1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <inttypes.h>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/RegisterValue.h"
21 #include "lldb/Utility/Scalar.h"
22 #include "lldb/Utility/StreamString.h"
23 #include "lldb/Utility/VMRange.h"
24 
25 #include "lldb/Host/Host.h"
26 #include "lldb/Utility/Endian.h"
27 
28 #include "lldb/Symbol/Function.h"
29 
30 #include "lldb/Target/ABI.h"
31 #include "lldb/Target/ExecutionContext.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/RegisterContext.h"
34 #include "lldb/Target/StackFrame.h"
35 #include "lldb/Target/StackID.h"
36 #include "lldb/Target/Target.h"
37 #include "lldb/Target/Thread.h"
38 
39 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 
44 static lldb::addr_t
45 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
46                                 uint32_t index) {
47   uint32_t index_size = dwarf_cu->GetAddressByteSize();
48   dw_offset_t addr_base = dwarf_cu->GetAddrBase();
49   lldb::offset_t offset = addr_base + index * index_size;
50   const DWARFDataExtractor &data =
51       dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
52   if (data.ValidOffsetForDataOfSize(offset, index_size))
53     return data.GetMaxU64_unchecked(&offset, index_size);
54   return LLDB_INVALID_ADDRESS;
55 }
56 
57 // DWARFExpression constructor
58 DWARFExpression::DWARFExpression()
59     : m_module_wp(), m_data(), m_dwarf_cu(nullptr),
60       m_reg_kind(eRegisterKindDWARF) {}
61 
62 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
63                                  const DataExtractor &data,
64                                  const DWARFUnit *dwarf_cu)
65     : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu),
66       m_reg_kind(eRegisterKindDWARF) {
67   if (module_sp)
68     m_module_wp = module_sp;
69 }
70 
71 // Destructor
72 DWARFExpression::~DWARFExpression() {}
73 
74 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
75 
76 void DWARFExpression::UpdateValue(uint64_t const_value,
77                                   lldb::offset_t const_value_byte_size,
78                                   uint8_t addr_byte_size) {
79   if (!const_value_byte_size)
80     return;
81 
82   m_data.SetData(
83       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
84   m_data.SetByteOrder(endian::InlHostByteOrder());
85   m_data.SetAddressByteSize(addr_byte_size);
86 }
87 
88 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
89                                    lldb::DescriptionLevel level,
90                                    ABI *abi) const {
91   llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
92       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
93              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
94 }
95 
96 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
97                                                addr_t func_file_addr) {
98   m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
99 }
100 
101 int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
102 
103 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
104   m_reg_kind = reg_kind;
105 }
106 
107 bool DWARFExpression::IsLocationList() const {
108   return bool(m_loclist_addresses);
109 }
110 
111 namespace {
112 /// Implement enough of the DWARFObject interface in order to be able to call
113 /// DWARFLocationTable::dumpLocationList. We don't have access to a real
114 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
115 class DummyDWARFObject final: public llvm::DWARFObject {
116 public:
117   DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}
118 
119   bool isLittleEndian() const override { return IsLittleEndian; }
120 
121   llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
122                                             uint64_t Pos) const override {
123     return llvm::None;
124   }
125 private:
126   bool IsLittleEndian;
127 };
128 }
129 
130 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
131                                      addr_t location_list_base_addr,
132                                      ABI *abi) const {
133   if (IsLocationList()) {
134     // We have a location list
135     lldb::offset_t offset = 0;
136     std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
137         m_dwarf_cu->GetLocationTable(m_data);
138 
139     llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
140     llvm::DIDumpOptions DumpOpts;
141     DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) {
142       s->AsRawOstream() << "error: " << toString(std::move(E));
143     };
144     loctable_up->dumpLocationList(
145         &offset, s->AsRawOstream(),
146         llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
147         DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
148         DumpOpts, s->GetIndentLevel() + 2);
149   } else {
150     // We have a normal location that contains DW_OP location opcodes
151     DumpLocation(s, m_data, level, abi);
152   }
153 }
154 
155 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
156                                       lldb::RegisterKind reg_kind,
157                                       uint32_t reg_num, Status *error_ptr,
158                                       Value &value) {
159   if (reg_ctx == nullptr) {
160     if (error_ptr)
161       error_ptr->SetErrorString("No register context in frame.\n");
162   } else {
163     uint32_t native_reg =
164         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
165     if (native_reg == LLDB_INVALID_REGNUM) {
166       if (error_ptr)
167         error_ptr->SetErrorStringWithFormat("Unable to convert register "
168                                             "kind=%u reg_num=%u to a native "
169                                             "register number.\n",
170                                             reg_kind, reg_num);
171     } else {
172       const RegisterInfo *reg_info =
173           reg_ctx->GetRegisterInfoAtIndex(native_reg);
174       RegisterValue reg_value;
175       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
176         if (reg_value.GetScalarValue(value.GetScalar())) {
177           value.SetValueType(Value::ValueType::Scalar);
178           value.SetContext(Value::ContextType::RegisterInfo,
179                            const_cast<RegisterInfo *>(reg_info));
180           if (error_ptr)
181             error_ptr->Clear();
182           return true;
183         } else {
184           // If we get this error, then we need to implement a value buffer in
185           // the dwarf expression evaluation function...
186           if (error_ptr)
187             error_ptr->SetErrorStringWithFormat(
188                 "register %s can't be converted to a scalar value",
189                 reg_info->name);
190         }
191       } else {
192         if (error_ptr)
193           error_ptr->SetErrorStringWithFormat("register %s is not available",
194                                               reg_info->name);
195       }
196     }
197   }
198   return false;
199 }
200 
201 /// Return the length in bytes of the set of operands for \p op. No guarantees
202 /// are made on the state of \p data after this call.
203 static offset_t GetOpcodeDataSize(const DataExtractor &data,
204                                   const lldb::offset_t data_offset,
205                                   const uint8_t op) {
206   lldb::offset_t offset = data_offset;
207   switch (op) {
208   case DW_OP_addr:
209   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
210     return data.GetAddressByteSize();
211 
212   // Opcodes with no arguments
213   case DW_OP_deref:                // 0x06
214   case DW_OP_dup:                  // 0x12
215   case DW_OP_drop:                 // 0x13
216   case DW_OP_over:                 // 0x14
217   case DW_OP_swap:                 // 0x16
218   case DW_OP_rot:                  // 0x17
219   case DW_OP_xderef:               // 0x18
220   case DW_OP_abs:                  // 0x19
221   case DW_OP_and:                  // 0x1a
222   case DW_OP_div:                  // 0x1b
223   case DW_OP_minus:                // 0x1c
224   case DW_OP_mod:                  // 0x1d
225   case DW_OP_mul:                  // 0x1e
226   case DW_OP_neg:                  // 0x1f
227   case DW_OP_not:                  // 0x20
228   case DW_OP_or:                   // 0x21
229   case DW_OP_plus:                 // 0x22
230   case DW_OP_shl:                  // 0x24
231   case DW_OP_shr:                  // 0x25
232   case DW_OP_shra:                 // 0x26
233   case DW_OP_xor:                  // 0x27
234   case DW_OP_eq:                   // 0x29
235   case DW_OP_ge:                   // 0x2a
236   case DW_OP_gt:                   // 0x2b
237   case DW_OP_le:                   // 0x2c
238   case DW_OP_lt:                   // 0x2d
239   case DW_OP_ne:                   // 0x2e
240   case DW_OP_lit0:                 // 0x30
241   case DW_OP_lit1:                 // 0x31
242   case DW_OP_lit2:                 // 0x32
243   case DW_OP_lit3:                 // 0x33
244   case DW_OP_lit4:                 // 0x34
245   case DW_OP_lit5:                 // 0x35
246   case DW_OP_lit6:                 // 0x36
247   case DW_OP_lit7:                 // 0x37
248   case DW_OP_lit8:                 // 0x38
249   case DW_OP_lit9:                 // 0x39
250   case DW_OP_lit10:                // 0x3A
251   case DW_OP_lit11:                // 0x3B
252   case DW_OP_lit12:                // 0x3C
253   case DW_OP_lit13:                // 0x3D
254   case DW_OP_lit14:                // 0x3E
255   case DW_OP_lit15:                // 0x3F
256   case DW_OP_lit16:                // 0x40
257   case DW_OP_lit17:                // 0x41
258   case DW_OP_lit18:                // 0x42
259   case DW_OP_lit19:                // 0x43
260   case DW_OP_lit20:                // 0x44
261   case DW_OP_lit21:                // 0x45
262   case DW_OP_lit22:                // 0x46
263   case DW_OP_lit23:                // 0x47
264   case DW_OP_lit24:                // 0x48
265   case DW_OP_lit25:                // 0x49
266   case DW_OP_lit26:                // 0x4A
267   case DW_OP_lit27:                // 0x4B
268   case DW_OP_lit28:                // 0x4C
269   case DW_OP_lit29:                // 0x4D
270   case DW_OP_lit30:                // 0x4E
271   case DW_OP_lit31:                // 0x4f
272   case DW_OP_reg0:                 // 0x50
273   case DW_OP_reg1:                 // 0x51
274   case DW_OP_reg2:                 // 0x52
275   case DW_OP_reg3:                 // 0x53
276   case DW_OP_reg4:                 // 0x54
277   case DW_OP_reg5:                 // 0x55
278   case DW_OP_reg6:                 // 0x56
279   case DW_OP_reg7:                 // 0x57
280   case DW_OP_reg8:                 // 0x58
281   case DW_OP_reg9:                 // 0x59
282   case DW_OP_reg10:                // 0x5A
283   case DW_OP_reg11:                // 0x5B
284   case DW_OP_reg12:                // 0x5C
285   case DW_OP_reg13:                // 0x5D
286   case DW_OP_reg14:                // 0x5E
287   case DW_OP_reg15:                // 0x5F
288   case DW_OP_reg16:                // 0x60
289   case DW_OP_reg17:                // 0x61
290   case DW_OP_reg18:                // 0x62
291   case DW_OP_reg19:                // 0x63
292   case DW_OP_reg20:                // 0x64
293   case DW_OP_reg21:                // 0x65
294   case DW_OP_reg22:                // 0x66
295   case DW_OP_reg23:                // 0x67
296   case DW_OP_reg24:                // 0x68
297   case DW_OP_reg25:                // 0x69
298   case DW_OP_reg26:                // 0x6A
299   case DW_OP_reg27:                // 0x6B
300   case DW_OP_reg28:                // 0x6C
301   case DW_OP_reg29:                // 0x6D
302   case DW_OP_reg30:                // 0x6E
303   case DW_OP_reg31:                // 0x6F
304   case DW_OP_nop:                  // 0x96
305   case DW_OP_push_object_address:  // 0x97 DWARF3
306   case DW_OP_form_tls_address:     // 0x9b DWARF3
307   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
308   case DW_OP_stack_value:          // 0x9f DWARF4
309   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
310     return 0;
311 
312   // Opcodes with a single 1 byte arguments
313   case DW_OP_const1u:     // 0x08 1 1-byte constant
314   case DW_OP_const1s:     // 0x09 1 1-byte constant
315   case DW_OP_pick:        // 0x15 1 1-byte stack index
316   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
317   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
318     return 1;
319 
320   // Opcodes with a single 2 byte arguments
321   case DW_OP_const2u: // 0x0a 1 2-byte constant
322   case DW_OP_const2s: // 0x0b 1 2-byte constant
323   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
324   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
325   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
326     return 2;
327 
328   // Opcodes with a single 4 byte arguments
329   case DW_OP_const4u: // 0x0c 1 4-byte constant
330   case DW_OP_const4s: // 0x0d 1 4-byte constant
331   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
332     return 4;
333 
334   // Opcodes with a single 8 byte arguments
335   case DW_OP_const8u: // 0x0e 1 8-byte constant
336   case DW_OP_const8s: // 0x0f 1 8-byte constant
337     return 8;
338 
339   // All opcodes that have a single ULEB (signed or unsigned) argument
340   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
341   case DW_OP_constu:          // 0x10 1 ULEB128 constant
342   case DW_OP_consts:          // 0x11 1 SLEB128 constant
343   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
344   case DW_OP_breg0:           // 0x70 1 ULEB128 register
345   case DW_OP_breg1:           // 0x71 1 ULEB128 register
346   case DW_OP_breg2:           // 0x72 1 ULEB128 register
347   case DW_OP_breg3:           // 0x73 1 ULEB128 register
348   case DW_OP_breg4:           // 0x74 1 ULEB128 register
349   case DW_OP_breg5:           // 0x75 1 ULEB128 register
