1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : UserID(++g_value_obj_uid), // Unique identifier for every value object 80 m_parent(&parent), m_root(nullptr), 81 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 82 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 83 m_summary_str(), m_object_desc_str(), m_manager(parent.GetManager()), 84 m_children(), m_synthetic_children(), m_dynamic_value(nullptr), 85 m_synthetic_value(nullptr), m_deref_valobj(nullptr), 86 m_format(eFormatDefault), m_last_format(eFormatDefault), 87 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 88 m_synthetic_children_sp(), m_user_id_of_forced_summary(), 89 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 90 m_value_checksum(), 91 m_preferred_display_language(lldb::eLanguageTypeUnknown), 92 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 93 m_children_count_valid(false), m_old_value_valid(false), 94 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 95 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 96 m_is_getting_summary(false), 97 m_did_calculate_complete_objc_class_type(false), 98 m_is_synthetic_children_generated( 99 parent.m_is_synthetic_children_generated) { 100 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 101 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 102 m_manager->ManageObject(this); 103 } 104 105 // ValueObject constructor 106 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 107 ValueObjectManager &manager, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_manager(&manager), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 if (exe_scope) { 130 TargetSP target_sp(exe_scope->CalculateTarget()); 131 if (target_sp) { 132 const ArchSpec &arch = target_sp->GetArchitecture(); 133 m_data.SetByteOrder(arch.GetByteOrder()); 134 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 135 } 136 } 137 m_manager->ManageObject(this); 138 } 139 140 // Destructor 141 ValueObject::~ValueObject() {} 142 143 void ValueObject::UpdateChildrenAddressType() { 144 Value::ValueType value_type = m_value.GetValueType(); 145 ExecutionContext exe_ctx(GetExecutionContextRef()); 146 Process *process = exe_ctx.GetProcessPtr(); 147 const bool process_is_alive = process && process->IsAlive(); 148 const uint32_t type_info = GetCompilerType().GetTypeInfo(); 149 const bool is_pointer_or_ref = 150 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 151 152 switch (value_type) { 153 case Value::eValueTypeFileAddress: 154 // If this type is a pointer, then its children will be considered load 155 // addresses if the pointer or reference is dereferenced, but only if 156 // the process is alive. 157 // 158 // There could be global variables like in the following code: 159 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 160 // Foo g_foo1; 161 // Foo g_foo2; 162 // LinkedListNode g_second_node = { &g_foo2, NULL }; 163 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 164 // 165 // When we aren't running, we should be able to look at these variables 166 // using the "target variable" command. Children of the "g_first_node" 167 // always will be of the same address type as the parent. But children 168 // of the "next" member of LinkedListNode will become load addresses if 169 // we have a live process, or remain a file address if it was a file 170 // address. 171 if (process_is_alive && is_pointer_or_ref) 172 SetAddressTypeOfChildren(eAddressTypeLoad); 173 else 174 SetAddressTypeOfChildren(eAddressTypeFile); 175 break; 176 case Value::eValueTypeHostAddress: 177 // Same as above for load addresses, except children of pointer or refs 178 // are always load addresses. Host addresses are used to store freeze 179 // dried variables. If this type is a struct, the entire struct 180 // contents will be copied into the heap of the 181 // LLDB process, but we do not currently follow any pointers. 182 if (is_pointer_or_ref) 183 SetAddressTypeOfChildren(eAddressTypeLoad); 184 else 185 SetAddressTypeOfChildren(eAddressTypeHost); 186 break; 187 case Value::eValueTypeLoadAddress: 188 case Value::eValueTypeScalar: 189 case Value::eValueTypeVector: 190 SetAddressTypeOfChildren(eAddressTypeLoad); 191 break; 192 } 193 } 194 195 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 196 197 bool did_change_formats = false; 198 199 if (update_format) 200 did_change_formats = UpdateFormatsIfNeeded(); 201 202 // If this is a constant value, then our success is predicated on whether we 203 // have an error or not 204 if (GetIsConstant()) { 205 // if you are constant, things might still have changed behind your back 206 // (e.g. you are a frozen object and things have changed deeper than you 207 // cared to freeze-dry yourself) in this case, your value has not changed, 208 // but "computed" entries might have, so you might now have a different 209 // summary, or a different object description. clear these so we will 210 // recompute them 211 if (update_format && !did_change_formats) 212 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 213 eClearUserVisibleDataItemsDescription); 214 return m_error.Success(); 215 } 216 217 bool first_update = IsChecksumEmpty(); 218 219 if (NeedsUpdating()) { 220 m_update_point.SetUpdated(); 221 222 // Save the old value using swap to avoid a string copy which also will 223 // clear our m_value_str 224 if (m_value_str.empty()) { 225 m_old_value_valid = false; 226 } else { 227 m_old_value_valid = true; 228 m_old_value_str.swap(m_value_str); 229 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 230 } 231 232 ClearUserVisibleData(); 233 234 if (IsInScope()) { 235 const bool value_was_valid = GetValueIsValid(); 236 SetValueDidChange(false); 237 238 m_error.Clear(); 239 240 // Call the pure virtual function to update the value 241 242 bool need_compare_checksums = false; 243 llvm::SmallVector<uint8_t, 16> old_checksum; 244 245 if (!first_update && CanProvideValue()) { 246 need_compare_checksums = true; 247 old_checksum.resize(m_value_checksum.size()); 248 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 249 old_checksum.begin()); 250 } 251 252 bool success = UpdateValue(); 253 254 SetValueIsValid(success); 255 256 if (success) { 257 UpdateChildrenAddressType(); 258 const uint64_t max_checksum_size = 128; 259 m_data.Checksum(m_value_checksum, max_checksum_size); 260 } else { 261 need_compare_checksums = false; 262 m_value_checksum.clear(); 263 } 264 265 assert(!need_compare_checksums || 266 (!old_checksum.empty() && !m_value_checksum.empty())); 267 268 if (first_update) 269 SetValueDidChange(false); 270 else if (!m_value_did_change && !success) { 271 // The value wasn't gotten successfully, so we mark this as changed if 272 // the value used to be valid and now isn't 273 SetValueDidChange(value_was_valid); 274 } else if (need_compare_checksums) { 275 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 276 m_value_checksum.size())); 277 } 278 279 } else { 280 m_error.SetErrorString("out of scope"); 281 } 282 } 283 return m_error.Success(); 284 } 285 286 bool ValueObject::UpdateFormatsIfNeeded() { 287 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 288 LLDB_LOGF(log, 289 "[%s %p] checking for FormatManager revisions. ValueObject " 290 "rev: %d - Global rev: %d", 291 GetName().GetCString(), static_cast<void *>(this), 292 m_last_format_mgr_revision, 293 DataVisualization::GetCurrentRevision()); 294 295 bool any_change = false; 296 297 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 298 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 299 any_change = true; 300 301 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 302 SetSummaryFormat( 303 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 304 #if LLDB_ENABLE_PYTHON 305 SetSyntheticChildren( 306 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 307 #endif 308 } 309 310 return any_change; 311 } 312 313 void ValueObject::SetNeedsUpdate() { 314 m_update_point.SetNeedsUpdate(); 315 // We have to clear the value string here so ConstResult children will notice 316 // if their values are changed by hand (i.e. with SetValueAsCString). 317 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 318 } 319 320 void ValueObject::ClearDynamicTypeInformation() { 321 m_children_count_valid = false; 322 m_did_calculate_complete_objc_class_type = false; 323 m_last_format_mgr_revision = 0; 324 m_override_type = CompilerType(); 325 SetValueFormat(lldb::TypeFormatImplSP()); 326 SetSummaryFormat(lldb::TypeSummaryImplSP()); 327 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 328 } 329 330 CompilerType ValueObject::MaybeCalculateCompleteType() { 331 CompilerType compiler_type(GetCompilerTypeImpl()); 332 333 if (m_did_calculate_complete_objc_class_type) { 334 if (m_override_type.IsValid()) 335 return m_override_type; 336 else 337 return compiler_type; 338 } 339 340 m_did_calculate_complete_objc_class_type = true; 341 342 ProcessSP process_sp( 343 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 344 345 if (!process_sp) 346 return compiler_type; 347 348 if (auto *runtime = 349 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 350 if (llvm::Optional<CompilerType> complete_type = 351 runtime->GetRuntimeType(compiler_type)) { 352 m_override_type = complete_type.getValue(); 353 if (m_override_type.IsValid()) 354 return m_override_type; 355 } 356 } 357 return compiler_type; 358 } 359 360 CompilerType ValueObject::GetCompilerType() { 361 return MaybeCalculateCompleteType(); 362 } 363 364 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 365 366 DataExtractor &ValueObject::GetDataExtractor() { 367 UpdateValueIfNeeded(false); 368 return m_data; 369 } 370 371 const Status &ValueObject::GetError() { 372 UpdateValueIfNeeded(false); 373 return m_error; 374 } 375 376 ConstString ValueObject::GetName() const { return m_name; } 377 378 const char *ValueObject::GetLocationAsCString() { 379 return GetLocationAsCStringImpl(m_value, m_data); 380 } 381 382 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 383 const DataExtractor &data) { 384 if (UpdateValueIfNeeded(false)) { 385 if (m_location_str.empty()) { 386 StreamString sstr; 387 388 Value::ValueType value_type = value.GetValueType(); 389 390 switch (value_type) { 391 case Value::eValueTypeScalar: 392 case Value::eValueTypeVector: 393 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 394 RegisterInfo *reg_info = value.GetRegisterInfo(); 395 if (reg_info) { 396 if (reg_info->name) 397 m_location_str = reg_info->name; 398 else if (reg_info->alt_name) 399 m_location_str = reg_info->alt_name; 400 if (m_location_str.empty()) 401 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 402 ? "vector" 403 : "scalar"; 404 } 405 } 406 if (m_location_str.empty()) 407 m_location_str = 408 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 409 break; 410 411 case Value::eValueTypeLoadAddress: 412 case Value::eValueTypeFileAddress: 413 case Value::eValueTypeHostAddress: { 414 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 415 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 416 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 417 m_location_str = std::string(sstr.GetString()); 418 } break; 419 } 420 } 421 } 422 return m_location_str.c_str(); 423 } 424 425 Value &ValueObject::GetValue() { return m_value; } 426 427 const Value &ValueObject::GetValue() const { return m_value; } 428 429 bool ValueObject::ResolveValue(Scalar &scalar) { 430 if (UpdateValueIfNeeded( 431 false)) // make sure that you are up to date before returning anything 432 { 433 ExecutionContext exe_ctx(GetExecutionContextRef()); 434 Value tmp_value(m_value); 435 scalar = tmp_value.ResolveValue(&exe_ctx); 436 if (scalar.IsValid()) { 437 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 438 if (bitfield_bit_size) 439 return scalar.ExtractBitfield(bitfield_bit_size, 440 GetBitfieldBitOffset()); 441 return true; 442 } 443 } 444 return false; 445 } 446 447 bool ValueObject::IsLogicalTrue(Status &error) { 448 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 449 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 450 switch (is_logical_true) { 451 case eLazyBoolYes: 452 case eLazyBoolNo: 453 return (is_logical_true == true); 454 case eLazyBoolCalculate: 455 break; 456 } 457 } 458 459 Scalar scalar_value; 460 461 if (!ResolveValue(scalar_value)) { 462 error.SetErrorString("failed to get a scalar result"); 463 return false; 464 } 465 466 bool ret; 467 ret = scalar_value.ULongLong(1) != 0; 468 error.Clear(); 469 return ret; 470 } 471 472 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 473 474 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 475 476 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 477 478 void ValueObject::SetValueDidChange(bool value_changed) { 479 m_value_did_change = value_changed; 480 } 481 482 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 483 ValueObjectSP child_sp; 484 // We may need to update our value if we are dynamic 485 if (IsPossibleDynamicType()) 486 UpdateValueIfNeeded(false); 487 if (idx < GetNumChildren()) { 488 // Check if we have already made the child value object? 489 if (can_create && !m_children.HasChildAtIndex(idx)) { 490 // No we haven't created the child at this index, so lets have our 491 // subclass do it and cache the result for quick future access. 