 // signed integer constant. The 2-byte constant is the number of bytes 2098 // of the DWARF expression to skip forward or backward from the current 2099 // operation, beginning after the 2-byte constant. 2100 //---------------------------------------------------------------------- 2101 case DW_OP_skip: 2102 { 2103 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 2104 uint32_t new_offset = offset + skip_offset; 2105 if (new_offset >= opcodes_offset && new_offset < end_offset) 2106 offset = new_offset; 2107 else 2108 { 2109 if (error_ptr) 2110 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 2111 return false; 2112 } 2113 } 2114 break; 2115 2116 //---------------------------------------------------------------------- 2117 // OPCODE: DW_OP_bra 2118 // OPERANDS: int16_t 2119 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 2120 // signed integer constant. This operation pops the top of stack. If 2121 // the value popped is not the constant 0, the 2-byte constant operand 2122 // is the number of bytes of the DWARF expression to skip forward or 2123 // backward from the current operation, beginning after the 2-byte 2124 // constant. 2125 //---------------------------------------------------------------------- 2126 case DW_OP_bra: 2127 { 2128 tmp = stack.back(); 2129 stack.pop_back(); 2130 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 2131 Scalar zero(0); 2132 if (tmp.ResolveValue(exe_ctx, ast_context) != zero) 2133 { 2134 uint32_t new_offset = offset + bra_offset; 2135 if (new_offset >= opcodes_offset && new_offset < end_offset) 2136 offset = new_offset; 2137 else 2138 { 2139 if (error_ptr) 2140 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 2141 return false; 2142 } 2143 } 2144 } 2145 break; 2146 2147 //---------------------------------------------------------------------- 2148 // OPCODE: DW_OP_eq 2149 // OPERANDS: none 2150 // DESCRIPTION: pops the top two stack values, compares using the 2151 // equals (==) operator. 2152 // STACK RESULT: push the constant value 1 onto the stack if the result 2153 // of the operation is true or the constant value 0 if the result of the 2154 // operation is false. 2155 //---------------------------------------------------------------------- 2156 case DW_OP_eq: 2157 if (stack.size() < 2) 2158 { 2159 if (error_ptr) 2160 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); 2161 return false; 2162 } 2163 else 2164 { 2165 tmp = stack.back(); 2166 stack.pop_back(); 2167 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context); 2168 } 2169 break; 2170 2171 //---------------------------------------------------------------------- 2172 // OPCODE: DW_OP_ge 2173 // OPERANDS: none 2174 // DESCRIPTION: pops the top two stack values, compares using the 2175 // greater than or equal to (>=) operator. 2176 // STACK RESULT: push the constant value 1 onto the stack if the result 2177 // of the operation is true or the constant value 0 if the result of the 2178 // operation is false. 2179 //---------------------------------------------------------------------- 2180 case DW_OP_ge: 2181 if (stack.size() < 2) 2182 { 2183 if (error_ptr) 2184 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); 2185 return false; 2186 } 2187 else 2188 { 2189 tmp = stack.back(); 2190 stack.pop_back(); 2191 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context); 2192 } 2193 break; 2194 2195 //---------------------------------------------------------------------- 2196 // OPCODE: DW_OP_gt 2197 // OPERANDS: none 2198 // DESCRIPTION: pops the top two stack values, compares using the 2199 // greater than (>) operator. 2200 // STACK RESULT: push the constant value 1 onto the stack if the result 2201 // of the operation is true or the constant value 0 if the result of the 2202 // operation is false. 2203 //---------------------------------------------------------------------- 2204 case DW_OP_gt: 2205 if (stack.size() < 2) 2206 { 2207 if (error_ptr) 2208 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); 2209 return false; 2210 } 2211 else 2212 { 2213 tmp = stack.back(); 2214 stack.pop_back(); 2215 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context); 2216 } 2217 break; 2218 2219 //---------------------------------------------------------------------- 2220 // OPCODE: DW_OP_le 2221 // OPERANDS: none 2222 // DESCRIPTION: pops the top two stack values, compares using the 2223 // less than or equal to (<=) operator. 2224 // STACK RESULT: push the constant value 1 onto the stack if the result 2225 // of the operation is true or the constant value 0 if the result of the 2226 // operation is false. 