1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <cinttypes>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/LLDBLog.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/RegisterValue.h"
22 #include "lldb/Utility/Scalar.h"
23 #include "lldb/Utility/StreamString.h"
24 #include "lldb/Utility/VMRange.h"
25 
26 #include "lldb/Host/Host.h"
27 #include "lldb/Utility/Endian.h"
28 
29 #include "lldb/Symbol/Function.h"
30 
31 #include "lldb/Target/ABI.h"
32 #include "lldb/Target/ExecutionContext.h"
33 #include "lldb/Target/Process.h"
34 #include "lldb/Target/RegisterContext.h"
35 #include "lldb/Target/StackFrame.h"
36 #include "lldb/Target/StackID.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
40 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
41 
42 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
43 
44 using namespace lldb;
45 using namespace lldb_private;
46 using namespace lldb_private::dwarf;
47 
48 // DWARFExpression constructor
49 DWARFExpression::DWARFExpression() : m_data() {}
50 
51 DWARFExpression::DWARFExpression(const DataExtractor &data) : m_data(data) {}
52 
53 // Destructor
54 DWARFExpression::~DWARFExpression() = default;
55 
56 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
57 
58 void DWARFExpression::UpdateValue(uint64_t const_value,
59                                   lldb::offset_t const_value_byte_size,
60                                   uint8_t addr_byte_size) {
61   if (!const_value_byte_size)
62     return;
63 
64   m_data.SetData(
65       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
66   m_data.SetByteOrder(endian::InlHostByteOrder());
67   m_data.SetAddressByteSize(addr_byte_size);
68 }
69 
70 void DWARFExpression::DumpLocation(Stream *s, lldb::DescriptionLevel level,
71                                    ABI *abi) const {
72   llvm::DWARFExpression(m_data.GetAsLLVM(), m_data.GetAddressByteSize())
73       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
74              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
75 }
76 
77 RegisterKind DWARFExpression::GetRegisterKind() const { return m_reg_kind; }
78 
79 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
80   m_reg_kind = reg_kind;
81 }
82 
83 
84 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
85                                       lldb::RegisterKind reg_kind,
86                                       uint32_t reg_num, Status *error_ptr,
87                                       Value &value) {
88   if (reg_ctx == nullptr) {
89     if (error_ptr)
90       error_ptr->SetErrorString("No register context in frame.\n");
91   } else {
92     uint32_t native_reg =
93         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
94     if (native_reg == LLDB_INVALID_REGNUM) {
95       if (error_ptr)
96         error_ptr->SetErrorStringWithFormat("Unable to convert register "
97                                             "kind=%u reg_num=%u to a native "
98                                             "register number.\n",
99                                             reg_kind, reg_num);
100     } else {
101       const RegisterInfo *reg_info =
102           reg_ctx->GetRegisterInfoAtIndex(native_reg);
103       RegisterValue reg_value;
104       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
105         if (reg_value.GetScalarValue(value.GetScalar())) {
106           value.SetValueType(Value::ValueType::Scalar);
107           value.SetContext(Value::ContextType::RegisterInfo,
108                            const_cast<RegisterInfo *>(reg_info));
109           if (error_ptr)
110             error_ptr->Clear();
111           return true;
112         } else {
113           // If we get this error, then we need to implement a value buffer in
114           // the dwarf expression evaluation function...
115           if (error_ptr)
116             error_ptr->SetErrorStringWithFormat(
117                 "register %s can't be converted to a scalar value",
118                 reg_info->name);
119         }
120       } else {
121         if (error_ptr)
122           error_ptr->SetErrorStringWithFormat("register %s is not available",
123                                               reg_info->name);
124       }
125     }
126   }
127   return false;
128 }
129 
130 /// Return the length in bytes of the set of operands for \p op. No guarantees
131 /// are made on the state of \p data after this call.
132 static offset_t GetOpcodeDataSize(const DataExtractor &data,
133                                   const lldb::offset_t data_offset,
134                                   const uint8_t op) {
135   lldb::offset_t offset = data_offset;
136   switch (op) {
137   case DW_OP_addr:
138   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
139     return data.GetAddressByteSize();
140 
141   // Opcodes with no arguments
142   case DW_OP_deref:                // 0x06
143   case DW_OP_dup:                  // 0x12
144   case DW_OP_drop:                 // 0x13
145   case DW_OP_over:                 // 0x14
146   case DW_OP_swap:                 // 0x16
147   case DW_OP_rot:                  // 0x17
148   case DW_OP_xderef:               // 0x18
149   case DW_OP_abs:                  // 0x19
150   case DW_OP_and:                  // 0x1a
151   case DW_OP_div:                  // 0x1b
152   case DW_OP_minus:                // 0x1c
153   case DW_OP_mod:                  // 0x1d
154   case DW_OP_mul:                  // 0x1e
155   case DW_OP_neg:                  // 0x1f
156   case DW_OP_not:                  // 0x20
157   case DW_OP_or:                   // 0x21
158   case DW_OP_plus:                 // 0x22
159   case DW_OP_shl:                  // 0x24
160   case DW_OP_shr:                  // 0x25
161   case DW_OP_shra:                 // 0x26
162   case DW_OP_xor:                  // 0x27
163   case DW_OP_eq:                   // 0x29
164   case DW_OP_ge:                   // 0x2a
165   case DW_OP_gt:                   // 0x2b
166   case DW_OP_le:                   // 0x2c
167   case DW_OP_lt:                   // 0x2d
168   case DW_OP_ne:                   // 0x2e
169   case DW_OP_lit0:                 // 0x30
170   case DW_OP_lit1:                 // 0x31
171   case DW_OP_lit2:                 // 0x32
172   case DW_OP_lit3:                 // 0x33
173   case DW_OP_lit4:                 // 0x34
174   case DW_OP_lit5:                 // 0x35
175   case DW_OP_lit6:                 // 0x36
176   case DW_OP_lit7:                 // 0x37
177   case DW_OP_lit8:                 // 0x38
178   case DW_OP_lit9:                 // 0x39
179   case DW_OP_lit10:                // 0x3A
180   case DW_OP_lit11:                // 0x3B
181   case DW_OP_lit12:                // 0x3C
182   case DW_OP_lit13:                // 0x3D
183   case DW_OP_lit14:                // 0x3E
184   case DW_OP_lit15:                // 0x3F
185   case DW_OP_lit16:                // 0x40
186   case DW_OP_lit17:                // 0x41
187   case DW_OP_lit18:                // 0x42
188   case DW_OP_lit19:                // 0x43
189   case DW_OP_lit20:                // 0x44
190   case DW_OP_lit21:                // 0x45
191   case DW_OP_lit22:                // 0x46
192   case DW_OP_lit23:                // 0x47
193   case DW_OP_lit24:                // 0x48
194   case DW_OP_lit25:                // 0x49
195   case DW_OP_lit26:                // 0x4A
196   case DW_OP_lit27:                // 0x4B
197   case DW_OP_lit28:                // 0x4C
198   case DW_OP_lit29:                // 0x4D
199   case DW_OP_lit30:                // 0x4E
200   case DW_OP_lit31:                // 0x4f
201   case DW_OP_reg0:                 // 0x50
202   case DW_OP_reg1:                 // 0x51
203   case DW_OP_reg2:                 // 0x52
204   case DW_OP_reg3:                 // 0x53
205   case DW_OP_reg4:                 // 0x54
206   case DW_OP_reg5:                 // 0x55
207   case DW_OP_reg6:                 // 0x56
208   case DW_OP_reg7:                 // 0x57
209   case DW_OP_reg8:                 // 0x58
210   case DW_OP_reg9:                 // 0x59
211   case DW_OP_reg10:                // 0x5A
212   case DW_OP_reg11:                // 0x5B
213   case DW_OP_reg12:                // 0x5C
214   case DW_OP_reg13:                // 0x5D
215   case DW_OP_reg14:                // 0x5E
216   case DW_OP_reg15:                // 0x5F
217   case DW_OP_reg16:                // 0x60
218   case DW_OP_reg17:                // 0x61
219   case DW_OP_reg18:                // 0x62
220   case DW_OP_reg19:                // 0x63
221   case DW_OP_reg20:                // 0x64
222   case DW_OP_reg21:                // 0x65
223   case DW_OP_reg22:                // 0x66
224   case DW_OP_reg23:                // 0x67
225   case DW_OP_reg24:                // 0x68
226   case DW_OP_reg25:                // 0x69
227   case DW_OP_reg26:                // 0x6A
228   case DW_OP_reg27:                // 0x6B
229   case DW_OP_reg28:                // 0x6C
230   case DW_OP_reg29:                // 0x6D
231   case DW_OP_reg30:                // 0x6E
232   case DW_OP_reg31:                // 0x6F
233   case DW_OP_nop:                  // 0x96
234   case DW_OP_push_object_address:  // 0x97 DWARF3
235   case DW_OP_form_tls_address:     // 0x9b DWARF3
236   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
237   case DW_OP_stack_value:          // 0x9f DWARF4
238   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
239     return 0;
240 
241   // Opcodes with a single 1 byte arguments
242   case DW_OP_const1u:     // 0x08 1 1-byte constant
243   case DW_OP_const1s:     // 0x09 1 1-byte constant
244   case DW_OP_pick:        // 0x15 1 1-byte stack index
245   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
246   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
247     return 1;
248 
249   // Opcodes with a single 2 byte arguments
250   case DW_OP_const2u: // 0x0a 1 2-byte constant
251   case DW_OP_const2s: // 0x0b 1 2-byte constant
252   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
253   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
254   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
255     return 2;
256 
257   // Opcodes with a single 4 byte arguments
258   case DW_OP_const4u: // 0x0c 1 4-byte constant
259   case DW_OP_const4s: // 0x0d 1 4-byte constant
260   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
261     return 4;
262 
263   // Opcodes with a single 8 byte arguments
264   case DW_OP_const8u: // 0x0e 1 8-byte constant
265   case DW_OP_const8s: // 0x0f 1 8-byte constant
266     return 8;
267 
268   // All opcodes that have a single ULEB (signed or unsigned) argument
269   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
270   case DW_OP_constu:          // 0x10 1 ULEB128 constant
271   case DW_OP_consts:          // 0x11 1 SLEB128 constant
272   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
273   case DW_OP_breg0:           // 0x70 1 ULEB128 register
274   case DW_OP_breg1:           // 0x71 1 ULEB128 register
275   case DW_OP_breg2:           // 0x72 1 ULEB128 register
276   case DW_OP_breg3:           // 0x73 1 ULEB128 register
277   case DW_OP_breg4:           // 0x74 1 ULEB128 register
278   case DW_OP_breg5:           // 0x75 1 ULEB128 register
279   case DW_OP_breg6:           // 0x76 1 ULEB128 register
280   case DW_OP_breg7:           // 0x77 1 ULEB128 register
281   case DW_OP_breg8:           // 0x78 1 ULEB128 register
282   case DW_OP_breg9:           // 0x79 1 ULEB128 register
283   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
284   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
285   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
286   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
287   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
288   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
289   case DW_OP_breg16:          // 0x80 1 ULEB128 register
290   case DW_OP_breg17:          // 0x81 1 ULEB128 register
291   case DW_OP_breg18:          // 0x82 1 ULEB128 register
292   case DW_OP_breg19:          // 0x83 1 ULEB128 register
293   case DW_OP_breg20:          // 0x84 1 ULEB128 register
294   case DW_OP_breg21:          // 0x85 1 ULEB128 register
295   case DW_OP_breg22:          // 0x86 1 ULEB128 register
296   case DW_OP_breg23:          // 0x87 1 ULEB128 register
297   case DW_OP_breg24:          // 0x88 1 ULEB128 register
298   case DW_OP_breg25:          // 0x89 1 ULEB128 register
299   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
300   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
301   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
302   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
303   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
304   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
305   case DW_OP_regx:            // 0x90 1 ULEB128 register
306   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
307   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
308   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
309   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
310     data.Skip_LEB128(&offset);
311     return offset - data_offset;
312 
313   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
314   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
315   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
316     data.Skip_LEB128(&offset);
317     data.Skip_LEB128(&offset);
318     return offset - data_offset;
319 
320   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
321                              // (DWARF4)
322   {
323     uint64_t block_len = data.Skip_LEB128(&offset);
324     offset += block_len;
325     return offset - data_offset;
326   }
327 
328   case DW_OP_GNU_entry_value:
329   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
330   {
331     uint64_t subexpr_len = data.GetULEB128(&offset);
332     return (offset - data_offset) + subexpr_len;
333   }
334 
335   default:
336     break;
337   }
338   return LLDB_INVALID_OFFSET;
339 }
340 
341 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(const DWARFUnit *dwarf_cu,
342                                                      uint32_t op_addr_idx,
343                                                      bool &error) const {
344   error = false;
345   lldb::offset_t offset = 0;
346   uint32_t curr_op_addr_idx = 0;
347   while (m_data.ValidOffset(offset)) {
348     const uint8_t op = m_data.GetU8(&offset);
349 
350     if (op == DW_OP_addr) {
351       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
352       if (curr_op_addr_idx == op_addr_idx)
353         return op_file_addr;
354       ++curr_op_addr_idx;
355     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
356       uint64_t index = m_data.GetULEB128(&offset);
357       if (curr_op_addr_idx == op_addr_idx) {
358         if (!dwarf_cu) {
359           error = true;
360           break;
361         }
362 
363         return dwarf_cu->ReadAddressFromDebugAddrSection(index);
364       }
365       ++curr_op_addr_idx;
366     } else {
367       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
368       if (op_arg_size == LLDB_INVALID_OFFSET) {
369         error = true;
370         break;
371       }
372       offset += op_arg_size;
373     }
374   }
375   return LLDB_INVALID_ADDRESS;
376 }
377 
378 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
379   lldb::offset_t offset = 0;
380   while (m_data.ValidOffset(offset)) {
381     const uint8_t op = m_data.GetU8(&offset);
382 
383     if (op == DW_OP_addr) {
384       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
385       // We have to make a copy of the data as we don't know if this data is
386       // from a read only memory mapped buffer, so we duplicate all of the data
387       // first, then modify it, and if all goes well, we then replace the data
388       // for this expression
389 
390       // Make en encoder that contains a copy of the location expression data
391       // so we can write the address into the buffer using the correct byte
392       // order.