350   case DW_OP_breg6:           // 0x76 1 ULEB128 register
351   case DW_OP_breg7:           // 0x77 1 ULEB128 register
352   case DW_OP_breg8:           // 0x78 1 ULEB128 register
353   case DW_OP_breg9:           // 0x79 1 ULEB128 register
354   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
355   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
356   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
357   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
358   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
359   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
360   case DW_OP_breg16:          // 0x80 1 ULEB128 register
361   case DW_OP_breg17:          // 0x81 1 ULEB128 register
362   case DW_OP_breg18:          // 0x82 1 ULEB128 register
363   case DW_OP_breg19:          // 0x83 1 ULEB128 register
364   case DW_OP_breg20:          // 0x84 1 ULEB128 register
365   case DW_OP_breg21:          // 0x85 1 ULEB128 register
366   case DW_OP_breg22:          // 0x86 1 ULEB128 register
367   case DW_OP_breg23:          // 0x87 1 ULEB128 register
368   case DW_OP_breg24:          // 0x88 1 ULEB128 register
369   case DW_OP_breg25:          // 0x89 1 ULEB128 register
370   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
371   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
372   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
373   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
374   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
375   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
376   case DW_OP_regx:            // 0x90 1 ULEB128 register
377   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
378   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
379   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
380   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
381     data.Skip_LEB128(&offset);
382     return offset - data_offset;
383 
384   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
385   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
386   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
387     data.Skip_LEB128(&offset);
388     data.Skip_LEB128(&offset);
389     return offset - data_offset;
390 
391   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
392                              // (DWARF4)
393   {
394     uint64_t block_len = data.Skip_LEB128(&offset);
395     offset += block_len;
396     return offset - data_offset;
397   }
398 
399   case DW_OP_GNU_entry_value:
400   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
401   {
402     uint64_t subexpr_len = data.GetULEB128(&offset);
403     return (offset - data_offset) + subexpr_len;
404   }
405 
406   default:
407     break;
408   }
409   return LLDB_INVALID_OFFSET;
410 }
411 
412 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
413                                                      bool &error) const {
414   error = false;
415   if (IsLocationList())
416     return LLDB_INVALID_ADDRESS;
417   lldb::offset_t offset = 0;
418   uint32_t curr_op_addr_idx = 0;
419   while (m_data.ValidOffset(offset)) {
420     const uint8_t op = m_data.GetU8(&offset);
421 
422     if (op == DW_OP_addr) {
423       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
424       if (curr_op_addr_idx == op_addr_idx)
425         return op_file_addr;
426       else
427         ++curr_op_addr_idx;
428     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
429       uint64_t index = m_data.GetULEB128(&offset);
430       if (curr_op_addr_idx == op_addr_idx) {
431         if (!m_dwarf_cu) {
432           error = true;
433           break;
434         }
435 
436         return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
437       } else
438         ++curr_op_addr_idx;
439     } else {
440       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
441       if (op_arg_size == LLDB_INVALID_OFFSET) {
442         error = true;
443         break;
444       }
445       offset += op_arg_size;
446     }
447   }
448   return LLDB_INVALID_ADDRESS;
449 }
450 
451 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
452   if (IsLocationList())
453     return false;
454   lldb::offset_t offset = 0;
455   while (m_data.ValidOffset(offset)) {
456     const uint8_t op = m_data.GetU8(&offset);
457 
458     if (op == DW_OP_addr) {
459       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
460       // We have to make a copy of the data as we don't know if this data is
461       // from a read only memory mapped buffer, so we duplicate all of the data
462       // first, then modify it, and if all goes well, we then replace the data
463       // for this expression
464 
465       // So first we copy the data into a heap buffer
466       std::unique_ptr<DataBufferHeap> head_data_up(
467           new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
468 
469       // Make en encoder so we can write the address into the buffer using the
470       // correct byte order (endianness)
471       DataEncoder encoder(head_data_up->GetBytes(), head_data_up->GetByteSize(),
472                           m_data.GetByteOrder(), addr_byte_size);
473 
474       // Replace the address in the new buffer
475       if (encoder.PutUnsigned(offset, addr_byte_size, file_addr) == UINT32_MAX)
476         return false;
477 
478       // All went well, so now we can reset the data using a shared pointer to
479       // the heap data so "m_data" will now correctly manage the heap data.
480       m_data.SetData(DataBufferSP(head_data_up.release()));
481       return true;
482     } else {
483       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
484       if (op_arg_size == LLDB_INVALID_OFFSET)
485         break;
486       offset += op_arg_size;
487     }
488   }
489   return false;
490 }
491 
492 bool DWARFExpression::ContainsThreadLocalStorage() const {
493   // We are assuming for now that any thread local variable will not have a
494   // location list. This has been true for all thread local variables we have
495   // seen so far produced by any compiler.
496   if (IsLocationList())
497     return false;
498   lldb::offset_t offset = 0;
499   while (m_data.ValidOffset(offset)) {
500     const uint8_t op = m_data.GetU8(&offset);
501 
502     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
503       return true;
504     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
505     if (op_arg_size == LLDB_INVALID_OFFSET)
506       return false;
507     else
508       offset += op_arg_size;
509   }
510   return false;
511 }
512 bool DWARFExpression::LinkThreadLocalStorage(
513     lldb::ModuleSP new_module_sp,
514     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
515         &link_address_callback) {
516   // We are assuming for now that any thread local variable will not have a
517   // location list. This has been true for all thread local variables we have
518   // seen so far produced by any compiler.
519   if (IsLocationList())
520     return false;
521 
522   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
523   // We have to make a copy of the data as we don't know if this data is from a
524   // read only memory mapped buffer, so we duplicate all of the data first,
525   // then modify it, and if all goes well, we then replace the data for this
526   // expression
527 
528   // So first we copy the data into a heap buffer
529   std::shared_ptr<DataBufferHeap> heap_data_sp(
530       new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
531 
532   // Make en encoder so we can write the address into the buffer using the
533   // correct byte order (endianness)
534   DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(),
535                       m_data.GetByteOrder(), addr_byte_size);
536 
537   lldb::offset_t offset = 0;
538   lldb::offset_t const_offset = 0;
539   lldb::addr_t const_value = 0;
540   size_t const_byte_size = 0;
541   while (m_data.ValidOffset(offset)) {
542     const uint8_t op = m_data.GetU8(&offset);
543 
544     bool decoded_data = false;
545     switch (op) {
546     case DW_OP_const4u:
547       // Remember the const offset in case we later have a
548       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
549       const_offset = offset;
550       const_value = m_data.GetU32(&offset);
551       decoded_data = true;
552       const_byte_size = 4;
553       break;
554 
555     case DW_OP_const8u:
556       // Remember the const offset in case we later have a
557       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
558       const_offset = offset;
559       const_value = m_data.GetU64(&offset);
560       decoded_data = true;
561       const_byte_size = 8;
562       break;
563 
564     case DW_OP_form_tls_address:
565     case DW_OP_GNU_push_tls_address:
566       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
567       // by a file address on the stack. We assume that DW_OP_const4u or
568       // DW_OP_const8u is used for these values, and we check that the last
569       // opcode we got before either of these was DW_OP_const4u or
570       // DW_OP_const8u. If so, then we can link the value accodingly. For
571       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
572       // address of a structure that contains a function pointer, the pthread
573       // key and the offset into the data pointed to by the pthread key. So we
574       // must link this address and also set the module of this expression to
575       // the new_module_sp so we can resolve the file address correctly
576       if (const_byte_size > 0) {
577         lldb::addr_t linked_file_addr = link_address_callback(const_value);
578         if (linked_file_addr == LLDB_INVALID_ADDRESS)
579           return false;
580         // Replace the address in the new buffer
581         if (encoder.PutUnsigned(const_offset, const_byte_size,
582                                 linked_file_addr) == UINT32_MAX)
583           return false;
584       }
585       break;
586 
587     default:
588       const_offset = 0;
589       const_value = 0;
590       const_byte_size = 0;
591       break;
592     }
593 
594     if (!decoded_data) {
595       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
596       if (op_arg_size == LLDB_INVALID_OFFSET)
597         return false;
598       else
599         offset += op_arg_size;
600     }
601   }
602 
603   // If we linked the TLS address correctly, update the module so that when the
604   // expression is evaluated it can resolve the file address to a load address
605   // and read the
606   // TLS data
607   m_module_wp = new_module_sp;
608   m_data.SetData(heap_data_sp);
609   return true;
610 }
611 
612 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
613                                                   lldb::addr_t addr) const {
614   if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
615     return false;
616 
617   if (!IsLocationList())
618     return false;
619 
620   return GetLocationExpression(func_load_addr, addr) != llvm::None;
621 }
622 
623 bool DWARFExpression::DumpLocationForAddress(Stream *s,
624                                              lldb::DescriptionLevel level,
625                                              addr_t func_load_addr,
626                                              addr_t address, ABI *abi) {
627   if (!IsLocationList()) {
628     DumpLocation(s, m_data, level, abi);
629     return true;
630   }
631   if (llvm::Optional<DataExtractor> expr =
632           GetLocationExpression(func_load_addr, address)) {
633     DumpLocation(s, *expr, level, abi);
634     return true;
635   }
636   return false;
637 }
638 
639 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
640                                        ExecutionContext *exe_ctx,
641                                        RegisterContext *reg_ctx,
642                                        const DataExtractor &opcodes,
643                                        lldb::offset_t &opcode_offset,
644                                        Status *error_ptr, Log *log) {
645   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
646   // function entry: this variable location is presumed to be optimized out at
647   // the current PC value.  The caller of the function may have call site
648   // information that describes an alternate location for the variable (e.g. a
649   // constant literal, or a spilled stack value) in the parent frame.
650   //
651   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
652   //
653   //     void child(int &sink, int x) {
654   //       ...
655   //       /* "x" gets optimized out. */
656   //
657   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
658   //       ++sink;
659   //     }
660   //
661   //     void parent() {
662   //       int sink;
663   //
664   //       /*
665   //        * The callsite information emitted here is:
666   //        *
667   //        * DW_TAG_call_site
668   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
669   //        *   DW_TAG_call_site_parameter (for "sink")
670   //        *     DW_AT_location   ($reg1)
671   //        *     DW_AT_call_value ($SP - 8)
672   //        *   DW_TAG_call_site_parameter (for "x")
673   //        *     DW_AT_location   ($reg2)
674   //        *     DW_AT_call_value ($literal 123)
675   //        *
676   //        * DW_TAG_call_site
677   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
678   //        *   ...
679   //        */
680   //       child(sink, 123);
681   //       child(sink, 456);
682   //     }
683   //
684   // When the program stops at "++sink" within `child`, the debugger determines
685   // the call site by analyzing the return address. Once the call site is found,
686   // the debugger determines which parameter is referenced by DW_OP_entry_value
687   // and evaluates the corresponding location for that parameter in `parent`.
688 
689   // 1. Find the function which pushed the current frame onto the stack.
