1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/TypeValidator.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Symbol/ClangASTContext.h" 29 #include "lldb/Symbol/CompileUnit.h" 30 #include "lldb/Symbol/CompilerType.h" 31 #include "lldb/Symbol/Declaration.h" 32 #include "lldb/Symbol/SymbolContext.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/Variable.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/StackFrame.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Target/Thread.h" 42 #include "lldb/Target/ThreadList.h" 43 #include "lldb/Utility/DataBuffer.h" 44 #include "lldb/Utility/DataBufferHeap.h" 45 #include "lldb/Utility/Flags.h" 46 #include "lldb/Utility/Log.h" 47 #include "lldb/Utility/Logging.h" 48 #include "lldb/Utility/Scalar.h" 49 #include "lldb/Utility/SharingPtr.h" 50 #include "lldb/Utility/Stream.h" 51 #include "lldb/Utility/StreamString.h" 52 #include "lldb/lldb-private-types.h" 53 54 #include "llvm/Support/Compiler.h" 55 56 #include <algorithm> 57 #include <cstdint> 58 #include <cstdlib> 59 #include <memory> 60 #include <tuple> 61 62 #include <assert.h> 63 #include <inttypes.h> 64 #include <stdio.h> 65 #include <string.h> 66 67 namespace lldb_private { 68 class ExecutionContextScope; 69 } 70 namespace lldb_private { 71 class SymbolContextScope; 72 } 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace lldb_utility; 77 78 static user_id_t g_value_obj_uid = 0; 79 80 // ValueObject constructor 81 ValueObject::ValueObject(ValueObject &parent) 82 : UserID(++g_value_obj_uid), // Unique identifier for every value object 83 m_parent(&parent), m_root(nullptr), 84 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 85 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 86 m_summary_str(), m_object_desc_str(), m_validation_result(), 87 m_manager(parent.GetManager()), m_children(), m_synthetic_children(), 88 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 89 m_deref_valobj(nullptr), m_format(eFormatDefault), 90 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 91 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 92 m_type_validator_sp(), m_user_id_of_forced_summary(), 93 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 94 m_value_checksum(), 95 m_preferred_display_language(lldb::eLanguageTypeUnknown), 96 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 97 m_children_count_valid(false), m_old_value_valid(false), 98 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 99 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 100 m_is_getting_summary(false), 101 m_did_calculate_complete_objc_class_type(false), 102 m_is_synthetic_children_generated( 103 parent.m_is_synthetic_children_generated) { 104 m_manager->ManageObject(this); 105 } 106 107 // ValueObject constructor 108 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 109 AddressType child_ptr_or_ref_addr_type) 110 : UserID(++g_value_obj_uid), // Unique identifier for every value object 111 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 112 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 113 m_location_str(), m_summary_str(), m_object_desc_str(), 114 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 115 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 116 m_deref_valobj(nullptr), m_format(eFormatDefault), 117 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 118 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 119 m_type_validator_sp(), m_user_id_of_forced_summary(), 120 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 121 m_value_checksum(), 122 m_preferred_display_language(lldb::eLanguageTypeUnknown), 123 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 124 m_children_count_valid(false), m_old_value_valid(false), 125 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 126 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 127 m_is_getting_summary(false), 128 m_did_calculate_complete_objc_class_type(false), 129 m_is_synthetic_children_generated(false) { 130 m_manager = new ValueObjectManager(); 131 m_manager->ManageObject(this); 132 } 133 134 // Destructor 135 ValueObject::~ValueObject() {} 136 137 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 138 139 bool did_change_formats = false; 140 141 if (update_format) 142 did_change_formats = UpdateFormatsIfNeeded(); 143 144 // If this is a constant value, then our success is predicated on whether we 145 // have an error or not 