393       DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
394                           m_data.GetByteOrder(), addr_byte_size);
395 
396       // Replace the address in the new buffer
397       if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
398         return false;
399 
400       // All went well, so now we can reset the data using a shared pointer to
401       // the heap data so "m_data" will now correctly manage the heap data.
402       m_data.SetData(encoder.GetDataBuffer());
403       return true;
404     } else {
405       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
406       if (op_arg_size == LLDB_INVALID_OFFSET)
407         break;
408       offset += op_arg_size;
409     }
410   }
411   return false;
412 }
413 
414 bool DWARFExpression::ContainsThreadLocalStorage() const {
415   lldb::offset_t offset = 0;
416   while (m_data.ValidOffset(offset)) {
417     const uint8_t op = m_data.GetU8(&offset);
418 
419     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
420       return true;
421     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
422     if (op_arg_size == LLDB_INVALID_OFFSET)
423       return false;
424     offset += op_arg_size;
425   }
426   return false;
427 }
428 bool DWARFExpression::LinkThreadLocalStorage(
429     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
430         &link_address_callback) {
431   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
432   // We have to make a copy of the data as we don't know if this data is from a
433   // read only memory mapped buffer, so we duplicate all of the data first,
434   // then modify it, and if all goes well, we then replace the data for this
435   // expression.
436   // Make en encoder that contains a copy of the location expression data so we
437   // can write the address into the buffer using the correct byte order.
438   DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
439                       m_data.GetByteOrder(), addr_byte_size);
440 
441   lldb::offset_t offset = 0;
442   lldb::offset_t const_offset = 0;
443   lldb::addr_t const_value = 0;
444   size_t const_byte_size = 0;
445   while (m_data.ValidOffset(offset)) {
446     const uint8_t op = m_data.GetU8(&offset);
447 
448     bool decoded_data = false;
449     switch (op) {
450     case DW_OP_const4u:
451       // Remember the const offset in case we later have a
452       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
453       const_offset = offset;
454       const_value = m_data.GetU32(&offset);
455       decoded_data = true;
456       const_byte_size = 4;
457       break;
458 
459     case DW_OP_const8u:
460       // Remember the const offset in case we later have a
461       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
462       const_offset = offset;
463       const_value = m_data.GetU64(&offset);
464       decoded_data = true;
465       const_byte_size = 8;
466       break;
467 
468     case DW_OP_form_tls_address:
469     case DW_OP_GNU_push_tls_address:
470       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
471       // by a file address on the stack. We assume that DW_OP_const4u or
472       // DW_OP_const8u is used for these values, and we check that the last
473       // opcode we got before either of these was DW_OP_const4u or
474       // DW_OP_const8u. If so, then we can link the value accodingly. For
475       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
476       // address of a structure that contains a function pointer, the pthread
477       // key and the offset into the data pointed to by the pthread key. So we
478       // must link this address and also set the module of this expression to
479       // the new_module_sp so we can resolve the file address correctly
480       if (const_byte_size > 0) {
481         lldb::addr_t linked_file_addr = link_address_callback(const_value);
482         if (linked_file_addr == LLDB_INVALID_ADDRESS)
483           return false;
484         // Replace the address in the new buffer
485         if (encoder.PutUnsigned(const_offset, const_byte_size,
486                                 linked_file_addr) == UINT32_MAX)
487           return false;
488       }
489       break;
490 
491     default:
492       const_offset = 0;
493       const_value = 0;
494       const_byte_size = 0;
495       break;
496     }
497 
498     if (!decoded_data) {
499       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
500       if (op_arg_size == LLDB_INVALID_OFFSET)
501         return false;
502       else
503         offset += op_arg_size;
504     }
505   }
506 
507   m_data.SetData(encoder.GetDataBuffer());
508   return true;
509 }
510 
511 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
512                                        ExecutionContext *exe_ctx,
513                                        RegisterContext *reg_ctx,
514                                        const DataExtractor &opcodes,
515                                        lldb::offset_t &opcode_offset,
516                                        Status *error_ptr, Log *log) {
517   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
518   // function entry: this variable location is presumed to be optimized out at
519   // the current PC value.  The caller of the function may have call site
520   // information that describes an alternate location for the variable (e.g. a
521   // constant literal, or a spilled stack value) in the parent frame.
522   //
523   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
524   //
525   //     void child(int &sink, int x) {
526   //       ...
527   //       /* "x" gets optimized out. */
528   //
529   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
530   //       ++sink;
531   //     }
532   //
533   //     void parent() {
534   //       int sink;
535   //
536   //       /*
537   //        * The callsite information emitted here is:
538   //        *
539   //        * DW_TAG_call_site
540   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
541   //        *   DW_TAG_call_site_parameter (for "sink")
542   //        *     DW_AT_location   ($reg1)
543   //        *     DW_AT_call_value ($SP - 8)
544   //        *   DW_TAG_call_site_parameter (for "x")
545   //        *     DW_AT_location   ($reg2)
546   //        *     DW_AT_call_value ($literal 123)
547   //        *
548   //        * DW_TAG_call_site
549   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
550   //        *   ...
551   //        */
552   //       child(sink, 123);
553   //       child(sink, 456);
554   //     }
555   //
556   // When the program stops at "++sink" within `child`, the debugger determines
557   // the call site by analyzing the return address. Once the call site is found,
558   // the debugger determines which parameter is referenced by DW_OP_entry_value
559   // and evaluates the corresponding location for that parameter in `parent`.
560 
561   // 1. Find the function which pushed the current frame onto the stack.
562   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
563     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
564     return false;
565   }
566 
567   StackFrame *current_frame = exe_ctx->GetFramePtr();
568   Thread *thread = exe_ctx->GetThreadPtr();
569   if (!current_frame || !thread) {
570     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
571     return false;
572   }
573 
574   Target &target = exe_ctx->GetTargetRef();
575   StackFrameSP parent_frame = nullptr;
576   addr_t return_pc = LLDB_INVALID_ADDRESS;
577   uint32_t current_frame_idx = current_frame->GetFrameIndex();
578   uint32_t num_frames = thread->GetStackFrameCount();
579   for (uint32_t parent_frame_idx = current_frame_idx + 1;
580        parent_frame_idx < num_frames; ++parent_frame_idx) {
581     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
582     // Require a valid sequence of frames.
583     if (!parent_frame)
584       break;
585 
586     // Record the first valid return address, even if this is an inlined frame,
587     // in order to look up the associated call edge in the first non-inlined
588     // parent frame.
589     if (return_pc == LLDB_INVALID_ADDRESS) {
590       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
591       LLDB_LOG(log,
592                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
593                return_pc);
594     }
595 
596     // If we've found an inlined frame, skip it (these have no call site
597     // parameters).
598     if (parent_frame->IsInlined())
599       continue;
600 
601     // We've found the first non-inlined parent frame.
602     break;
603   }
604   if (!parent_frame || !parent_frame->GetRegisterContext()) {
605     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
606     return false;
607   }
608 
609   Function *parent_func =
610       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
611   if (!parent_func) {
612     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
613     return false;
614   }
615 
616   // 2. Find the call edge in the parent function responsible for creating the
617   //    current activation.
618   Function *current_func =
619       current_frame->GetSymbolContext(eSymbolContextFunction).function;
620   if (!current_func) {
621     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
622     return false;
623   }
624 
625   CallEdge *call_edge = nullptr;
626   ModuleList &modlist = target.GetImages();
627   ExecutionContext parent_exe_ctx = *exe_ctx;
628   parent_exe_ctx.SetFrameSP(parent_frame);
629   if (!parent_frame->IsArtificial()) {
630     // If the parent frame is not artificial, the current activation may be
631     // produced by an ambiguous tail call. In this case, refuse to proceed.
632     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
633     if (!call_edge) {
634       LLDB_LOG(log,
635                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
636                "in parent frame {1}",
637                return_pc, parent_func->GetName());
638       return false;
639     }
640     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
641     if (callee_func != current_func) {
642       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
643                     "can't find real parent frame");
644       return false;
645     }
646   } else {
647     // The StackFrameList solver machinery has deduced that an unambiguous tail
648     // call sequence that produced the current activation.  The first edge in
649     // the parent that points to the current function must be valid.
650     for (auto &edge : parent_func->GetTailCallingEdges()) {
651       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
652         call_edge = edge.get();
653         break;
654       }
655     }
656   }
657   if (!call_edge) {
658     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
659                   "to current function");
660     return false;
661   }
662 
663   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
664   //    available call site parameters. If found, evaluate the corresponding
665   //    parameter in the context of the parent frame.