492 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 493 } 494 495 ValueObject *child = m_children.GetChildAtIndex(idx); 496 if (child != nullptr) 497 return child->GetSP(); 498 } 499 return child_sp; 500 } 501 502 lldb::ValueObjectSP 503 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 504 size_t *index_of_error) { 505 if (idxs.size() == 0) 506 return GetSP(); 507 ValueObjectSP root(GetSP()); 508 for (size_t idx : idxs) { 509 root = root->GetChildAtIndex(idx, true); 510 if (!root) { 511 if (index_of_error) 512 *index_of_error = idx; 513 return root; 514 } 515 } 516 return root; 517 } 518 519 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 520 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 521 if (idxs.size() == 0) 522 return GetSP(); 523 ValueObjectSP root(GetSP()); 524 for (std::pair<size_t, bool> idx : idxs) { 525 root = root->GetChildAtIndex(idx.first, idx.second); 526 if (!root) { 527 if (index_of_error) 528 *index_of_error = idx.first; 529 return root; 530 } 531 } 532 return root; 533 } 534 535 lldb::ValueObjectSP 536 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 537 ConstString *name_of_error) { 538 if (names.size() == 0) 539 return GetSP(); 540 ValueObjectSP root(GetSP()); 541 for (ConstString name : names) { 542 root = root->GetChildMemberWithName(name, true); 543 if (!root) { 544 if (name_of_error) 545 *name_of_error = name; 546 return root; 547 } 548 } 549 return root; 550 } 551 552 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 553 llvm::ArrayRef<std::pair<ConstString, bool>> names, 554 ConstString *name_of_error) { 555 if (names.size() == 0) 556 return GetSP(); 557 ValueObjectSP root(GetSP()); 558 for (std::pair<ConstString, bool> name : names) { 559 root = root->GetChildMemberWithName(name.first, name.second); 560 if (!root) { 561 if (name_of_error) 562 *name_of_error = name.first; 563 return root; 564 } 565 } 566 return root; 567 } 568 569 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 570 bool omit_empty_base_classes = true; 571 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 572 omit_empty_base_classes); 573 } 574 575 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 576 bool can_create) { 577 // when getting a child by name, it could be buried inside some base classes 578 // (which really aren't part of the expression path), so we need a vector of 579 // indexes that can get us down to the correct child 580 ValueObjectSP child_sp; 581 582 // We may need to update our value if we are dynamic 583 if (IsPossibleDynamicType()) 584 UpdateValueIfNeeded(false); 585 586 std::vector<uint32_t> child_indexes; 587 bool omit_empty_base_classes = true; 588 589 if (!GetCompilerType().IsValid()) 590 return ValueObjectSP(); 591 592 const size_t num_child_indexes = 593 GetCompilerType().GetIndexOfChildMemberWithName( 594 name.GetCString(), omit_empty_base_classes, child_indexes); 595 if (num_child_indexes > 0) { 596 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 597 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 598 599 child_sp = GetChildAtIndex(*pos, can_create); 600 for (++pos; pos != end; ++pos) { 601 if (child_sp) { 602 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 603 child_sp = new_child_sp; 604 } else { 605 child_sp.reset(); 606 } 607 } 608 } 609 return child_sp; 610 } 611 612 size_t ValueObject::GetNumChildren(uint32_t max) { 613 UpdateValueIfNeeded(); 614 615 if (max < UINT32_MAX) { 616 if (m_children_count_valid) { 617 size_t children_count = m_children.GetChildrenCount(); 618 return children_count <= max ? children_count : max; 619 } else 620 return CalculateNumChildren(max); 621 } 622 623 if (!m_children_count_valid) { 624 SetNumChildren(CalculateNumChildren()); 625 } 626 return m_children.GetChildrenCount(); 627 } 628 629 bool ValueObject::MightHaveChildren() { 630 bool has_children = false; 631 const uint32_t type_info = GetTypeInfo(); 632 if (type_info) { 633 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 634 has_children = true; 635 } else { 636 has_children = GetNumChildren() > 0; 637 } 638 return has_children; 639 } 640 641 // Should only be called by ValueObject::GetNumChildren() 642 void ValueObject::SetNumChildren(size_t num_children) { 643 m_children_count_valid = true; 644 m_children.SetChildrenCount(num_children); 645 } 646 647 void ValueObject::SetName(ConstString name) { m_name = name; } 648 649 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 650 bool synthetic_array_member, 651 int32_t synthetic_index) { 652 ValueObject *valobj = nullptr; 653 654 bool omit_empty_base_classes = true; 655 bool ignore_array_bounds = synthetic_array_member; 656 std::string child_name_str; 657 uint32_t child_byte_size = 0; 658 int32_t child_byte_offset = 0; 659 uint32_t child_bitfield_bit_size = 0; 660 uint32_t child_bitfield_bit_offset = 0; 661 bool child_is_base_class = false; 662 bool child_is_deref_of_parent = false; 663 uint64_t language_flags = 0; 664 665 const bool transparent_pointers = !synthetic_array_member; 666 CompilerType child_compiler_type; 667 668 ExecutionContext exe_ctx(GetExecutionContextRef()); 669 670 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 671 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 672 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 673 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 674 child_is_deref_of_parent, this, language_flags); 675 if (child_compiler_type) { 676 if (synthetic_index) 677 child_byte_offset += child_byte_size * synthetic_index; 678 679 ConstString child_name; 680 if (!child_name_str.empty()) 681 child_name.SetCString(child_name_str.c_str()); 682 683 valobj = new ValueObjectChild( 684 *this, child_compiler_type, child_name, child_byte_size, 685 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 686 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 687 language_flags); 688 } 689 690 return valobj; 691 } 692 693 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 694 std::string &destination, 695 lldb::LanguageType lang) { 696 return GetSummaryAsCString(summary_ptr, destination, 697 TypeSummaryOptions().SetLanguage(lang)); 698 } 699 700 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 701 std::string &destination, 702 const TypeSummaryOptions &options) { 703 destination.clear(); 704 705 // ideally we would like to bail out if passing NULL, but if we do so we end 706 // up not providing the summary for function pointers anymore 707 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 708 return false; 709 710 m_is_getting_summary = true; 711 712 TypeSummaryOptions actual_options(options); 713 714 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 715 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 716 717 // this is a hot path in code and we prefer to avoid setting this string all 718 // too often also clearing out other information that we might care to see in 719 // a crash log. might be useful in very specific situations though. 720 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 721 Summary provider's description is %s", 722 GetTypeName().GetCString(), 723 GetName().GetCString(), 724 summary_ptr->GetDescription().c_str());*/ 725 726 if (UpdateValueIfNeeded(false) && summary_ptr) { 727 if (HasSyntheticValue()) 728 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 729 // the synthetic children being 730 // up-to-date (e.g. ${svar%#}) 731 summary_ptr->FormatObject(this, destination, actual_options); 732 } 733 m_is_getting_summary = false; 734 return !destination.empty(); 735 } 736 737 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 738 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 739 TypeSummaryOptions summary_options; 740 summary_options.SetLanguage(lang); 741 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 742 summary_options); 743 } 744 if (m_summary_str.empty()) 745 return nullptr; 746 return m_summary_str.c_str(); 747 } 748 749 bool ValueObject::GetSummaryAsCString(std::string &destination, 750 const TypeSummaryOptions &options) { 751 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 752 } 753 754 bool ValueObject::IsCStringContainer(bool check_pointer) { 755 CompilerType pointee_or_element_compiler_type; 756 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 757 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 758 pointee_or_element_compiler_type.IsCharType()); 759 if (!is_char_arr_ptr) 760 return false; 761 if (!check_pointer) 762 return true; 763 if (type_flags.Test(eTypeIsArray)) 764 return true; 765 addr_t cstr_address = LLDB_INVALID_ADDRESS; 766 AddressType cstr_address_type = eAddressTypeInvalid; 767 cstr_address = GetAddressOf(true, &cstr_address_type); 768 return (cstr_address != LLDB_INVALID_ADDRESS); 769 } 770 771 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 772 uint32_t item_count) { 773 CompilerType pointee_or_element_compiler_type; 774 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 775 const bool is_pointer_type = type_info & eTypeIsPointer; 776 const bool is_array_type = type_info & eTypeIsArray; 777 if (!(is_pointer_type || is_array_type)) 778 return 0; 779 780 if (item_count == 0) 781 return 0; 782 783 ExecutionContext exe_ctx(GetExecutionContextRef()); 784 785 llvm::Optional<uint64_t> item_type_size = 786 pointee_or_element_compiler_type.GetByteSize( 787 exe_ctx.GetBestExecutionContextScope()); 788 if (!item_type_size) 789 return 0; 790 const uint64_t bytes = item_count * *item_type_size; 791 const uint64_t offset = item_idx * *item_type_size; 792 793 if (item_idx == 0 && item_count == 1) // simply a deref 794 { 795 if (is_pointer_type) { 796 Status error; 797 ValueObjectSP pointee_sp = Dereference(error); 798 if (error.Fail() || pointee_sp.get() == nullptr) 799 return 0; 800 return pointee_sp->GetData(data, error); 801 } else { 802 ValueObjectSP child_sp = GetChildAtIndex(0, true); 803 if (child_sp.get() == nullptr) 804 return 0; 805 Status error; 806 return child_sp->GetData(data, error); 807 } 808 return true; 809 } else /* (items > 1) */ 810 { 811 Status error; 812 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 813 lldb::DataBufferSP data_sp(heap_buf_ptr = 814 new lldb_private::DataBufferHeap()); 815 816 AddressType addr_type; 817 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 818 : GetAddressOf(true, &addr_type); 819 820 switch (addr_type) { 821 case eAddressTypeFile: { 822 ModuleSP module_sp(GetModule()); 823 if (module_sp) { 824 addr = addr + offset; 825 Address so_addr; 826 module_sp->ResolveFileAddress(addr, so_addr); 827 ExecutionContext exe_ctx(GetExecutionContextRef()); 828 Target *target = exe_ctx.GetTargetPtr(); 829 if (target) { 830 heap_buf_ptr->SetByteSize(bytes); 831 size_t bytes_read = target->ReadMemory( 832 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 833 if (error.Success()) { 834 data.SetData(data_sp); 835 return bytes_read; 836 } 837 } 838 } 839 } break; 840 case eAddressTypeLoad: { 841 ExecutionContext exe_ctx(GetExecutionContextRef()); 842 Process *process = exe_ctx.GetProcessPtr(); 843 if (process) { 844 heap_buf_ptr->SetByteSize(bytes); 845 size_t bytes_read = process->ReadMemory( 846 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 847 if (error.Success() || bytes_read > 0) { 848 data.SetData(data_sp); 849 return bytes_read; 850 } 851 } 852 } break; 853 case eAddressTypeHost: { 854 auto max_bytes = 855 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 856 if (max_bytes && *max_bytes > offset) { 857 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 858 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 859 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 860 break; 861 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 862 data.SetData(data_sp); 863 return bytes_read; 864 } 865 } break; 866 case eAddressTypeInvalid: 867 break; 868 } 869 } 870 return 0; 871 } 872 873 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 874 UpdateValueIfNeeded(false); 875 ExecutionContext exe_ctx(GetExecutionContextRef()); 876 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 877 if (error.Fail()) { 878 if (m_data.GetByteSize()) { 879 data = m_data; 880 error.Clear(); 881 return data.GetByteSize(); 882 } else { 883 return 0; 884 } 885 } 886 data.SetAddressByteSize(m_data.GetAddressByteSize()); 887 data.SetByteOrder(m_data.GetByteOrder()); 888 return data.GetByteSize(); 889 } 890 891 bool ValueObject::SetData(DataExtractor &data, Status &error) { 892 error.Clear(); 893 // Make sure our value is up to date first so that our location and location 894 // type is valid. 895 if (!UpdateValueIfNeeded(false)) { 896 error.SetErrorString("unable to read value"); 897 return false; 898 } 899 900 uint64_t count = 0; 901 const Encoding encoding = GetCompilerType().GetEncoding(count); 902 903 const size_t byte_size = GetByteSize(); 904 905 Value::ValueType value_type = m_value.GetValueType(); 906 907 switch (value_type) { 908 case Value::eValueTypeScalar: { 909 Status set_error = 910 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 911 912 if (!set_error.Success()) { 913 error.SetErrorStringWithFormat("unable to set scalar value: %s", 914 set_error.AsCString()); 915 return false; 916 } 917 } break; 918 case Value::eValueTypeLoadAddress: { 919 // If it is a load address, then the scalar value is the storage location 920 // of the data, and we have to shove this value down to that load location. 