146 if (GetIsConstant()) { 147 // if you are constant, things might still have changed behind your back 148 // (e.g. you are a frozen object and things have changed deeper than you 149 // cared to freeze-dry yourself) in this case, your value has not changed, 150 // but "computed" entries might have, so you might now have a different 151 // summary, or a different object description. clear these so we will 152 // recompute them 153 if (update_format && !did_change_formats) 154 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 155 eClearUserVisibleDataItemsDescription); 156 return m_error.Success(); 157 } 158 159 bool first_update = IsChecksumEmpty(); 160 161 if (NeedsUpdating()) { 162 m_update_point.SetUpdated(); 163 164 // Save the old value using swap to avoid a string copy which also will 165 // clear our m_value_str 166 if (m_value_str.empty()) { 167 m_old_value_valid = false; 168 } else { 169 m_old_value_valid = true; 170 m_old_value_str.swap(m_value_str); 171 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 172 } 173 174 ClearUserVisibleData(); 175 176 if (IsInScope()) { 177 const bool value_was_valid = GetValueIsValid(); 178 SetValueDidChange(false); 179 180 m_error.Clear(); 181 182 // Call the pure virtual function to update the value 183 184 bool need_compare_checksums = false; 185 llvm::SmallVector<uint8_t, 16> old_checksum; 186 187 if (!first_update && CanProvideValue()) { 188 need_compare_checksums = true; 189 old_checksum.resize(m_value_checksum.size()); 190 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 191 old_checksum.begin()); 192 } 193 194 bool success = UpdateValue(); 195 196 SetValueIsValid(success); 197 198 if (success) { 199 const uint64_t max_checksum_size = 128; 200 m_data.Checksum(m_value_checksum, max_checksum_size); 201 } else { 202 need_compare_checksums = false; 203 m_value_checksum.clear(); 204 } 205 206 assert(!need_compare_checksums || 207 (!old_checksum.empty() && !m_value_checksum.empty())); 208 209 if (first_update) 210 SetValueDidChange(false); 211 else if (!m_value_did_change && !success) { 212 // The value wasn't gotten successfully, so we mark this as changed if 213 // the value used to be valid and now isn't 214 SetValueDidChange(value_was_valid); 215 } else if (need_compare_checksums) { 216 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 217 m_value_checksum.size())); 218 } 219 220 } else { 221 m_error.SetErrorString("out of scope"); 222 } 223 } 224 return m_error.Success(); 225 } 226 227 bool ValueObject::UpdateFormatsIfNeeded() { 228 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 229 LLDB_LOGF(log, 230 "[%s %p] checking for FormatManager revisions. ValueObject " 231 "rev: %d - Global rev: %d", 232 GetName().GetCString(), static_cast<void *>(this), 233 m_last_format_mgr_revision, 234 DataVisualization::GetCurrentRevision()); 235 236 bool any_change = false; 237 238 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 239 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 240 any_change = true; 241 242 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 243 SetSummaryFormat( 244 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 245 #ifndef LLDB_DISABLE_PYTHON 246 SetSyntheticChildren( 247 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 248 #endif 249 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 250 } 251 252 return any_change; 253 } 254 255 void ValueObject::SetNeedsUpdate() { 256 m_update_point.SetNeedsUpdate(); 257 // We have to clear the value string here so ConstResult children will notice 258 // if their values are changed by hand (i.e. with SetValueAsCString). 259 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 260 } 261 262 void ValueObject::ClearDynamicTypeInformation() { 263 m_children_count_valid = false; 264 m_did_calculate_complete_objc_class_type = false; 265 m_last_format_mgr_revision = 0; 266 m_override_type = CompilerType(); 267 SetValueFormat(lldb::TypeFormatImplSP()); 268 SetSummaryFormat(lldb::TypeSummaryImplSP()); 269 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 270 } 271 272 CompilerType ValueObject::MaybeCalculateCompleteType() { 273 CompilerType compiler_type(GetCompilerTypeImpl()); 274 275 if (m_did_calculate_complete_objc_class_type) { 276 if (m_override_type.IsValid()) 277 return m_override_type; 278 else 279 return compiler_type; 280 } 281 282 m_did_calculate_complete_objc_class_type = true; 283 284 