666   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
667   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
668   if (!subexpr_data) {
669     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
670     return false;
671   }
672 
673   const CallSiteParameter *matched_param = nullptr;
674   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
675     DataExtractor param_subexpr_extractor;
676     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
677       continue;
678     lldb::offset_t param_subexpr_offset = 0;
679     const void *param_subexpr_data =
680         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
681     if (!param_subexpr_data ||
682         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
683       continue;
684 
685     // At this point, the DW_OP_entry_value sub-expression and the callee-side
686     // expression in the call site parameter are known to have the same length.
687     // Check whether they are equal.
688     //
689     // Note that an equality check is sufficient: the contents of the
690     // DW_OP_entry_value subexpression are only used to identify the right call
691     // site parameter in the parent, and do not require any special handling.
692     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
693       matched_param = &param;
694       break;
695     }
696   }
697   if (!matched_param) {
698     LLDB_LOG(log,
699              "Evaluate_DW_OP_entry_value: no matching call site param found");
700     return false;
701   }
702 
703   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
704   // subexpresion whenever llvm does.
705   Value result;
706   const DWARFExpressionList &param_expr = matched_param->LocationInCaller;
707   if (!param_expr.Evaluate(&parent_exe_ctx,
708                            parent_frame->GetRegisterContext().get(),
709                            /*initial_value_ptr=*/nullptr,
710                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
711     LLDB_LOG(log,
712              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
713     return false;
714   }
715 
716   stack.push_back(result);
717   return true;
718 }
719 
720 namespace {
721 /// The location description kinds described by the DWARF v5
722 /// specification.  Composite locations are handled out-of-band and
723 /// thus aren't part of the enum.
724 enum LocationDescriptionKind {
725   Empty,
726   Memory,
727   Register,
728   Implicit
729   /* Composite*/
730 };
731 /// Adjust value's ValueType according to the kind of location description.
732 void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
733                                             LocationDescriptionKind kind,
734                                             Value *value = nullptr) {
735   // Note that this function is conflating DWARF expressions with
736   // DWARF location descriptions. Perhaps it would be better to define
737   // a wrapper for DWARFExpresssion::Eval() that deals with DWARF
738   // location descriptions (which consist of one or more DWARF
739   // expressions). But doing this would mean we'd also need factor the
740   // handling of DW_OP_(bit_)piece out of this function.
741   if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
742     const char *log_msg = "DWARF location description kind: %s";
743     switch (kind) {
744     case Empty:
745       LLDB_LOGF(log, log_msg, "Empty");
746       break;
747     case Memory:
748       LLDB_LOGF(log, log_msg, "Memory");
749       if (value->GetValueType() == Value::ValueType::Scalar)
750         value->SetValueType(Value::ValueType::LoadAddress);
751       break;
752     case Register:
753       LLDB_LOGF(log, log_msg, "Register");
754       value->SetValueType(Value::ValueType::Scalar);
755       break;
756     case Implicit:
757       LLDB_LOGF(log, log_msg, "Implicit");
758       if (value->GetValueType() == Value::ValueType::LoadAddress)
759         value->SetValueType(Value::ValueType::Scalar);
760       break;
761     }
762   }
763 }
764 } // namespace
765 
766 /// Helper function to move common code used to resolve a file address and turn
767 /// into a load address.
768 ///
769 /// \param exe_ctx Pointer to the execution context
770 /// \param module_sp shared_ptr contains the module if we have one
771 /// \param error_ptr pointer to Status object if we have one
772 /// \param dw_op_type C-style string used to vary the error output
773 /// \param file_addr the file address we are trying to resolve and turn into a
774 ///                  load address
775 /// \param so_addr out parameter, will be set to load addresss or section offset
776 /// \param check_sectionoffset bool which determines if having a section offset
777 ///                            but not a load address is considerd a success
778 /// \returns llvm::Optional containing the load address if resolving and getting
779 ///          the load address succeed or an empty Optinal otherwise. If
780 ///          check_sectionoffset is true we consider LLDB_INVALID_ADDRESS a
781 ///          success if so_addr.IsSectionOffset() is true.
782 static llvm::Optional<lldb::addr_t>
783 ResolveLoadAddress(ExecutionContext *exe_ctx, lldb::ModuleSP &module_sp,
784                           Status *error_ptr, const char *dw_op_type,
785                           lldb::addr_t file_addr, Address &so_addr,
786                           bool check_sectionoffset = false) {
787   if (!module_sp) {
788     if (error_ptr)
789       error_ptr->SetErrorStringWithFormat(
790           "need module to resolve file address for %s", dw_op_type);
791     return {};
792   }
793 
794   if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
795     if (error_ptr)
796       error_ptr->SetErrorString("failed to resolve file address in module");
797     return {};
798   }
799 
800   addr_t load_addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
801 
802   if (load_addr == LLDB_INVALID_ADDRESS &&
803       (check_sectionoffset && !so_addr.IsSectionOffset())) {
804     if (error_ptr)
805       error_ptr->SetErrorString("failed to resolve load address");
806     return {};
807   }
808 
809   return load_addr;
810 }
811 
812 /// Helper function to move common code used to load sized data from a uint8_t
813 /// buffer.
814 ///
815 /// \param addr_bytes uint8_t buffer containg raw data
816 /// \param size_addr_bytes how large is the underlying raw data
817 /// \param byte_order what is the byter order of the underlyig data
818 /// \param size How much of the underlying data we want to use
819 /// \return The underlying data converted into a Scalar
820 static Scalar DerefSizeExtractDataHelper(uint8_t *addr_bytes,
821                                          size_t size_addr_bytes,
822                                          ByteOrder byte_order, size_t size) {
823   DataExtractor addr_data(addr_bytes, size_addr_bytes, byte_order, size);
824 
825   lldb::offset_t addr_data_offset = 0;
826   if (size <= 8)
827     return addr_data.GetMaxU64(&addr_data_offset, size);
828   else
829     return addr_data.GetAddress(&addr_data_offset);
830 }
831 
832 bool DWARFExpression::Evaluate(
833     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
834     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
835     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
836     const Value *initial_value_ptr, const Value *object_address_ptr,
837     Value &result, Status *error_ptr) {
838 
839   if (opcodes.GetByteSize() == 0) {
840     if (error_ptr)
841       error_ptr->SetErrorString(
842           "no location, value may have been optimized out");
843     return false;
844   }
845   std::vector<Value> stack;
846 
847   Process *process = nullptr;
848   StackFrame *frame = nullptr;
849 
850   if (exe_ctx) {
851     process = exe_ctx->GetProcessPtr();
852     frame = exe_ctx->GetFramePtr();
853   }
854   if (reg_ctx == nullptr && frame)
855     reg_ctx = frame->GetRegisterContext().get();
856 
857   if (initial_value_ptr)
858     stack.push_back(*initial_value_ptr);
859 
860   lldb::offset_t offset = 0;
861   Value tmp;
862   uint32_t reg_num;
863 
864   /// Insertion point for evaluating multi-piece expression.
865   uint64_t op_piece_offset = 0;
866   Value pieces; // Used for DW_OP_piece
867 
868   Log *log = GetLog(LLDBLog::Expressions);
869   // A generic type is "an integral type that has the size of an address and an
870   // unspecified signedness". For now, just use the signedness of the operand.
871   // TODO: Implement a real typed stack, and store the genericness of the value
872   // there.
873   auto to_generic = [&](auto v) {
874     bool is_signed = std::is_signed<decltype(v)>::value;
875     return Scalar(llvm::APSInt(
876         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
877         !is_signed));
878   };
879 
880   // The default kind is a memory location. This is updated by any
881   // operation that changes this, such as DW_OP_stack_value, and reset
882   // by composition operations like DW_OP_piece.
883   LocationDescriptionKind dwarf4_location_description_kind = Memory;
884 
885   while (opcodes.ValidOffset(offset)) {
886     const lldb::offset_t op_offset = offset;
887     const uint8_t op = opcodes.GetU8(&offset);
888 
889     if (log && log->GetVerbose()) {
890       size_t count = stack.size();
891       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
892                 (uint64_t)count);
893       for (size_t i = 0; i < count; ++i) {
894         StreamString new_value;
895         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
896         stack[i].Dump(&new_value);
897         LLDB_LOGF(log, "  %s", new_value.GetData());
898       }
899       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
900                 DW_OP_value_to_name(op));
901     }
902 
903     switch (op) {
904     // The DW_OP_addr operation has a single operand that encodes a machine
905     // address and whose size is the size of an address on the target machine.
906     case DW_OP_addr:
907       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
908       stack.back().SetValueType(Value::ValueType::FileAddress);
909       // Convert the file address to a load address, so subsequent
910       // DWARF operators can operate on it.
911       if (frame)
912         stack.back().ConvertToLoadAddress(module_sp.get(),
913                                           frame->CalculateTarget().get());
914       break;
915 
916     // The DW_OP_addr_sect_offset4 is used for any location expressions in
917     // shared libraries that have a location like:
918     //  DW_OP_addr(0x1000)
919     // If this address resides in a shared library, then this virtual address
920     // won't make sense when it is evaluated in the context of a running
921     // process where shared libraries have been slid. To account for this, this
922     // new address type where we can store the section pointer and a 4 byte
923     // offset.
924     //      case DW_OP_addr_sect_offset4:
925     //          {
926     //              result_type = eResultTypeFileAddress;
927     //              lldb::Section *sect = (lldb::Section
928     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
929     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
930     //
931     //              Address so_addr (sect, sect_offset);
932     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
933     //              if (load_addr != LLDB_INVALID_ADDRESS)
934     //              {
935     //                  // We successfully resolve a file address to a load
936     //                  // address.
937     //                  stack.push_back(load_addr);
938     //                  break;
939     //              }
940     //              else
941     //              {
942     //                  // We were able
943     //                  if (error_ptr)
944     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
945     //                      %s is not currently loaded.\n",
946     //                      sect->GetName().AsCString(),
947     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
948     //                  return false;
949     //              }
950     //          }
951     //          break;
952 
953     // OPCODE: DW_OP_deref
954     // OPERANDS: none
955     // DESCRIPTION: Pops the top stack entry and treats it as an address.
956     // The value retrieved from that address is pushed. The size of the data
957     // retrieved from the dereferenced address is the size of an address on the
958     // target machine.
959     case DW_OP_deref: {
960       if (stack.empty()) {
961         if (error_ptr)
962           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
963         return false;
964       }
965       Value::ValueType value_type = stack.back().GetValueType();
966       switch (value_type) {
967       case Value::ValueType::HostAddress: {
968         void *src = (void *)stack.back().GetScalar().ULongLong();
969         intptr_t ptr;
970         ::memcpy(&ptr, src, sizeof(void *));
971         stack.back().GetScalar() = ptr;
972         stack.back().ClearContext();
973       } break;
974       case Value::ValueType::FileAddress: {
975         auto file_addr = stack.back().GetScalar().ULongLong(
976             LLDB_INVALID_ADDRESS);
977 
978         Address so_addr;
979         auto maybe_load_addr = ResolveLoadAddress(
980             exe_ctx, module_sp, error_ptr, "DW_OP_deref", file_addr, so_addr);
981 
982         if (!maybe_load_addr)
983           return false;
984 
985         stack.back().GetScalar() = *maybe_load_addr;
986         // Fall through to load address promotion code below.
987       } LLVM_FALLTHROUGH;
988       case Value::ValueType::Scalar:
989         // Promote Scalar to LoadAddress and fall through.