690   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
691     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
692     return false;
693   }
694 
695   StackFrame *current_frame = exe_ctx->GetFramePtr();
696   Thread *thread = exe_ctx->GetThreadPtr();
697   if (!current_frame || !thread) {
698     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
699     return false;
700   }
701 
702   Target &target = exe_ctx->GetTargetRef();
703   StackFrameSP parent_frame = nullptr;
704   addr_t return_pc = LLDB_INVALID_ADDRESS;
705   uint32_t current_frame_idx = current_frame->GetFrameIndex();
706   uint32_t num_frames = thread->GetStackFrameCount();
707   for (uint32_t parent_frame_idx = current_frame_idx + 1;
708        parent_frame_idx < num_frames; ++parent_frame_idx) {
709     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
710     // Require a valid sequence of frames.
711     if (!parent_frame)
712       break;
713 
714     // Record the first valid return address, even if this is an inlined frame,
715     // in order to look up the associated call edge in the first non-inlined
716     // parent frame.
717     if (return_pc == LLDB_INVALID_ADDRESS) {
718       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
719       LLDB_LOG(log,
720                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
721                return_pc);
722     }
723 
724     // If we've found an inlined frame, skip it (these have no call site
725     // parameters).
726     if (parent_frame->IsInlined())
727       continue;
728 
729     // We've found the first non-inlined parent frame.
730     break;
731   }
732   if (!parent_frame || !parent_frame->GetRegisterContext()) {
733     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
734     return false;
735   }
736 
737   Function *parent_func =
738       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
739   if (!parent_func) {
740     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
741     return false;
742   }
743 
744   // 2. Find the call edge in the parent function responsible for creating the
745   //    current activation.
746   Function *current_func =
747       current_frame->GetSymbolContext(eSymbolContextFunction).function;
748   if (!current_func) {
749     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
750     return false;
751   }
752 
753   CallEdge *call_edge = nullptr;
754   ModuleList &modlist = target.GetImages();
755   ExecutionContext parent_exe_ctx = *exe_ctx;
756   parent_exe_ctx.SetFrameSP(parent_frame);
757   if (!parent_frame->IsArtificial()) {
758     // If the parent frame is not artificial, the current activation may be
759     // produced by an ambiguous tail call. In this case, refuse to proceed.
760     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
761     if (!call_edge) {
762       LLDB_LOG(log,
763                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
764                "in parent frame {1}",
765                return_pc, parent_func->GetName());
766       return false;
767     }
768     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
769     if (callee_func != current_func) {
770       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
771                     "can't find real parent frame");
772       return false;
773     }
774   } else {
775     // The StackFrameList solver machinery has deduced that an unambiguous tail
776     // call sequence that produced the current activation.  The first edge in
777     // the parent that points to the current function must be valid.
778     for (auto &edge : parent_func->GetTailCallingEdges()) {
779       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
780         call_edge = edge.get();
781         break;
782       }
783     }
784   }
785   if (!call_edge) {
786     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
787                   "to current function");
788     return false;
789   }
790 
791   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
792   //    available call site parameters. If found, evaluate the corresponding
793   //    parameter in the context of the parent frame.
794   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
795   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
796   if (!subexpr_data) {
797     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
798     return false;
799   }
800 
801   const CallSiteParameter *matched_param = nullptr;
802   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
803     DataExtractor param_subexpr_extractor;
804     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
805       continue;
806     lldb::offset_t param_subexpr_offset = 0;
807     const void *param_subexpr_data =
808         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
809     if (!param_subexpr_data ||
810         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
811       continue;
812 
813     // At this point, the DW_OP_entry_value sub-expression and the callee-side
814     // expression in the call site parameter are known to have the same length.
815     // Check whether they are equal.
816     //
817     // Note that an equality check is sufficient: the contents of the
818     // DW_OP_entry_value subexpression are only used to identify the right call
819     // site parameter in the parent, and do not require any special handling.
820     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
821       matched_param = &param;
822       break;
823     }
824   }
825   if (!matched_param) {
826     LLDB_LOG(log,
827              "Evaluate_DW_OP_entry_value: no matching call site param found");
828     return false;
829   }
830 
831   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
832   // subexpresion whenever llvm does.
833   Value result;
834   const DWARFExpression &param_expr = matched_param->LocationInCaller;
835   if (!param_expr.Evaluate(&parent_exe_ctx,
836                            parent_frame->GetRegisterContext().get(),
837                            /*loclist_base_addr=*/LLDB_INVALID_ADDRESS,
838                            /*initial_value_ptr=*/nullptr,
839                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
840     LLDB_LOG(log,
841              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
842     return false;
843   }
844 
845   stack.push_back(result);
846   return true;
847 }
848 
849 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
850                                lldb::addr_t loclist_base_load_addr,
851                                const Value *initial_value_ptr,
852                                const Value *object_address_ptr, Value &result,
853                                Status *error_ptr) const {
854   ExecutionContext exe_ctx(exe_scope);
855   return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
856                   object_address_ptr, result, error_ptr);
857 }
858 
859 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
860                                RegisterContext *reg_ctx,
861                                lldb::addr_t func_load_addr,
862                                const Value *initial_value_ptr,
863                                const Value *object_address_ptr, Value &result,
864                                Status *error_ptr) const {
865   ModuleSP module_sp = m_module_wp.lock();
866 
867   if (IsLocationList()) {
868     addr_t pc;
869     StackFrame *frame = nullptr;
870     if (reg_ctx)
871       pc = reg_ctx->GetPC();
872     else {
873       frame = exe_ctx->GetFramePtr();
874       if (!frame)
875         return false;
876       RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
877       if (!reg_ctx_sp)
878         return false;
879       pc = reg_ctx_sp->GetPC();
880     }
881 
882     if (func_load_addr != LLDB_INVALID_ADDRESS) {
883       if (pc == LLDB_INVALID_ADDRESS) {
884         if (error_ptr)
885           error_ptr->SetErrorString("Invalid PC in frame.");
886         return false;
887       }
888 
889       if (llvm::Optional<DataExtractor> expr =
890               GetLocationExpression(func_load_addr, pc)) {
891         return DWARFExpression::Evaluate(
892             exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
893             initial_value_ptr, object_address_ptr, result, error_ptr);
894       }
895     }
896     if (error_ptr)
897       error_ptr->SetErrorString("variable not available");
898     return false;
899   }
900 
901   // Not a location list, just a single expression.
902   return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
903                                    m_dwarf_cu, m_reg_kind, initial_value_ptr,
904                                    object_address_ptr, result, error_ptr);
905 }
906 
907 namespace {
908 /// The location description kinds described by the DWARF v5
909 /// specification.  Composite locations are handled out-of-band and
910 /// thus aren't part of the enum.
911 enum LocationDescriptionKind {
912   Empty,
913   Memory,
914   Register,
915   Implicit
916   /* Composite*/
917 };
918 /// Adjust value's ValueType according to the kind of location description.
919 void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
920                                             LocationDescriptionKind kind,
921                                             Value *value = nullptr) {
922   // Note that this function is conflating DWARF expressions with
923   // DWARF location descriptions. Perhaps it would be better to define
924   // a wrapper for DWARFExpresssion::Eval() that deals with DWARF
925   // location descriptions (which consist of one or more DWARF
926   // expressions). But doing this would mean we'd also need factor the
927   // handling of DW_OP_(bit_)piece out of this function.
928   if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
929     const char *log_msg = "DWARF location description kind: %s";
930     switch (kind) {
931     case Empty:
932       LLDB_LOGF(log, log_msg, "Empty");
933       break;
934     case Memory:
935       LLDB_LOGF(log, log_msg, "Memory");
936       if (value->GetValueType() == Value::ValueType::Scalar)
937         value->SetValueType(Value::ValueType::LoadAddress);
938       break;
939     case Register:
940       LLDB_LOGF(log, log_msg, "Register");
941       value->SetValueType(Value::ValueType::Scalar);
942       break;
943     case Implicit:
944       LLDB_LOGF(log, log_msg, "Implicit");
945       if (value->GetValueType() == Value::ValueType::LoadAddress)
946         value->SetValueType(Value::ValueType::Scalar);
947       break;
948     }
949   }
950 }
951 } // namespace
952 
953 bool DWARFExpression::Evaluate(
954     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
955     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
956     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
957     const Value *initial_value_ptr, const Value *object_address_ptr,
958     Value &result, Status *error_ptr) {
959 
960   if (opcodes.GetByteSize() == 0) {
961     if (error_ptr)
962       error_ptr->SetErrorString(
963           "no location, value may have been optimized out");
964     return false;
965   }
966   std::vector<Value> stack;
967 
968   Process *process = nullptr;
969   StackFrame *frame = nullptr;
970 
971   if (exe_ctx) {
972     process = exe_ctx->GetProcessPtr();
973     frame = exe_ctx->GetFramePtr();
974   }
975   if (reg_ctx == nullptr && frame)
976     reg_ctx = frame->GetRegisterContext().get();
977 
978   if (initial_value_ptr)
979     stack.push_back(*initial_value_ptr);
980 
981   lldb::offset_t offset = 0;
982   Value tmp;
983   uint32_t reg_num;
984 
985   /// Insertion point for evaluating multi-piece expression.
986   uint64_t op_piece_offset = 0;
987   Value pieces; // Used for DW_OP_piece
988 
989   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
990   // A generic type is "an integral type that has the size of an address and an
991   // unspecified signedness". For now, just use the signedness of the operand.
992   // TODO: Implement a real typed stack, and store the genericness of the value
993   // there.
994   auto to_generic = [&](auto v) {
995     bool is_signed = std::is_signed<decltype(v)>::value;
996     return Scalar(llvm::APSInt(
997         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
998         !is_signed));
999   };
1000 
1001   // The default kind is a memory location. This is updated by any
1002   // operation that changes this, such as DW_OP_stack_value, and reset
1003   // by composition operations like DW_OP_piece.
1004   LocationDescriptionKind dwarf4_location_description_kind = Memory;
1005 
1006   while (opcodes.ValidOffset(offset)) {
1007     const lldb::offset_t op_offset = offset;
1008     const uint8_t op = opcodes.GetU8(&offset);
1009 
1010     if (log && log->GetVerbose()) {
1011       size_t count = stack.size();
1012       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
1013                 (uint64_t)count);
1014       for (size_t i = 0; i < count; ++i) {
1015         StreamString new_value;
1016         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
1017         stack[i].Dump(&new_value);
1018         LLDB_LOGF(log, "  %s", new_value.GetData());
1019       }
1020       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
1021                 DW_OP_value_to_name(op));
1022     }
1023 
1024     switch (op) {
1025     // The DW_OP_addr operation has a single operand that encodes a machine
1026     // address and whose size is the size of an address on the target machine.
1027     case DW_OP_addr:
1028       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
1029       stack.back().SetValueType(Value::ValueType::FileAddress);
1030       // Convert the file address to a load address, so subsequent
1031       // DWARF operators can operate on it.
1032       if (frame)
1033         stack.back().ConvertToLoadAddress(module_sp.get(),
1034                                           frame->CalculateTarget().get());
1035       break;
1036 
1037     // The DW_OP_addr_sect_offset4 is used for any location expressions in
1038     // shared libraries that have a location like:
1039     //  DW_OP_addr(0x1000)
1040     // If this address resides in a shared library, then this virtual address
1041     // won't make sense when it is evaluated in the context of a running
1042     // process where shared libraries have been slid. To account for this, this
1043     // new address type where we can store the section pointer and a 4 byte
1044     // offset.
1045     //      case DW_OP_addr_sect_offset4:
1046     //          {
1047     //              result_type = eResultTypeFileAddress;
1048     //              lldb::Section *sect = (lldb::Section
1049     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
1050     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1051     //
1052     //              Address so_addr (sect, sect_offset);
1053     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
1054     //              if (load_addr != LLDB_INVALID_ADDRESS)
1055     //              {
1056     //                  // We successfully resolve a file address to a load
1057     //                  // address.