ProcessSP process_sp( 285 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 286 287 if (!process_sp) 288 return compiler_type; 289 290 if (auto *runtime = 291 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 292 if (llvm::Optional<CompilerType> complete_type = 293 runtime->GetRuntimeType(compiler_type)) { 294 m_override_type = complete_type.getValue(); 295 if (m_override_type.IsValid()) 296 return m_override_type; 297 } 298 } 299 return compiler_type; 300 } 301 302 CompilerType ValueObject::GetCompilerType() { 303 return MaybeCalculateCompleteType(); 304 } 305 306 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 307 308 DataExtractor &ValueObject::GetDataExtractor() { 309 UpdateValueIfNeeded(false); 310 return m_data; 311 } 312 313 const Status &ValueObject::GetError() { 314 UpdateValueIfNeeded(false); 315 return m_error; 316 } 317 318 ConstString ValueObject::GetName() const { return m_name; } 319 320 const char *ValueObject::GetLocationAsCString() { 321 return GetLocationAsCStringImpl(m_value, m_data); 322 } 323 324 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 325 const DataExtractor &data) { 326 if (UpdateValueIfNeeded(false)) { 327 if (m_location_str.empty()) { 328 StreamString sstr; 329 330 Value::ValueType value_type = value.GetValueType(); 331 332 switch (value_type) { 333 case Value::eValueTypeScalar: 334 case Value::eValueTypeVector: 335 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 336 RegisterInfo *reg_info = value.GetRegisterInfo(); 337 if (reg_info) { 338 if (reg_info->name) 339 m_location_str = reg_info->name; 340 else if (reg_info->alt_name) 341 m_location_str = reg_info->alt_name; 342 if (m_location_str.empty()) 343 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 344 ? "vector" 345 : "scalar"; 346 } 347 } 348 if (m_location_str.empty()) 349 m_location_str = 350 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 351 break; 352 353 case Value::eValueTypeLoadAddress: 354 case Value::eValueTypeFileAddress: 355 case Value::eValueTypeHostAddress: { 356 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 357 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 358 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 359 m_location_str = sstr.GetString(); 360 } break; 361 } 362 } 363 } 364 return m_location_str.c_str(); 365 } 366 367 Value &ValueObject::GetValue() { return m_value; } 368 369 const Value &ValueObject::GetValue() const { return m_value; } 370 371 bool ValueObject::ResolveValue(Scalar &scalar) { 372 if (UpdateValueIfNeeded( 373 false)) // make sure that you are up to date before returning anything 374 { 375 ExecutionContext exe_ctx(GetExecutionContextRef()); 376 Value tmp_value(m_value); 377 scalar = tmp_value.ResolveValue(&exe_ctx); 378 if (scalar.IsValid()) { 379 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 380 if (bitfield_bit_size) 381 return scalar.ExtractBitfield(bitfield_bit_size, 382 GetBitfieldBitOffset()); 383 return true; 384 } 385 } 386 return false; 387 } 388 389 bool ValueObject::IsLogicalTrue(Status &error) { 390 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 391 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 392 switch (is_logical_true) { 393 case eLazyBoolYes: 394 case eLazyBoolNo: 395 return (is_logical_true == true); 396 case eLazyBoolCalculate: 397 break; 398 } 399 } 400 401 Scalar scalar_value; 402 403 if (!ResolveValue(scalar_value)) { 404 error.SetErrorString("failed to get a scalar result"); 405 return false; 406 } 407 408 bool ret; 409 ret = scalar_value.ULongLong(1) != 0; 410 error.Clear(); 411 return ret; 412 } 413 414 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 415 416 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 417 418 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 419 420 void ValueObject::SetValueDidChange(bool value_changed) { 421 m_value_did_change = value_changed; 422 } 423 424 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 425 ValueObjectSP child_sp; 426 // We may need to update our value if we are dynamic 427 if (IsPossibleDynamicType()) 428 UpdateValueIfNeeded(false); 429 if (idx < GetNumChildren()) { 430 // Check if we have already made the child value object? 431 if (can_create && !m_children.HasChildAtIndex(idx)) { 432 // No we haven't created the child at this index, so lets have our 433 // subclass do it and cache the result for quick future access. 