921 ExecutionContext exe_ctx(GetExecutionContextRef()); 922 Process *process = exe_ctx.GetProcessPtr(); 923 if (process) { 924 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 925 size_t bytes_written = process->WriteMemory( 926 target_addr, data.GetDataStart(), byte_size, error); 927 if (!error.Success()) 928 return false; 929 if (bytes_written != byte_size) { 930 error.SetErrorString("unable to write value to memory"); 931 return false; 932 } 933 } 934 } break; 935 case Value::eValueTypeHostAddress: { 936 // If it is a host address, then we stuff the scalar as a DataBuffer into 937 // the Value's data. 938 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 939 m_data.SetData(buffer_sp, 0); 940 data.CopyByteOrderedData(0, byte_size, 941 const_cast<uint8_t *>(m_data.GetDataStart()), 942 byte_size, m_data.GetByteOrder()); 943 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 944 } break; 945 case Value::eValueTypeFileAddress: 946 case Value::eValueTypeVector: 947 break; 948 } 949 950 // If we have reached this point, then we have successfully changed the 951 // value. 952 SetNeedsUpdate(); 953 return true; 954 } 955 956 static bool CopyStringDataToBufferSP(const StreamString &source, 957 lldb::DataBufferSP &destination) { 958 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 959 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 960 return true; 961 } 962 963 std::pair<size_t, bool> 964 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 965 uint32_t max_length, bool honor_array, 966 Format item_format) { 967 bool was_capped = false; 968 StreamString s; 969 ExecutionContext exe_ctx(GetExecutionContextRef()); 970 Target *target = exe_ctx.GetTargetPtr(); 971 972 if (!target) { 973 s << "<no target to read from>"; 974 error.SetErrorString("no target to read from"); 975 CopyStringDataToBufferSP(s, buffer_sp); 976 return {0, was_capped}; 977 } 978 979 if (max_length == 0) 980 max_length = target->GetMaximumSizeOfStringSummary(); 981 982 size_t bytes_read = 0; 983 size_t total_bytes_read = 0; 984 985 CompilerType compiler_type = GetCompilerType(); 986 CompilerType elem_or_pointee_compiler_type; 987 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 988 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 989 elem_or_pointee_compiler_type.IsCharType()) { 990 addr_t cstr_address = LLDB_INVALID_ADDRESS; 991 AddressType cstr_address_type = eAddressTypeInvalid; 992 993 size_t cstr_len = 0; 994 bool capped_data = false; 995 const bool is_array = type_flags.Test(eTypeIsArray); 996 if (is_array) { 997 // We have an array 998 uint64_t array_size = 0; 999 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 1000 cstr_len = array_size; 1001 if (cstr_len > max_length) { 1002 capped_data = true; 1003 cstr_len = max_length; 1004 } 1005 } 1006 cstr_address = GetAddressOf(true, &cstr_address_type); 1007 } else { 1008 // We have a pointer 1009 cstr_address = GetPointerValue(&cstr_address_type); 1010 } 1011 1012 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 1013 if (cstr_address_type == eAddressTypeHost && is_array) { 1014 const char *cstr = GetDataExtractor().PeekCStr(0); 1015 if (cstr == nullptr) { 1016 s << "<invalid address>"; 1017 error.SetErrorString("invalid address"); 1018 CopyStringDataToBufferSP(s, buffer_sp); 1019 return {0, was_capped}; 1020 } 1021 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 1022 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 1023 return {cstr_len, was_capped}; 1024 } else { 1025 s << "<invalid address>"; 1026 error.SetErrorString("invalid address"); 1027 CopyStringDataToBufferSP(s, buffer_sp); 1028 return {0, was_capped}; 1029 } 1030 } 1031 1032 Address cstr_so_addr(cstr_address); 1033 DataExtractor data; 1034 if (cstr_len > 0 && honor_array) { 1035 // I am using GetPointeeData() here to abstract the fact that some 1036 // ValueObjects are actually frozen pointers in the host but the pointed- 1037 // to data lives in the debuggee, and GetPointeeData() automatically 1038 // takes care of this 1039 GetPointeeData(data, 0, cstr_len); 1040 1041 if ((bytes_read = data.GetByteSize()) > 0) { 1042 total_bytes_read = bytes_read; 1043 for (size_t offset = 0; offset < bytes_read; offset++) 1044 s.Printf("%c", *data.PeekData(offset, 1)); 1045 if (capped_data) 1046 was_capped = true; 1047 } 1048 } else { 1049 cstr_len = max_length; 1050 const size_t k_max_buf_size = 64; 1051 1052 size_t offset = 0; 1053 1054 int cstr_len_displayed = -1; 1055 bool capped_cstr = false; 1056 // I am using GetPointeeData() here to abstract the fact that some 1057 // ValueObjects are actually frozen pointers in the host but the pointed- 1058 // to data lives in the debuggee, and GetPointeeData() automatically 1059 // takes care of this 1060 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1061 total_bytes_read += bytes_read; 1062 const char *cstr = data.PeekCStr(0); 1063 size_t len = strnlen(cstr, k_max_buf_size); 1064 if (cstr_len_displayed < 0) 1065 cstr_len_displayed = len; 1066 1067 if (len == 0) 1068 break; 1069 cstr_len_displayed += len; 1070 if (len > bytes_read) 1071 len = bytes_read; 1072 if (len > cstr_len) 1073 len = cstr_len; 1074 1075 for (size_t offset = 0; offset < bytes_read; offset++) 1076 s.Printf("%c", *data.PeekData(offset, 1)); 1077 1078 if (len < k_max_buf_size) 1079 break; 1080 1081 if (len >= cstr_len) { 1082 capped_cstr = true; 1083 break; 1084 } 1085 1086 cstr_len -= len; 1087 offset += len; 1088 } 1089 1090 if (cstr_len_displayed >= 0) { 1091 if (capped_cstr) 1092 was_capped = true; 1093 } 1094 } 1095 } else { 1096 error.SetErrorString("not a string object"); 1097 s << "<not a string object>"; 1098 } 1099 CopyStringDataToBufferSP(s, buffer_sp); 1100 return {total_bytes_read, was_capped}; 1101 } 1102 1103 const char *ValueObject::GetObjectDescription() { 1104 if (!UpdateValueIfNeeded(true)) 1105 return nullptr; 1106 1107 // Return cached value. 1108 if (!m_object_desc_str.empty()) 1109 return m_object_desc_str.c_str(); 1110 1111 ExecutionContext exe_ctx(GetExecutionContextRef()); 1112 Process *process = exe_ctx.GetProcessPtr(); 1113 if (!process) 1114 return nullptr; 1115 1116 // Returns the object description produced by one language runtime. 1117 auto get_object_description = [&](LanguageType language) -> const char * { 1118 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1119 StreamString s; 1120 if (runtime->GetObjectDescription(s, *this)) { 1121 m_object_desc_str.append(std::string(s.GetString())); 1122 return m_object_desc_str.c_str(); 1123 } 1124 } 1125 return nullptr; 1126 }; 1127 1128 // Try the native language runtime first. 1129 LanguageType native_language = GetObjectRuntimeLanguage(); 1130 if (const char *desc = get_object_description(native_language)) 1131 return desc; 1132 1133 // Try the Objective-C language runtime. This fallback is necessary 1134 // for Objective-C++ and mixed Objective-C / C++ programs. 1135 if (Language::LanguageIsCFamily(native_language)) 1136 return get_object_description(eLanguageTypeObjC); 1137 return nullptr; 1138 } 1139 1140 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1141 std::string &destination) { 1142 if (UpdateValueIfNeeded(false)) 1143 return format.FormatObject(this, destination); 1144 else 1145 return false; 1146 } 1147 1148 bool ValueObject::GetValueAsCString(lldb::Format format, 1149 std::string &destination) { 1150 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1151 } 1152 1153 const char *ValueObject::GetValueAsCString() { 1154 if (UpdateValueIfNeeded(true)) { 1155 lldb::TypeFormatImplSP format_sp; 1156 lldb::Format my_format = GetFormat(); 1157 if (my_format == lldb::eFormatDefault) { 1158 if (m_type_format_sp) 1159 format_sp = m_type_format_sp; 1160 else { 1161 if (m_is_bitfield_for_scalar) 1162 my_format = eFormatUnsigned; 1163 else { 1164 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1165 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1166 if (reg_info) 1167 my_format = reg_info->format; 1168 } else { 1169 my_format = GetValue().GetCompilerType().GetFormat(); 1170 } 1171 } 1172 } 1173 } 1174 if (my_format != m_last_format || m_value_str.empty()) { 1175 m_last_format = my_format; 1176 if (!format_sp) 1177 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1178 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1179 if (!m_value_did_change && m_old_value_valid) { 1180 // The value was gotten successfully, so we consider the value as 1181 // changed if the value string differs 1182 SetValueDidChange(m_old_value_str != m_value_str); 1183 } 1184 } 1185 } 1186 } 1187 if (m_value_str.empty()) 1188 return nullptr; 1189 return m_value_str.c_str(); 1190 } 1191 1192 // if > 8bytes, 0 is returned. this method should mostly be used to read 1193 // address values out of pointers 1194 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1195 // If our byte size is zero this is an aggregate type that has children 1196 if (CanProvideValue()) { 1197 Scalar scalar; 1198 if (ResolveValue(scalar)) { 1199 if (success) 1200 *success = true; 1201 return scalar.ULongLong(fail_value); 1202 } 1203 // fallthrough, otherwise... 1204 } 1205 1206 if (success) 1207 *success = false; 1208 return fail_value; 1209 } 1210 1211 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1212 // If our byte size is zero this is an aggregate type that has children 1213 if (CanProvideValue()) { 1214 Scalar scalar; 1215 if (ResolveValue(scalar)) { 1216 if (success) 1217 *success = true; 1218 return scalar.SLongLong(fail_value); 1219 } 1220 // fallthrough, otherwise... 1221 } 1222 1223 if (success) 1224 *success = false; 1225 return fail_value; 1226 } 1227 1228 // if any more "special cases" are added to 1229 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1230 // by returning true for your new special cases. We will eventually move to 1231 // checking this call result before trying to display special cases 1232 bool ValueObject::HasSpecialPrintableRepresentation( 1233 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1234 Flags flags(GetTypeInfo()); 1235 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1236 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1237 if (IsCStringContainer(true) && 1238 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1239 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1240 return true; 1241 1242 if (flags.Test(eTypeIsArray)) { 1243 if ((custom_format == eFormatBytes) || 1244 (custom_format == eFormatBytesWithASCII)) 1245 return true; 1246 1247 if ((custom_format == eFormatVectorOfChar) || 1248 (custom_format == eFormatVectorOfFloat32) || 1249 (custom_format == eFormatVectorOfFloat64) || 1250 (custom_format == eFormatVectorOfSInt16) || 1251 (custom_format == eFormatVectorOfSInt32) || 1252 (custom_format == eFormatVectorOfSInt64) || 1253 (custom_format == eFormatVectorOfSInt8) || 1254 (custom_format == eFormatVectorOfUInt128) || 1255 (custom_format == eFormatVectorOfUInt16) || 1256 (custom_format == eFormatVectorOfUInt32) || 1257 (custom_format == eFormatVectorOfUInt64) || 1258 (custom_format == eFormatVectorOfUInt8)) 1259 return true; 1260 } 1261 } 1262 return false; 1263 } 1264 1265 bool ValueObject::DumpPrintableRepresentation( 1266 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1267 Format custom_format, PrintableRepresentationSpecialCases special, 1268 bool do_dump_error) { 1269 1270 Flags flags(GetTypeInfo()); 1271 1272 bool allow_special = 1273 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1274 const bool only_special = false; 1275 1276 if (allow_special) { 1277 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1278 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1279 // when being asked to get a printable display an array or pointer type 1280 // directly, try to "do the right thing" 1281 1282 if (IsCStringContainer(true) && 1283 (custom_format == eFormatCString || 1284 custom_format == eFormatCharArray || custom_format == eFormatChar || 1285 custom_format == 1286 eFormatVectorOfChar)) // print char[] & char* directly 1287 { 1288 Status error; 1289 lldb::DataBufferSP buffer_sp; 1290 std::pair<size_t, bool> read_string = ReadPointedString( 1291 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1292 (custom_format == eFormatCharArray)); 1293 lldb_private::formatters::StringPrinter:: 1294 ReadBufferAndDumpToStreamOptions options(*this); 1295 options.SetData(DataExtractor( 1296 buffer_sp, lldb::eByteOrderInvalid, 1297 8)); // none of this matters for a string - pass some defaults 1298 options.SetStream(&s); 1299 options.SetPrefixToken(nullptr); 1300 options.SetQuote('"'); 1301 options.SetSourceSize(buffer_sp->GetByteSize()); 1302 options.SetIsTruncated(read_string.second); 1303 formatters::StringPrinter::ReadBufferAndDumpToStream< 1304 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1305 options); 1306 return !error.Fail(); 1307 } 1308 1309 if (custom_format == eFormatEnum) 1310 return false; 1311 1312 // this only works for arrays, because I have no way to know when the 1313 // pointed memory ends, and no special \0 end of data marker 1314 if (flags.Test(eTypeIsArray)) { 1315 if ((custom_format == eFormatBytes) || 1316 (custom_format == eFormatBytesWithASCII)) { 1317 const size_t count = GetNumChildren(); 1318 1319 s << '['; 1320 for (size_t low = 0; low < count; low++) { 1321 1322 if (low) 1323 s << ','; 1324 1325 ValueObjectSP child = GetChildAtIndex(low, true); 1326 if (!child.get()) { 1327 s << "<invalid child>"; 1328 continue; 1329 } 1330 child->DumpPrintableRepresentation( 1331 s, ValueObject::eValueObjectRepresentationStyleValue, 1332 custom_format); 1333 } 