2227 //---------------------------------------------------------------------- 2228 case DW_OP_le: 2229 if (stack.size() < 2) 2230 { 2231 if (error_ptr) 2232 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); 2233 return false; 2234 } 2235 else 2236 { 2237 tmp = stack.back(); 2238 stack.pop_back(); 2239 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context); 2240 } 2241 break; 2242 2243 //---------------------------------------------------------------------- 2244 // OPCODE: DW_OP_lt 2245 // OPERANDS: none 2246 // DESCRIPTION: pops the top two stack values, compares using the 2247 // less than (<) operator. 2248 // STACK RESULT: push the constant value 1 onto the stack if the result 2249 // of the operation is true or the constant value 0 if the result of the 2250 // operation is false. 2251 //---------------------------------------------------------------------- 2252 case DW_OP_lt: 2253 if (stack.size() < 2) 2254 { 2255 if (error_ptr) 2256 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); 2257 return false; 2258 } 2259 else 2260 { 2261 tmp = stack.back(); 2262 stack.pop_back(); 2263 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context); 2264 } 2265 break; 2266 2267 //---------------------------------------------------------------------- 2268 // OPCODE: DW_OP_ne 2269 // OPERANDS: none 2270 // DESCRIPTION: pops the top two stack values, compares using the 2271 // not equal (!=) operator. 2272 // STACK RESULT: push the constant value 1 onto the stack if the result 2273 // of the operation is true or the constant value 0 if the result of the 2274 // operation is false. 2275 //---------------------------------------------------------------------- 2276 case DW_OP_ne: 2277 if (stack.size() < 2) 2278 { 2279 if (error_ptr) 2280 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); 2281 return false; 2282 } 2283 else 2284 { 2285 tmp = stack.back(); 2286 stack.pop_back(); 2287 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context); 2288 } 2289 break; 2290 2291 //---------------------------------------------------------------------- 2292 // OPCODE: DW_OP_litn 2293 // OPERANDS: none 2294 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 2295 // STACK RESULT: push the unsigned literal constant value onto the top 2296 // of the stack. 2297 //---------------------------------------------------------------------- 2298 case DW_OP_lit0: 2299 case DW_OP_lit1: 2300 case DW_OP_lit2: 2301 case DW_OP_lit3: 2302 case DW_OP_lit4: 2303 case DW_OP_lit5: 2304 case DW_OP_lit6: 2305 case DW_OP_lit7: 2306 case DW_OP_lit8: 2307 case DW_OP_lit9: 2308 case DW_OP_lit10: 2309 case DW_OP_lit11: 2310 case DW_OP_lit12: 2311 case DW_OP_lit13: 2312 case DW_OP_lit14: 2313 case DW_OP_lit15: 2314 case DW_OP_lit16: 2315 case DW_OP_lit17: 2316 case DW_OP_lit18: 2317 case DW_OP_lit19: 2318 case DW_OP_lit20: 2319 case DW_OP_lit21: 2320 case DW_OP_lit22: 2321 case DW_OP_lit23: 2322 case DW_OP_lit24: 2323 case DW_OP_lit25: 2324 case DW_OP_lit26: 2325 case DW_OP_lit27: 2326 case DW_OP_lit28: 2327 case DW_OP_lit29: 2328 case DW_OP_lit30: 2329 case DW_OP_lit31: 2330 stack.push_back(Scalar(op - DW_OP_lit0)); 2331 break; 2332 2333 //---------------------------------------------------------------------- 2334 // OPCODE: DW_OP_regN 2335 // OPERANDS: none 2336 // DESCRIPTION: Push the value in register n on the top of the stack. 2337 //---------------------------------------------------------------------- 2338 case DW_OP_reg0: 2339 case DW_OP_reg1: 2340 case DW_OP_reg2: 2341 case DW_OP_reg3: 2342 case DW_OP_reg4: 2343 case DW_OP_reg5: 2344 case DW_OP_reg6: 2345 case DW_OP_reg7: 2346 case DW_OP_reg8: 2347 case DW_OP_reg9: 2348 case DW_OP_reg10: 2349 case DW_OP_reg11: 2350 case DW_OP_reg12: 2351 case DW_OP_reg13: 2352 case DW_OP_reg14: 2353 case DW_OP_reg15: 2354 case DW_OP_reg16: 2355 case DW_OP_reg17: 2356 case DW_OP_reg18: 2357 case DW_OP_reg19: 2358 case DW_OP_reg20: 2359 case DW_OP_reg21: 2360 case DW_OP_reg22: 2361 case DW_OP_reg23: 2362 case DW_OP_reg24: 2363 case DW_OP_reg25: 2364 case DW_OP_reg26: 2365 case DW_OP_reg27: 2366 case DW_OP_reg28: 2367 case DW_OP_reg29: 2368 case DW_OP_reg30: 2369 case DW_OP_reg31: 2370 { 2371 reg_num = op - DW_OP_reg0; 2372 2373 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2374 stack.push_back(tmp); 2375 else 2376 return false; 2377 } 2378 break; 2379 //---------------------------------------------------------------------- 2380 // OPCODE: DW_OP_regx 2381 // OPERANDS: 2382 // ULEB128 literal operand that encodes the register. 