1058     //                  stack.push_back(load_addr);
1059     //                  break;
1060     //              }
1061     //              else
1062     //              {
1063     //                  // We were able
1064     //                  if (error_ptr)
1065     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
1066     //                      %s is not currently loaded.\n",
1067     //                      sect->GetName().AsCString(),
1068     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1069     //                  return false;
1070     //              }
1071     //          }
1072     //          break;
1073 
1074     // OPCODE: DW_OP_deref
1075     // OPERANDS: none
1076     // DESCRIPTION: Pops the top stack entry and treats it as an address.
1077     // The value retrieved from that address is pushed. The size of the data
1078     // retrieved from the dereferenced address is the size of an address on the
1079     // target machine.
1080     case DW_OP_deref: {
1081       if (stack.empty()) {
1082         if (error_ptr)
1083           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1084         return false;
1085       }
1086       Value::ValueType value_type = stack.back().GetValueType();
1087       switch (value_type) {
1088       case Value::ValueType::HostAddress: {
1089         void *src = (void *)stack.back().GetScalar().ULongLong();
1090         intptr_t ptr;
1091         ::memcpy(&ptr, src, sizeof(void *));
1092         stack.back().GetScalar() = ptr;
1093         stack.back().ClearContext();
1094       } break;
1095       case Value::ValueType::FileAddress: {
1096         auto file_addr = stack.back().GetScalar().ULongLong(
1097             LLDB_INVALID_ADDRESS);
1098         if (!module_sp) {
1099           if (error_ptr)
1100             error_ptr->SetErrorString(
1101                 "need module to resolve file address for DW_OP_deref");
1102           return false;
1103         }
1104         Address so_addr;
1105         if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
1106           if (error_ptr)
1107             error_ptr->SetErrorString(
1108                 "failed to resolve file address in module");
1109           return false;
1110         }
1111         addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
1112         if (load_Addr == LLDB_INVALID_ADDRESS) {
1113           if (error_ptr)
1114             error_ptr->SetErrorString("failed to resolve load address");
1115           return false;
1116         }
1117         stack.back().GetScalar() = load_Addr;
1118         // Fall through to load address promotion code below.
1119       } LLVM_FALLTHROUGH;
1120       case Value::ValueType::Scalar:
1121         // Promote Scalar to LoadAddress and fall through.
1122         stack.back().SetValueType(Value::ValueType::LoadAddress);
1123         LLVM_FALLTHROUGH;
1124       case Value::ValueType::LoadAddress:
1125         if (exe_ctx) {
1126           if (process) {
1127             lldb::addr_t pointer_addr =
1128                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1129             Status error;
1130             lldb::addr_t pointer_value =
1131                 process->ReadPointerFromMemory(pointer_addr, error);
1132             if (pointer_value != LLDB_INVALID_ADDRESS) {
1133               if (ABISP abi_sp = process->GetABI())
1134                 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1135               stack.back().GetScalar() = pointer_value;
1136               stack.back().ClearContext();
1137             } else {
1138               if (error_ptr)
1139                 error_ptr->SetErrorStringWithFormat(
1140                     "Failed to dereference pointer from 0x%" PRIx64
1141                     " for DW_OP_deref: %s\n",
1142                     pointer_addr, error.AsCString());
1143               return false;
1144             }
1145           } else {
1146             if (error_ptr)
1147               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1148             return false;
1149           }
1150         } else {
1151           if (error_ptr)
1152             error_ptr->SetErrorString(
1153                 "NULL execution context for DW_OP_deref.\n");
1154           return false;
1155         }
1156         break;
1157 
1158       case Value::ValueType::Invalid:
1159         if (error_ptr)
1160           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1161         return false;
1162       }
1163 
1164     } break;
1165 
1166     // OPCODE: DW_OP_deref_size
1167     // OPERANDS: 1
1168     //  1 - uint8_t that specifies the size of the data to dereference.
1169     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1170     // stack entry and treats it as an address. The value retrieved from that
1171     // address is pushed. In the DW_OP_deref_size operation, however, the size
1172     // in bytes of the data retrieved from the dereferenced address is
1173     // specified by the single operand. This operand is a 1-byte unsigned
1174     // integral constant whose value may not be larger than the size of an
1175     // address on the target machine. The data retrieved is zero extended to
1176     // the size of an address on the target machine before being pushed on the
1177     // expression stack.
1178     case DW_OP_deref_size: {
1179       if (stack.empty()) {
1180         if (error_ptr)
1181           error_ptr->SetErrorString(
1182               "Expression stack empty for DW_OP_deref_size.");
1183         return false;
1184       }
1185       uint8_t size = opcodes.GetU8(&offset);
1186       Value::ValueType value_type = stack.back().GetValueType();
1187       switch (value_type) {
1188       case Value::ValueType::HostAddress: {
1189         void *src = (void *)stack.back().GetScalar().ULongLong();
1190         intptr_t ptr;
1191         ::memcpy(&ptr, src, sizeof(void *));
1192         // I can't decide whether the size operand should apply to the bytes in
1193         // their
1194         // lldb-host endianness or the target endianness.. I doubt this'll ever
1195         // come up but I'll opt for assuming big endian regardless.
1196         switch (size) {
1197         case 1:
1198           ptr = ptr & 0xff;
1199           break;
1200         case 2:
1201           ptr = ptr & 0xffff;
1202           break;
1203         case 3:
1204           ptr = ptr & 0xffffff;
1205           break;
1206         case 4:
1207           ptr = ptr & 0xffffffff;
1208           break;
1209         // the casts are added to work around the case where intptr_t is a 32
1210         // bit quantity;
1211         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1212         // program.
1213         case 5:
1214           ptr = (intptr_t)ptr & 0xffffffffffULL;
1215           break;
1216         case 6:
1217           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1218           break;
1219         case 7:
1220           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1221           break;
1222         default:
1223           break;
1224         }
1225         stack.back().GetScalar() = ptr;
1226         stack.back().ClearContext();
1227       } break;
1228       case Value::ValueType::Scalar:
1229       case Value::ValueType::LoadAddress:
1230         if (exe_ctx) {
1231           if (process) {
1232             lldb::addr_t pointer_addr =
1233                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1234             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1235             Status error;
1236             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1237                 size) {
1238               DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
1239                                       process->GetByteOrder(), size);
1240               lldb::offset_t addr_data_offset = 0;
1241               switch (size) {
1242               case 1:
1243                 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
1244                 break;
1245               case 2:
1246                 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
1247                 break;
1248               case 4:
1249                 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
1250                 break;
1251               case 8:
1252                 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
1253                 break;
1254               default:
1255                 stack.back().GetScalar() =
1256                     addr_data.GetAddress(&addr_data_offset);
1257               }
1258               stack.back().ClearContext();
1259             } else {
1260               if (error_ptr)
1261                 error_ptr->SetErrorStringWithFormat(
1262                     "Failed to dereference pointer from 0x%" PRIx64
1263                     " for DW_OP_deref: %s\n",
1264                     pointer_addr, error.AsCString());
1265               return false;
1266             }
1267           } else {
1268             if (error_ptr)
1269               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1270             return false;
1271           }
1272         } else {
1273           if (error_ptr)
1274             error_ptr->SetErrorString(
1275                 "NULL execution context for DW_OP_deref_size.\n");
1276           return false;
1277         }
1278         break;
1279 
1280       case Value::ValueType::FileAddress:
1281       case Value::ValueType::Invalid:
1282         if (error_ptr)
1283           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1284         return false;
1285       }
1286 
1287     } break;
1288 
1289     // OPCODE: DW_OP_xderef_size
1290     // OPERANDS: 1
1291     //  1 - uint8_t that specifies the size of the data to dereference.
1292     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1293     // the top of the stack is treated as an address. The second stack entry is
1294     // treated as an "address space identifier" for those architectures that
1295     // support multiple address spaces. The top two stack elements are popped,
1296     // a data item is retrieved through an implementation-defined address
1297     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1298     // operation, however, the size in bytes of the data retrieved from the
1299     // dereferenced address is specified by the single operand. This operand is
1300     // a 1-byte unsigned integral constant whose value may not be larger than
1301     // the size of an address on the target machine. The data retrieved is zero
1302     // extended to the size of an address on the target machine before being
1303     // pushed on the expression stack.
1304     case DW_OP_xderef_size:
1305       if (error_ptr)
1306         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1307       return false;
1308     // OPCODE: DW_OP_xderef
1309     // OPERANDS: none
1310     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1311     // the top of the stack is treated as an address. The second stack entry is
1312     // treated as an "address space identifier" for those architectures that
1313     // support multiple address spaces. The top two stack elements are popped,
1314     // a data item is retrieved through an implementation-defined address
1315     // calculation and pushed as the new stack top. The size of the data
1316     // retrieved from the dereferenced address is the size of an address on the
1317     // target machine.
1318     case DW_OP_xderef:
1319       if (error_ptr)
1320         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1321       return false;
1322 
1323     // All DW_OP_constXXX opcodes have a single operand as noted below:
1324     //
1325     // Opcode           Operand 1
1326     // DW_OP_const1u    1-byte unsigned integer constant
1327     // DW_OP_const1s    1-byte signed integer constant
1328     // DW_OP_const2u    2-byte unsigned integer constant
1329     // DW_OP_const2s    2-byte signed integer constant
1330     // DW_OP_const4u    4-byte unsigned integer constant
1331     // DW_OP_const4s    4-byte signed integer constant
1332     // DW_OP_const8u    8-byte unsigned integer constant
1333     // DW_OP_const8s    8-byte signed integer constant
1334     // DW_OP_constu     unsigned LEB128 integer constant
1335     // DW_OP_consts     signed LEB128 integer constant
1336     case DW_OP_const1u:
1337       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1338       break;
1339     case DW_OP_const1s:
1340       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1341       break;
1342     case DW_OP_const2u:
1343       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1344       break;
1345     case DW_OP_const2s:
1346       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1347       break;
1348     case DW_OP_const4u:
1349       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1350       break;
1351     case DW_OP_const4s:
1352       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1353       break;
1354     case DW_OP_const8u:
1355       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1356       break;
1357     case DW_OP_const8s:
1358       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1359       break;
1360     // These should also use to_generic, but we can't do that due to a
1361     // producer-side bug in llvm. See llvm.org/pr48087.
1362     case DW_OP_constu:
1363       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1364       break;
1365     case DW_OP_consts:
1366       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1367       break;
1368 
1369     // OPCODE: DW_OP_dup
1370     // OPERANDS: none
1371     // DESCRIPTION: duplicates the value at the top of the stack
1372     case DW_OP_dup:
1373       if (stack.empty()) {
1374         if (error_ptr)
1375           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1376         return false;
1377       } else
1378         stack.push_back(stack.back());
1379       break;
1380 
1381     // OPCODE: DW_OP_drop
1382     // OPERANDS: none
1383     // DESCRIPTION: pops the value at the top of the stack
1384     case DW_OP_drop:
1385       if (stack.empty()) {
1386         if (error_ptr)
1387           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1388         return false;
1389       } else
1390         stack.pop_back();
1391       break;
1392 
1393     // OPCODE: DW_OP_over
1394     // OPERANDS: none
1395     // DESCRIPTION: Duplicates the entry currently second in the stack at
1396     // the top of the stack.