1334 1335 s << ']'; 1336 1337 return true; 1338 } 1339 1340 if ((custom_format == eFormatVectorOfChar) || 1341 (custom_format == eFormatVectorOfFloat32) || 1342 (custom_format == eFormatVectorOfFloat64) || 1343 (custom_format == eFormatVectorOfSInt16) || 1344 (custom_format == eFormatVectorOfSInt32) || 1345 (custom_format == eFormatVectorOfSInt64) || 1346 (custom_format == eFormatVectorOfSInt8) || 1347 (custom_format == eFormatVectorOfUInt128) || 1348 (custom_format == eFormatVectorOfUInt16) || 1349 (custom_format == eFormatVectorOfUInt32) || 1350 (custom_format == eFormatVectorOfUInt64) || 1351 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1352 // with ASCII or any vector 1353 // format should be printed 1354 // directly 1355 { 1356 const size_t count = GetNumChildren(); 1357 1358 Format format = FormatManager::GetSingleItemFormat(custom_format); 1359 1360 s << '['; 1361 for (size_t low = 0; low < count; low++) { 1362 1363 if (low) 1364 s << ','; 1365 1366 ValueObjectSP child = GetChildAtIndex(low, true); 1367 if (!child.get()) { 1368 s << "<invalid child>"; 1369 continue; 1370 } 1371 child->DumpPrintableRepresentation( 1372 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1373 } 1374 1375 s << ']'; 1376 1377 return true; 1378 } 1379 } 1380 1381 if ((custom_format == eFormatBoolean) || 1382 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1383 (custom_format == eFormatCharPrintable) || 1384 (custom_format == eFormatComplexFloat) || 1385 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1386 (custom_format == eFormatHexUppercase) || 1387 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1388 (custom_format == eFormatOSType) || 1389 (custom_format == eFormatUnicode16) || 1390 (custom_format == eFormatUnicode32) || 1391 (custom_format == eFormatUnsigned) || 1392 (custom_format == eFormatPointer) || 1393 (custom_format == eFormatComplexInteger) || 1394 (custom_format == eFormatComplex) || 1395 (custom_format == eFormatDefault)) // use the [] operator 1396 return false; 1397 } 1398 } 1399 1400 if (only_special) 1401 return false; 1402 1403 bool var_success = false; 1404 1405 { 1406 llvm::StringRef str; 1407 1408 // this is a local stream that we are using to ensure that the data pointed 1409 // to by cstr survives long enough for us to copy it to its destination - 1410 // it is necessary to have this temporary storage area for cases where our 1411 // desired output is not backed by some other longer-term storage 1412 StreamString strm; 1413 1414 if (custom_format != eFormatInvalid) 1415 SetFormat(custom_format); 1416 1417 switch (val_obj_display) { 1418 case eValueObjectRepresentationStyleValue: 1419 str = GetValueAsCString(); 1420 break; 1421 1422 case eValueObjectRepresentationStyleSummary: 1423 str = GetSummaryAsCString(); 1424 break; 1425 1426 case eValueObjectRepresentationStyleLanguageSpecific: 1427 str = GetObjectDescription(); 1428 break; 1429 1430 case eValueObjectRepresentationStyleLocation: 1431 str = GetLocationAsCString(); 1432 break; 1433 1434 case eValueObjectRepresentationStyleChildrenCount: 1435 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1436 str = strm.GetString(); 1437 break; 1438 1439 case eValueObjectRepresentationStyleType: 1440 str = GetTypeName().GetStringRef(); 1441 break; 1442 1443 case eValueObjectRepresentationStyleName: 1444 str = GetName().GetStringRef(); 1445 break; 1446 1447 case eValueObjectRepresentationStyleExpressionPath: 1448 GetExpressionPath(strm); 1449 str = strm.GetString(); 1450 break; 1451 } 1452 1453 if (str.empty()) { 1454 if (val_obj_display == eValueObjectRepresentationStyleValue) 1455 str = GetSummaryAsCString(); 1456 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1457 if (!CanProvideValue()) { 1458 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1459 GetLocationAsCString()); 1460 str = strm.GetString(); 1461 } else 1462 str = GetValueAsCString(); 1463 } 1464 } 1465 1466 if (!str.empty()) 1467 s << str; 1468 else { 1469 if (m_error.Fail()) { 1470 if (do_dump_error) 1471 s.Printf("<%s>", m_error.AsCString()); 1472 else 1473 return false; 1474 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1475 s.PutCString("<no summary available>"); 1476 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1477 s.PutCString("<no value available>"); 1478 else if (val_obj_display == 1479 eValueObjectRepresentationStyleLanguageSpecific) 1480 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1481 // have other runtimes 1482 // that support a 1483 // description 1484 else 1485 s.PutCString("<no printable representation>"); 1486 } 1487 1488 // we should only return false here if we could not do *anything* even if 1489 // we have an error message as output, that's a success from our callers' 1490 // perspective, so return true 1491 var_success = true; 1492 1493 if (custom_format != eFormatInvalid) 1494 SetFormat(eFormatDefault); 1495 } 1496 1497 return var_success; 1498 } 1499 1500 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1501 AddressType *address_type) { 1502 // Can't take address of a bitfield 1503 if (IsBitfield()) 1504 return LLDB_INVALID_ADDRESS; 1505 1506 if (!UpdateValueIfNeeded(false)) 1507 return LLDB_INVALID_ADDRESS; 1508 1509 switch (m_value.GetValueType()) { 1510 case Value::eValueTypeScalar: 1511 case Value::eValueTypeVector: 1512 if (scalar_is_load_address) { 1513 if (address_type) 1514 *address_type = eAddressTypeLoad; 1515 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1516 } 1517 break; 1518 1519 case Value::eValueTypeLoadAddress: 1520 case Value::eValueTypeFileAddress: { 1521 if (address_type) 1522 *address_type = m_value.GetValueAddressType(); 1523 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1524 } break; 1525 case Value::eValueTypeHostAddress: { 1526 if (address_type) 1527 *address_type = m_value.GetValueAddressType(); 1528 return LLDB_INVALID_ADDRESS; 1529 } break; 1530 } 1531 if (address_type) 1532 *address_type = eAddressTypeInvalid; 1533 return LLDB_INVALID_ADDRESS; 1534 } 1535 1536 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1537 addr_t address = LLDB_INVALID_ADDRESS; 1538 if (address_type) 1539 *address_type = eAddressTypeInvalid; 1540 1541 if (!UpdateValueIfNeeded(false)) 1542 return address; 1543 1544 switch (m_value.GetValueType()) { 1545 case Value::eValueTypeScalar: 1546 case Value::eValueTypeVector: 1547 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1548 break; 1549 1550 case Value::eValueTypeHostAddress: 1551 case Value::eValueTypeLoadAddress: 1552 case Value::eValueTypeFileAddress: { 1553 lldb::offset_t data_offset = 0; 1554 address = m_data.GetAddress(&data_offset); 1555 } break; 1556 } 1557 1558 if (address_type) 1559 *address_type = GetAddressTypeOfChildren(); 1560 1561 return address; 1562 } 1563 1564 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1565 error.Clear(); 1566 // Make sure our value is up to date first so that our location and location 1567 // type is valid. 1568 if (!UpdateValueIfNeeded(false)) { 1569 error.SetErrorString("unable to read value"); 1570 return false; 1571 } 1572 1573 uint64_t count = 0; 1574 const Encoding encoding = GetCompilerType().GetEncoding(count); 1575 1576 const size_t byte_size = GetByteSize(); 1577 1578 Value::ValueType value_type = m_value.GetValueType(); 1579 1580 if (value_type == Value::eValueTypeScalar) { 1581 // If the value is already a scalar, then let the scalar change itself: 1582 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1583 } else if (byte_size <= 16) { 1584 // If the value fits in a scalar, then make a new scalar and again let the 1585 // scalar code do the conversion, then figure out where to put the new 1586 // value. 1587 Scalar new_scalar; 1588 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1589 if (error.Success()) { 1590 switch (value_type) { 1591 case Value::eValueTypeLoadAddress: { 1592 // If it is a load address, then the scalar value is the storage 1593 // location of the data, and we have to shove this value down to that 1594 // load location. 1595 ExecutionContext exe_ctx(GetExecutionContextRef()); 1596 Process *process = exe_ctx.GetProcessPtr(); 1597 if (process) { 1598 addr_t target_addr = 1599 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1600 size_t bytes_written = process->WriteScalarToMemory( 1601 target_addr, new_scalar, byte_size, error); 1602 if (!error.Success()) 1603 return false; 1604 if (bytes_written != byte_size) { 1605 error.SetErrorString("unable to write value to memory"); 1606 return false; 1607 } 1608 } 1609 } break; 1610 case Value::eValueTypeHostAddress: { 1611 // If it is a host address, then we stuff the scalar as a DataBuffer 1612 // into the Value's data. 1613 DataExtractor new_data; 1614 new_data.SetByteOrder(m_data.GetByteOrder()); 1615 1616 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1617 m_data.SetData(buffer_sp, 0); 1618 bool success = new_scalar.GetData(new_data); 1619 if (success) { 1620 new_data.CopyByteOrderedData( 1621 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1622 byte_size, m_data.GetByteOrder()); 1623 } 1624 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1625 1626 } break; 1627 case Value::eValueTypeFileAddress: 1628 case Value::eValueTypeScalar: 1629 case Value::eValueTypeVector: 1630 break; 1631 } 1632 } else { 1633 return false; 1634 } 1635 } else { 1636 // We don't support setting things bigger than a scalar at present. 1637 error.SetErrorString("unable to write aggregate data type"); 1638 return false; 1639 } 1640 1641 // If we have reached this point, then we have successfully changed the 1642 // value. 1643 SetNeedsUpdate(); 1644 return true; 1645 } 1646 1647 bool ValueObject::GetDeclaration(Declaration &decl) { 1648 decl.Clear(); 1649 return false; 1650 } 1651 1652 ConstString ValueObject::GetTypeName() { 1653 return GetCompilerType().GetTypeName(); 1654 } 1655 1656 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1657 1658 ConstString ValueObject::GetQualifiedTypeName() { 1659 return GetCompilerType().GetTypeName(); 1660 } 1661 1662 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1663 return GetCompilerType().GetMinimumLanguage(); 1664 } 1665 1666 void ValueObject::AddSyntheticChild(ConstString key, 1667 ValueObject *valobj) { 1668 m_synthetic_children[key] = valobj; 1669 } 1670 1671 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1672 ValueObjectSP synthetic_child_sp; 1673 std::map<ConstString, ValueObject *>::const_iterator pos = 1674 m_synthetic_children.find(key); 1675 if (pos != m_synthetic_children.end()) 1676 synthetic_child_sp = pos->second->GetSP(); 1677 return synthetic_child_sp; 1678 } 1679 1680 uint32_t 1681 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1682 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1683 } 1684 1685 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1686 1687 bool ValueObject::IsArrayType() { 1688 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1689 } 1690 1691 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1692 1693 bool ValueObject::IsIntegerType(bool &is_signed) { 1694 return GetCompilerType().IsIntegerType(is_signed); 1695 } 1696 1697 bool ValueObject::IsPointerOrReferenceType() { 1698 return GetCompilerType().IsPointerOrReferenceType(); 1699 } 1700 1701 bool ValueObject::IsPossibleDynamicType() { 1702 ExecutionContext exe_ctx(GetExecutionContextRef()); 1703 Process *process = exe_ctx.GetProcessPtr(); 1704 if (process) 1705 return process->IsPossibleDynamicValue(*this); 1706 else 1707 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1708 } 1709 1710 bool ValueObject::IsRuntimeSupportValue() { 1711 Process *process(GetProcessSP().get()); 1712 if (!process) 1713 return false; 1714 1715 // We trust the the compiler did the right thing and marked runtime support 1716 // values as artificial. 1717 if (!GetVariable() || !GetVariable()->IsArtificial()) 1718 return false; 1719 1720 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1721 if (runtime->IsWhitelistedRuntimeValue(GetName())) 1722 return false; 1723 1724 return true; 1725 } 1726 1727 bool ValueObject::IsNilReference() { 1728 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1729 return language->IsNilReference(*this); 1730 } 1731 return false; 1732 } 1733 1734 bool ValueObject::IsUninitializedReference() { 1735 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1736 return language->IsUninitializedReference(*this); 1737 } 1738 return false; 1739 } 1740 1741 // This allows you to create an array member using and index that doesn't not 1742 // fall in the normal bounds of the array. Many times structure can be defined 1743 // as: struct Collection { 1744 // uint32_t item_count; 1745 // Item item_array[0]; 1746 // }; 1747 // The size of the "item_array" is 1, but many times in practice there are more 1748 // items in "item_array". 1749 1750 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1751 bool can_create) { 1752 ValueObjectSP synthetic_child_sp; 1753 if (IsPointerType() || IsArrayType()) { 1754 char index_str[64]; 1755 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1756 ConstString index_const_str(index_str); 1757 // Check if we have already created a synthetic array member in this valid 1758 // object. If we have we will re-use it. 1759 synthetic_child_sp = GetSyntheticChild(index_const_str); 1760 if (!synthetic_child_sp) { 1761 ValueObject *synthetic_child; 1762 // We haven't made a synthetic array member for INDEX yet, so lets make 1763 // one and cache it for any future reference. 