2383 // DESCRIPTION: Push the value in register on the top of the stack. 2384 //---------------------------------------------------------------------- 2385 case DW_OP_regx: 2386 { 2387 reg_num = opcodes.GetULEB128(&offset); 2388 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2389 stack.push_back(tmp); 2390 else 2391 return false; 2392 } 2393 break; 2394 2395 //---------------------------------------------------------------------- 2396 // OPCODE: DW_OP_bregN 2397 // OPERANDS: 2398 // SLEB128 offset from register N 2399 // DESCRIPTION: Value is in memory at the address specified by register 2400 // N plus an offset. 2401 //---------------------------------------------------------------------- 2402 case DW_OP_breg0: 2403 case DW_OP_breg1: 2404 case DW_OP_breg2: 2405 case DW_OP_breg3: 2406 case DW_OP_breg4: 2407 case DW_OP_breg5: 2408 case DW_OP_breg6: 2409 case DW_OP_breg7: 2410 case DW_OP_breg8: 2411 case DW_OP_breg9: 2412 case DW_OP_breg10: 2413 case DW_OP_breg11: 2414 case DW_OP_breg12: 2415 case DW_OP_breg13: 2416 case DW_OP_breg14: 2417 case DW_OP_breg15: 2418 case DW_OP_breg16: 2419 case DW_OP_breg17: 2420 case DW_OP_breg18: 2421 case DW_OP_breg19: 2422 case DW_OP_breg20: 2423 case DW_OP_breg21: 2424 case DW_OP_breg22: 2425 case DW_OP_breg23: 2426 case DW_OP_breg24: 2427 case DW_OP_breg25: 2428 case DW_OP_breg26: 2429 case DW_OP_breg27: 2430 case DW_OP_breg28: 2431 case DW_OP_breg29: 2432 case DW_OP_breg30: 2433 case DW_OP_breg31: 2434 { 2435 reg_num = op - DW_OP_breg0; 2436 2437 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2438 { 2439 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2440 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2441 tmp.ClearContext(); 2442 stack.push_back(tmp); 2443 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2444 } 2445 else 2446 return false; 2447 } 2448 break; 2449 //---------------------------------------------------------------------- 2450 // OPCODE: DW_OP_bregx 2451 // OPERANDS: 2 2452 // ULEB128 literal operand that encodes the register. 2453 // SLEB128 offset from register N 2454 // DESCRIPTION: Value is in memory at the address specified by register 2455 // N plus an offset. 2456 //---------------------------------------------------------------------- 2457 case DW_OP_bregx: 2458 { 2459 reg_num = opcodes.GetULEB128(&offset); 2460 2461 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2462 { 2463 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2464 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2465 tmp.ClearContext(); 2466 stack.push_back(tmp); 2467 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2468 } 2469 else 2470 return false; 2471 } 2472 break; 2473 2474 case DW_OP_fbreg: 2475 if (exe_ctx) 2476 { 2477 if (frame) 2478 { 2479 Scalar value; 2480 if (frame->GetFrameBaseValue(value, error_ptr)) 2481 { 2482 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2483 value += fbreg_offset; 2484 stack.push_back(value); 2485 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2486 } 2487 else 2488 return false; 2489 } 2490 else 2491 { 2492 if (error_ptr) 2493 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); 2494 return false; 2495 } 2496 } 2497 else 2498 { 2499 if (error_ptr) 2500 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_fbreg.\n"); 2501 return false; 2502 } 2503 2504 break; 2505 2506 //---------------------------------------------------------------------- 2507 // OPCODE: DW_OP_nop 2508 // OPERANDS: none 2509 // DESCRIPTION: A place holder. It has no effect on the location stack 2510 // or any of its values. 2511 //---------------------------------------------------------------------- 2512 case DW_OP_nop: 2513 break; 2514 2515 //---------------------------------------------------------------------- 2516 // OPCODE: DW_OP_piece 2517 // OPERANDS: 1 2518 // ULEB128: byte size of the piece 2519 // DESCRIPTION: The operand describes the size in bytes of the piece of 2520 // the object referenced by the DWARF expression whose result is at the 2521 // top of the stack. If the piece is located in a register, but does not 2522 // occupy the entire register, the placement of the piece within that 2523 // register is defined by the ABI. 2524 // 2525 // Many compilers store a single variable in sets of registers, or store 2526 // a variable partially in memory and partially in registers. 