1397     case DW_OP_over:
1398       if (stack.size() < 2) {
1399         if (error_ptr)
1400           error_ptr->SetErrorString(
1401               "Expression stack needs at least 2 items for DW_OP_over.");
1402         return false;
1403       } else
1404         stack.push_back(stack[stack.size() - 2]);
1405       break;
1406 
1407     // OPCODE: DW_OP_pick
1408     // OPERANDS: uint8_t index into the current stack
1409     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1410     // inclusive) is pushed on the stack
1411     case DW_OP_pick: {
1412       uint8_t pick_idx = opcodes.GetU8(&offset);
1413       if (pick_idx < stack.size())
1414         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1415       else {
1416         if (error_ptr)
1417           error_ptr->SetErrorStringWithFormat(
1418               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1419         return false;
1420       }
1421     } break;
1422 
1423     // OPCODE: DW_OP_swap
1424     // OPERANDS: none
1425     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1426     // of the stack becomes the second stack entry, and the second entry
1427     // becomes the top of the stack
1428     case DW_OP_swap:
1429       if (stack.size() < 2) {
1430         if (error_ptr)
1431           error_ptr->SetErrorString(
1432               "Expression stack needs at least 2 items for DW_OP_swap.");
1433         return false;
1434       } else {
1435         tmp = stack.back();
1436         stack.back() = stack[stack.size() - 2];
1437         stack[stack.size() - 2] = tmp;
1438       }
1439       break;
1440 
1441     // OPCODE: DW_OP_rot
1442     // OPERANDS: none
1443     // DESCRIPTION: Rotates the first three stack entries. The entry at
1444     // the top of the stack becomes the third stack entry, the second entry
1445     // becomes the top of the stack, and the third entry becomes the second
1446     // entry.
1447     case DW_OP_rot:
1448       if (stack.size() < 3) {
1449         if (error_ptr)
1450           error_ptr->SetErrorString(
1451               "Expression stack needs at least 3 items for DW_OP_rot.");
1452         return false;
1453       } else {
1454         size_t last_idx = stack.size() - 1;
1455         Value old_top = stack[last_idx];
1456         stack[last_idx] = stack[last_idx - 1];
1457         stack[last_idx - 1] = stack[last_idx - 2];
1458         stack[last_idx - 2] = old_top;
1459       }
1460       break;
1461 
1462     // OPCODE: DW_OP_abs
1463     // OPERANDS: none
1464     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1465     // value and pushes its absolute value. If the absolute value can not be
1466     // represented, the result is undefined.
1467     case DW_OP_abs:
1468       if (stack.empty()) {
1469         if (error_ptr)
1470           error_ptr->SetErrorString(
1471               "Expression stack needs at least 1 item for DW_OP_abs.");
1472         return false;
1473       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1474         if (error_ptr)
1475           error_ptr->SetErrorString(
1476               "Failed to take the absolute value of the first stack item.");
1477         return false;
1478       }
1479       break;
1480 
1481     // OPCODE: DW_OP_and
1482     // OPERANDS: none
1483     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1484     // operation on the two, and pushes the result.
1485     case DW_OP_and:
1486       if (stack.size() < 2) {
1487         if (error_ptr)
1488           error_ptr->SetErrorString(
1489               "Expression stack needs at least 2 items for DW_OP_and.");
1490         return false;
1491       } else {
1492         tmp = stack.back();
1493         stack.pop_back();
1494         stack.back().ResolveValue(exe_ctx) =
1495             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1496       }
1497       break;
1498 
1499     // OPCODE: DW_OP_div
1500     // OPERANDS: none
1501     // DESCRIPTION: pops the top two stack values, divides the former second
1502     // entry by the former top of the stack using signed division, and pushes
1503     // the result.
1504     case DW_OP_div:
1505       if (stack.size() < 2) {
1506         if (error_ptr)
1507           error_ptr->SetErrorString(
1508               "Expression stack needs at least 2 items for DW_OP_div.");
1509         return false;
1510       } else {
1511         tmp = stack.back();
1512         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1513           if (error_ptr)
1514             error_ptr->SetErrorString("Divide by zero.");
1515           return false;
1516         } else {
1517           stack.pop_back();
1518           stack.back() =
1519               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1520           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1521             if (error_ptr)
1522               error_ptr->SetErrorString("Divide failed.");
1523             return false;
1524           }
1525         }
1526       }
1527       break;
1528 
1529     // OPCODE: DW_OP_minus
1530     // OPERANDS: none
1531     // DESCRIPTION: pops the top two stack values, subtracts the former top
1532     // of the stack from the former second entry, and pushes the result.
1533     case DW_OP_minus:
1534       if (stack.size() < 2) {
1535         if (error_ptr)
1536           error_ptr->SetErrorString(
1537               "Expression stack needs at least 2 items for DW_OP_minus.");
1538         return false;
1539       } else {
1540         tmp = stack.back();
1541         stack.pop_back();
1542         stack.back().ResolveValue(exe_ctx) =
1543             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1544       }
1545       break;
1546 
1547     // OPCODE: DW_OP_mod
1548     // OPERANDS: none
1549     // DESCRIPTION: pops the top two stack values and pushes the result of
1550     // the calculation: former second stack entry modulo the former top of the
1551     // stack.
1552     case DW_OP_mod:
1553       if (stack.size() < 2) {
1554         if (error_ptr)
1555           error_ptr->SetErrorString(
1556               "Expression stack needs at least 2 items for DW_OP_mod.");
1557         return false;
1558       } else {
1559         tmp = stack.back();
1560         stack.pop_back();
1561         stack.back().ResolveValue(exe_ctx) =
1562             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1563       }
1564       break;
1565 
1566     // OPCODE: DW_OP_mul
1567     // OPERANDS: none
1568     // DESCRIPTION: pops the top two stack entries, multiplies them
1569     // together, and pushes the result.
1570     case DW_OP_mul:
1571       if (stack.size() < 2) {
1572         if (error_ptr)
1573           error_ptr->SetErrorString(
1574               "Expression stack needs at least 2 items for DW_OP_mul.");
1575         return false;
1576       } else {
1577         tmp = stack.back();
1578         stack.pop_back();
1579         stack.back().ResolveValue(exe_ctx) =
1580             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1581       }
1582       break;
1583 
1584     // OPCODE: DW_OP_neg
1585     // OPERANDS: none
1586     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1587     case DW_OP_neg:
1588       if (stack.empty()) {
1589         if (error_ptr)
1590           error_ptr->SetErrorString(
1591               "Expression stack needs at least 1 item for DW_OP_neg.");
1592         return false;
1593       } else {
1594         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1595           if (error_ptr)
1596             error_ptr->SetErrorString("Unary negate failed.");
1597           return false;
1598         }
1599       }
1600       break;
1601 
1602     // OPCODE: DW_OP_not
1603     // OPERANDS: none
1604     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1605     // complement
1606     case DW_OP_not:
1607       if (stack.empty()) {
1608         if (error_ptr)
1609           error_ptr->SetErrorString(
1610               "Expression stack needs at least 1 item for DW_OP_not.");
1611         return false;
1612       } else {
1613         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1614           if (error_ptr)
1615             error_ptr->SetErrorString("Logical NOT failed.");
1616           return false;
1617         }
1618       }
1619       break;
1620 
1621     // OPCODE: DW_OP_or
1622     // OPERANDS: none
1623     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1624     // operation on the two, and pushes the result.
1625     case DW_OP_or:
1626       if (stack.size() < 2) {
1627         if (error_ptr)
1628           error_ptr->SetErrorString(
1629               "Expression stack needs at least 2 items for DW_OP_or.");
1630         return false;
1631       } else {
1632         tmp = stack.back();
1633         stack.pop_back();
1634         stack.back().ResolveValue(exe_ctx) =
1635             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1636       }
1637       break;
1638 
1639     // OPCODE: DW_OP_plus
1640     // OPERANDS: none
1641     // DESCRIPTION: pops the top two stack entries, adds them together, and
1642     // pushes the result.
1643     case DW_OP_plus:
1644       if (stack.size() < 2) {
1645         if (error_ptr)
1646           error_ptr->SetErrorString(
1647               "Expression stack needs at least 2 items for DW_OP_plus.");
1648         return false;
1649       } else {
1650         tmp = stack.back();
1651         stack.pop_back();
1652         stack.back().GetScalar() += tmp.GetScalar();
1653       }
1654       break;
1655 
1656     // OPCODE: DW_OP_plus_uconst
1657     // OPERANDS: none
1658     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1659     // constant operand and pushes the result.
1660     case DW_OP_plus_uconst:
1661       if (stack.empty()) {
1662         if (error_ptr)
1663           error_ptr->SetErrorString(
1664               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1665         return false;
1666       } else {
1667         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1668         // Implicit conversion from a UINT to a Scalar...
1669         stack.back().GetScalar() += uconst_value;
1670         if (!stack.back().GetScalar().IsValid()) {
1671           if (error_ptr)
1672             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1673           return false;
1674         }
1675       }
1676       break;
1677 
1678     // OPCODE: DW_OP_shl
1679     // OPERANDS: none
1680     // DESCRIPTION:  pops the top two stack entries, shifts the former
1681     // second entry left by the number of bits specified by the former top of
1682     // the stack, and pushes the result.
1683     case DW_OP_shl:
1684       if (stack.size() < 2) {
1685         if (error_ptr)
1686           error_ptr->SetErrorString(
1687               "Expression stack needs at least 2 items for DW_OP_shl.");
1688         return false;
1689       } else {
1690         tmp = stack.back();
1691         stack.pop_back();
1692         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1693       }
1694       break;
1695 
1696     // OPCODE: DW_OP_shr
1697     // OPERANDS: none
1698     // DESCRIPTION: pops the top two stack entries, shifts the former second
1699     // entry right logically (filling with zero bits) by the number of bits
1700     // specified by the former top of the stack, and pushes the result.
1701     case DW_OP_shr:
1702       if (stack.size() < 2) {
1703         if (error_ptr)
1704           error_ptr->SetErrorString(
1705               "Expression stack needs at least 2 items for DW_OP_shr.");
1706         return false;
1707       } else {
1708         tmp = stack.back();
1709         stack.pop_back();
1710         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1711                 tmp.ResolveValue(exe_ctx))) {
1712           if (error_ptr)
1713             error_ptr->SetErrorString("DW_OP_shr failed.");
1714           return false;
1715         }
1716       }
1717       break;
1718 
1719     // OPCODE: DW_OP_shra
1720     // OPERANDS: none
1721     // DESCRIPTION: pops the top two stack entries, shifts the former second
1722     // entry right arithmetically (divide the magnitude by 2, keep the same
1723     // sign for the result) by the number of bits specified by the former top
1724     // of the stack, and pushes the result.
1725     case DW_OP_shra:
1726       if (stack.size() < 2) {
1727         if (error_ptr)
1728           error_ptr->SetErrorString(
1729               "Expression stack needs at least 2 items for DW_OP_shra.");
1730         return false;
1731       } else {
1732         tmp = stack.back();
1733         stack.pop_back();
1734         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1735       }
1736       break;
1737 
1738     // OPCODE: DW_OP_xor
1739     // OPERANDS: none
1740     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1741     // exclusive-or operation on the two, and pushes the result.
1742     case DW_OP_xor:
1743       if (stack.size() < 2) {
1744         if (error_ptr)
1745           error_ptr->SetErrorString(
1746               "Expression stack needs at least 2 items for DW_OP_xor.");
1747         return false;
1748       } else {
1749         tmp = stack.back();
1750         stack.pop_back();
1751         stack.back().ResolveValue(exe_ctx) =
1752             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1753       }
1754       break;
1755 
1756     // OPCODE: DW_OP_skip
1757     // OPERANDS: int16_t
1758     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1759     // signed integer constant. The 2-byte constant is the number of bytes of
1760     // the DWARF expression to skip forward or backward from the current
1761     // operation, beginning after the 2-byte constant.