990         stack.back().SetValueType(Value::ValueType::LoadAddress);
991         LLVM_FALLTHROUGH;
992       case Value::ValueType::LoadAddress:
993         if (exe_ctx) {
994           if (process) {
995             lldb::addr_t pointer_addr =
996                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
997             Status error;
998             lldb::addr_t pointer_value =
999                 process->ReadPointerFromMemory(pointer_addr, error);
1000             if (pointer_value != LLDB_INVALID_ADDRESS) {
1001               if (ABISP abi_sp = process->GetABI())
1002                 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1003               stack.back().GetScalar() = pointer_value;
1004               stack.back().ClearContext();
1005             } else {
1006               if (error_ptr)
1007                 error_ptr->SetErrorStringWithFormat(
1008                     "Failed to dereference pointer from 0x%" PRIx64
1009                     " for DW_OP_deref: %s\n",
1010                     pointer_addr, error.AsCString());
1011               return false;
1012             }
1013           } else {
1014             if (error_ptr)
1015               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1016             return false;
1017           }
1018         } else {
1019           if (error_ptr)
1020             error_ptr->SetErrorString(
1021                 "NULL execution context for DW_OP_deref.\n");
1022           return false;
1023         }
1024         break;
1025 
1026       case Value::ValueType::Invalid:
1027         if (error_ptr)
1028           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1029         return false;
1030       }
1031 
1032     } break;
1033 
1034     // OPCODE: DW_OP_deref_size
1035     // OPERANDS: 1
1036     //  1 - uint8_t that specifies the size of the data to dereference.
1037     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1038     // stack entry and treats it as an address. The value retrieved from that
1039     // address is pushed. In the DW_OP_deref_size operation, however, the size
1040     // in bytes of the data retrieved from the dereferenced address is
1041     // specified by the single operand. This operand is a 1-byte unsigned
1042     // integral constant whose value may not be larger than the size of an
1043     // address on the target machine. The data retrieved is zero extended to
1044     // the size of an address on the target machine before being pushed on the
1045     // expression stack.
1046     case DW_OP_deref_size: {
1047       if (stack.empty()) {
1048         if (error_ptr)
1049           error_ptr->SetErrorString(
1050               "Expression stack empty for DW_OP_deref_size.");
1051         return false;
1052       }
1053       uint8_t size = opcodes.GetU8(&offset);
1054       Value::ValueType value_type = stack.back().GetValueType();
1055       switch (value_type) {
1056       case Value::ValueType::HostAddress: {
1057         void *src = (void *)stack.back().GetScalar().ULongLong();
1058         intptr_t ptr;
1059         ::memcpy(&ptr, src, sizeof(void *));
1060         // I can't decide whether the size operand should apply to the bytes in
1061         // their
1062         // lldb-host endianness or the target endianness.. I doubt this'll ever
1063         // come up but I'll opt for assuming big endian regardless.
1064         switch (size) {
1065         case 1:
1066           ptr = ptr & 0xff;
1067           break;
1068         case 2:
1069           ptr = ptr & 0xffff;
1070           break;
1071         case 3:
1072           ptr = ptr & 0xffffff;
1073           break;
1074         case 4:
1075           ptr = ptr & 0xffffffff;
1076           break;
1077         // the casts are added to work around the case where intptr_t is a 32
1078         // bit quantity;
1079         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1080         // program.
1081         case 5:
1082           ptr = (intptr_t)ptr & 0xffffffffffULL;
1083           break;
1084         case 6:
1085           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1086           break;
1087         case 7:
1088           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1089           break;
1090         default:
1091           break;
1092         }
1093         stack.back().GetScalar() = ptr;
1094         stack.back().ClearContext();
1095       } break;
1096       case Value::ValueType::FileAddress: {
1097         auto file_addr =
1098             stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1099         Address so_addr;
1100         auto maybe_load_addr =
1101             ResolveLoadAddress(exe_ctx, module_sp, error_ptr,
1102                                       "DW_OP_deref_size", file_addr, so_addr,
1103                                       /*check_sectionoffset=*/true);
1104 
1105         if (!maybe_load_addr)
1106           return false;
1107 
1108         addr_t load_addr = *maybe_load_addr;
1109 
1110         if (load_addr == LLDB_INVALID_ADDRESS && so_addr.IsSectionOffset()) {
1111           uint8_t addr_bytes[8];
1112           Status error;
1113 
1114           if (exe_ctx->GetTargetRef().ReadMemory(
1115                   so_addr, &addr_bytes, size, error,
1116                   /*force_live_memory=*/false) == size) {
1117             ObjectFile *objfile = module_sp->GetObjectFile();
1118 
1119             stack.back().GetScalar() = DerefSizeExtractDataHelper(
1120                 addr_bytes, size, objfile->GetByteOrder(), size);
1121             stack.back().ClearContext();
1122             break;
1123           } else {
1124             if (error_ptr)
1125               error_ptr->SetErrorStringWithFormat(
1126                   "Failed to dereference pointer for for DW_OP_deref_size: "
1127                   "%s\n",
1128                   error.AsCString());
1129             return false;
1130           }
1131         }
1132         stack.back().GetScalar() = load_addr;
1133         // Fall through to load address promotion code below.
1134       }
1135 
1136         LLVM_FALLTHROUGH;
1137       case Value::ValueType::Scalar:
1138       case Value::ValueType::LoadAddress:
1139         if (exe_ctx) {
1140           if (process) {
1141             lldb::addr_t pointer_addr =
1142                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1143             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1144             Status error;
1145             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1146                 size) {
1147 
1148               stack.back().GetScalar() =
1149                   DerefSizeExtractDataHelper(addr_bytes, sizeof(addr_bytes),
1150                                              process->GetByteOrder(), size);
1151               stack.back().ClearContext();
1152             } else {
1153               if (error_ptr)
1154                 error_ptr->SetErrorStringWithFormat(
1155                     "Failed to dereference pointer from 0x%" PRIx64
1156                     " for DW_OP_deref: %s\n",
1157                     pointer_addr, error.AsCString());
1158               return false;
1159             }
1160           } else {
1161             if (error_ptr)
1162               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1163             return false;
1164           }
1165         } else {
1166           if (error_ptr)
1167             error_ptr->SetErrorString(
1168                 "NULL execution context for DW_OP_deref_size.\n");
1169           return false;
1170         }
1171         break;
1172 
1173       case Value::ValueType::Invalid:
1174         if (error_ptr)
1175           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1176         return false;
1177       }
1178 
1179     } break;
1180 
1181     // OPCODE: DW_OP_xderef_size
1182     // OPERANDS: 1
1183     //  1 - uint8_t that specifies the size of the data to dereference.
1184     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1185     // the top of the stack is treated as an address. The second stack entry is
1186     // treated as an "address space identifier" for those architectures that
1187     // support multiple address spaces. The top two stack elements are popped,
1188     // a data item is retrieved through an implementation-defined address
1189     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1190     // operation, however, the size in bytes of the data retrieved from the
1191     // dereferenced address is specified by the single operand. This operand is
1192     // a 1-byte unsigned integral constant whose value may not be larger than
1193     // the size of an address on the target machine. The data retrieved is zero
1194     // extended to the size of an address on the target machine before being
1195     // pushed on the expression stack.
1196     case DW_OP_xderef_size:
1197       if (error_ptr)
1198         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1199       return false;
1200     // OPCODE: DW_OP_xderef
1201     // OPERANDS: none
1202     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1203     // the top of the stack is treated as an address. The second stack entry is
1204     // treated as an "address space identifier" for those architectures that
1205     // support multiple address spaces. The top two stack elements are popped,
1206     // a data item is retrieved through an implementation-defined address
1207     // calculation and pushed as the new stack top. The size of the data
1208     // retrieved from the dereferenced address is the size of an address on the
1209     // target machine.
1210     case DW_OP_xderef:
1211       if (error_ptr)
1212         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1213       return false;
1214 
1215     // All DW_OP_constXXX opcodes have a single operand as noted below:
1216     //
1217     // Opcode           Operand 1
1218     // DW_OP_const1u    1-byte unsigned integer constant
1219     // DW_OP_const1s    1-byte signed integer constant
1220     // DW_OP_const2u    2-byte unsigned integer constant
1221     // DW_OP_const2s    2-byte signed integer constant
1222     // DW_OP_const4u    4-byte unsigned integer constant
1223     // DW_OP_const4s    4-byte signed integer constant
1224     // DW_OP_const8u    8-byte unsigned integer constant
1225     // DW_OP_const8s    8-byte signed integer constant
1226     // DW_OP_constu     unsigned LEB128 integer constant
1227     // DW_OP_consts     signed LEB128 integer constant
1228     case DW_OP_const1u:
1229       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1230       break;
1231     case DW_OP_const1s:
1232       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1233       break;
1234     case DW_OP_const2u:
1235       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1236       break;
1237     case DW_OP_const2s:
1238       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1239       break;
1240     case DW_OP_const4u:
1241       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1242       break;
1243     case DW_OP_const4s:
1244       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1245       break;
1246     case DW_OP_const8u:
1247       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1248       break;
1249     case DW_OP_const8s:
1250       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1251       break;
1252     // These should also use to_generic, but we can't do that due to a
1253     // producer-side bug in llvm. See llvm.org/pr48087.
1254     case DW_OP_constu:
1255       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1256       break;
1257     case DW_OP_consts:
1258       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1259       break;
1260 
1261     // OPCODE: DW_OP_dup
1262     // OPERANDS: none
1263     // DESCRIPTION: duplicates the value at the top of the stack
1264     case DW_OP_dup:
1265       if (stack.empty()) {
1266         if (error_ptr)
1267           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1268         return false;
1269       } else
1270         stack.push_back(stack.back());
1271       break;
1272 
1273     // OPCODE: DW_OP_drop
1274     // OPERANDS: none
1275     // DESCRIPTION: pops the value at the top of the stack
1276     case DW_OP_drop:
1277       if (stack.empty()) {
1278         if (error_ptr)
1279           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1280         return false;
1281       } else
1282         stack.pop_back();
1283       break;
1284 
1285     // OPCODE: DW_OP_over
1286     // OPERANDS: none
1287     // DESCRIPTION: Duplicates the entry currently second in the stack at
1288     // the top of the stack.
1289     case DW_OP_over:
1290       if (stack.size() < 2) {
1291         if (error_ptr)
1292           error_ptr->SetErrorString(
1293               "Expression stack needs at least 2 items for DW_OP_over.");
1294         return false;
1295       } else
1296         stack.push_back(stack[stack.size() - 2]);
1297       break;
1298 
1299     // OPCODE: DW_OP_pick
1300     // OPERANDS: uint8_t index into the current stack
1301     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1302     // inclusive) is pushed on the stack
1303     case DW_OP_pick: {
1304       uint8_t pick_idx = opcodes.GetU8(&offset);
1305       if (pick_idx < stack.size())
1306         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1307       else {
1308         if (error_ptr)
1309           error_ptr->SetErrorStringWithFormat(
1310               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1311         return false;
1312       }
1313     } break;
1314 
1315     // OPCODE: DW_OP_swap
1316     // OPERANDS: none
1317     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1318     // of the stack becomes the second stack entry, and the second entry
1319     // becomes the top of the stack
1320     case DW_OP_swap:
1321       if (stack.size() < 2) {
1322         if (error_ptr)
1323           error_ptr->SetErrorString(
1324               "Expression stack needs at least 2 items for DW_OP_swap.");
1325         return false;
1326       } else {
1327         tmp = stack.back();
1328         stack.back() = stack[stack.size() - 2];
1329         stack[stack.size() - 2] = tmp;
1330       }
1331       break;
1332 
1333     // OPCODE: DW_OP_rot
1334     // OPERANDS: none
1335     // DESCRIPTION: Rotates the first three stack entries. The entry at
1336     // the top of the stack becomes the third stack entry, the second entry
1337     // becomes the top of the stack, and the third entry becomes the second
1338     // entry.