2527 // DW_OP_piece provides a way of describing how large a part of a 2528 // variable a particular DWARF expression refers to. 2529 //---------------------------------------------------------------------- 2530 case DW_OP_piece: 2531 if (error_ptr) 2532 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece."); 2533 return false; 2534 2535 //---------------------------------------------------------------------- 2536 // OPCODE: DW_OP_push_object_address 2537 // OPERANDS: none 2538 // DESCRIPTION: Pushes the address of the object currently being 2539 // evaluated as part of evaluation of a user presented expression. 2540 // This object may correspond to an independent variable described by 2541 // its own DIE or it may be a component of an array, structure, or class 2542 // whose address has been dynamically determined by an earlier step 2543 // during user expression evaluation. 2544 //---------------------------------------------------------------------- 2545 case DW_OP_push_object_address: 2546 if (error_ptr) 2547 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); 2548 return false; 2549 2550 //---------------------------------------------------------------------- 2551 // OPCODE: DW_OP_call2 2552 // OPERANDS: 2553 // uint16_t compile unit relative offset of a DIE 2554 // DESCRIPTION: Performs subroutine calls during evaluation 2555 // of a DWARF expression. The operand is the 2-byte unsigned offset 2556 // of a debugging information entry in the current compilation unit. 2557 // 2558 // Operand interpretation is exactly like that for DW_FORM_ref2. 2559 // 2560 // This operation transfers control of DWARF expression evaluation 2561 // to the DW_AT_location attribute of the referenced DIE. If there is 2562 // no such attribute, then there is no effect. Execution of the DWARF 2563 // expression of a DW_AT_location attribute may add to and/or remove from 2564 // values on the stack. Execution returns to the point following the call 2565 // when the end of the attribute is reached. Values on the stack at the 2566 // time of the call may be used as parameters by the called expression 2567 // and values left on the stack by the called expression may be used as 2568 // return values by prior agreement between the calling and called 2569 // expressions. 2570 //---------------------------------------------------------------------- 2571 case DW_OP_call2: 2572 if (error_ptr) 2573 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); 2574 return false; 2575 //---------------------------------------------------------------------- 2576 // OPCODE: DW_OP_call4 2577 // OPERANDS: 1 2578 // uint32_t compile unit relative offset of a DIE 2579 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2580 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset 2581 // of a debugging information entry in the current compilation unit. 2582 // 2583 // Operand interpretation DW_OP_call4 is exactly like that for 2584 // DW_FORM_ref4. 2585 // 2586 // This operation transfers control of DWARF expression evaluation 2587 // to the DW_AT_location attribute of the referenced DIE. If there is 2588 // no such attribute, then there is no effect. Execution of the DWARF 2589 // expression of a DW_AT_location attribute may add to and/or remove from 2590 // values on the stack. Execution returns to the point following the call 2591 // when the end of the attribute is reached. Values on the stack at the 2592 // time of the call may be used as parameters by the called expression 2593 // and values left on the stack by the called expression may be used as 2594 // return values by prior agreement between the calling and called 2595 // expressions. 2596 //---------------------------------------------------------------------- 2597 case DW_OP_call4: 2598 if (error_ptr) 2599 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); 2600 return false; 2601 2602 #if 0 2603 //---------------------------------------------------------------------- 2604 // OPCODE: DW_OP_call_ref 2605 // OPERANDS: 2606 // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t 2607 // absolute DIE offset for 64 bit DWARF. 2608 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2609 // expression. Takes a single operand. In the 32-bit DWARF format, the 2610 // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it 2611 // is an 8-byte unsigned value. The operand is used as the offset of a 2612 // debugging information entry in a .debug_info section which may be 2613 // contained in a shared object for executable other than that 2614 // containing the operator. For references from one shared object or 2615 // executable to another, the relocation must be performed by the 2616 // consumer. 