1762     case DW_OP_skip: {
1763       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1764       lldb::offset_t new_offset = offset + skip_offset;
1765       if (opcodes.ValidOffset(new_offset))
1766         offset = new_offset;
1767       else {
1768         if (error_ptr)
1769           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1770         return false;
1771       }
1772     } break;
1773 
1774     // OPCODE: DW_OP_bra
1775     // OPERANDS: int16_t
1776     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1777     // signed integer constant. This operation pops the top of stack. If the
1778     // value popped is not the constant 0, the 2-byte constant operand is the
1779     // number of bytes of the DWARF expression to skip forward or backward from
1780     // the current operation, beginning after the 2-byte constant.
1781     case DW_OP_bra:
1782       if (stack.empty()) {
1783         if (error_ptr)
1784           error_ptr->SetErrorString(
1785               "Expression stack needs at least 1 item for DW_OP_bra.");
1786         return false;
1787       } else {
1788         tmp = stack.back();
1789         stack.pop_back();
1790         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1791         Scalar zero(0);
1792         if (tmp.ResolveValue(exe_ctx) != zero) {
1793           lldb::offset_t new_offset = offset + bra_offset;
1794           if (opcodes.ValidOffset(new_offset))
1795             offset = new_offset;
1796           else {
1797             if (error_ptr)
1798               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1799             return false;
1800           }
1801         }
1802       }
1803       break;
1804 
1805     // OPCODE: DW_OP_eq
1806     // OPERANDS: none
1807     // DESCRIPTION: pops the top two stack values, compares using the
1808     // equals (==) operator.
1809     // STACK RESULT: push the constant value 1 onto the stack if the result
1810     // of the operation is true or the constant value 0 if the result of the
1811     // operation is false.
1812     case DW_OP_eq:
1813       if (stack.size() < 2) {
1814         if (error_ptr)
1815           error_ptr->SetErrorString(
1816               "Expression stack needs at least 2 items for DW_OP_eq.");
1817         return false;
1818       } else {
1819         tmp = stack.back();
1820         stack.pop_back();
1821         stack.back().ResolveValue(exe_ctx) =
1822             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1823       }
1824       break;
1825 
1826     // OPCODE: DW_OP_ge
1827     // OPERANDS: none
1828     // DESCRIPTION: pops the top two stack values, compares using the
1829     // greater than or equal to (>=) operator.
1830     // STACK RESULT: push the constant value 1 onto the stack if the result
1831     // of the operation is true or the constant value 0 if the result of the
1832     // operation is false.
1833     case DW_OP_ge:
1834       if (stack.size() < 2) {
1835         if (error_ptr)
1836           error_ptr->SetErrorString(
1837               "Expression stack needs at least 2 items for DW_OP_ge.");
1838         return false;
1839       } else {
1840         tmp = stack.back();
1841         stack.pop_back();
1842         stack.back().ResolveValue(exe_ctx) =
1843             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1844       }
1845       break;
1846 
1847     // OPCODE: DW_OP_gt
1848     // OPERANDS: none
1849     // DESCRIPTION: pops the top two stack values, compares using the
1850     // greater than (>) operator.
1851     // STACK RESULT: push the constant value 1 onto the stack if the result
1852     // of the operation is true or the constant value 0 if the result of the
1853     // operation is false.
1854     case DW_OP_gt:
1855       if (stack.size() < 2) {
1856         if (error_ptr)
1857           error_ptr->SetErrorString(
1858               "Expression stack needs at least 2 items for DW_OP_gt.");
1859         return false;
1860       } else {
1861         tmp = stack.back();
1862         stack.pop_back();
1863         stack.back().ResolveValue(exe_ctx) =
1864             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1865       }
1866       break;
1867 
1868     // OPCODE: DW_OP_le
1869     // OPERANDS: none
1870     // DESCRIPTION: pops the top two stack values, compares using the
1871     // less than or equal to (<=) operator.
1872     // STACK RESULT: push the constant value 1 onto the stack if the result
1873     // of the operation is true or the constant value 0 if the result of the
1874     // operation is false.
1875     case DW_OP_le:
1876       if (stack.size() < 2) {
1877         if (error_ptr)
1878           error_ptr->SetErrorString(
1879               "Expression stack needs at least 2 items for DW_OP_le.");
1880         return false;
1881       } else {
1882         tmp = stack.back();
1883         stack.pop_back();
1884         stack.back().ResolveValue(exe_ctx) =
1885             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1886       }
1887       break;
1888 
1889     // OPCODE: DW_OP_lt
1890     // OPERANDS: none
1891     // DESCRIPTION: pops the top two stack values, compares using the
1892     // less than (<) operator.
1893     // STACK RESULT: push the constant value 1 onto the stack if the result
1894     // of the operation is true or the constant value 0 if the result of the
1895     // operation is false.
1896     case DW_OP_lt:
1897       if (stack.size() < 2) {
1898         if (error_ptr)
1899           error_ptr->SetErrorString(
1900               "Expression stack needs at least 2 items for DW_OP_lt.");
1901         return false;
1902       } else {
1903         tmp = stack.back();
1904         stack.pop_back();
1905         stack.back().ResolveValue(exe_ctx) =
1906             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1907       }
1908       break;
1909 
1910     // OPCODE: DW_OP_ne
1911     // OPERANDS: none
1912     // DESCRIPTION: pops the top two stack values, compares using the
1913     // not equal (!=) operator.
1914     // STACK RESULT: push the constant value 1 onto the stack if the result
1915     // of the operation is true or the constant value 0 if the result of the
1916     // operation is false.
1917     case DW_OP_ne:
1918       if (stack.size() < 2) {
1919         if (error_ptr)
1920           error_ptr->SetErrorString(
1921               "Expression stack needs at least 2 items for DW_OP_ne.");
1922         return false;
1923       } else {
1924         tmp = stack.back();
1925         stack.pop_back();
1926         stack.back().ResolveValue(exe_ctx) =
1927             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1928       }
1929       break;
1930 
1931     // OPCODE: DW_OP_litn
1932     // OPERANDS: none
1933     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1934     // STACK RESULT: push the unsigned literal constant value onto the top
1935     // of the stack.
1936     case DW_OP_lit0:
1937     case DW_OP_lit1:
1938     case DW_OP_lit2:
1939     case DW_OP_lit3:
1940     case DW_OP_lit4:
1941     case DW_OP_lit5:
1942     case DW_OP_lit6:
1943     case DW_OP_lit7:
1944     case DW_OP_lit8:
1945     case DW_OP_lit9:
1946     case DW_OP_lit10:
1947     case DW_OP_lit11:
1948     case DW_OP_lit12:
1949     case DW_OP_lit13:
1950     case DW_OP_lit14:
1951     case DW_OP_lit15:
1952     case DW_OP_lit16:
1953     case DW_OP_lit17:
1954     case DW_OP_lit18:
1955     case DW_OP_lit19:
1956     case DW_OP_lit20:
1957     case DW_OP_lit21:
1958     case DW_OP_lit22:
1959     case DW_OP_lit23:
1960     case DW_OP_lit24:
1961     case DW_OP_lit25:
1962     case DW_OP_lit26:
1963     case DW_OP_lit27:
1964     case DW_OP_lit28:
1965     case DW_OP_lit29:
1966     case DW_OP_lit30:
1967     case DW_OP_lit31:
1968       stack.push_back(to_generic(op - DW_OP_lit0));
1969       break;
1970 
1971     // OPCODE: DW_OP_regN
1972     // OPERANDS: none
1973     // DESCRIPTION: Push the value in register n on the top of the stack.
1974     case DW_OP_reg0:
1975     case DW_OP_reg1:
1976     case DW_OP_reg2:
1977     case DW_OP_reg3:
1978     case DW_OP_reg4:
1979     case DW_OP_reg5:
1980     case DW_OP_reg6:
1981     case DW_OP_reg7:
1982     case DW_OP_reg8:
1983     case DW_OP_reg9:
1984     case DW_OP_reg10:
1985     case DW_OP_reg11:
1986     case DW_OP_reg12:
1987     case DW_OP_reg13:
1988     case DW_OP_reg14:
1989     case DW_OP_reg15:
1990     case DW_OP_reg16:
1991     case DW_OP_reg17:
1992     case DW_OP_reg18:
1993     case DW_OP_reg19:
1994     case DW_OP_reg20:
1995     case DW_OP_reg21:
1996     case DW_OP_reg22:
1997     case DW_OP_reg23:
1998     case DW_OP_reg24:
1999     case DW_OP_reg25:
2000     case DW_OP_reg26:
2001     case DW_OP_reg27:
2002     case DW_OP_reg28:
2003     case DW_OP_reg29:
2004     case DW_OP_reg30:
2005     case DW_OP_reg31: {
2006       dwarf4_location_description_kind = Register;
2007       reg_num = op - DW_OP_reg0;
2008 
2009       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2010         stack.push_back(tmp);
2011       else
2012         return false;
2013     } break;
2014     // OPCODE: DW_OP_regx
2015     // OPERANDS:
2016     //      ULEB128 literal operand that encodes the register.
2017     // DESCRIPTION: Push the value in register on the top of the stack.
2018     case DW_OP_regx: {
2019       dwarf4_location_description_kind = Register;
2020       reg_num = opcodes.GetULEB128(&offset);
2021       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2022         stack.push_back(tmp);
2023       else
2024         return false;
2025     } break;
2026 
2027     // OPCODE: DW_OP_bregN
2028     // OPERANDS:
2029     //      SLEB128 offset from register N
2030     // DESCRIPTION: Value is in memory at the address specified by register
2031     // N plus an offset.
2032     case DW_OP_breg0:
2033     case DW_OP_breg1:
2034     case DW_OP_breg2:
2035     case DW_OP_breg3:
2036     case DW_OP_breg4:
2037     case DW_OP_breg5:
2038     case DW_OP_breg6:
2039     case DW_OP_breg7:
2040     case DW_OP_breg8:
2041     case DW_OP_breg9:
2042     case DW_OP_breg10:
2043     case DW_OP_breg11:
2044     case DW_OP_breg12:
2045     case DW_OP_breg13:
2046     case DW_OP_breg14:
2047     case DW_OP_breg15:
2048     case DW_OP_breg16:
2049     case DW_OP_breg17:
2050     case DW_OP_breg18:
2051     case DW_OP_breg19:
2052     case DW_OP_breg20:
2053     case DW_OP_breg21:
2054     case DW_OP_breg22:
2055     case DW_OP_breg23:
2056     case DW_OP_breg24:
2057     case DW_OP_breg25:
2058     case DW_OP_breg26:
2059     case DW_OP_breg27:
2060     case DW_OP_breg28:
2061     case DW_OP_breg29:
2062     case DW_OP_breg30:
2063     case DW_OP_breg31: {
2064       reg_num = op - DW_OP_breg0;
2065 
2066       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2067                                     tmp)) {
2068         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2069         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2070         tmp.ClearContext();
2071         stack.push_back(tmp);
2072         stack.back().SetValueType(Value::ValueType::LoadAddress);
2073       } else
2074         return false;
2075     } break;
2076     // OPCODE: DW_OP_bregx
2077     // OPERANDS: 2
2078     //      ULEB128 literal operand that encodes the register.
2079     //      SLEB128 offset from register N
2080     // DESCRIPTION: Value is in memory at the address specified by register
2081     // N plus an offset.