1339     case DW_OP_rot:
1340       if (stack.size() < 3) {
1341         if (error_ptr)
1342           error_ptr->SetErrorString(
1343               "Expression stack needs at least 3 items for DW_OP_rot.");
1344         return false;
1345       } else {
1346         size_t last_idx = stack.size() - 1;
1347         Value old_top = stack[last_idx];
1348         stack[last_idx] = stack[last_idx - 1];
1349         stack[last_idx - 1] = stack[last_idx - 2];
1350         stack[last_idx - 2] = old_top;
1351       }
1352       break;
1353 
1354     // OPCODE: DW_OP_abs
1355     // OPERANDS: none
1356     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1357     // value and pushes its absolute value. If the absolute value can not be
1358     // represented, the result is undefined.
1359     case DW_OP_abs:
1360       if (stack.empty()) {
1361         if (error_ptr)
1362           error_ptr->SetErrorString(
1363               "Expression stack needs at least 1 item for DW_OP_abs.");
1364         return false;
1365       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1366         if (error_ptr)
1367           error_ptr->SetErrorString(
1368               "Failed to take the absolute value of the first stack item.");
1369         return false;
1370       }
1371       break;
1372 
1373     // OPCODE: DW_OP_and
1374     // OPERANDS: none
1375     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1376     // operation on the two, and pushes the result.
1377     case DW_OP_and:
1378       if (stack.size() < 2) {
1379         if (error_ptr)
1380           error_ptr->SetErrorString(
1381               "Expression stack needs at least 2 items for DW_OP_and.");
1382         return false;
1383       } else {
1384         tmp = stack.back();
1385         stack.pop_back();
1386         stack.back().ResolveValue(exe_ctx) =
1387             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1388       }
1389       break;
1390 
1391     // OPCODE: DW_OP_div
1392     // OPERANDS: none
1393     // DESCRIPTION: pops the top two stack values, divides the former second
1394     // entry by the former top of the stack using signed division, and pushes
1395     // the result.
1396     case DW_OP_div:
1397       if (stack.size() < 2) {
1398         if (error_ptr)
1399           error_ptr->SetErrorString(
1400               "Expression stack needs at least 2 items for DW_OP_div.");
1401         return false;
1402       } else {
1403         tmp = stack.back();
1404         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1405           if (error_ptr)
1406             error_ptr->SetErrorString("Divide by zero.");
1407           return false;
1408         } else {
1409           stack.pop_back();
1410           stack.back() =
1411               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1412           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1413             if (error_ptr)
1414               error_ptr->SetErrorString("Divide failed.");
1415             return false;
1416           }
1417         }
1418       }
1419       break;
1420 
1421     // OPCODE: DW_OP_minus
1422     // OPERANDS: none
1423     // DESCRIPTION: pops the top two stack values, subtracts the former top
1424     // of the stack from the former second entry, and pushes the result.
1425     case DW_OP_minus:
1426       if (stack.size() < 2) {
1427         if (error_ptr)
1428           error_ptr->SetErrorString(
1429               "Expression stack needs at least 2 items for DW_OP_minus.");
1430         return false;
1431       } else {
1432         tmp = stack.back();
1433         stack.pop_back();
1434         stack.back().ResolveValue(exe_ctx) =
1435             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1436       }
1437       break;
1438 
1439     // OPCODE: DW_OP_mod
1440     // OPERANDS: none
1441     // DESCRIPTION: pops the top two stack values and pushes the result of
1442     // the calculation: former second stack entry modulo the former top of the
1443     // stack.
1444     case DW_OP_mod:
1445       if (stack.size() < 2) {
1446         if (error_ptr)
1447           error_ptr->SetErrorString(
1448               "Expression stack needs at least 2 items for DW_OP_mod.");
1449         return false;
1450       } else {
1451         tmp = stack.back();
1452         stack.pop_back();
1453         stack.back().ResolveValue(exe_ctx) =
1454             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1455       }
1456       break;
1457 
1458     // OPCODE: DW_OP_mul
1459     // OPERANDS: none
1460     // DESCRIPTION: pops the top two stack entries, multiplies them
1461     // together, and pushes the result.
1462     case DW_OP_mul:
1463       if (stack.size() < 2) {
1464         if (error_ptr)
1465           error_ptr->SetErrorString(
1466               "Expression stack needs at least 2 items for DW_OP_mul.");
1467         return false;
1468       } else {
1469         tmp = stack.back();
1470         stack.pop_back();
1471         stack.back().ResolveValue(exe_ctx) =
1472             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1473       }
1474       break;
1475 
1476     // OPCODE: DW_OP_neg
1477     // OPERANDS: none
1478     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1479     case DW_OP_neg:
1480       if (stack.empty()) {
1481         if (error_ptr)
1482           error_ptr->SetErrorString(
1483               "Expression stack needs at least 1 item for DW_OP_neg.");
1484         return false;
1485       } else {
1486         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1487           if (error_ptr)
1488             error_ptr->SetErrorString("Unary negate failed.");
1489           return false;
1490         }
1491       }
1492       break;
1493 
1494     // OPCODE: DW_OP_not
1495     // OPERANDS: none
1496     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1497     // complement
1498     case DW_OP_not:
1499       if (stack.empty()) {
1500         if (error_ptr)
1501           error_ptr->SetErrorString(
1502               "Expression stack needs at least 1 item for DW_OP_not.");
1503         return false;
1504       } else {
1505         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1506           if (error_ptr)
1507             error_ptr->SetErrorString("Logical NOT failed.");
1508           return false;
1509         }
1510       }
1511       break;
1512 
1513     // OPCODE: DW_OP_or
1514     // OPERANDS: none
1515     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1516     // operation on the two, and pushes the result.
1517     case DW_OP_or:
1518       if (stack.size() < 2) {
1519         if (error_ptr)
1520           error_ptr->SetErrorString(
1521               "Expression stack needs at least 2 items for DW_OP_or.");
1522         return false;
1523       } else {
1524         tmp = stack.back();
1525         stack.pop_back();
1526         stack.back().ResolveValue(exe_ctx) =
1527             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1528       }
1529       break;
1530 
1531     // OPCODE: DW_OP_plus
1532     // OPERANDS: none
1533     // DESCRIPTION: pops the top two stack entries, adds them together, and
1534     // pushes the result.
1535     case DW_OP_plus:
1536       if (stack.size() < 2) {
1537         if (error_ptr)
1538           error_ptr->SetErrorString(
1539               "Expression stack needs at least 2 items for DW_OP_plus.");
1540         return false;
1541       } else {
1542         tmp = stack.back();
1543         stack.pop_back();
1544         stack.back().GetScalar() += tmp.GetScalar();
1545       }
1546       break;
1547 
1548     // OPCODE: DW_OP_plus_uconst
1549     // OPERANDS: none
1550     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1551     // constant operand and pushes the result.
1552     case DW_OP_plus_uconst:
1553       if (stack.empty()) {
1554         if (error_ptr)
1555           error_ptr->SetErrorString(
1556               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1557         return false;
1558       } else {
1559         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1560         // Implicit conversion from a UINT to a Scalar...
1561         stack.back().GetScalar() += uconst_value;
1562         if (!stack.back().GetScalar().IsValid()) {
1563           if (error_ptr)
1564             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1565           return false;
1566         }
1567       }
1568       break;
1569 
1570     // OPCODE: DW_OP_shl
1571     // OPERANDS: none
1572     // DESCRIPTION:  pops the top two stack entries, shifts the former
1573     // second entry left by the number of bits specified by the former top of
1574     // the stack, and pushes the result.
1575     case DW_OP_shl:
1576       if (stack.size() < 2) {
1577         if (error_ptr)
1578           error_ptr->SetErrorString(
1579               "Expression stack needs at least 2 items for DW_OP_shl.");
1580         return false;
1581       } else {
1582         tmp = stack.back();
1583         stack.pop_back();
1584         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1585       }
1586       break;
1587 
1588     // OPCODE: DW_OP_shr
1589     // OPERANDS: none
1590     // DESCRIPTION: pops the top two stack entries, shifts the former second
1591     // entry right logically (filling with zero bits) by the number of bits
1592     // specified by the former top of the stack, and pushes the result.
1593     case DW_OP_shr:
1594       if (stack.size() < 2) {
1595         if (error_ptr)
1596           error_ptr->SetErrorString(
1597               "Expression stack needs at least 2 items for DW_OP_shr.");
1598         return false;
1599       } else {
1600         tmp = stack.back();
1601         stack.pop_back();
1602         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1603                 tmp.ResolveValue(exe_ctx))) {
1604           if (error_ptr)
1605             error_ptr->SetErrorString("DW_OP_shr failed.");
1606           return false;
1607         }
1608       }
1609       break;
1610 
1611     // OPCODE: DW_OP_shra
1612     // OPERANDS: none
1613     // DESCRIPTION: pops the top two stack entries, shifts the former second
1614     // entry right arithmetically (divide the magnitude by 2, keep the same
1615     // sign for the result) by the number of bits specified by the former top
1616     // of the stack, and pushes the result.
1617     case DW_OP_shra:
1618       if (stack.size() < 2) {
1619         if (error_ptr)
1620           error_ptr->SetErrorString(
1621               "Expression stack needs at least 2 items for DW_OP_shra.");
1622         return false;
1623       } else {
1624         tmp = stack.back();
1625         stack.pop_back();
1626         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1627       }
1628       break;
1629 
1630     // OPCODE: DW_OP_xor
1631     // OPERANDS: none
1632     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1633     // exclusive-or operation on the two, and pushes the result.
1634     case DW_OP_xor:
1635       if (stack.size() < 2) {
1636         if (error_ptr)
1637           error_ptr->SetErrorString(
1638               "Expression stack needs at least 2 items for DW_OP_xor.");
1639         return false;
1640       } else {
1641         tmp = stack.back();
1642         stack.pop_back();
1643         stack.back().ResolveValue(exe_ctx) =
1644             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1645       }
1646       break;
1647 
1648     // OPCODE: DW_OP_skip
1649     // OPERANDS: int16_t
1650     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1651     // signed integer constant. The 2-byte constant is the number of bytes of
1652     // the DWARF expression to skip forward or backward from the current
1653     // operation, beginning after the 2-byte constant.
1654     case DW_OP_skip: {
1655       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1656       lldb::offset_t new_offset = offset + skip_offset;
1657       if (opcodes.ValidOffset(new_offset))
1658         offset = new_offset;
1659       else {
1660         if (error_ptr)
1661           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1662         return false;
1663       }
1664     } break;
1665 
1666     // OPCODE: DW_OP_bra
1667     // OPERANDS: int16_t
1668     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1669     // signed integer constant. This operation pops the top of stack. If the
1670     // value popped is not the constant 0, the 2-byte constant operand is the
1671     // number of bytes of the DWARF expression to skip forward or backward from
1672     // the current operation, beginning after the 2-byte constant.