2617 // 2618 // Operand interpretation of DW_OP_call_ref is exactly like that for 2619 // DW_FORM_ref_addr. 2620 // 2621 // This operation transfers control of DWARF expression evaluation 2622 // to the DW_AT_location attribute of the referenced DIE. If there is 2623 // no such attribute, then there is no effect. Execution of the DWARF 2624 // expression of a DW_AT_location attribute may add to and/or remove from 2625 // values on the stack. Execution returns to the point following the call 2626 // when the end of the attribute is reached. Values on the stack at the 2627 // time of the call may be used as parameters by the called expression 2628 // and values left on the stack by the called expression may be used as 2629 // return values by prior agreement between the calling and called 2630 // expressions. 2631 //---------------------------------------------------------------------- 2632 case DW_OP_call_ref: 2633 if (error_ptr) 2634 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref."); 2635 return false; 2636 2637 //---------------------------------------------------------------------- 2638 // OPCODE: DW_OP_APPLE_array_ref 2639 // OPERANDS: none 2640 // DESCRIPTION: Pops a value off the stack and uses it as the array 2641 // index. Pops a second value off the stack and uses it as the array 2642 // itself. Pushes a value onto the stack representing the element of 2643 // the array specified by the index. 2644 //---------------------------------------------------------------------- 2645 case DW_OP_APPLE_array_ref: 2646 { 2647 if (stack.size() < 2) 2648 { 2649 if (error_ptr) 2650 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref."); 2651 return false; 2652 } 2653 2654 Value index_val = stack.back(); 2655 stack.pop_back(); 2656 Value array_val = stack.back(); 2657 stack.pop_back(); 2658 2659 Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context); 2660 int64_t index = index_scalar.SLongLong(LLONG_MAX); 2661 2662 if (index == LLONG_MAX) 2663 { 2664 if (error_ptr) 2665 error_ptr->SetErrorString("Invalid array index."); 2666 return false; 2667 } 2668 2669 if (array_val.GetContextType() != Value::eContextTypeClangType) 2670 { 2671 if (error_ptr) 2672 error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time."); 2673 return false; 2674 } 2675 2676 if (array_val.GetValueType() != Value::eValueTypeLoadAddress && 2677 array_val.GetValueType() != Value::eValueTypeHostAddress) 2678 { 2679 if (error_ptr) 2680 error_ptr->SetErrorString("Array must be stored in memory."); 2681 return false; 2682 } 2683 2684 void *array_type = array_val.GetClangType(); 2685 2686 void *member_type; 2687 uint64_t size = 0; 2688 2689 if ((!ClangASTContext::IsPointerType(array_type, &member_type)) && 2690 (!ClangASTContext::IsArrayType(array_type, &member_type, &size))) 2691 { 2692 if (error_ptr) 2693 error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array."); 2694 return false; 2695 } 2696 2697 if (size && (index >= size || index < 0)) 2698 { 2699 if (error_ptr) 2700 error_ptr->SetErrorStringWithFormat("Out of bounds array access. %lld is not in [0, %llu]", index, size); 2701 return false; 2702 } 2703 2704 uint64_t member_bit_size = ClangASTType::GetClangTypeBitWidth(ast_context, member_type); 2705 uint64_t member_bit_align = ClangASTType::GetTypeBitAlign(ast_context, member_type); 2706 uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align; 2707 if (member_bit_incr % 8) 2708 { 2709 if (error_ptr) 2710 error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned"); 2711 return false; 2712 } 2713 int64_t member_offset = (int64_t)(member_bit_incr / 8) * index; 2714 2715 Value member; 2716 2717 member.SetContext(Value::eContextTypeClangType, member_type); 2718 member.SetValueType(array_val.GetValueType()); 2719 2720 addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2721 addr_t member_loc = array_base + member_offset; 2722 member.GetScalar() = (uint64_t)member_loc; 2723 2724 stack.push_back(member); 2725 } 2726 break; 2727 2728 //---------------------------------------------------------------------- 2729 // OPCODE: DW_OP_APPLE_uninit 2730 // OPERANDS: none 2731 // DESCRIPTION: Lets us know that the value is currently not initialized 2732 //---------------------------------------------------------------------- 2733 case DW_OP_APPLE_uninit: 2734 //return eResultTypeErrorUninitialized; 2735 break; // Ignore this as we have seen cases where this value is incorrectly added 2736 2737 //---------------------------------------------------------------------- 2738 // OPCODE: DW_OP_APPLE_assign 2739 // OPERANDS: none 2740 // DESCRIPTION: Pops a value off of the stack and assigns it to the next 2741 // item on the stack which must be something assignable (inferior 2742 // Variable, inferior Type with address, inferior register, or 2743 // expression local variable. 