1764 synthetic_child = CreateChildAtIndex(0, true, index); 1765 1766 // Cache the value if we got one back... 1767 if (synthetic_child) { 1768 AddSyntheticChild(index_const_str, synthetic_child); 1769 synthetic_child_sp = synthetic_child->GetSP(); 1770 synthetic_child_sp->SetName(ConstString(index_str)); 1771 synthetic_child_sp->m_is_array_item_for_pointer = true; 1772 } 1773 } 1774 } 1775 return synthetic_child_sp; 1776 } 1777 1778 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1779 bool can_create) { 1780 ValueObjectSP synthetic_child_sp; 1781 if (IsScalarType()) { 1782 char index_str[64]; 1783 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1784 ConstString index_const_str(index_str); 1785 // Check if we have already created a synthetic array member in this valid 1786 // object. If we have we will re-use it. 1787 synthetic_child_sp = GetSyntheticChild(index_const_str); 1788 if (!synthetic_child_sp) { 1789 uint32_t bit_field_size = to - from + 1; 1790 uint32_t bit_field_offset = from; 1791 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1792 bit_field_offset = 1793 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1794 // We haven't made a synthetic array member for INDEX yet, so lets make 1795 // one and cache it for any future reference. 1796 ValueObjectChild *synthetic_child = new ValueObjectChild( 1797 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1798 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1799 0); 1800 1801 // Cache the value if we got one back... 1802 if (synthetic_child) { 1803 AddSyntheticChild(index_const_str, synthetic_child); 1804 synthetic_child_sp = synthetic_child->GetSP(); 1805 synthetic_child_sp->SetName(ConstString(index_str)); 1806 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1807 } 1808 } 1809 } 1810 return synthetic_child_sp; 1811 } 1812 1813 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1814 uint32_t offset, const CompilerType &type, bool can_create, 1815 ConstString name_const_str) { 1816 1817 ValueObjectSP synthetic_child_sp; 1818 1819 if (name_const_str.IsEmpty()) { 1820 char name_str[64]; 1821 snprintf(name_str, sizeof(name_str), "@%i", offset); 1822 name_const_str.SetCString(name_str); 1823 } 1824 1825 // Check if we have already created a synthetic array member in this valid 1826 // object. If we have we will re-use it. 1827 synthetic_child_sp = GetSyntheticChild(name_const_str); 1828 1829 if (synthetic_child_sp.get()) 1830 return synthetic_child_sp; 1831 1832 if (!can_create) 1833 return {}; 1834 1835 ExecutionContext exe_ctx(GetExecutionContextRef()); 1836 llvm::Optional<uint64_t> size = 1837 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1838 if (!size) 1839 return {}; 1840 ValueObjectChild *synthetic_child = 1841 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1842 false, false, eAddressTypeInvalid, 0); 1843 if (synthetic_child) { 1844 AddSyntheticChild(name_const_str, synthetic_child); 1845 synthetic_child_sp = synthetic_child->GetSP(); 1846 synthetic_child_sp->SetName(name_const_str); 1847 synthetic_child_sp->m_is_child_at_offset = true; 1848 } 1849 return synthetic_child_sp; 1850 } 1851 1852 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1853 const CompilerType &type, 1854 bool can_create, 1855 ConstString name_const_str) { 1856 ValueObjectSP synthetic_child_sp; 1857 1858 if (name_const_str.IsEmpty()) { 1859 char name_str[128]; 1860 snprintf(name_str, sizeof(name_str), "base%s@%i", 1861 type.GetTypeName().AsCString("<unknown>"), offset); 1862 name_const_str.SetCString(name_str); 1863 } 1864 1865 // Check if we have already created a synthetic array member in this valid 1866 // object. If we have we will re-use it. 1867 synthetic_child_sp = GetSyntheticChild(name_const_str); 1868 1869 if (synthetic_child_sp.get()) 1870 return synthetic_child_sp; 1871 1872 if (!can_create) 1873 return {}; 1874 1875 const bool is_base_class = true; 1876 1877 ExecutionContext exe_ctx(GetExecutionContextRef()); 1878 llvm::Optional<uint64_t> size = 1879 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1880 if (!size) 1881 return {}; 1882 ValueObjectChild *synthetic_child = 1883 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1884 is_base_class, false, eAddressTypeInvalid, 0); 1885 if (synthetic_child) { 1886 AddSyntheticChild(name_const_str, synthetic_child); 1887 synthetic_child_sp = synthetic_child->GetSP(); 1888 synthetic_child_sp->SetName(name_const_str); 1889 } 1890 return synthetic_child_sp; 1891 } 1892 1893 // your expression path needs to have a leading . or -> (unless it somehow 1894 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1895 // is meaningful and should be shown to the user, . and -> are just parser 1896 // design, but by no means added information for the user.. strip them off 1897 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1898 if (!expression || !expression[0]) 1899 return expression; 1900 if (expression[0] == '.') 1901 return expression + 1; 1902 if (expression[0] == '-' && expression[1] == '>') 1903 return expression + 2; 1904 return expression; 1905 } 1906 1907 ValueObjectSP 1908 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1909 bool can_create) { 1910 ValueObjectSP synthetic_child_sp; 1911 ConstString name_const_string(expression); 1912 // Check if we have already created a synthetic array member in this valid 1913 // object. If we have we will re-use it. 1914 synthetic_child_sp = GetSyntheticChild(name_const_string); 1915 if (!synthetic_child_sp) { 1916 // We haven't made a synthetic array member for expression yet, so lets 1917 // make one and cache it for any future reference. 1918 synthetic_child_sp = GetValueForExpressionPath( 1919 expression, nullptr, nullptr, 1920 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1921 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1922 None)); 1923 1924 // Cache the value if we got one back... 1925 if (synthetic_child_sp.get()) { 1926 // FIXME: this causes a "real" child to end up with its name changed to 1927 // the contents of expression 1928 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1929 synthetic_child_sp->SetName( 1930 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1931 } 1932 } 1933 return synthetic_child_sp; 1934 } 1935 1936 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1937 if (!use_synthetic) 1938 return; 1939 1940 TargetSP target_sp(GetTargetSP()); 1941 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1942 m_synthetic_value = nullptr; 1943 return; 1944 } 1945 1946 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1947 1948 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1949 return; 1950 1951 if (m_synthetic_children_sp.get() == nullptr) 1952 return; 1953 1954 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1955 return; 1956 1957 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1958 } 1959 1960 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1961 if (use_dynamic == eNoDynamicValues) 1962 return; 1963 1964 if (!m_dynamic_value && !IsDynamic()) { 1965 ExecutionContext exe_ctx(GetExecutionContextRef()); 1966 Process *process = exe_ctx.GetProcessPtr(); 1967 if (process && process->IsPossibleDynamicValue(*this)) { 1968 ClearDynamicTypeInformation(); 1969 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1970 } 1971 } 1972 } 1973 1974 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1975 if (use_dynamic == eNoDynamicValues) 1976 return ValueObjectSP(); 1977 1978 if (!IsDynamic() && m_dynamic_value == nullptr) { 1979 CalculateDynamicValue(use_dynamic); 1980 } 1981 if (m_dynamic_value) 1982 return m_dynamic_value->GetSP(); 1983 else 1984 return ValueObjectSP(); 1985 } 1986 1987 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1988 1989 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1990 1991 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1992 if (!use_synthetic) 1993 return ValueObjectSP(); 1994 1995 CalculateSyntheticValue(use_synthetic); 1996 1997 if (m_synthetic_value) 1998 return m_synthetic_value->GetSP(); 1999 else 2000 return ValueObjectSP(); 2001 } 2002 2003 bool ValueObject::HasSyntheticValue() { 2004 UpdateFormatsIfNeeded(); 2005 2006 if (m_synthetic_children_sp.get() == nullptr) 2007 return false; 2008 2009 CalculateSyntheticValue(true); 2010 2011 return m_synthetic_value != nullptr; 2012 } 2013 2014 ValueObject *ValueObject::GetNonBaseClassParent() { 2015 if (GetParent()) { 2016 if (GetParent()->IsBaseClass()) 2017 return GetParent()->GetNonBaseClassParent(); 2018 else 2019 return GetParent(); 2020 } 2021 return nullptr; 2022 } 2023 2024 bool ValueObject::IsBaseClass(uint32_t &depth) { 2025 if (!IsBaseClass()) { 2026 depth = 0; 2027 return false; 2028 } 2029 if (GetParent()) { 2030 GetParent()->IsBaseClass(depth); 2031 depth = depth + 1; 2032 return true; 2033 } 2034 // TODO: a base of no parent? weird.. 2035 depth = 1; 2036 return true; 2037 } 2038 2039 void ValueObject::GetExpressionPath(Stream &s, 2040 GetExpressionPathFormat epformat) { 2041 // synthetic children do not actually "exist" as part of the hierarchy, and 2042 // sometimes they are consed up in ways that don't make sense from an 2043 // underlying language/API standpoint. So, use a special code path here to 2044 // return something that can hopefully be used in expression 2045 if (m_is_synthetic_children_generated) { 2046 UpdateValueIfNeeded(); 2047 2048 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2049 if (IsPointerOrReferenceType()) { 2050 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2051 GetValueAsUnsigned(0)); 2052 return; 2053 } else { 2054 uint64_t load_addr = 2055 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2056 if (load_addr != LLDB_INVALID_ADDRESS) { 2057 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2058 load_addr); 2059 return; 2060 } 2061 } 2062 } 2063 2064 if (CanProvideValue()) { 2065 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2066 GetValueAsCString()); 2067 return; 2068 } 2069 2070 return; 2071 } 2072 2073 const bool is_deref_of_parent = IsDereferenceOfParent(); 2074 2075 if (is_deref_of_parent && 2076 epformat == eGetExpressionPathFormatDereferencePointers) { 2077 // this is the original format of GetExpressionPath() producing code like 2078 // *(a_ptr).memberName, which is entirely fine, until you put this into 2079 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2080 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2081 // in this latter format 2082 s.PutCString("*("); 2083 } 2084 2085 ValueObject *parent = GetParent(); 2086 2087 if (parent) 2088 parent->GetExpressionPath(s, epformat); 2089 2090 // if we are a deref_of_parent just because we are synthetic array members 2091 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2092 // name ([%d]) to the expression path 2093 if (m_is_array_item_for_pointer && 2094 epformat == eGetExpressionPathFormatHonorPointers) 2095 s.PutCString(m_name.GetStringRef()); 2096 2097 if (!IsBaseClass()) { 2098 if (!is_deref_of_parent) { 2099 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2100 if (non_base_class_parent && 2101 !non_base_class_parent->GetName().IsEmpty()) { 2102 CompilerType non_base_class_parent_compiler_type = 2103 non_base_class_parent->GetCompilerType(); 2104 if (non_base_class_parent_compiler_type) { 2105 if (parent && parent->IsDereferenceOfParent() && 2106 epformat == eGetExpressionPathFormatHonorPointers) { 2107 s.PutCString("->"); 2108 } else { 2109 const uint32_t non_base_class_parent_type_info = 2110 non_base_class_parent_compiler_type.GetTypeInfo(); 2111 2112 if (non_base_class_parent_type_info & eTypeIsPointer) { 2113 s.PutCString("->"); 2114 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2115 !