1673     case DW_OP_bra:
1674       if (stack.empty()) {
1675         if (error_ptr)
1676           error_ptr->SetErrorString(
1677               "Expression stack needs at least 1 item for DW_OP_bra.");
1678         return false;
1679       } else {
1680         tmp = stack.back();
1681         stack.pop_back();
1682         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1683         Scalar zero(0);
1684         if (tmp.ResolveValue(exe_ctx) != zero) {
1685           lldb::offset_t new_offset = offset + bra_offset;
1686           if (opcodes.ValidOffset(new_offset))
1687             offset = new_offset;
1688           else {
1689             if (error_ptr)
1690               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1691             return false;
1692           }
1693         }
1694       }
1695       break;
1696 
1697     // OPCODE: DW_OP_eq
1698     // OPERANDS: none
1699     // DESCRIPTION: pops the top two stack values, compares using the
1700     // equals (==) operator.
1701     // STACK RESULT: push the constant value 1 onto the stack if the result
1702     // of the operation is true or the constant value 0 if the result of the
1703     // operation is false.
1704     case DW_OP_eq:
1705       if (stack.size() < 2) {
1706         if (error_ptr)
1707           error_ptr->SetErrorString(
1708               "Expression stack needs at least 2 items for DW_OP_eq.");
1709         return false;
1710       } else {
1711         tmp = stack.back();
1712         stack.pop_back();
1713         stack.back().ResolveValue(exe_ctx) =
1714             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1715       }
1716       break;
1717 
1718     // OPCODE: DW_OP_ge
1719     // OPERANDS: none
1720     // DESCRIPTION: pops the top two stack values, compares using the
1721     // greater than or equal to (>=) operator.
1722     // STACK RESULT: push the constant value 1 onto the stack if the result
1723     // of the operation is true or the constant value 0 if the result of the
1724     // operation is false.
1725     case DW_OP_ge:
1726       if (stack.size() < 2) {
1727         if (error_ptr)
1728           error_ptr->SetErrorString(
1729               "Expression stack needs at least 2 items for DW_OP_ge.");
1730         return false;
1731       } else {
1732         tmp = stack.back();
1733         stack.pop_back();
1734         stack.back().ResolveValue(exe_ctx) =
1735             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1736       }
1737       break;
1738 
1739     // OPCODE: DW_OP_gt
1740     // OPERANDS: none
1741     // DESCRIPTION: pops the top two stack values, compares using the
1742     // greater than (>) operator.
1743     // STACK RESULT: push the constant value 1 onto the stack if the result
1744     // of the operation is true or the constant value 0 if the result of the
1745     // operation is false.
1746     case DW_OP_gt:
1747       if (stack.size() < 2) {
1748         if (error_ptr)
1749           error_ptr->SetErrorString(
1750               "Expression stack needs at least 2 items for DW_OP_gt.");
1751         return false;
1752       } else {
1753         tmp = stack.back();
1754         stack.pop_back();
1755         stack.back().ResolveValue(exe_ctx) =
1756             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1757       }
1758       break;
1759 
1760     // OPCODE: DW_OP_le
1761     // OPERANDS: none
1762     // DESCRIPTION: pops the top two stack values, compares using the
1763     // less than or equal to (<=) operator.
1764     // STACK RESULT: push the constant value 1 onto the stack if the result
1765     // of the operation is true or the constant value 0 if the result of the
1766     // operation is false.
1767     case DW_OP_le:
1768       if (stack.size() < 2) {
1769         if (error_ptr)
1770           error_ptr->SetErrorString(
1771               "Expression stack needs at least 2 items for DW_OP_le.");
1772         return false;
1773       } else {
1774         tmp = stack.back();
1775         stack.pop_back();
1776         stack.back().ResolveValue(exe_ctx) =
1777             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1778       }
1779       break;
1780 
1781     // OPCODE: DW_OP_lt
1782     // OPERANDS: none
1783     // DESCRIPTION: pops the top two stack values, compares using the
1784     // less than (<) operator.
1785     // STACK RESULT: push the constant value 1 onto the stack if the result
1786     // of the operation is true or the constant value 0 if the result of the
1787     // operation is false.
1788     case DW_OP_lt:
1789       if (stack.size() < 2) {
1790         if (error_ptr)
1791           error_ptr->SetErrorString(
1792               "Expression stack needs at least 2 items for DW_OP_lt.");
1793         return false;
1794       } else {
1795         tmp = stack.back();
1796         stack.pop_back();
1797         stack.back().ResolveValue(exe_ctx) =
1798             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1799       }
1800       break;
1801 
1802     // OPCODE: DW_OP_ne
1803     // OPERANDS: none
1804     // DESCRIPTION: pops the top two stack values, compares using the
1805     // not equal (!=) operator.
1806     // STACK RESULT: push the constant value 1 onto the stack if the result
1807     // of the operation is true or the constant value 0 if the result of the
1808     // operation is false.
1809     case DW_OP_ne:
1810       if (stack.size() < 2) {
1811         if (error_ptr)
1812           error_ptr->SetErrorString(
1813               "Expression stack needs at least 2 items for DW_OP_ne.");
1814         return false;
1815       } else {
1816         tmp = stack.back();
1817         stack.pop_back();
1818         stack.back().ResolveValue(exe_ctx) =
1819             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1820       }
1821       break;
1822 
1823     // OPCODE: DW_OP_litn
1824     // OPERANDS: none
1825     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1826     // STACK RESULT: push the unsigned literal constant value onto the top
1827     // of the stack.
1828     case DW_OP_lit0:
1829     case DW_OP_lit1:
1830     case DW_OP_lit2:
1831     case DW_OP_lit3:
1832     case DW_OP_lit4:
1833     case DW_OP_lit5:
1834     case DW_OP_lit6:
1835     case DW_OP_lit7:
1836     case DW_OP_lit8:
1837     case DW_OP_lit9:
1838     case DW_OP_lit10:
1839     case DW_OP_lit11:
1840     case DW_OP_lit12:
1841     case DW_OP_lit13:
1842     case DW_OP_lit14:
1843     case DW_OP_lit15:
1844     case DW_OP_lit16:
1845     case DW_OP_lit17:
1846     case DW_OP_lit18:
1847     case DW_OP_lit19:
1848     case DW_OP_lit20:
1849     case DW_OP_lit21:
1850     case DW_OP_lit22:
1851     case DW_OP_lit23:
1852     case DW_OP_lit24:
1853     case DW_OP_lit25:
1854     case DW_OP_lit26:
1855     case DW_OP_lit27:
1856     case DW_OP_lit28:
1857     case DW_OP_lit29:
1858     case DW_OP_lit30:
1859     case DW_OP_lit31:
1860       stack.push_back(to_generic(op - DW_OP_lit0));
1861       break;
1862 
1863     // OPCODE: DW_OP_regN
1864     // OPERANDS: none
1865     // DESCRIPTION: Push the value in register n on the top of the stack.
1866     case DW_OP_reg0:
1867     case DW_OP_reg1:
1868     case DW_OP_reg2:
1869     case DW_OP_reg3:
1870     case DW_OP_reg4:
1871     case DW_OP_reg5:
1872     case DW_OP_reg6:
1873     case DW_OP_reg7:
1874     case DW_OP_reg8:
1875     case DW_OP_reg9:
1876     case DW_OP_reg10:
1877     case DW_OP_reg11:
1878     case DW_OP_reg12:
1879     case DW_OP_reg13:
1880     case DW_OP_reg14:
1881     case DW_OP_reg15:
1882     case DW_OP_reg16:
1883     case DW_OP_reg17:
1884     case DW_OP_reg18:
1885     case DW_OP_reg19:
1886     case DW_OP_reg20:
1887     case DW_OP_reg21:
1888     case DW_OP_reg22:
1889     case DW_OP_reg23:
1890     case DW_OP_reg24:
1891     case DW_OP_reg25:
1892     case DW_OP_reg26:
1893     case DW_OP_reg27:
1894     case DW_OP_reg28:
1895     case DW_OP_reg29:
1896     case DW_OP_reg30:
1897     case DW_OP_reg31: {
1898       dwarf4_location_description_kind = Register;
1899       reg_num = op - DW_OP_reg0;
1900 
1901       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1902         stack.push_back(tmp);
1903       else
1904         return false;
1905     } break;
1906     // OPCODE: DW_OP_regx
1907     // OPERANDS:
1908     //      ULEB128 literal operand that encodes the register.
1909     // DESCRIPTION: Push the value in register on the top of the stack.
1910     case DW_OP_regx: {
1911       dwarf4_location_description_kind = Register;
1912       reg_num = opcodes.GetULEB128(&offset);
1913       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1914         stack.push_back(tmp);
1915       else
1916         return false;
1917     } break;
1918 
1919     // OPCODE: DW_OP_bregN
1920     // OPERANDS:
1921     //      SLEB128 offset from register N
1922     // DESCRIPTION: Value is in memory at the address specified by register
1923     // N plus an offset.
1924     case DW_OP_breg0:
1925     case DW_OP_breg1:
1926     case DW_OP_breg2:
1927     case DW_OP_breg3:
1928     case DW_OP_breg4:
1929     case DW_OP_breg5:
1930     case DW_OP_breg6:
1931     case DW_OP_breg7:
1932     case DW_OP_breg8:
1933     case DW_OP_breg9:
1934     case DW_OP_breg10:
1935     case DW_OP_breg11:
1936     case DW_OP_breg12:
1937     case DW_OP_breg13:
1938     case DW_OP_breg14:
1939     case DW_OP_breg15:
1940     case DW_OP_breg16:
1941     case DW_OP_breg17:
1942     case DW_OP_breg18:
1943     case DW_OP_breg19:
1944     case DW_OP_breg20:
1945     case DW_OP_breg21:
1946     case DW_OP_breg22:
1947     case DW_OP_breg23:
1948     case DW_OP_breg24:
1949     case DW_OP_breg25:
1950     case DW_OP_breg26:
1951     case DW_OP_breg27:
1952     case DW_OP_breg28:
1953     case DW_OP_breg29:
1954     case DW_OP_breg30:
1955     case DW_OP_breg31: {
1956       reg_num = op - DW_OP_breg0;
1957 
1958       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
1959                                     tmp)) {
1960         int64_t breg_offset = opcodes.GetSLEB128(&offset);
1961         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
1962         tmp.ClearContext();
1963         stack.push_back(tmp);
1964         stack.back().SetValueType(Value::ValueType::LoadAddress);
1965       } else
1966         return false;
1967     } break;
1968     // OPCODE: DW_OP_bregx
1969     // OPERANDS: 2
1970     //      ULEB128 literal operand that encodes the register.
1971     //      SLEB128 offset from register N
1972     // DESCRIPTION: Value is in memory at the address specified by register
1973     // N plus an offset.
1974     case DW_OP_bregx: {
1975       reg_num = opcodes.GetULEB128(&offset);
1976 
1977       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
1978                                     tmp)) {
1979         int64_t breg_offset = opcodes.GetSLEB128(&offset);
1980         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
1981         tmp.ClearContext();
1982         stack.push_back(tmp);
1983         stack.back().SetValueType(Value::ValueType::LoadAddress);
1984       } else
1985         return false;
1986     } break;
1987 
1988     case DW_OP_fbreg:
1989       if (exe_ctx) {
1990         if (frame) {
1991           Scalar value;
1992           if (frame->GetFrameBaseValue(value, error_ptr)) {
1993             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
1994             value += fbreg_offset;
1995             stack.push_back(value);
1996             stack.back().SetValueType(Value::ValueType::LoadAddress);
1997           } else
1998             return false;
1999         } else {
2000           if (error_ptr)
2001             error_ptr->SetErrorString(
2002                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2003           return false;
2004         }
2005       } else {
2006         if (error_ptr)
2007           error_ptr->SetErrorString(
2008               "NULL execution context for DW_OP_fbreg.\n");
2009         return false;
2010       }
2011 
2012       break;
2013 
2014     // OPCODE: DW_OP_nop
2015     // OPERANDS: none
2016     // DESCRIPTION: A place holder. It has no effect on the location stack
2017     // or any of its values.