2082     case DW_OP_bregx: {
2083       reg_num = opcodes.GetULEB128(&offset);
2084 
2085       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2086                                     tmp)) {
2087         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2088         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2089         tmp.ClearContext();
2090         stack.push_back(tmp);
2091         stack.back().SetValueType(Value::ValueType::LoadAddress);
2092       } else
2093         return false;
2094     } break;
2095 
2096     case DW_OP_fbreg:
2097       if (exe_ctx) {
2098         if (frame) {
2099           Scalar value;
2100           if (frame->GetFrameBaseValue(value, error_ptr)) {
2101             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2102             value += fbreg_offset;
2103             stack.push_back(value);
2104             stack.back().SetValueType(Value::ValueType::LoadAddress);
2105           } else
2106             return false;
2107         } else {
2108           if (error_ptr)
2109             error_ptr->SetErrorString(
2110                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2111           return false;
2112         }
2113       } else {
2114         if (error_ptr)
2115           error_ptr->SetErrorString(
2116               "NULL execution context for DW_OP_fbreg.\n");
2117         return false;
2118       }
2119 
2120       break;
2121 
2122     // OPCODE: DW_OP_nop
2123     // OPERANDS: none
2124     // DESCRIPTION: A place holder. It has no effect on the location stack
2125     // or any of its values.
2126     case DW_OP_nop:
2127       break;
2128 
2129     // OPCODE: DW_OP_piece
2130     // OPERANDS: 1
2131     //      ULEB128: byte size of the piece
2132     // DESCRIPTION: The operand describes the size in bytes of the piece of
2133     // the object referenced by the DWARF expression whose result is at the top
2134     // of the stack. If the piece is located in a register, but does not occupy
2135     // the entire register, the placement of the piece within that register is
2136     // defined by the ABI.
2137     //
2138     // Many compilers store a single variable in sets of registers, or store a
2139     // variable partially in memory and partially in registers. DW_OP_piece
2140     // provides a way of describing how large a part of a variable a particular
2141     // DWARF expression refers to.
2142     case DW_OP_piece: {
2143       LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2144       // Reset for the next piece.
2145       dwarf4_location_description_kind = Memory;
2146 
2147       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2148 
2149       if (piece_byte_size > 0) {
2150         Value curr_piece;
2151 
2152         if (stack.empty()) {
2153           UpdateValueTypeFromLocationDescription(
2154               log, dwarf_cu, LocationDescriptionKind::Empty);
2155           // In a multi-piece expression, this means that the current piece is
2156           // not available. Fill with zeros for now by resizing the data and
2157           // appending it
2158           curr_piece.ResizeData(piece_byte_size);
2159           // Note that "0" is not a correct value for the unknown bits.
2160           // It would be better to also return a mask of valid bits together
2161           // with the expression result, so the debugger can print missing
2162           // members as "<optimized out>" or something.
2163           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2164           pieces.AppendDataToHostBuffer(curr_piece);
2165         } else {
2166           Status error;
2167           // Extract the current piece into "curr_piece"
2168           Value curr_piece_source_value(stack.back());
2169           stack.pop_back();
2170           UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2171                                                  &curr_piece_source_value);
2172 
2173           const Value::ValueType curr_piece_source_value_type =
2174               curr_piece_source_value.GetValueType();
2175           switch (curr_piece_source_value_type) {
2176           case Value::ValueType::Invalid:
2177             return false;
2178           case Value::ValueType::LoadAddress:
2179             if (process) {
2180               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2181                 lldb::addr_t load_addr =
2182                     curr_piece_source_value.GetScalar().ULongLong(
2183                         LLDB_INVALID_ADDRESS);
2184                 if (process->ReadMemory(
2185                         load_addr, curr_piece.GetBuffer().GetBytes(),
2186                         piece_byte_size, error) != piece_byte_size) {
2187                   if (error_ptr)
2188                     error_ptr->SetErrorStringWithFormat(
2189                         "failed to read memory DW_OP_piece(%" PRIu64
2190                         ") from 0x%" PRIx64,
2191                         piece_byte_size, load_addr);
2192                   return false;
2193                 }
2194               } else {
2195                 if (error_ptr)
2196                   error_ptr->SetErrorStringWithFormat(
2197                       "failed to resize the piece memory buffer for "
2198                       "DW_OP_piece(%" PRIu64 ")",
2199                       piece_byte_size);
2200                 return false;
2201               }
2202             }
2203             break;
2204 
2205           case Value::ValueType::FileAddress:
2206           case Value::ValueType::HostAddress:
2207             if (error_ptr) {
2208               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2209                   LLDB_INVALID_ADDRESS);
2210               error_ptr->SetErrorStringWithFormat(
2211                   "failed to read memory DW_OP_piece(%" PRIu64
2212                   ") from %s address 0x%" PRIx64,
2213                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2214                                            Value::ValueType::FileAddress
2215                                        ? "file"
2216                                        : "host",
2217                   addr);
2218             }
2219             return false;
2220 
2221           case Value::ValueType::Scalar: {
2222             uint32_t bit_size = piece_byte_size * 8;
2223             uint32_t bit_offset = 0;
2224             Scalar &scalar = curr_piece_source_value.GetScalar();
2225             if (!scalar.ExtractBitfield(
2226                     bit_size, bit_offset)) {
2227               if (error_ptr)
2228                 error_ptr->SetErrorStringWithFormat(
2229                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2230                     " byte scalar value.",
2231                     piece_byte_size,
2232                     (uint64_t)curr_piece_source_value.GetScalar()
2233                         .GetByteSize());
2234               return false;
2235             }
2236             // Create curr_piece with bit_size. By default Scalar
2237             // grows to the nearest host integer type.
2238             llvm::APInt fail_value(1, 0, false);
2239             llvm::APInt ap_int = scalar.UInt128(fail_value);
2240             assert(ap_int.getBitWidth() >= bit_size);
2241             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2242                                          ap_int.getNumWords()};
2243             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2244           } break;
2245           }
2246 
2247           // Check if this is the first piece?
2248           if (op_piece_offset == 0) {
2249             // This is the first piece, we should push it back onto the stack
2250             // so subsequent pieces will be able to access this piece and add
2251             // to it.
2252             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2253               if (error_ptr)
2254                 error_ptr->SetErrorString("failed to append piece data");
2255               return false;
2256             }
2257           } else {
2258             // If this is the second or later piece there should be a value on
2259             // the stack.
2260             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2261               if (error_ptr)
2262                 error_ptr->SetErrorStringWithFormat(
2263                     "DW_OP_piece for offset %" PRIu64
2264                     " but top of stack is of size %" PRIu64,
2265                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2266               return false;
2267             }
2268 
2269             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2270               if (error_ptr)
2271                 error_ptr->SetErrorString("failed to append piece data");
2272               return false;
2273             }
2274           }
2275         }
2276         op_piece_offset += piece_byte_size;
2277       }
2278     } break;
2279 
2280     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2281       if (stack.size() < 1) {
2282         UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2283                                                LocationDescriptionKind::Empty);
2284         // Reset for the next piece.
2285         dwarf4_location_description_kind = Memory;
2286         if (error_ptr)
2287           error_ptr->SetErrorString(
2288               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2289         return false;
2290       } else {
2291         UpdateValueTypeFromLocationDescription(
2292             log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2293         // Reset for the next piece.
2294         dwarf4_location_description_kind = Memory;
2295         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2296         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2297         switch (stack.back().GetValueType()) {
2298         case Value::ValueType::Invalid:
2299           return false;
2300         case Value::ValueType::Scalar: {
2301           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2302                                                         piece_bit_offset)) {
2303             if (error_ptr)
2304               error_ptr->SetErrorStringWithFormat(
2305                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2306                   " bit offset from a %" PRIu64 " bit scalar value.",
2307                   piece_bit_size, piece_bit_offset,
2308                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2309             return false;
2310           }
2311         } break;
2312 
2313         case Value::ValueType::FileAddress:
2314         case Value::ValueType::LoadAddress:
2315         case Value::ValueType::HostAddress:
2316           if (error_ptr) {
2317             error_ptr->SetErrorStringWithFormat(
2318                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2319                 ", bit_offset = %" PRIu64 ") from an address value.",
2320                 piece_bit_size, piece_bit_offset);
2321           }
2322           return false;
2323         }
2324       }
2325       break;
2326 
2327     // OPCODE: DW_OP_implicit_value
2328     // OPERANDS: 2
2329     //      ULEB128  size of the value block in bytes
2330     //      uint8_t* block bytes encoding value in target's memory
2331     //      representation
2332     // DESCRIPTION: Value is immediately stored in block in the debug info with
2333     // the memory representation of the target.
2334     case DW_OP_implicit_value: {
2335       dwarf4_location_description_kind = Implicit;
2336 
2337       const uint32_t len = opcodes.GetULEB128(&offset);
2338       const void *data = opcodes.GetData(&offset, len);
2339 
2340       if (!data) {
2341         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2342         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2343                     DW_OP_value_to_name(op));
2344         return false;
2345       }
2346 
2347       Value result(data, len);
2348       stack.push_back(result);
2349       break;
2350     }
2351 
2352     case DW_OP_implicit_pointer: {
2353       dwarf4_location_description_kind = Implicit;
2354       LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2355       return false;
2356     }
2357 
2358     // OPCODE: DW_OP_push_object_address
2359     // OPERANDS: none
2360     // DESCRIPTION: Pushes the address of the object currently being
2361     // evaluated as part of evaluation of a user presented expression. This
2362     // object may correspond to an independent variable described by its own
2363     // DIE or it may be a component of an array, structure, or class whose
2364     // address has been dynamically determined by an earlier step during user
2365     // expression evaluation.
2366     case DW_OP_push_object_address:
2367       if (object_address_ptr)
2368         stack.push_back(*object_address_ptr);
2369       else {
2370         if (error_ptr)
2371           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2372                                     "specifying an object address");
2373         return false;
2374       }
2375       break;
2376 
2377     // OPCODE: DW_OP_call2
2378     // OPERANDS:
2379     //      uint16_t compile unit relative offset of a DIE
2380     // DESCRIPTION: Performs subroutine calls during evaluation
2381     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2382     // debugging information entry in the current compilation unit.
2383     //
2384     // Operand interpretation is exactly like that for DW_FORM_ref2.
2385     //
2386     // This operation transfers control of DWARF expression evaluation to the
2387     // DW_AT_location attribute of the referenced DIE. If there is no such
2388     // attribute, then there is no effect. Execution of the DWARF expression of
2389     // a DW_AT_location attribute may add to and/or remove from values on the
2390     // stack. Execution returns to the point following the call when the end of
2391     // the attribute is reached. Values on the stack at the time of the call
2392     // may be used as parameters by the called expression and values left on
2393     // the stack by the called expression may be used as return values by prior
2394     // agreement between the calling and called expressions.
2395     case DW_OP_call2:
2396       if (error_ptr)
2397         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2398       return false;
2399     // OPCODE: DW_OP_call4
2400     // OPERANDS: 1
2401     //      uint32_t compile unit relative offset of a DIE
2402     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2403     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2404     // a debugging information entry in  the current compilation unit.
2405     //
2406     // Operand interpretation DW_OP_call4 is exactly like that for
2407     // DW_FORM_ref4.
2408     //
2409     // This operation transfers control of DWARF expression evaluation to the
2410     // DW_AT_location attribute of the referenced DIE. If there is no such
2411     // attribute, then there is no effect. Execution of the DWARF expression of
2412     // a DW_AT_location attribute may add to and/or remove from values on the
2413     // stack. Execution returns to the point following the call when the end of
2414     // the attribute is reached. Values on the stack at the time of the call
2415     // may be used as parameters by the called expression and values left on
2416     // the stack by the called expression may be used as return values by prior
2417     // agreement between the calling and called expressions.
2418     case DW_OP_call4:
2419       if (error_ptr)
2420         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2421       return false;
2422 
2423     // OPCODE: DW_OP_stack_value
2424     // OPERANDS: None
2425     // DESCRIPTION: Specifies that the object does not exist in memory but
2426     // rather is a constant value.  The value from the top of the stack is the
2427     // value to be used.  This is the actual object value and not the location.