2744 //---------------------------------------------------------------------- 2745 case DW_OP_APPLE_assign: 2746 if (stack.size() < 2) 2747 { 2748 if (error_ptr) 2749 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign."); 2750 return false; 2751 } 2752 else 2753 { 2754 tmp = stack.back(); 2755 stack.pop_back(); 2756 Value::ContextType context_type = stack.back().GetContextType(); 2757 StreamString new_value(Stream::eBinary, 4, lldb::endian::InlHostByteOrder()); 2758 switch (context_type) 2759 { 2760 case Value::eContextTypeClangType: 2761 { 2762 void *clang_type = stack.back().GetClangType(); 2763 2764 if (ClangASTContext::IsAggregateType (clang_type)) 2765 { 2766 Value::ValueType source_value_type = tmp.GetValueType(); 2767 Value::ValueType target_value_type = stack.back().GetValueType(); 2768 2769 addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong(); 2770 addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong(); 2771 2772 size_t byte_size = (ClangASTType::GetClangTypeBitWidth(ast_context, clang_type) + 7) / 8; 2773 2774 switch (source_value_type) 2775 { 2776 case Value::eValueTypeScalar: 2777 case Value::eValueTypeFileAddress: 2778 break; 2779 2780 case Value::eValueTypeLoadAddress: 2781 switch (target_value_type) 2782 { 2783 case Value::eValueTypeLoadAddress: 2784 { 2785 DataBufferHeap data; 2786 data.SetByteSize(byte_size); 2787 2788 Error error; 2789 if (process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size) 2790 { 2791 if (error_ptr) 2792 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2793 return false; 2794 } 2795 2796 if (process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size) 2797 { 2798 if (error_ptr) 2799 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2800 return false; 2801 } 2802 } 2803 break; 2804 case Value::eValueTypeHostAddress: 2805 if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2806 { 2807 if (error_ptr) 2808 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2809 return false; 2810 } 2811 else 2812 { 2813 Error error; 2814 if (process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size) 2815 { 2816 if (error_ptr) 2817 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2818 return false; 2819 } 2820 } 2821 break; 2822 default: 2823 return false; 2824 } 2825 break; 2826 case Value::eValueTypeHostAddress: 2827 switch (target_value_type) 2828 { 2829 case Value::eValueTypeLoadAddress: 2830 if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2831 { 2832 if (error_ptr) 2833 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2834 return false; 2835 } 2836 else 2837 { 2838 Error error; 2839 if (process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size) 2840 { 2841 if (error_ptr) 2842 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2843 return false; 2844 } 2845 } 2846 case Value::eValueTypeHostAddress: 2847 memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size); 2848 break; 2849 default: 2850 return false; 2851 } 2852 } 2853 } 2854 else 2855 { 2856 if (!ClangASTType::SetValueFromScalar (ast_context, 2857 clang_type, 2858 tmp.ResolveValue(exe_ctx, ast_context), 2859 new_value)) 2860 { 2861 if (error_ptr) 2862 error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n"); 2863 return false; 2864 } 2865 2866 Value::ValueType value_type = stack.back().GetValueType(); 2867 2868 switch (value_type) 2869 { 2870 case Value::eValueTypeLoadAddress: 2871 case Value::eValueTypeHostAddress: 2872 { 2873 AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost); 2874 lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2875 if (!ClangASTType::WriteToMemory (ast_context, 2876 clang_type, 2877 exe_ctx, 2878 addr, 2879 address_type, 2880 new_value)) 2881 { 2882 if (error_ptr) 2883 error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%llx.\n", addr); 2884 return false; 2885 } 2886 } 2887 break; 2888 2889 default: 2890 break; 2891 } 2892 } 2893 } 2894 break; 2895 2896 default: 2897 if (error_ptr) 2898 error_ptr->SetErrorString ("Assign failed."); 2899 return false; 2900 } 2901 } 2902 break; 2903 2904 //---------------------------------------------------------------------- 2905 // OPCODE: DW_OP_APPLE_address_of 2906 // OPERANDS: none 2907 // DESCRIPTION: Pops a value off of the stack and pushed its address. 