2018     case DW_OP_nop:
2019       break;
2020 
2021     // OPCODE: DW_OP_piece
2022     // OPERANDS: 1
2023     //      ULEB128: byte size of the piece
2024     // DESCRIPTION: The operand describes the size in bytes of the piece of
2025     // the object referenced by the DWARF expression whose result is at the top
2026     // of the stack. If the piece is located in a register, but does not occupy
2027     // the entire register, the placement of the piece within that register is
2028     // defined by the ABI.
2029     //
2030     // Many compilers store a single variable in sets of registers, or store a
2031     // variable partially in memory and partially in registers. DW_OP_piece
2032     // provides a way of describing how large a part of a variable a particular
2033     // DWARF expression refers to.
2034     case DW_OP_piece: {
2035       LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2036       // Reset for the next piece.
2037       dwarf4_location_description_kind = Memory;
2038 
2039       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2040 
2041       if (piece_byte_size > 0) {
2042         Value curr_piece;
2043 
2044         if (stack.empty()) {
2045           UpdateValueTypeFromLocationDescription(
2046               log, dwarf_cu, LocationDescriptionKind::Empty);
2047           // In a multi-piece expression, this means that the current piece is
2048           // not available. Fill with zeros for now by resizing the data and
2049           // appending it
2050           curr_piece.ResizeData(piece_byte_size);
2051           // Note that "0" is not a correct value for the unknown bits.
2052           // It would be better to also return a mask of valid bits together
2053           // with the expression result, so the debugger can print missing
2054           // members as "<optimized out>" or something.
2055           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2056           pieces.AppendDataToHostBuffer(curr_piece);
2057         } else {
2058           Status error;
2059           // Extract the current piece into "curr_piece"
2060           Value curr_piece_source_value(stack.back());
2061           stack.pop_back();
2062           UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2063                                                  &curr_piece_source_value);
2064 
2065           const Value::ValueType curr_piece_source_value_type =
2066               curr_piece_source_value.GetValueType();
2067           switch (curr_piece_source_value_type) {
2068           case Value::ValueType::Invalid:
2069             return false;
2070           case Value::ValueType::LoadAddress:
2071             if (process) {
2072               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2073                 lldb::addr_t load_addr =
2074                     curr_piece_source_value.GetScalar().ULongLong(
2075                         LLDB_INVALID_ADDRESS);
2076                 if (process->ReadMemory(
2077                         load_addr, curr_piece.GetBuffer().GetBytes(),
2078                         piece_byte_size, error) != piece_byte_size) {
2079                   if (error_ptr)
2080                     error_ptr->SetErrorStringWithFormat(
2081                         "failed to read memory DW_OP_piece(%" PRIu64
2082                         ") from 0x%" PRIx64,
2083                         piece_byte_size, load_addr);
2084                   return false;
2085                 }
2086               } else {
2087                 if (error_ptr)
2088                   error_ptr->SetErrorStringWithFormat(
2089                       "failed to resize the piece memory buffer for "
2090                       "DW_OP_piece(%" PRIu64 ")",
2091                       piece_byte_size);
2092                 return false;
2093               }
2094             }
2095             break;
2096 
2097           case Value::ValueType::FileAddress:
2098           case Value::ValueType::HostAddress:
2099             if (error_ptr) {
2100               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2101                   LLDB_INVALID_ADDRESS);
2102               error_ptr->SetErrorStringWithFormat(
2103                   "failed to read memory DW_OP_piece(%" PRIu64
2104                   ") from %s address 0x%" PRIx64,
2105                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2106                                            Value::ValueType::FileAddress
2107                                        ? "file"
2108                                        : "host",
2109                   addr);
2110             }
2111             return false;
2112 
2113           case Value::ValueType::Scalar: {
2114             uint32_t bit_size = piece_byte_size * 8;
2115             uint32_t bit_offset = 0;
2116             Scalar &scalar = curr_piece_source_value.GetScalar();
2117             if (!scalar.ExtractBitfield(
2118                     bit_size, bit_offset)) {
2119               if (error_ptr)
2120                 error_ptr->SetErrorStringWithFormat(
2121                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2122                     " byte scalar value.",
2123                     piece_byte_size,
2124                     (uint64_t)curr_piece_source_value.GetScalar()
2125                         .GetByteSize());
2126               return false;
2127             }
2128             // Create curr_piece with bit_size. By default Scalar
2129             // grows to the nearest host integer type.
2130             llvm::APInt fail_value(1, 0, false);
2131             llvm::APInt ap_int = scalar.UInt128(fail_value);
2132             assert(ap_int.getBitWidth() >= bit_size);
2133             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2134                                          ap_int.getNumWords()};
2135             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2136           } break;
2137           }
2138 
2139           // Check if this is the first piece?
2140           if (op_piece_offset == 0) {
2141             // This is the first piece, we should push it back onto the stack
2142             // so subsequent pieces will be able to access this piece and add
2143             // to it.
2144             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2145               if (error_ptr)
2146                 error_ptr->SetErrorString("failed to append piece data");
2147               return false;
2148             }
2149           } else {
2150             // If this is the second or later piece there should be a value on
2151             // the stack.
2152             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2153               if (error_ptr)
2154                 error_ptr->SetErrorStringWithFormat(
2155                     "DW_OP_piece for offset %" PRIu64
2156                     " but top of stack is of size %" PRIu64,
2157                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2158               return false;
2159             }
2160 
2161             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2162               if (error_ptr)
2163                 error_ptr->SetErrorString("failed to append piece data");
2164               return false;
2165             }
2166           }
2167         }
2168         op_piece_offset += piece_byte_size;
2169       }
2170     } break;
2171 
2172     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2173       if (stack.size() < 1) {
2174         UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2175                                                LocationDescriptionKind::Empty);
2176         // Reset for the next piece.
2177         dwarf4_location_description_kind = Memory;
2178         if (error_ptr)
2179           error_ptr->SetErrorString(
2180               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2181         return false;
2182       } else {
2183         UpdateValueTypeFromLocationDescription(
2184             log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2185         // Reset for the next piece.
2186         dwarf4_location_description_kind = Memory;
2187         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2188         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2189         switch (stack.back().GetValueType()) {
2190         case Value::ValueType::Invalid:
2191           return false;
2192         case Value::ValueType::Scalar: {
2193           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2194                                                         piece_bit_offset)) {
2195             if (error_ptr)
2196               error_ptr->SetErrorStringWithFormat(
2197                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2198                   " bit offset from a %" PRIu64 " bit scalar value.",
2199                   piece_bit_size, piece_bit_offset,
2200                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2201             return false;
2202           }
2203         } break;
2204 
2205         case Value::ValueType::FileAddress:
2206         case Value::ValueType::LoadAddress:
2207         case Value::ValueType::HostAddress:
2208           if (error_ptr) {
2209             error_ptr->SetErrorStringWithFormat(
2210                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2211                 ", bit_offset = %" PRIu64 ") from an address value.",
2212                 piece_bit_size, piece_bit_offset);
2213           }
2214           return false;
2215         }
2216       }
2217       break;
2218 
2219     // OPCODE: DW_OP_implicit_value
2220     // OPERANDS: 2
2221     //      ULEB128  size of the value block in bytes
2222     //      uint8_t* block bytes encoding value in target's memory
2223     //      representation
2224     // DESCRIPTION: Value is immediately stored in block in the debug info with
2225     // the memory representation of the target.
2226     case DW_OP_implicit_value: {
2227       dwarf4_location_description_kind = Implicit;
2228 
2229       const uint32_t len = opcodes.GetULEB128(&offset);
2230       const void *data = opcodes.GetData(&offset, len);
2231 
2232       if (!data) {
2233         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2234         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2235                     DW_OP_value_to_name(op));
2236         return false;
2237       }
2238 
2239       Value result(data, len);
2240       stack.push_back(result);
2241       break;
2242     }
2243 
2244     case DW_OP_implicit_pointer: {
2245       dwarf4_location_description_kind = Implicit;
2246       LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2247       return false;
2248     }
2249 
2250     // OPCODE: DW_OP_push_object_address
2251     // OPERANDS: none
2252     // DESCRIPTION: Pushes the address of the object currently being
2253     // evaluated as part of evaluation of a user presented expression. This
2254     // object may correspond to an independent variable described by its own
2255     // DIE or it may be a component of an array, structure, or class whose
2256     // address has been dynamically determined by an earlier step during user
2257     // expression evaluation.
2258     case DW_OP_push_object_address:
2259       if (object_address_ptr)
2260         stack.push_back(*object_address_ptr);
2261       else {
2262         if (error_ptr)
2263           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2264                                     "specifying an object address");
2265         return false;
2266       }
2267       break;
2268 
2269     // OPCODE: DW_OP_call2
2270     // OPERANDS:
2271     //      uint16_t compile unit relative offset of a DIE
2272     // DESCRIPTION: Performs subroutine calls during evaluation
2273     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2274     // debugging information entry in the current compilation unit.
2275     //
2276     // Operand interpretation is exactly like that for DW_FORM_ref2.
2277     //
2278     // This operation transfers control of DWARF expression evaluation to the
2279     // DW_AT_location attribute of the referenced DIE. If there is no such
2280     // attribute, then there is no effect. Execution of the DWARF expression of
2281     // a DW_AT_location attribute may add to and/or remove from values on the
2282     // stack. Execution returns to the point following the call when the end of
2283     // the attribute is reached. Values on the stack at the time of the call
2284     // may be used as parameters by the called expression and values left on
2285     // the stack by the called expression may be used as return values by prior
2286     // agreement between the calling and called expressions.
2287     case DW_OP_call2:
2288       if (error_ptr)
2289         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2290       return false;
2291     // OPCODE: DW_OP_call4
2292     // OPERANDS: 1
2293     //      uint32_t compile unit relative offset of a DIE
2294     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2295     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2296     // a debugging information entry in  the current compilation unit.
2297     //
2298     // Operand interpretation DW_OP_call4 is exactly like that for
2299     // DW_FORM_ref4.
2300     //
2301     // This operation transfers control of DWARF expression evaluation to the
2302     // DW_AT_location attribute of the referenced DIE. If there is no such
2303     // attribute, then there is no effect. Execution of the DWARF expression of
2304     // a DW_AT_location attribute may add to and/or remove from values on the
2305     // stack. Execution returns to the point following the call when the end of
2306     // the attribute is reached. Values on the stack at the time of the call
2307     // may be used as parameters by the called expression and values left on
2308     // the stack by the called expression may be used as return values by prior
2309     // agreement between the calling and called expressions.
2310     case DW_OP_call4:
2311       if (error_ptr)
2312         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2313       return false;
2314 
2315     // OPCODE: DW_OP_stack_value
2316     // OPERANDS: None
2317     // DESCRIPTION: Specifies that the object does not exist in memory but
2318     // rather is a constant value.  The value from the top of the stack is the
2319     // value to be used.  This is the actual object value and not the location.