434 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 435 } 436 437 ValueObject *child = m_children.GetChildAtIndex(idx); 438 if (child != nullptr) 439 return child->GetSP(); 440 } 441 return child_sp; 442 } 443 444 lldb::ValueObjectSP 445 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 446 size_t *index_of_error) { 447 if (idxs.size() == 0) 448 return GetSP(); 449 ValueObjectSP root(GetSP()); 450 for (size_t idx : idxs) { 451 root = root->GetChildAtIndex(idx, true); 452 if (!root) { 453 if (index_of_error) 454 *index_of_error = idx; 455 return root; 456 } 457 } 458 return root; 459 } 460 461 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 462 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 463 if (idxs.size() == 0) 464 return GetSP(); 465 ValueObjectSP root(GetSP()); 466 for (std::pair<size_t, bool> idx : idxs) { 467 root = root->GetChildAtIndex(idx.first, idx.second); 468 if (!root) { 469 if (index_of_error) 470 *index_of_error = idx.first; 471 return root; 472 } 473 } 474 return root; 475 } 476 477 lldb::ValueObjectSP 478 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 479 ConstString *name_of_error) { 480 if (names.size() == 0) 481 return GetSP(); 482 ValueObjectSP root(GetSP()); 483 for (ConstString name : names) { 484 root = root->GetChildMemberWithName(name, true); 485 if (!root) { 486 if (name_of_error) 487 *name_of_error = name; 488 return root; 489 } 490 } 491 return root; 492 } 493 494 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 495 llvm::ArrayRef<std::pair<ConstString, bool>> names, 496 ConstString *name_of_error) { 497 if (names.size() == 0) 498 return GetSP(); 499 ValueObjectSP root(GetSP()); 500 for (std::pair<ConstString, bool> name : names) { 501 root = root->GetChildMemberWithName(name.first, name.second); 502 if (!root) { 503 if (name_of_error) 504 *name_of_error = name.first; 505 return root; 506 } 507 } 508 return root; 509 } 510 511 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 512 bool omit_empty_base_classes = true; 513 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 514 omit_empty_base_classes); 515 } 516 517 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 518 bool can_create) { 519 // when getting a child by name, it could be buried inside some base classes 520 // (which really aren't part of the expression path), so we need a vector of 521 // indexes that can get us down to the correct child 522 ValueObjectSP child_sp; 523 524 // We may need to update our value if we are dynamic 525 if (IsPossibleDynamicType()) 526 UpdateValueIfNeeded(false); 527 528 std::vector<uint32_t> child_indexes; 529 bool omit_empty_base_classes = true; 530 const size_t num_child_indexes = 531 GetCompilerType().GetIndexOfChildMemberWithName( 532 name.GetCString(), omit_empty_base_classes, child_indexes); 533 if (num_child_indexes > 0) { 534 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 535 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 536 537 child_sp = GetChildAtIndex(*pos, can_create); 538 for (++pos; pos != end; ++pos) { 539 if (child_sp) { 540 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 541 child_sp = new_child_sp; 542 } else { 543 child_sp.reset(); 544 } 545 } 546 } 547 return child_sp; 548 } 549 550 size_t ValueObject::GetNumChildren(uint32_t max) { 551 UpdateValueIfNeeded(); 552 553 if (max < UINT32_MAX) { 554 if (m_children_count_valid) { 555 size_t children_count = m_children.GetChildrenCount(); 556 return children_count <= max ? children_count : max; 557 } else 558 return CalculateNumChildren(max); 559 } 560 561 if (!m_children_count_valid) { 562 SetNumChildren(CalculateNumChildren()); 563 } 564 return m_children.GetChildrenCount(); 565 } 566 567 bool ValueObject::MightHaveChildren() { 568 bool has_children = false; 569 const uint32_t type_info = GetTypeInfo(); 570 if (type_info) { 571 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 572 has_children = true; 573 } else { 574 has_children = GetNumChildren() > 0; 575 } 576 return has_children; 577 } 578 579 // Should only be called by ValueObject::GetNumChildren() 580 void ValueObject::SetNumChildren(size_t num_children) { 581 m_children_count_valid = true; 582 m_children.SetChildrenCount(num_children); 583 } 584 585 void ValueObject::SetName(ConstString name) { m_name = name; } 586 587 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 588 bool synthetic_array_member, 589 int32_t synthetic_index) { 590 ValueObject *valobj = nullptr; 591 592 bool omit_empty_base_classes = true; 593 bool ignore_array_bounds = synthetic_array_member; 594 std::string child_name_str; 595 uint32_t child_byte_size = 0; 596 int32_t child_byte_offset = 0; 597 uint32_t child_bitfield_bit_size = 0; 598 uint32_t child_bitfield_bit_offset = 0; 599 bool child_is_base_class = false; 600 bool child_is_deref_of_parent = false; 601 uint64_t language_flags = 0; 602 603 const bool transparent_pointers = !synthetic_array_member; 604 CompilerType child_compiler_type; 605 606 ExecutionContext exe_ctx(GetExecutionContextRef()); 607 608 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 609 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 610 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 611 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 612 child_is_deref_of_parent, this, language_flags); 613 if (child_compiler_type) { 614 if (synthetic_index) 615 child_byte_offset += child_byte_size * synthetic_index; 616 617 ConstString child_name; 618 if (!child_name_str.empty()) 619 child_name.SetCString(child_name_str.c_str()); 620 621 valobj = new ValueObjectChild( 622 *this, child_compiler_type, child_name, child_byte_size, 623 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 624 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 625 language_flags); 626 } 627 628 return valobj; 629 } 630 631 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 632 std::string &destination, 633 lldb::LanguageType lang) { 634 return GetSummaryAsCString(summary_ptr, destination, 635 TypeSummaryOptions().SetLanguage(lang)); 636 } 637 638 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 639 std::string &destination, 640 const TypeSummaryOptions &options) { 641 destination.clear(); 642 643 // ideally we would like to bail out if passing NULL, but if we do so we end 644 // up not providing the summary for function pointers anymore 645 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 646 return false; 647 648 m_is_getting_summary = true; 649 650 TypeSummaryOptions actual_options(options); 651 652 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 653 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 654 655 // this is a hot path in code and we prefer to avoid setting this string all 656 // too often also clearing out other information that we might care to see in 657 // a crash log. might be useful in very specific situations though. 658 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 659 Summary provider's description is %s", 660 GetTypeName().GetCString(), 661 GetName().GetCString(), 662 summary_ptr->GetDescription().c_str());*/ 663 664 if (UpdateValueIfNeeded(false) && summary_ptr) { 665 if (HasSyntheticValue()) 666 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 667 // the synthetic children being 668 // up-to-date (e.g. ${svar%#}) 669 summary_ptr->FormatObject(this, destination, actual_options); 670 } 671 m_is_getting_summary = false; 672 return !destination.empty(); 673 } 674 675 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 676 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 677 TypeSummaryOptions summary_options; 678 summary_options.SetLanguage(lang); 679 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 680 summary_options); 681 } 682 if (m_summary_str.empty()) 683 return nullptr; 684 return m_summary_str.c_str(); 685 } 686 687 bool ValueObject::GetSummaryAsCString(std::string &destination, 688 const TypeSummaryOptions &options) { 689 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 690 } 691 692 bool ValueObject::IsCStringContainer(bool check_pointer) { 693 CompilerType pointee_or_element_compiler_type; 694 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 695 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 696 pointee_or_element_compiler_type.IsCharType()); 697 if (!is_char_arr_ptr) 698 return false; 699 if (!check_pointer) 700 return true; 701 if (type_flags.Test(eTypeIsArray)) 702 return true; 703 addr_t cstr_address = LLDB_INVALID_ADDRESS; 704 AddressType cstr_address_type = eAddressTypeInvalid; 705 cstr_address = GetAddressOf(true, &cstr_address_type); 706 return (cstr_address != LLDB_INVALID_ADDRESS); 707 } 708 709 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 710 uint32_t item_count) { 711 CompilerType pointee_or_element_compiler_type; 712 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 713 const bool is_pointer_type = type_info & eTypeIsPointer; 714 const bool is_array_type = type_info & eTypeIsArray; 715 if (!