(non_base_class_parent_type_info & eTypeIsArray)) { 2116 s.PutChar('.'); 2117 } 2118 } 2119 } 2120 } 2121 2122 const char *name = GetName().GetCString(); 2123 if (name) 2124 s.PutCString(name); 2125 } 2126 } 2127 2128 if (is_deref_of_parent && 2129 epformat == eGetExpressionPathFormatDereferencePointers) { 2130 s.PutChar(')'); 2131 } 2132 } 2133 2134 ValueObjectSP ValueObject::GetValueForExpressionPath( 2135 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2136 ExpressionPathEndResultType *final_value_type, 2137 const GetValueForExpressionPathOptions &options, 2138 ExpressionPathAftermath *final_task_on_target) { 2139 2140 ExpressionPathScanEndReason dummy_reason_to_stop = 2141 ValueObject::eExpressionPathScanEndReasonUnknown; 2142 ExpressionPathEndResultType dummy_final_value_type = 2143 ValueObject::eExpressionPathEndResultTypeInvalid; 2144 ExpressionPathAftermath dummy_final_task_on_target = 2145 ValueObject::eExpressionPathAftermathNothing; 2146 2147 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2148 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2149 final_value_type ? final_value_type : &dummy_final_value_type, options, 2150 final_task_on_target ? final_task_on_target 2151 : &dummy_final_task_on_target); 2152 2153 if (!final_task_on_target || 2154 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2155 return ret_val; 2156 2157 if (ret_val.get() && 2158 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2159 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2160 // of plain objects 2161 { 2162 if ((final_task_on_target ? *final_task_on_target 2163 : dummy_final_task_on_target) == 2164 ValueObject::eExpressionPathAftermathDereference) { 2165 Status error; 2166 ValueObjectSP final_value = ret_val->Dereference(error); 2167 if (error.Fail() || !final_value.get()) { 2168 if (reason_to_stop) 2169 *reason_to_stop = 2170 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2171 if (final_value_type) 2172 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2173 return ValueObjectSP(); 2174 } else { 2175 if (final_task_on_target) 2176 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2177 return final_value; 2178 } 2179 } 2180 if (*final_task_on_target == 2181 ValueObject::eExpressionPathAftermathTakeAddress) { 2182 Status error; 2183 ValueObjectSP final_value = ret_val->AddressOf(error); 2184 if (error.Fail() || !final_value.get()) { 2185 if (reason_to_stop) 2186 *reason_to_stop = 2187 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2188 if (final_value_type) 2189 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2190 return ValueObjectSP(); 2191 } else { 2192 if (final_task_on_target) 2193 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2194 return final_value; 2195 } 2196 } 2197 } 2198 return ret_val; // final_task_on_target will still have its original value, so 2199 // you know I did not do it 2200 } 2201 2202 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2203 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2204 ExpressionPathEndResultType *final_result, 2205 const GetValueForExpressionPathOptions &options, 2206 ExpressionPathAftermath *what_next) { 2207 ValueObjectSP root = GetSP(); 2208 2209 if (!root) 2210 return nullptr; 2211 2212 llvm::StringRef remainder = expression; 2213 2214 while (true) { 2215 llvm::StringRef temp_expression = remainder; 2216 2217 CompilerType root_compiler_type = root->GetCompilerType(); 2218 CompilerType pointee_compiler_type; 2219 Flags pointee_compiler_type_info; 2220 2221 Flags root_compiler_type_info( 2222 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2223 if (pointee_compiler_type) 2224 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2225 2226 if (temp_expression.empty()) { 2227 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2228 return root; 2229 } 2230 2231 switch (temp_expression.front()) { 2232 case '-': { 2233 temp_expression = temp_expression.drop_front(); 2234 if (options.m_check_dot_vs_arrow_syntax && 2235 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2236 // use -> on a 2237 // non-pointer and I 2238 // must catch the error 2239 { 2240 *reason_to_stop = 2241 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2242 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2243 return ValueObjectSP(); 2244 } 2245 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2246 // extract an ObjC IVar 2247 // when this is forbidden 2248 root_compiler_type_info.Test(eTypeIsPointer) && 2249 options.m_no_fragile_ivar) { 2250 *reason_to_stop = 2251 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2252 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2253 return ValueObjectSP(); 2254 } 2255 if (!temp_expression.startswith(">")) { 2256 *reason_to_stop = 2257 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2258 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2259 return ValueObjectSP(); 2260 } 2261 } 2262 LLVM_FALLTHROUGH; 2263 case '.': // or fallthrough from -> 2264 { 2265 if (options.m_check_dot_vs_arrow_syntax && 2266 temp_expression.front() == '.' && 2267 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2268 // use . on a pointer 2269 // and I must catch the 2270 // error 2271 { 2272 *reason_to_stop = 2273 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2274 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2275 return nullptr; 2276 } 2277 temp_expression = temp_expression.drop_front(); // skip . or > 2278 2279 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2280 ConstString child_name; 2281 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2282 // expand this last layer 2283 { 2284 child_name.SetString(temp_expression); 2285 ValueObjectSP child_valobj_sp = 2286 root->GetChildMemberWithName(child_name, true); 2287 2288 if (child_valobj_sp.get()) // we know we are done, so just return 2289 { 2290 *reason_to_stop = 2291 ValueObject::eExpressionPathScanEndReasonEndOfString; 2292 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2293 return child_valobj_sp; 2294 } else { 2295 switch (options.m_synthetic_children_traversal) { 2296 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2297 None: 2298 break; 2299 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2300 FromSynthetic: 2301 if (root->IsSynthetic()) { 2302 child_valobj_sp = root->GetNonSyntheticValue(); 2303 if (child_valobj_sp.get()) 2304 child_valobj_sp = 2305 child_valobj_sp->GetChildMemberWithName(child_name, true); 2306 } 2307 break; 2308 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2309 ToSynthetic: 2310 if (!root->IsSynthetic()) { 2311 child_valobj_sp = root->GetSyntheticValue(); 2312 if (child_valobj_sp.get()) 2313 child_valobj_sp = 2314 child_valobj_sp->GetChildMemberWithName(child_name, true); 2315 } 2316 break; 2317 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2318 Both: 2319 if (root->IsSynthetic()) { 2320 child_valobj_sp = root->GetNonSyntheticValue(); 2321 if (child_valobj_sp.get()) 2322 child_valobj_sp = 2323 child_valobj_sp->GetChildMemberWithName(child_name, true); 2324 } else { 2325 child_valobj_sp = root->GetSyntheticValue(); 2326 if (child_valobj_sp.get()) 2327 child_valobj_sp = 2328 child_valobj_sp->GetChildMemberWithName(child_name, true); 2329 } 2330 break; 2331 } 2332 } 2333 2334 // if we are here and options.m_no_synthetic_children is true, 2335 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2336 // branch, and return an error 2337 if (child_valobj_sp.get()) // if it worked, just return 2338 { 2339 *reason_to_stop = 2340 ValueObject::eExpressionPathScanEndReasonEndOfString; 2341 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2342 return child_valobj_sp; 2343 } else { 2344 *reason_to_stop = 2345 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2346 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2347 return nullptr; 2348 } 2349 } else // other layers do expand 2350 { 2351 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2352 2353 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2354 2355 ValueObjectSP child_valobj_sp = 2356 root->GetChildMemberWithName(child_name, true); 2357 if (child_valobj_sp.get()) // store the new root and move on 2358 { 2359 root = child_valobj_sp; 2360 remainder = next_separator; 2361 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2362 continue; 2363 } else { 2364 switch (options.m_synthetic_children_traversal) { 2365 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2366 None: 2367 break; 2368 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2369 FromSynthetic: 2370 if (root->IsSynthetic()) { 2371 child_valobj_sp = root->GetNonSyntheticValue(); 2372 if (child_valobj_sp.get()) 2373 child_valobj_sp = 2374 child_valobj_sp->GetChildMemberWithName(child_name, true); 2375 } 2376 break; 2377 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2378 ToSynthetic: 2379 if (!root->IsSynthetic()) { 2380 child_valobj_sp = root->GetSyntheticValue(); 2381 if (child_valobj_sp.get()) 2382 child_valobj_sp = 2383 child_valobj_sp->GetChildMemberWithName(child_name, true); 2384 } 2385 break; 2386 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2387 Both: 2388 if (root->IsSynthetic()) { 2389 child_valobj_sp = root->GetNonSyntheticValue(); 2390 if (child_valobj_sp.get()) 2391 child_valobj_sp = 2392 child_valobj_sp->GetChildMemberWithName(child_name, true); 2393 } else { 2394 child_valobj_sp = root->GetSyntheticValue(); 2395 if (child_valobj_sp.get()) 2396 child_valobj_sp = 2397 child_valobj_sp->GetChildMemberWithName(child_name, true); 2398 } 2399 break; 2400 } 2401 } 2402 2403 // if we are here and options.m_no_synthetic_children is true, 2404 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2405 // branch, and return an error 2406 if (child_valobj_sp.get()) // if it worked, move on 2407 { 2408 root = child_valobj_sp; 2409 remainder = next_separator; 2410 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2411 continue; 2412 } else { 2413 *reason_to_stop = 2414 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2415 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2416 return nullptr; 2417 } 2418 } 2419 break; 2420 } 2421 case '[': { 2422 if (!root_compiler_type_info.Test(eTypeIsArray) && 2423 !root_compiler_type_info.Test(eTypeIsPointer) && 2424 !root_compiler_type_info.Test( 2425 eTypeIsVector)) // if this is not a T[] nor a T* 2426 { 2427 if (!root_compiler_type_info.Test( 2428 eTypeIsScalar)) // if this is not even a scalar... 2429 { 2430 if (options.m_synthetic_children_traversal == 2431 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2432 None) // ...only chance left is synthetic 2433 { 2434 *reason_to_stop = 2435 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2436 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2437 return ValueObjectSP(); 2438 } 2439 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2440 // check that we can 2441 // expand bitfields 2442 { 2443 *reason_to_stop = 2444 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2445 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2446 return ValueObjectSP(); 2447 } 2448 } 2449 if (temp_expression[1] == 2450 ']') // if this is an unbounded range it only works for arrays 2451 { 2452 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2453 *reason_to_stop = 2454 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2455 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2456 return nullptr; 2457 } else // even if something follows, we cannot expand unbounded ranges, 2458 // just let the caller do it 2459 { 2460 *reason_to_stop = 2461 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2462 *final_result = 2463 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2464 return root; 2465 } 2466 } 2467 2468 size_t close_bracket_position = temp_expression.find(']', 1); 2469 if (close_bracket_position == 2470 llvm::StringRef::npos) // if there is no ], this is a syntax error 2471 { 2472 *reason_to_stop = 2473 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2474 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2475 return nullptr; 2476 } 2477 2478 llvm::StringRef bracket_expr = 2479 temp_expression.slice(1, close_bracket_position); 2480 2481 // If this was an empty expression it would have been caught by the if 2482 // above. 2483 assert(!bracket_expr.empty()); 2484 2485 if (!bracket_expr.contains('-')) { 2486 // if no separator, this is of the form [N]. Note that this cannot be 2487 // an unbounded range of the form [], because that case was handled 2488 // above with an unconditional return. 2489 unsigned long index = 0; 2490 if (bracket_expr.getAsInteger(0, index)) { 2491 *reason_to_stop = 2492 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2493 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2494 return nullptr; 2495 } 2496 2497 // from here on we do have a valid index 2498 if (root_compiler_type_info.Test(eTypeIsArray)) { 2499 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2500 if (!child_valobj_sp) 2501 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2502 if (!child_valobj_sp) 2503 if (root->HasSyntheticValue() && 2504 root->GetSyntheticValue()->GetNumChildren() > index) 2505 child_valobj_sp = 2506 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2507 if (child_valobj_sp) { 2508 root = child_valobj_sp; 2509 remainder = 2510 temp_expression.substr(close_bracket_position + 1); // skip ] 2511 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2512 continue; 2513 } else { 2514 *reason_to_stop = 2515 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2516 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2517 return nullptr; 2518 } 2519 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2520 if (*what_next == 2521 ValueObject:: 2522 eExpressionPathAftermathDereference && // if this is a 2523 // ptr-to-scalar, I 2524 // am accessing it 2525 // by index and I 2526 // would have 2527 // deref'ed anyway, 2528 // then do it now 2529 // and use this as 2530 // a bitfield 2531 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2532 Status error; 2533 root = root->Dereference(error); 2534 if (error.Fail() || !root) { 2535 *reason_to_stop = 2536 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2537 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2538 return nullptr; 2539 } else { 2540 *what_next = eExpressionPathAftermathNothing; 2541 continue; 2542 } 2543 } else { 2544 if (root->GetCompilerType().GetMinimumLanguage() == 2545 eLanguageTypeObjC && 2546 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2547 root->HasSyntheticValue() && 2548 (options.m_synthetic_children_traversal == 2549 GetValueForExpressionPathOptions:: 2550 SyntheticChildrenTraversal::ToSynthetic || 2551 options.m_synthetic_children_traversal == 2552 GetValueForExpressionPathOptions:: 2553 SyntheticChildrenTraversal::Both)) { 2554 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2555 } else 2556 root = root->GetSyntheticArrayMember(index, true); 2557 if (!root) { 2558 *reason_to_stop = 2559 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2560 