2320     case DW_OP_stack_value:
2321       dwarf4_location_description_kind = Implicit;
2322       if (stack.empty()) {
2323         if (error_ptr)
2324           error_ptr->SetErrorString(
2325               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2326         return false;
2327       }
2328       stack.back().SetValueType(Value::ValueType::Scalar);
2329       break;
2330 
2331     // OPCODE: DW_OP_convert
2332     // OPERANDS: 1
2333     //      A ULEB128 that is either a DIE offset of a
2334     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2335     //
2336     // DESCRIPTION: Pop the top stack element, convert it to a
2337     // different type, and push the result.
2338     case DW_OP_convert: {
2339       if (stack.size() < 1) {
2340         if (error_ptr)
2341           error_ptr->SetErrorString(
2342               "Expression stack needs at least 1 item for DW_OP_convert.");
2343         return false;
2344       }
2345       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2346       uint64_t bit_size;
2347       bool sign;
2348       if (die_offset == 0) {
2349         // The generic type has the size of an address on the target
2350         // machine and an unspecified signedness. Scalar has no
2351         // "unspecified signedness", so we use unsigned types.
2352         if (!module_sp) {
2353           if (error_ptr)
2354             error_ptr->SetErrorString("No module");
2355           return false;
2356         }
2357         sign = false;
2358         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2359         if (!bit_size) {
2360           if (error_ptr)
2361             error_ptr->SetErrorString("unspecified architecture");
2362           return false;
2363         }
2364       } else {
2365         // Retrieve the type DIE that the value is being converted to.
2366         // FIXME: the constness has annoying ripple effects.
2367         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2368         if (!die) {
2369           if (error_ptr)
2370             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2371           return false;
2372         }
2373         uint64_t encoding =
2374             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2375         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2376         if (!bit_size)
2377           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2378         if (!bit_size) {
2379           if (error_ptr)
2380             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2381           return false;
2382         }
2383         switch (encoding) {
2384         case DW_ATE_signed:
2385         case DW_ATE_signed_char:
2386           sign = true;
2387           break;
2388         case DW_ATE_unsigned:
2389         case DW_ATE_unsigned_char:
2390           sign = false;
2391           break;
2392         default:
2393           if (error_ptr)
2394             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2395           return false;
2396         }
2397       }
2398       Scalar &top = stack.back().ResolveValue(exe_ctx);
2399       top.TruncOrExtendTo(bit_size, sign);
2400       break;
2401     }
2402 
2403     // OPCODE: DW_OP_call_frame_cfa
2404     // OPERANDS: None
2405     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2406     // the canonical frame address consistent with the call frame information
2407     // located in .debug_frame (or in the FDEs of the eh_frame section).
2408     case DW_OP_call_frame_cfa:
2409       if (frame) {
2410         // Note that we don't have to parse FDEs because this DWARF expression
2411         // is commonly evaluated with a valid stack frame.
2412         StackID id = frame->GetStackID();
2413         addr_t cfa = id.GetCallFrameAddress();
2414         if (cfa != LLDB_INVALID_ADDRESS) {
2415           stack.push_back(Scalar(cfa));
2416           stack.back().SetValueType(Value::ValueType::LoadAddress);
2417         } else if (error_ptr)
2418           error_ptr->SetErrorString("Stack frame does not include a canonical "
2419                                     "frame address for DW_OP_call_frame_cfa "
2420                                     "opcode.");
2421       } else {
2422         if (error_ptr)
2423           error_ptr->SetErrorString("Invalid stack frame in context for "
2424                                     "DW_OP_call_frame_cfa opcode.");
2425         return false;
2426       }
2427       break;
2428 
2429     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2430     // opcode, DW_OP_GNU_push_tls_address)
2431     // OPERANDS: none
2432     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2433     // an address in the current thread's thread-local storage block, and
2434     // pushes it on the stack.
2435     case DW_OP_form_tls_address:
2436     case DW_OP_GNU_push_tls_address: {
2437       if (stack.size() < 1) {
2438         if (error_ptr) {
2439           if (op == DW_OP_form_tls_address)
2440             error_ptr->SetErrorString(
2441                 "DW_OP_form_tls_address needs an argument.");
2442           else
2443             error_ptr->SetErrorString(
2444                 "DW_OP_GNU_push_tls_address needs an argument.");
2445         }
2446         return false;
2447       }
2448 
2449       if (!exe_ctx || !module_sp) {
2450         if (error_ptr)
2451           error_ptr->SetErrorString("No context to evaluate TLS within.");
2452         return false;
2453       }
2454 
2455       Thread *thread = exe_ctx->GetThreadPtr();
2456       if (!thread) {
2457         if (error_ptr)
2458           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2459         return false;
2460       }
2461 
2462       // Lookup the TLS block address for this thread and module.
2463       const addr_t tls_file_addr =
2464           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2465       const addr_t tls_load_addr =
2466           thread->GetThreadLocalData(module_sp, tls_file_addr);
2467 
2468       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2469         if (error_ptr)
2470           error_ptr->SetErrorString(
2471               "No TLS data currently exists for this thread.");
2472         return false;
2473       }
2474 
2475       stack.back().GetScalar() = tls_load_addr;
2476       stack.back().SetValueType(Value::ValueType::LoadAddress);
2477     } break;
2478 
2479     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2480     // OPERANDS: 1
2481     //      ULEB128: index to the .debug_addr section
2482     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2483     // section with the base address specified by the DW_AT_addr_base attribute
2484     // and the 0 based index is the ULEB128 encoded index.
2485     case DW_OP_addrx:
2486     case DW_OP_GNU_addr_index: {
2487       if (!dwarf_cu) {
2488         if (error_ptr)
2489           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2490                                     "compile unit being specified");
2491         return false;
2492       }
2493       uint64_t index = opcodes.GetULEB128(&offset);
2494       lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2495       stack.push_back(Scalar(value));
2496       stack.back().SetValueType(Value::ValueType::FileAddress);
2497     } break;
2498 
2499     // OPCODE: DW_OP_GNU_const_index
2500     // OPERANDS: 1
2501     //      ULEB128: index to the .debug_addr section
2502     // DESCRIPTION: Pushes an constant with the size of a machine address to
2503     // the stack from the .debug_addr section with the base address specified
2504     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2505     // encoded index.
2506     case DW_OP_GNU_const_index: {
2507       if (!dwarf_cu) {
2508         if (error_ptr)
2509           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2510                                     "compile unit being specified");
2511         return false;
2512       }
2513       uint64_t index = opcodes.GetULEB128(&offset);
2514       lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2515       stack.push_back(Scalar(value));
2516     } break;
2517 
2518     case DW_OP_GNU_entry_value:
2519     case DW_OP_entry_value: {
2520       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2521                                       error_ptr, log)) {
2522         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2523                     DW_OP_value_to_name(op));
2524         return false;
2525       }
2526       break;
2527     }
2528 
2529     default:
2530       if (error_ptr)
2531         error_ptr->SetErrorStringWithFormatv(
2532             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2533       return false;
2534     }
2535   }
2536 
2537   if (stack.empty()) {
2538     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2539     // or DW_OP_bit_piece opcodes
2540     if (pieces.GetBuffer().GetByteSize()) {
2541       result = pieces;
2542       return true;
2543     }
2544     if (error_ptr)
2545       error_ptr->SetErrorString("Stack empty after evaluation.");
2546     return false;
2547   }
2548 
2549   UpdateValueTypeFromLocationDescription(
2550       log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2551 
2552   if (log && log->GetVerbose()) {
2553     size_t count = stack.size();
2554     LLDB_LOGF(log,
2555               "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2556     for (size_t i = 0; i < count; ++i) {
2557       StreamString new_value;
2558       new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2559       stack[i].Dump(&new_value);
2560       LLDB_LOGF(log, "  %s", new_value.GetData());
2561     }
2562   }
2563   result = stack.back();
2564   return true; // Return true on success
2565 }
2566 
2567 bool DWARFExpression::ParseDWARFLocationList(
2568     const DWARFUnit *dwarf_cu, const DataExtractor &data,
2569     DWARFExpressionList *location_list) {
2570   location_list->Clear();
2571   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2572       dwarf_cu->GetLocationTable(data);
2573   Log *log = GetLog(LLDBLog::Expressions);
2574   auto lookup_addr =
2575       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2576     addr_t address = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2577     if (address == LLDB_INVALID_ADDRESS)
2578       return llvm::None;
2579     return llvm::object::SectionedAddress{address};
2580   };
2581   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2582     if (!loc) {
2583       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2584       return true;
2585     }
2586     auto buffer_sp =
2587         std::make_shared<DataBufferHeap>(loc->Expr.data(), loc->Expr.size());
2588     DWARFExpression expr = DWARFExpression(DataExtractor(
2589         buffer_sp, data.GetByteOrder(), data.GetAddressByteSize()));
2590     location_list->AddExpression(loc->Range->LowPC, loc->Range->HighPC, expr);
2591     return true;
2592   };
2593   llvm::Error error = loctable_up->visitAbsoluteLocationList(
2594       0, llvm::object::SectionedAddress{dwarf_cu->GetBaseAddress()},
2595       lookup_addr, process_list);
2596   location_list->Sort();
2597   if (error) {
2598     LLDB_LOG_ERROR(log, std::move(error), "{0}");
2599     return false;
2600   }
2601   return true;
2602 }
2603 
2604 bool DWARFExpression::MatchesOperand(
2605     StackFrame &frame, const Instruction::Operand &operand) const {
2606   using namespace OperandMatchers;
2607 
2608   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2609   if (!reg_ctx_sp) {
2610     return false;
2611   }
2612 
2613   DataExtractor opcodes(m_data);
2614 
2615   lldb::offset_t op_offset = 0;
2616   uint8_t opcode = opcodes.GetU8(&op_offset);
2617 
2618   if (opcode == DW_OP_fbreg) {
2619     int64_t offset = opcodes.GetSLEB128(&op_offset);
2620 
2621     DWARFExpressionList *fb_expr = frame.GetFrameBaseExpression(nullptr);
2622     if (!fb_expr) {
2623       return false;
2624     }
2625 
2626     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2627       return fb_expr->MatchesOperand(frame, child);
2628     };
2629 
2630     if (!offset &&
2631         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2632                      recurse)(operand)) {
2633       return true;
2634     }
2635 
2636     return MatchUnaryOp(
2637         MatchOpType(Instruction::Operand::Type::Dereference),
2638         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2639                       MatchImmOp(offset), recurse))(operand);
2640   }
2641 
2642   bool dereference = false;
2643   const RegisterInfo *reg = nullptr;
2644   int64_t offset = 0;
2645 
2646   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2647     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2648   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2649     offset = opcodes.GetSLEB128(&op_offset);
2650     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2651   } else if (opcode == DW_OP_regx) {
2652     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2653     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2654   } else if (opcode == DW_OP_bregx) {
2655     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2656     offset = opcodes.GetSLEB128(&op_offset);
2657     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2658   } else {
2659     return false;
2660   }
2661 
2662   if (!reg) {
2663     return false;
2664   }
2665 
2666   if (dereference) {
2667     if (!offset &&
2668         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2669                      MatchRegOp(*reg))(operand)) {
2670       return true;
2671     }
2672 
2673     return MatchUnaryOp(
2674         MatchOpType(Instruction::Operand::Type::Dereference),
2675         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2676                       MatchRegOp(*reg),
2677                       MatchImmOp(offset)))(operand);
2678   } else {
2679     return MatchRegOp(*reg)(operand);
2680   }
2681 }
2682