(is_pointer_type || is_array_type)) 716 return 0; 717 718 if (item_count == 0) 719 return 0; 720 721 ExecutionContext exe_ctx(GetExecutionContextRef()); 722 723 llvm::Optional<uint64_t> item_type_size = 724 pointee_or_element_compiler_type.GetByteSize( 725 exe_ctx.GetBestExecutionContextScope()); 726 if (!item_type_size) 727 return 0; 728 const uint64_t bytes = item_count * *item_type_size; 729 const uint64_t offset = item_idx * *item_type_size; 730 731 if (item_idx == 0 && item_count == 1) // simply a deref 732 { 733 if (is_pointer_type) { 734 Status error; 735 ValueObjectSP pointee_sp = Dereference(error); 736 if (error.Fail() || pointee_sp.get() == nullptr) 737 return 0; 738 return pointee_sp->GetData(data, error); 739 } else { 740 ValueObjectSP child_sp = GetChildAtIndex(0, true); 741 if (child_sp.get() == nullptr) 742 return 0; 743 Status error; 744 return child_sp->GetData(data, error); 745 } 746 return true; 747 } else /* (items > 1) */ 748 { 749 Status error; 750 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 751 lldb::DataBufferSP data_sp(heap_buf_ptr = 752 new lldb_private::DataBufferHeap()); 753 754 AddressType addr_type; 755 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 756 : GetAddressOf(true, &addr_type); 757 758 switch (addr_type) { 759 case eAddressTypeFile: { 760 ModuleSP module_sp(GetModule()); 761 if (module_sp) { 762 addr = addr + offset; 763 Address so_addr; 764 module_sp->ResolveFileAddress(addr, so_addr); 765 ExecutionContext exe_ctx(GetExecutionContextRef()); 766 Target *target = exe_ctx.GetTargetPtr(); 767 if (target) { 768 heap_buf_ptr->SetByteSize(bytes); 769 size_t bytes_read = target->ReadMemory( 770 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 771 if (error.Success()) { 772 data.SetData(data_sp); 773 return bytes_read; 774 } 775 } 776 } 777 } break; 778 case eAddressTypeLoad: { 779 ExecutionContext exe_ctx(GetExecutionContextRef()); 780 Process *process = exe_ctx.GetProcessPtr(); 781 if (process) { 782 heap_buf_ptr->SetByteSize(bytes); 783 size_t bytes_read = process->ReadMemory( 784 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 785 if (error.Success() || bytes_read > 0) { 786 data.SetData(data_sp); 787 return bytes_read; 788 } 789 } 790 } break; 791 case eAddressTypeHost: { 792 auto max_bytes = 793 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 794 if (max_bytes && *max_bytes > offset) { 795 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 796 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 797 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 798 break; 799 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 800 data.SetData(data_sp); 801 return bytes_read; 802 } 803 } break; 804 case eAddressTypeInvalid: 805 break; 806 } 807 } 808 return 0; 809 } 810 811 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 812 UpdateValueIfNeeded(false); 813 ExecutionContext exe_ctx(GetExecutionContextRef()); 814 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 815 if (error.Fail()) { 816 if (m_data.GetByteSize()) { 817 data = m_data; 818 error.Clear(); 819 return data.GetByteSize(); 820 } else { 821 return 0; 822 } 823 } 824 data.SetAddressByteSize(m_data.GetAddressByteSize()); 825 data.SetByteOrder(m_data.GetByteOrder()); 826 return data.GetByteSize(); 827 } 828 829 bool ValueObject::SetData(DataExtractor &data, Status &error) { 830 error.Clear(); 831 // Make sure our value is up to date first so that our location and location 832 // type is valid. 833 if (!UpdateValueIfNeeded(false)) { 834 error.SetErrorString("unable to read value"); 835 return false; 836 } 837 838 uint64_t count = 0; 839 const Encoding encoding = GetCompilerType().GetEncoding(count); 840 841 const size_t byte_size = GetByteSize(); 842 843 Value::ValueType value_type = m_value.GetValueType(); 844 845 switch (value_type) { 846 case Value::eValueTypeScalar: { 847 Status set_error = 848 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 849 850 if (!set_error.Success()) { 851 error.SetErrorStringWithFormat("unable to set scalar value: %s", 852 set_error.AsCString()); 853 return false; 854 } 855 } break; 856 case Value::eValueTypeLoadAddress: { 857 // If it is a load address, then the scalar value is the storage location 858 // of the data, and we have to shove this value down to that load location. 