2908 // The top item on the stack must be a variable, or already be a memory 2909 // location. 2910 //---------------------------------------------------------------------- 2911 case DW_OP_APPLE_address_of: 2912 if (stack.empty()) 2913 { 2914 if (error_ptr) 2915 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of."); 2916 return false; 2917 } 2918 else 2919 { 2920 Value::ValueType value_type = stack.back().GetValueType(); 2921 switch (value_type) 2922 { 2923 default: 2924 case Value::eValueTypeScalar: // raw scalar value 2925 if (error_ptr) 2926 error_ptr->SetErrorString("Top stack item isn't a memory based object."); 2927 return false; 2928 2929 case Value::eValueTypeLoadAddress: // load address value 2930 case Value::eValueTypeFileAddress: // file address value 2931 case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb) 2932 // Taking the address of an object reduces it to the address 2933 // of the value and removes any extra context it had. 2934 //stack.back().SetValueType(Value::eValueTypeScalar); 2935 stack.back().ClearContext(); 2936 break; 2937 } 2938 } 2939 break; 2940 2941 //---------------------------------------------------------------------- 2942 // OPCODE: DW_OP_APPLE_value_of 2943 // OPERANDS: none 2944 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2945 // The top item on the stack must be a variable, expression variable. 2946 //---------------------------------------------------------------------- 2947 case DW_OP_APPLE_value_of: 2948 if (stack.empty()) 2949 { 2950 if (error_ptr) 2951 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of."); 2952 return false; 2953 } 2954 else if (!stack.back().ValueOf(exe_ctx, ast_context)) 2955 { 2956 if (error_ptr) 2957 error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of."); 2958 return false; 2959 } 2960 break; 2961 2962 //---------------------------------------------------------------------- 2963 // OPCODE: DW_OP_APPLE_deref_type 2964 // OPERANDS: none 2965 // DESCRIPTION: gets the value pointed to by the top stack item 2966 //---------------------------------------------------------------------- 2967 case DW_OP_APPLE_deref_type: 2968 { 2969 if (stack.empty()) 2970 { 2971 if (error_ptr) 2972 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type."); 2973 return false; 2974 } 2975 2976 tmp = stack.back(); 2977 stack.pop_back(); 2978 2979 if (tmp.GetContextType() != Value::eContextTypeClangType) 2980 { 2981 if (error_ptr) 2982 error_ptr->SetErrorString("Item at top of expression stack must have a Clang type"); 2983 return false; 2984 } 2985 2986 void *ptr_type = tmp.GetClangType(); 2987 void *target_type; 2988 2989 if (!ClangASTContext::IsPointerType(ptr_type, &target_type)) 2990 { 2991 if (error_ptr) 2992 error_ptr->SetErrorString("Dereferencing a non-pointer type"); 2993 return false; 2994 } 2995 2996 // TODO do we want all pointers to be dereferenced as load addresses? 2997 Value::ValueType value_type = tmp.GetValueType(); 2998 2999 tmp.ResolveValue(exe_ctx, ast_context); 3000 3001 tmp.SetValueType(value_type); 3002 tmp.SetContext(Value::eContextTypeClangType, target_type); 3003 3004 stack.push_back(tmp); 3005 } 3006 break; 3007 3008 //---------------------------------------------------------------------- 3009 // OPCODE: DW_OP_APPLE_expr_local 3010 // OPERANDS: ULEB128 3011 // DESCRIPTION: pushes the expression local variable index onto the 3012 // stack and set the appropriate context so we know the stack item is 3013 // an expression local variable index. 3014 //---------------------------------------------------------------------- 3015 case DW_OP_APPLE_expr_local: 3016 { 3017 /* 3018 uint32_t idx = opcodes.GetULEB128(&offset); 3019 if (expr_locals == NULL) 3020 { 3021 if (error_ptr) 3022 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx); 3023 return false; 3024 } 3025 Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx); 3026 if (expr_local_variable == NULL) 3027 { 3028 if (error_ptr) 3029 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx); 3030 return false; 3031 } 3032 // The proxy code has been removed. If it is ever re-added, please 3033 // use shared pointers or return by value to avoid possible memory 3034 // leak (there is no leak here, but in general, no returning pointers 3035 // that must be manually freed please. 