2428     case DW_OP_stack_value:
2429       dwarf4_location_description_kind = Implicit;
2430       if (stack.empty()) {
2431         if (error_ptr)
2432           error_ptr->SetErrorString(
2433               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2434         return false;
2435       }
2436       stack.back().SetValueType(Value::ValueType::Scalar);
2437       break;
2438 
2439     // OPCODE: DW_OP_convert
2440     // OPERANDS: 1
2441     //      A ULEB128 that is either a DIE offset of a
2442     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2443     //
2444     // DESCRIPTION: Pop the top stack element, convert it to a
2445     // different type, and push the result.
2446     case DW_OP_convert: {
2447       if (stack.size() < 1) {
2448         if (error_ptr)
2449           error_ptr->SetErrorString(
2450               "Expression stack needs at least 1 item for DW_OP_convert.");
2451         return false;
2452       }
2453       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2454       uint64_t bit_size;
2455       bool sign;
2456       if (die_offset == 0) {
2457         // The generic type has the size of an address on the target
2458         // machine and an unspecified signedness. Scalar has no
2459         // "unspecified signedness", so we use unsigned types.
2460         if (!module_sp) {
2461           if (error_ptr)
2462             error_ptr->SetErrorString("No module");
2463           return false;
2464         }
2465         sign = false;
2466         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2467         if (!bit_size) {
2468           if (error_ptr)
2469             error_ptr->SetErrorString("unspecified architecture");
2470           return false;
2471         }
2472       } else {
2473         // Retrieve the type DIE that the value is being converted to.
2474         // FIXME: the constness has annoying ripple effects.
2475         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2476         if (!die) {
2477           if (error_ptr)
2478             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2479           return false;
2480         }
2481         uint64_t encoding =
2482             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2483         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2484         if (!bit_size)
2485           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2486         if (!bit_size) {
2487           if (error_ptr)
2488             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2489           return false;
2490         }
2491         switch (encoding) {
2492         case DW_ATE_signed:
2493         case DW_ATE_signed_char:
2494           sign = true;
2495           break;
2496         case DW_ATE_unsigned:
2497         case DW_ATE_unsigned_char:
2498           sign = false;
2499           break;
2500         default:
2501           if (error_ptr)
2502             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2503           return false;
2504         }
2505       }
2506       Scalar &top = stack.back().ResolveValue(exe_ctx);
2507       top.TruncOrExtendTo(bit_size, sign);
2508       break;
2509     }
2510 
2511     // OPCODE: DW_OP_call_frame_cfa
2512     // OPERANDS: None
2513     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2514     // the canonical frame address consistent with the call frame information
2515     // located in .debug_frame (or in the FDEs of the eh_frame section).
2516     case DW_OP_call_frame_cfa:
2517       if (frame) {
2518         // Note that we don't have to parse FDEs because this DWARF expression
2519         // is commonly evaluated with a valid stack frame.
2520         StackID id = frame->GetStackID();
2521         addr_t cfa = id.GetCallFrameAddress();
2522         if (cfa != LLDB_INVALID_ADDRESS) {
2523           stack.push_back(Scalar(cfa));
2524           stack.back().SetValueType(Value::ValueType::LoadAddress);
2525         } else if (error_ptr)
2526           error_ptr->SetErrorString("Stack frame does not include a canonical "
2527                                     "frame address for DW_OP_call_frame_cfa "
2528                                     "opcode.");
2529       } else {
2530         if (error_ptr)
2531           error_ptr->SetErrorString("Invalid stack frame in context for "
2532                                     "DW_OP_call_frame_cfa opcode.");
2533         return false;
2534       }
2535       break;
2536 
2537     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2538     // opcode, DW_OP_GNU_push_tls_address)
2539     // OPERANDS: none
2540     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2541     // an address in the current thread's thread-local storage block, and
2542     // pushes it on the stack.
2543     case DW_OP_form_tls_address:
2544     case DW_OP_GNU_push_tls_address: {
2545       if (stack.size() < 1) {
2546         if (error_ptr) {
2547           if (op == DW_OP_form_tls_address)
2548             error_ptr->SetErrorString(
2549                 "DW_OP_form_tls_address needs an argument.");
2550           else
2551             error_ptr->SetErrorString(
2552                 "DW_OP_GNU_push_tls_address needs an argument.");
2553         }
2554         return false;
2555       }
2556 
2557       if (!exe_ctx || !module_sp) {
2558         if (error_ptr)
2559           error_ptr->SetErrorString("No context to evaluate TLS within.");
2560         return false;
2561       }
2562 
2563       Thread *thread = exe_ctx->GetThreadPtr();
2564       if (!thread) {
2565         if (error_ptr)
2566           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2567         return false;
2568       }
2569 
2570       // Lookup the TLS block address for this thread and module.
2571       const addr_t tls_file_addr =
2572           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2573       const addr_t tls_load_addr =
2574           thread->GetThreadLocalData(module_sp, tls_file_addr);
2575 
2576       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2577         if (error_ptr)
2578           error_ptr->SetErrorString(
2579               "No TLS data currently exists for this thread.");
2580         return false;
2581       }
2582 
2583       stack.back().GetScalar() = tls_load_addr;
2584       stack.back().SetValueType(Value::ValueType::LoadAddress);
2585     } break;
2586 
2587     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2588     // OPERANDS: 1
2589     //      ULEB128: index to the .debug_addr section
2590     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2591     // section with the base address specified by the DW_AT_addr_base attribute
2592     // and the 0 based index is the ULEB128 encoded index.
2593     case DW_OP_addrx:
2594     case DW_OP_GNU_addr_index: {
2595       if (!dwarf_cu) {
2596         if (error_ptr)
2597           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2598                                     "compile unit being specified");
2599         return false;
2600       }
2601       uint64_t index = opcodes.GetULEB128(&offset);
2602       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2603       stack.push_back(Scalar(value));
2604       stack.back().SetValueType(Value::ValueType::FileAddress);
2605     } break;
2606 
2607     // OPCODE: DW_OP_GNU_const_index
2608     // OPERANDS: 1
2609     //      ULEB128: index to the .debug_addr section
2610     // DESCRIPTION: Pushes an constant with the size of a machine address to
2611     // the stack from the .debug_addr section with the base address specified
2612     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2613     // encoded index.
2614     case DW_OP_GNU_const_index: {
2615       if (!dwarf_cu) {
2616         if (error_ptr)
2617           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2618                                     "compile unit being specified");
2619         return false;
2620       }
2621       uint64_t index = opcodes.GetULEB128(&offset);
2622       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2623       stack.push_back(Scalar(value));
2624     } break;
2625 
2626     case DW_OP_GNU_entry_value:
2627     case DW_OP_entry_value: {
2628       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2629                                       error_ptr, log)) {
2630         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2631                     DW_OP_value_to_name(op));
2632         return false;
2633       }
2634       break;
2635     }
2636 
2637     default:
2638       if (error_ptr)
2639         error_ptr->SetErrorStringWithFormatv(
2640             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2641       return false;
2642     }
2643   }
2644 
2645   if (stack.empty()) {
2646     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2647     // or DW_OP_bit_piece opcodes
2648     if (pieces.GetBuffer().GetByteSize()) {
2649       result = pieces;
2650       return true;
2651     }
2652     if (error_ptr)
2653       error_ptr->SetErrorString("Stack empty after evaluation.");
2654     return false;
2655   }
2656 
2657   UpdateValueTypeFromLocationDescription(
2658       log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2659 
2660   if (log && log->GetVerbose()) {
2661     size_t count = stack.size();
2662     LLDB_LOGF(log,
2663               "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2664     for (size_t i = 0; i < count; ++i) {
2665       StreamString new_value;
2666       new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2667       stack[i].Dump(&new_value);
2668       LLDB_LOGF(log, "  %s", new_value.GetData());
2669     }
2670   }
2671   result = stack.back();
2672   return true; // Return true on success
2673 }
2674 
2675 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
2676                                      ByteOrder byte_order, uint32_t addr_size) {
2677   auto buffer_sp =
2678       std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
2679   return DataExtractor(buffer_sp, byte_order, addr_size);
2680 }
2681 
2682 llvm::Optional<DataExtractor>
2683 DWARFExpression::GetLocationExpression(addr_t load_function_start,
2684                                        addr_t addr) const {
2685   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
2686 
2687   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2688       m_dwarf_cu->GetLocationTable(m_data);
2689   llvm::Optional<DataExtractor> result;
2690   uint64_t offset = 0;
2691   auto lookup_addr =
2692       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2693     addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
2694     if (address == LLDB_INVALID_ADDRESS)
2695       return llvm::None;
2696     return llvm::object::SectionedAddress{address};
2697   };
2698   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2699     if (!loc) {
2700       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2701       return true;
2702     }
2703     if (loc->Range) {
2704       // This relocates low_pc and high_pc by adding the difference between the
2705       // function file address, and the actual address it is loaded in memory.
2706       addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
2707       loc->Range->LowPC += slide;
2708       loc->Range->HighPC += slide;
2709 
2710       if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC)
2711         result = ToDataExtractor(*loc, m_data.GetByteOrder(),
2712                                  m_data.GetAddressByteSize());
2713     }
2714     return !result;
2715   };
2716   llvm::Error E = loctable_up->visitAbsoluteLocationList(
2717       offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
2718       lookup_addr, process_list);
2719   if (E)
2720     LLDB_LOG_ERROR(log, std::move(E), "{0}");
2721   return result;
2722 }
2723 
2724 bool DWARFExpression::MatchesOperand(StackFrame &frame,
2725                                      const Instruction::Operand &operand) {
2726   using namespace OperandMatchers;
2727 
2728   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2729   if (!reg_ctx_sp) {
2730     return false;
2731   }
2732 
2733   DataExtractor opcodes;
2734   if (IsLocationList()) {
2735     SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
2736     if (!sc.function)
2737       return false;
2738 
2739     addr_t load_function_start =
2740         sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
2741     if (load_function_start == LLDB_INVALID_ADDRESS)
2742       return false;
2743 
2744     addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
2745         frame.CalculateTarget().get());
2746 
2747     if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc))
2748       opcodes = std::move(*expr);
2749     else
2750       return false;
2751   } else
2752     opcodes = m_data;
2753 
2754 
2755   lldb::offset_t op_offset = 0;
2756   uint8_t opcode = opcodes.GetU8(&op_offset);
2757 
2758   if (opcode == DW_OP_fbreg) {
2759     int64_t offset = opcodes.GetSLEB128(&op_offset);
2760 
2761     DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
2762     if (!fb_expr) {
2763       return false;
2764     }
2765 
2766     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2767       return fb_expr->MatchesOperand(frame, child);
2768     };
2769 
2770     if (!offset &&
2771         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2772                      recurse)(operand)) {
2773       return true;
2774     }
2775 
2776     return MatchUnaryOp(
2777         MatchOpType(Instruction::Operand::Type::Dereference),
2778         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2779                       MatchImmOp(offset), recurse))(operand);
2780   }
2781 
2782   bool dereference = false;
2783   const RegisterInfo *reg = nullptr;
2784   int64_t offset = 0;
2785 
2786   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2787     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2788   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2789     offset = opcodes.GetSLEB128(&op_offset);
2790     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2791   } else if (opcode == DW_OP_regx) {
2792     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2793     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2794   } else if (opcode == DW_OP_bregx) {
2795     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2796     offset = opcodes.GetSLEB128(&op_offset);
2797     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2798   } else {
2799     return false;
2800   }
2801 
2802   if (!reg) {
2803     return false;
2804   }
2805 
2806   if (dereference) {
2807     if (!offset &&
2808         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2809                      MatchRegOp(*reg))(operand)) {
2810       return true;
2811     }
2812 
2813     return MatchUnaryOp(
2814         MatchOpType(Instruction::Operand::Type::Dereference),
2815         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2816                       MatchRegOp(*reg),
2817                       MatchImmOp(offset)))(operand);
2818   } else {
2819     return MatchRegOp(*reg)(operand);
2820   }
2821 }
2822 
2823