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2561 return nullptr; 2562 } else { 2563 remainder = 2564 temp_expression.substr(close_bracket_position + 1); // skip ] 2565 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2566 continue; 2567 } 2568 } 2569 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2570 root = root->GetSyntheticBitFieldChild(index, index, true); 2571 if (!root) { 2572 *reason_to_stop = 2573 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2574 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2575 return nullptr; 2576 } else // we do not know how to expand members of bitfields, so we 2577 // just return and let the caller do any further processing 2578 { 2579 *reason_to_stop = ValueObject:: 2580 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2581 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2582 return root; 2583 } 2584 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2585 root = root->GetChildAtIndex(index, true); 2586 if (!root) { 2587 *reason_to_stop = 2588 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2589 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2590 return ValueObjectSP(); 2591 } else { 2592 remainder = 2593 temp_expression.substr(close_bracket_position + 1); // skip ] 2594 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2595 continue; 2596 } 2597 } else if (options.m_synthetic_children_traversal == 2598 GetValueForExpressionPathOptions:: 2599 SyntheticChildrenTraversal::ToSynthetic || 2600 options.m_synthetic_children_traversal == 2601 GetValueForExpressionPathOptions:: 2602 SyntheticChildrenTraversal::Both) { 2603 if (root->HasSyntheticValue()) 2604 root = root->GetSyntheticValue(); 2605 else if (!root->IsSynthetic()) { 2606 *reason_to_stop = 2607 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2608 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2609 return nullptr; 2610 } 2611 // if we are here, then root itself is a synthetic VO.. should be 2612 // good to go 2613 2614 if (!root) { 2615 *reason_to_stop = 2616 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2617 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2618 return nullptr; 2619 } 2620 root = root->GetChildAtIndex(index, true); 2621 if (!root) { 2622 *reason_to_stop = 2623 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2624 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2625 return nullptr; 2626 } else { 2627 remainder = 2628 temp_expression.substr(close_bracket_position + 1); // skip ] 2629 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2630 continue; 2631 } 2632 } else { 2633 *reason_to_stop = 2634 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2635 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2636 return nullptr; 2637 } 2638 } else { 2639 // we have a low and a high index 2640 llvm::StringRef sleft, sright; 2641 unsigned long low_index, high_index; 2642 std::tie(sleft, sright) = bracket_expr.split('-'); 2643 if (sleft.getAsInteger(0, low_index) || 2644 sright.getAsInteger(0, high_index)) { 2645 *reason_to_stop = 2646 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2647 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2648 return nullptr; 2649 } 2650 2651 if (low_index > high_index) // swap indices if required 2652 std::swap(low_index, high_index); 2653 2654 if (root_compiler_type_info.Test( 2655 eTypeIsScalar)) // expansion only works for scalars 2656 { 2657 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2658 if (!root) { 2659 *reason_to_stop = 2660 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2661 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2662 return nullptr; 2663 } else { 2664 *reason_to_stop = ValueObject:: 2665 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2666 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2667 return root; 2668 } 2669 } else if (root_compiler_type_info.Test( 2670 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2671 // accessing it by index and I would 2672 // have deref'ed anyway, then do it 2673 // now and use this as a bitfield 2674 *what_next == 2675 ValueObject::eExpressionPathAftermathDereference && 2676 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2677 Status error; 2678 root = root->Dereference(error); 2679 if (error.Fail() || !root) { 2680 *reason_to_stop = 2681 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2682 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2683 return nullptr; 2684 } else { 2685 *what_next = ValueObject::eExpressionPathAftermathNothing; 2686 continue; 2687 } 2688 } else { 2689 *reason_to_stop = 2690 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2691 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2692 return root; 2693 } 2694 } 2695 break; 2696 } 2697 default: // some non-separator is in the way 2698 { 2699 *reason_to_stop = 2700 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2701 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2702 return nullptr; 2703 } 2704 } 2705 } 2706 } 2707 2708 void ValueObject::LogValueObject(Log *log) { 2709 if (log) 2710 return LogValueObject(log, DumpValueObjectOptions(*this)); 2711 } 2712 2713 void ValueObject::LogValueObject(Log *log, 2714 const DumpValueObjectOptions &options) { 2715 if (log) { 2716 StreamString s; 2717 Dump(s, options); 2718 if (s.GetSize()) 2719 log->PutCString(s.GetData()); 2720 } 2721 } 2722 2723 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2724 2725 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2726 ValueObjectPrinter printer(this, &s, options); 2727 printer.PrintValueObject(); 2728 } 2729 2730 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2731 ValueObjectSP valobj_sp; 2732 2733 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2734 ExecutionContext exe_ctx(GetExecutionContextRef()); 2735 2736 DataExtractor data; 2737 data.SetByteOrder(m_data.GetByteOrder()); 2738 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2739 2740 if (IsBitfield()) { 2741 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2742 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2743 } else 2744 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2745 2746 valobj_sp = ValueObjectConstResult::Create( 2747 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2748 GetAddressOf()); 2749 } 2750 2751 if (!valobj_sp) { 2752 ExecutionContext exe_ctx(GetExecutionContextRef()); 2753 valobj_sp = ValueObjectConstResult::Create( 2754 exe_ctx.GetBestExecutionContextScope(), m_error); 2755 } 2756 return valobj_sp; 2757 } 2758 2759 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2760 lldb::DynamicValueType dynValue, bool synthValue) { 2761 ValueObjectSP result_sp(GetSP()); 2762 2763 switch (dynValue) { 2764 case lldb::eDynamicCanRunTarget: 2765 case lldb::eDynamicDontRunTarget: { 2766 if (!result_sp->IsDynamic()) { 2767 if (result_sp->GetDynamicValue(dynValue)) 2768 result_sp = result_sp->GetDynamicValue(dynValue); 2769 } 2770 } break; 2771 case lldb::eNoDynamicValues: { 2772 if (result_sp->IsDynamic()) { 2773 if (result_sp->GetStaticValue()) 2774 result_sp = result_sp->GetStaticValue(); 2775 } 2776 } break; 2777 } 2778 2779 if (synthValue) { 2780 if (!result_sp->IsSynthetic()) { 2781 if (result_sp->GetSyntheticValue()) 2782 result_sp = result_sp->GetSyntheticValue(); 2783 } 2784 } else { 2785 if (result_sp->IsSynthetic()) { 2786 if (result_sp->GetNonSyntheticValue()) 2787 result_sp = result_sp->GetNonSyntheticValue(); 2788 } 2789 } 2790 2791 return result_sp; 2792 } 2793 2794 ValueObjectSP ValueObject::Dereference(Status &error) { 2795 if (m_deref_valobj) 2796 return m_deref_valobj->GetSP(); 2797 2798 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2799 if (is_pointer_or_reference_type) { 2800 bool omit_empty_base_classes = true; 2801 bool ignore_array_bounds = false; 2802 2803 std::string child_name_str; 2804 uint32_t child_byte_size = 0; 2805 int32_t child_byte_offset = 0; 2806 uint32_t child_bitfield_bit_size = 0; 2807 uint32_t child_bitfield_bit_offset = 0; 2808 bool child_is_base_class = false; 2809 bool child_is_deref_of_parent = false; 2810 const bool transparent_pointers = false; 2811 CompilerType compiler_type = GetCompilerType(); 2812 CompilerType child_compiler_type; 2813 uint64_t language_flags; 2814 2815 ExecutionContext exe_ctx(GetExecutionContextRef()); 2816 2817 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2818 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2819 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2820 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2821 child_is_deref_of_parent, this, language_flags); 2822 if (child_compiler_type && child_byte_size) { 2823 ConstString child_name; 2824 if (!child_name_str.empty()) 2825 child_name.SetCString(child_name_str.c_str()); 2826 2827 m_deref_valobj = new ValueObjectChild( 2828 *this, child_compiler_type, child_name, child_byte_size, 2829 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2830 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2831 language_flags); 2832 } 2833 } else if (HasSyntheticValue()) { 2834 m_deref_valobj = 2835 GetSyntheticValue() 2836 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2837 .get(); 2838 } else if (IsSynthetic()) { 2839 m_deref_valobj = 2840 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2841 } 2842 2843 if (m_deref_valobj) { 2844 error.Clear(); 2845 return m_deref_valobj->GetSP(); 2846 } else { 2847 StreamString strm; 2848 GetExpressionPath(strm); 2849 2850 if (is_pointer_or_reference_type) 2851 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2852 GetTypeName().AsCString("<invalid type>"), 2853 strm.GetData()); 2854 else 2855 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2856 GetTypeName().AsCString("<invalid type>"), 2857 strm.GetData()); 2858 return ValueObjectSP(); 2859 } 2860 } 2861 2862 ValueObjectSP ValueObject::AddressOf(Status &error) { 2863 if (m_addr_of_valobj_sp) 2864 return m_addr_of_valobj_sp; 2865 2866 AddressType address_type = eAddressTypeInvalid; 2867 const bool scalar_is_load_address = false; 2868 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2869 error.Clear(); 2870 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2871 switch (address_type) { 2872 case eAddressTypeInvalid: { 2873 StreamString expr_path_strm; 2874 GetExpressionPath(expr_path_strm); 2875 error.SetErrorStringWithFormat("'%s' is not in memory", 2876 expr_path_strm.GetData()); 2877 } break; 2878 2879 case eAddressTypeFile: 2880 case eAddressTypeLoad: { 2881 CompilerType compiler_type = GetCompilerType(); 2882 if (compiler_type) { 2883 std::string name(1, '&'); 2884 name.append(m_name.AsCString("")); 2885 ExecutionContext exe_ctx(GetExecutionContextRef()); 2886 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2887 exe_ctx.GetBestExecutionContextScope(), 2888 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2889 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2890 } 2891 } break; 2892 default: 2893 break; 2894 } 2895 } else { 2896 StreamString expr_path_strm; 2897 GetExpressionPath(expr_path_strm); 2898 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2899 expr_path_strm.GetData()); 2900 } 2901 2902 return m_addr_of_valobj_sp; 2903 } 2904 2905 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2906 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2907 } 2908 2909 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2910 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2911 } 2912 2913 ValueObjectSP ValueObject::CastPointerType(const char *name, 2914 CompilerType &compiler_type) { 2915 ValueObjectSP valobj_sp; 2916 AddressType address_type; 2917 addr_t ptr_value = GetPointerValue(&address_type); 2918 2919 if (ptr_value != LLDB_INVALID_ADDRESS) { 2920 Address ptr_addr(ptr_value); 2921 ExecutionContext exe_ctx(GetExecutionContextRef()); 2922 valobj_sp = ValueObjectMemory::Create( 2923 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2924 } 2925 return valobj_sp; 2926 } 2927 2928 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2929 ValueObjectSP valobj_sp; 2930 AddressType address_type; 2931 addr_t ptr_value = GetPointerValue(&address_type); 2932 2933 if (ptr_value != LLDB_INVALID_ADDRESS) { 2934 Address ptr_addr(ptr_value); 2935 ExecutionContext exe_ctx(GetExecutionContextRef()); 2936 valobj_sp = ValueObjectMemory::Create( 2937 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2938 } 2939 return valobj_sp; 2940 } 2941 2942 ValueObject::EvaluationPoint::EvaluationPoint() 2943 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2944 2945 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2946 bool use_selected) 2947 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2948 ExecutionContext exe_ctx(exe_scope); 2949 TargetSP target_sp(exe_ctx.GetTargetSP()); 2950 if (target_sp) { 2951 m_exe_ctx_ref.SetTargetSP(target_sp); 2952 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2953 if (!process_sp) 2954 process_sp = target_sp->GetProcessSP(); 2955 2956 if (process_sp) { 2957 m_mod_id = process_sp->GetModID(); 2958 m_exe_ctx_ref.SetProcessSP(process_sp); 2959 2960 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2961 2962 if (!thread_sp) { 2963 if (use_selected) 2964 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2965 } 2966 2967 if (thread_sp) { 2968 m_exe_ctx_ref.SetThreadSP(thread_sp); 2969 2970 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2971 if (!frame_sp) { 2972 if (use_selected) 2973 frame_sp = thread_sp->GetSelectedFrame(); 2974 } 2975 if (frame_sp) 2976 m_exe_ctx_ref.SetFrameSP(frame_sp); 2977 } 2978 } 2979 } 2980 } 2981 2982 ValueObject::EvaluationPoint::EvaluationPoint( 2983 const ValueObject::EvaluationPoint &rhs) 2984 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2985 2986 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2987 2988 // This function checks the EvaluationPoint against the current process state. 