3036 Value *proxy = expr_local_variable->CreateProxy(); 3037 stack.push_back(*proxy); 3038 delete proxy; 3039 //stack.back().SetContext (Value::eContextTypeClangType, expr_local_variable->GetClangType()); 3040 */ 3041 } 3042 break; 3043 3044 //---------------------------------------------------------------------- 3045 // OPCODE: DW_OP_APPLE_extern 3046 // OPERANDS: ULEB128 3047 // DESCRIPTION: pushes a proxy for the extern object index onto the 3048 // stack. 3049 //---------------------------------------------------------------------- 3050 case DW_OP_APPLE_extern: 3051 { 3052 /* 3053 uint32_t idx = opcodes.GetULEB128(&offset); 3054 if (!decl_map) 3055 { 3056 if (error_ptr) 3057 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx); 3058 return false; 3059 } 3060 Value *extern_var = decl_map->GetValueForIndex(idx); 3061 if (!extern_var) 3062 { 3063 if (error_ptr) 3064 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx); 3065 return false; 3066 } 3067 // The proxy code has been removed. If it is ever re-added, please 3068 // use shared pointers or return by value to avoid possible memory 3069 // leak (there is no leak here, but in general, no returning pointers 3070 // that must be manually freed please. 3071 Value *proxy = extern_var->CreateProxy(); 3072 stack.push_back(*proxy); 3073 delete proxy; 3074 */ 3075 } 3076 break; 3077 3078 case DW_OP_APPLE_scalar_cast: 3079 if (stack.empty()) 3080 { 3081 if (error_ptr) 3082 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast."); 3083 return false; 3084 } 3085 else 3086 { 3087 // Simple scalar cast 3088 if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset))) 3089 { 3090 if (error_ptr) 3091 error_ptr->SetErrorString("Cast failed."); 3092 return false; 3093 } 3094 } 3095 break; 3096 3097 3098 case DW_OP_APPLE_clang_cast: 3099 if (stack.empty()) 3100 { 3101 if (error_ptr) 3102 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast."); 3103 return false; 3104 } 3105 else 3106 { 3107 void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*)); 3108 stack.back().SetContext (Value::eContextTypeClangType, clang_type); 3109 } 3110 break; 3111 //---------------------------------------------------------------------- 3112 // OPCODE: DW_OP_APPLE_constf 3113 // OPERANDS: 1 byte float length, followed by that many bytes containing 3114 // the constant float data. 3115 // DESCRIPTION: Push a float value onto the expression stack. 3116 //---------------------------------------------------------------------- 3117 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 3118 { 3119 uint8_t float_length = opcodes.GetU8(&offset); 3120 if (sizeof(float) == float_length) 3121 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset); 3122 else if (sizeof(double) == float_length) 3123 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset); 3124 else if (sizeof(long double) == float_length) 3125 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset); 3126 else 3127 { 3128 StreamString new_value; 3129 opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 3130 3131 if (error_ptr) 3132 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData()); 3133 return false; 3134 } 3135 tmp.SetValueType(Value::eValueTypeScalar); 3136 tmp.ClearContext(); 3137 stack.push_back(tmp); 3138 } 3139 break; 3140 //---------------------------------------------------------------------- 3141 // OPCODE: DW_OP_APPLE_clear 3142 // OPERANDS: none 3143 // DESCRIPTION: Clears the expression stack. 3144 //---------------------------------------------------------------------- 3145 case DW_OP_APPLE_clear: 3146 stack.clear(); 3147 break; 3148 3149 //---------------------------------------------------------------------- 3150 // OPCODE: DW_OP_APPLE_error 3151 // OPERANDS: none 3152 // DESCRIPTION: Pops a value off of the stack and pushed its value. 3153 // The top item on the stack must be a variable, expression variable. 3154 //---------------------------------------------------------------------- 3155 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 3156 if (error_ptr) 3157 error_ptr->SetErrorString ("Generic error."); 3158 return false; 3159 #endif // #if 0 3160 3161 } 3162 } 3163 3164 if (stack.empty()) 3165 { 3166 if (error_ptr) 3167 error_ptr->SetErrorString ("Stack empty after evaluation."); 3168 return false; 3169 } 3170 else if (log && log->GetVerbose()) 3171 { 3172 size_t count = stack.size(); 3173 log->Printf("Stack after operation has %lu values:", count); 3174 for (size_t i=0; i<count; ++i) 3175 { 3176 StreamString new_value; 3177 new_value.Printf("[%zu]", i); 3178 stack[i].Dump(&new_value); 3179 log->Printf(" %s", new_value.GetData()); 3180 } 3181 } 3182 3183 result = stack.back(); 3184 return true; // Return true on success 3185 } 3186 3187