859 ExecutionContext exe_ctx(GetExecutionContextRef()); 860 Process *process = exe_ctx.GetProcessPtr(); 861 if (process) { 862 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 863 size_t bytes_written = process->WriteMemory( 864 target_addr, data.GetDataStart(), byte_size, error); 865 if (!error.Success()) 866 return false; 867 if (bytes_written != byte_size) { 868 error.SetErrorString("unable to write value to memory"); 869 return false; 870 } 871 } 872 } break; 873 case Value::eValueTypeHostAddress: { 874 // If it is a host address, then we stuff the scalar as a DataBuffer into 875 // the Value's data. 876 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 877 m_data.SetData(buffer_sp, 0); 878 data.CopyByteOrderedData(0, byte_size, 879 const_cast<uint8_t *>(m_data.GetDataStart()), 880 byte_size, m_data.GetByteOrder()); 881 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 882 } break; 883 case Value::eValueTypeFileAddress: 884 case Value::eValueTypeVector: 885 break; 886 } 887 888 // If we have reached this point, then we have successfully changed the 889 // value. 890 SetNeedsUpdate(); 891 return true; 892 } 893 894 static bool CopyStringDataToBufferSP(const StreamString &source, 895 lldb::DataBufferSP &destination) { 896 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 897 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 898 return true; 899 } 900 901 std::pair<size_t, bool> 902 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 903 uint32_t max_length, bool honor_array, 904 Format item_format) { 905 bool was_capped = false; 906 StreamString s; 907 ExecutionContext exe_ctx(GetExecutionContextRef()); 908 Target *target = exe_ctx.GetTargetPtr(); 909 910 if (!target) { 911 s << "<no target to read from>"; 912 error.SetErrorString("no target to read from"); 913 CopyStringDataToBufferSP(s, buffer_sp); 914 return {0, was_capped}; 915 } 916 917 if (max_length == 0) 918 max_length = target->GetMaximumSizeOfStringSummary(); 919 920 size_t bytes_read = 0; 921 size_t total_bytes_read = 0; 922 923 CompilerType compiler_type = GetCompilerType(); 924 CompilerType elem_or_pointee_compiler_type; 925 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 926 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 927 elem_or_pointee_compiler_type.IsCharType()) { 928 addr_t cstr_address = LLDB_INVALID_ADDRESS; 929 AddressType cstr_address_type = eAddressTypeInvalid; 930 931 size_t cstr_len = 0; 932 bool capped_data = false; 933 const bool is_array = type_flags.Test(eTypeIsArray); 934 if (is_array) { 935 // We have an array 936 uint64_t array_size = 0; 937 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 938 cstr_len = array_size; 939 if (cstr_len > max_length) { 940 capped_data = true; 941 cstr_len = max_length; 942 } 943 } 944 cstr_address = GetAddressOf(true, &cstr_address_type); 945 } else { 946 // We have a pointer 947 cstr_address = GetPointerValue(&cstr_address_type); 948 } 949 950 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 951 if (cstr_address_type == eAddressTypeHost && is_array) { 952 const char *cstr = GetDataExtractor().PeekCStr(0); 953 if (cstr == nullptr) { 954 s << "<invalid address>"; 955 error.SetErrorString("invalid address"); 956 CopyStringDataToBufferSP(s, buffer_sp); 957 return {0, was_capped}; 958 } 959 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 960 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 961 return {cstr_len, was_capped}; 962 } else { 963 s << "<invalid address>"; 964 error.SetErrorString("invalid address"); 965 CopyStringDataToBufferSP(s, buffer_sp); 966 return {0, was_capped}; 967 } 968 } 969 970 Address cstr_so_addr(cstr_address); 971 DataExtractor data; 972 if (cstr_len > 0 && honor_array) { 973 // I am using GetPointeeData() here to abstract the fact that some 974 // ValueObjects are actually frozen pointers in the host but the pointed- 975 // to data lives in the debuggee, and GetPointeeData() automatically 976 // takes care of this 977 GetPointeeData(data, 0, cstr_len); 978 979 if ((bytes_read = data.GetByteSize()) > 0) { 980 total_bytes_read = bytes_read; 981 for (size_t offset = 0; offset < bytes_read; offset++) 982 s.Printf("%c", *data.PeekData(offset, 1)); 983 if (capped_data) 984 was_capped = true; 985 } 986 } else { 987 cstr_len = max_length; 988 const size_t k_max_buf_size = 64; 989 990 size_t offset = 0; 991 992 int