2989 // If the current state matches the evaluation point, or the evaluation point 2990 // is already invalid, then we return false, meaning "no change". If the 2991 // current state is different, we update our state, and return true meaning 2992 // "yes, change". If we did see a change, we also set m_needs_update to true, 2993 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2994 // the current execution context scope. 2995 2996 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2997 bool accept_invalid_exe_ctx) { 2998 // Start with the target, if it is NULL, then we're obviously not going to 2999 // get any further: 3000 const bool thread_and_frame_only_if_stopped = true; 3001 ExecutionContext exe_ctx( 3002 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3003 3004 if (exe_ctx.GetTargetPtr() == nullptr) 3005 return false; 3006 3007 // If we don't have a process nothing can change. 3008 Process *process = exe_ctx.GetProcessPtr(); 3009 if (process == nullptr) 3010 return false; 3011 3012 // If our stop id is the current stop ID, nothing has changed: 3013 ProcessModID current_mod_id = process->GetModID(); 3014 3015 // If the current stop id is 0, either we haven't run yet, or the process 3016 // state has been cleared. In either case, we aren't going to be able to sync 3017 // with the process state. 3018 if (current_mod_id.GetStopID() == 0) 3019 return false; 3020 3021 bool changed = false; 3022 const bool was_valid = m_mod_id.IsValid(); 3023 if (was_valid) { 3024 if (m_mod_id == current_mod_id) { 3025 // Everything is already up to date in this object, no need to update the 3026 // execution context scope. 3027 changed = false; 3028 } else { 3029 m_mod_id = current_mod_id; 3030 m_needs_update = true; 3031 changed = true; 3032 } 3033 } 3034 3035 // Now re-look up the thread and frame in case the underlying objects have 3036 // gone away & been recreated. That way we'll be sure to return a valid 3037 // exe_scope. If we used to have a thread or a frame but can't find it 3038 // anymore, then mark ourselves as invalid. 3039 3040 if (!accept_invalid_exe_ctx) { 3041 if (m_exe_ctx_ref.HasThreadRef()) { 3042 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3043 if (thread_sp) { 3044 if (m_exe_ctx_ref.HasFrameRef()) { 3045 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3046 if (!frame_sp) { 3047 // We used to have a frame, but now it is gone 3048 SetInvalid(); 3049 changed = was_valid; 3050 } 3051 } 3052 } else { 3053 // We used to have a thread, but now it is gone 3054 SetInvalid(); 3055 changed = was_valid; 3056 } 3057 } 3058 } 3059 3060 return changed; 3061 } 3062 3063 void ValueObject::EvaluationPoint::SetUpdated() { 3064 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3065 if (process_sp) 3066 m_mod_id = process_sp->GetModID(); 3067 m_needs_update = false; 3068 } 3069 3070 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3071 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3072 eClearUserVisibleDataItemsValue) 3073 m_value_str.clear(); 3074 3075 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3076 eClearUserVisibleDataItemsLocation) 3077 m_location_str.clear(); 3078 3079 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3080 eClearUserVisibleDataItemsSummary) 3081 m_summary_str.clear(); 3082 3083 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3084 eClearUserVisibleDataItemsDescription) 3085 m_object_desc_str.clear(); 3086 3087 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3088 eClearUserVisibleDataItemsSyntheticChildren) { 3089 if (m_synthetic_value) 3090 m_synthetic_value = nullptr; 3091 } 3092 } 3093 3094 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3095 if (m_parent) { 3096 if (!m_parent->IsPointerOrReferenceType()) 3097 return m_parent->GetSymbolContextScope(); 3098 } 3099 return nullptr; 3100 } 3101 3102 lldb::ValueObjectSP 3103 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3104 llvm::StringRef expression, 3105 const ExecutionContext &exe_ctx) { 3106 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3107 EvaluateExpressionOptions()); 3108 } 3109 3110 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3111 llvm::StringRef name, llvm::StringRef expression, 3112 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3113 lldb::ValueObjectSP retval_sp; 3114 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3115 if (!target_sp) 3116 return retval_sp; 3117 if (expression.empty()) 3118 return retval_sp; 3119 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3120 retval_sp, options); 3121 if (retval_sp && !name.empty()) 3122 retval_sp->SetName(ConstString(name)); 3123 return retval_sp; 3124 } 3125 3126 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3127 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3128 CompilerType type) { 3129 if (type) { 3130 CompilerType pointer_type(type.GetPointerType()); 3131 if (pointer_type) { 3132 lldb::DataBufferSP buffer( 3133 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3134 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3135 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3136 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3137 exe_ctx.GetAddressByteSize())); 3138 if (ptr_result_valobj_sp) { 3139 ptr_result_valobj_sp->GetValue().SetValueType( 3140 Value::eValueTypeLoadAddress); 3141 Status err; 3142 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3143 if (ptr_result_valobj_sp && !name.empty()) 3144 ptr_result_valobj_sp->SetName(ConstString(name)); 3145 } 3146 return ptr_result_valobj_sp; 3147 } 3148 } 3149 return lldb::ValueObjectSP(); 3150 } 3151 3152 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3153 llvm::StringRef name, const DataExtractor &data, 3154 const ExecutionContext &exe_ctx, CompilerType type) { 3155 lldb::ValueObjectSP new_value_sp; 3156 new_value_sp = ValueObjectConstResult::Create( 3157 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3158 LLDB_INVALID_ADDRESS); 3159 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3160 if (new_value_sp && !name.empty()) 3161 new_value_sp->SetName(ConstString(name)); 3162 return new_value_sp; 3163 } 3164 3165 ModuleSP ValueObject::GetModule() { 3166 ValueObject *root(GetRoot()); 3167 if (root != this) 3168 return root->GetModule(); 3169 return lldb::ModuleSP(); 3170 } 3171 3172 ValueObject *ValueObject::GetRoot() { 3173 if (m_root) 3174 return m_root; 3175 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3176 return (vo->m_parent != nullptr); 3177 })); 3178 } 3179 3180 ValueObject * 3181 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3182 ValueObject *vo = this; 3183 while (vo) { 3184 if (!f(vo)) 3185 break; 3186 vo = vo->m_parent; 3187 } 3188 return vo; 3189 } 3190 3191 AddressType ValueObject::GetAddressTypeOfChildren() { 3192 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3193 ValueObject *root(GetRoot()); 3194 if (root != this) 3195 return root->GetAddressTypeOfChildren(); 3196 } 3197 return m_address_type_of_ptr_or_ref_children; 3198 } 3199 3200 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3201 ValueObject *with_dv_info = this; 3202 while (with_dv_info) { 3203 if (with_dv_info->HasDynamicValueTypeInfo()) 3204 return with_dv_info->GetDynamicValueTypeImpl(); 3205 with_dv_info = with_dv_info->m_parent; 3206 } 3207 return lldb::eNoDynamicValues; 3208 } 3209 3210 lldb::Format ValueObject::GetFormat() const { 3211 const ValueObject *with_fmt_info = this; 3212 while (with_fmt_info) { 3213 if (with_fmt_info->m_format != lldb::eFormatDefault) 3214 return with_fmt_info->m_format; 3215 with_fmt_info = with_fmt_info->m_parent; 3216 } 3217 return m_format; 3218 } 3219 3220 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3221 lldb::LanguageType type = m_preferred_display_language; 3222 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3223 if (GetRoot()) { 3224 if (GetRoot() == this) { 3225 if (StackFrameSP frame_sp = GetFrameSP()) { 3226 const SymbolContext &sc( 3227 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3228 if (CompileUnit *cu = sc.comp_unit) 3229 type = cu->GetLanguage(); 3230 } 3231 } else { 3232 type = GetRoot()->GetPreferredDisplayLanguage(); 3233 } 3234 } 3235 } 3236 return (m_preferred_display_language = type); // only compute it once 3237 } 3238 3239 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3240 m_preferred_display_language = lt; 3241 } 3242 3243 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3244 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3245 SetPreferredDisplayLanguage(lt); 3246 } 3247 3248 bool ValueObject::CanProvideValue() { 3249 // we need to support invalid types as providers of values because some bare- 3250 // board debugging scenarios have no notion of types, but still manage to 3251 // have raw numeric values for things like registers. sigh. 3252 const CompilerType &type(GetCompilerType()); 3253 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3254 } 3255 3256 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3257 3258 ValueObjectSP ValueObject::Persist() { 3259 if (!UpdateValueIfNeeded()) 3260 return nullptr; 3261 3262 TargetSP target_sp(GetTargetSP()); 3263 if (!target_sp) 3264 return nullptr; 3265 3266 PersistentExpressionState *persistent_state = 3267 target_sp->GetPersistentExpressionStateForLanguage( 3268 GetPreferredDisplayLanguage()); 3269 3270 if (!persistent_state) 3271 return nullptr; 3272 3273 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3274 ConstString name = 3275 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3276 3277 ValueObjectSP const_result_sp = 3278 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3279 3280 ExpressionVariableSP persistent_var_sp = 3281 persistent_state->CreatePersistentVariable(const_result_sp); 3282 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3283 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3284 3285 return persistent_var_sp->GetValueObject(); 3286 } 3287 3288 bool ValueObject::IsSyntheticChildrenGenerated() { 3289 return m_is_synthetic_children_generated; 3290 } 3291 3292 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3293 m_is_synthetic_children_generated = b; 3294 } 3295 3296 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3297 3298 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3299 3300 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3301 lldb::DynamicValueType use_dynamic, 3302 bool use_synthetic) : m_root_valobj_sp(), 3303 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3304 m_use_synthetic(use_synthetic) { 3305 if (!in_valobj_sp) 3306 return; 3307 // If the user passes in a value object that is dynamic or synthetic, then 3308 // water it down to the static type. 3309 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3310 } 3311 3312 bool ValueObjectManager::IsValid() const { 3313 if (!m_root_valobj_sp) 3314 return false; 3315 lldb::TargetSP target_sp = GetTargetSP(); 3316 if (target_sp) 3317 return target_sp->IsValid(); 3318 return false; 3319 } 3320 3321 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3322 lldb::ProcessSP process_sp = GetProcessSP(); 3323 if (!process_sp) 3324 return lldb::ValueObjectSP(); 3325 3326 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3327 if (current_stop_id == m_stop_id) 3328 return m_user_valobj_sp; 3329 3330 m_stop_id = current_stop_id; 3331 3332 if (!m_root_valobj_sp) { 3333 m_user_valobj_sp.reset(); 3334 return m_root_valobj_sp; 3335 } 3336 3337 m_user_valobj_sp = m_root_valobj_sp; 3338 3339 if (m_use_dynamic != lldb::eNoDynamicValues) { 3340 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3341 if (dynamic_sp) 3342 m_user_valobj_sp = dynamic_sp; 3343 } 3344 3345 if (m_use_synthetic) { 3346 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3347 if (synthetic_sp) 3348 m_user_valobj_sp = synthetic_sp; 3349 } 3350 3351 return m_user_valobj_sp; 3352 } 3353 3354 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3355 if (use_dynamic != m_use_dynamic) { 3356 m_use_dynamic = use_dynamic; 3357 m_user_valobj_sp.reset(); 3358 m_stop_id = UINT32_MAX; 3359 } 3360 } 3361 3362 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3363 if (m_use_synthetic != use_synthetic) { 3364 m_use_synthetic = use_synthetic; 3365 m_user_valobj_sp.reset(); 3366 m_stop_id = UINT32_MAX; 3367 } 3368 } 3369 3370 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3371 if (!m_root_valobj_sp) 3372 return m_root_valobj_sp->GetTargetSP(); 3373 return lldb::TargetSP(); 3374 } 3375 3376 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3377 if (m_root_valobj_sp) 3378 return m_root_valobj_sp->GetProcessSP(); 3379 return lldb::ProcessSP(); 3380 } 3381 3382 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3383 if (m_root_valobj_sp) 3384 return m_root_valobj_sp->GetThreadSP(); 3385 return lldb::ThreadSP(); 3386 } 3387 3388 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3389 if (m_root_valobj_sp) 3390 return m_root_valobj_sp->GetFrameSP(); 3391 return lldb::StackFrameSP(); 3392 } 3393