cstr_len_displayed = -1; 993 bool capped_cstr = false; 994 // I am using GetPointeeData() here to abstract the fact that some 995 // ValueObjects are actually frozen pointers in the host but the pointed- 996 // to data lives in the debuggee, and GetPointeeData() automatically 997 // takes care of this 998 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 999 total_bytes_read += bytes_read; 1000 const char *cstr = data.PeekCStr(0); 1001 size_t len = strnlen(cstr, k_max_buf_size); 1002 if (cstr_len_displayed < 0) 1003 cstr_len_displayed = len; 1004 1005 if (len == 0) 1006 break; 1007 cstr_len_displayed += len; 1008 if (len > bytes_read) 1009 len = bytes_read; 1010 if (len > cstr_len) 1011 len = cstr_len; 1012 1013 for (size_t offset = 0; offset < bytes_read; offset++) 1014 s.Printf("%c", *data.PeekData(offset, 1)); 1015 1016 if (len < k_max_buf_size) 1017 break; 1018 1019 if (len >= cstr_len) { 1020 capped_cstr = true; 1021 break; 1022 } 1023 1024 cstr_len -= len; 1025 offset += len; 1026 } 1027 1028 if (cstr_len_displayed >= 0) { 1029 if (capped_cstr) 1030 was_capped = true; 1031 } 1032 } 1033 } else { 1034 error.SetErrorString("not a string object"); 1035 s << "<not a string object>"; 1036 } 1037 CopyStringDataToBufferSP(s, buffer_sp); 1038 return {total_bytes_read, was_capped}; 1039 } 1040 1041 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1042 if (!UpdateValueIfNeeded(true)) 1043 return {TypeValidatorResult::Success, 1044 ""}; // not the validator's job to discuss update problems 1045 1046 if (m_validation_result.hasValue()) 1047 return m_validation_result.getValue(); 1048 1049 if (!m_type_validator_sp) 1050 return {TypeValidatorResult::Success, ""}; // no validator no failure 1051 1052 auto outcome = m_type_validator_sp->FormatObject(this); 1053 1054 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1055 .getValue(); 1056 } 1057 1058 const char *ValueObject::GetObjectDescription() { 1059 if (!UpdateValueIfNeeded(true)) 1060 return nullptr; 1061 1062 // Return cached value. 1063 if (!m_object_desc_str.empty()) 1064 return m_object_desc_str.c_str(); 1065 1066 ExecutionContext exe_ctx(GetExecutionContextRef()); 1067 Process *process = exe_ctx.GetProcessPtr(); 1068 if (!process) 1069 return nullptr; 1070 1071 // Returns the object description produced by one language runtime. 1072 auto get_object_description = [&](LanguageType language) -> const char * { 1073 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1074 StreamString s; 1075 if (runtime->GetObjectDescription(s, *this)) { 1076 m_object_desc_str.append(s.GetString()); 1077 return m_object_desc_str.c_str(); 1078 } 1079 } 1080 return nullptr; 1081 }; 1082 1083 // Try the native language runtime first. 1084 LanguageType native_language = GetObjectRuntimeLanguage(); 1085 if (const char *desc = get_object_description(native_language)) 1086 return desc; 1087 1088 // Try the Objective-C language runtime. This fallback is necessary 1089 // for Objective-C++ and mixed Objective-C / C++ programs. 1090 if (Language::LanguageIsCFamily(native_language)) 1091 return get_object_description(eLanguageTypeObjC); 1092 return nullptr; 1093 } 1094 1095 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1096 std::string &destination) { 1097 if (UpdateValueIfNeeded(false)) 1098 return format.FormatObject(this, destination); 1099 else 1100 return false; 1101 } 1102 1103 bool ValueObject::GetValueAsCString(lldb::Format format, 1104 std::string &destination) { 1105 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1106 } 1107 1108 const char *ValueObject::GetValueAsCString() { 1109 if (UpdateValueIfNeeded(true)) { 1110 lldb::TypeFormatImplSP format_sp; 1111 lldb::Format my_format = GetFormat(); 1112 if (my_format == lldb::eFormatDefault) { 1113 if (m_type_format_sp) 1114 format_sp = m_type_format_sp; 1115 else { 1116 if (m_is_bitfield_for_scalar) 1117 my_format = eFormatUnsigned; 1118 else { 1119 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1120 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1121 if (reg_info) 1122 my_format = reg_info->format; 1123 } else { 1124 my_format = GetValue().GetCompilerType().GetFormat(); 1125 } 1126 } 1127 } 1128 } 1129 if (my_format != m_last_format || m_value_str.empty()) { 1130 m_last_format = my_format; 1131 if (!format_sp) 1132 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1133 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1134 if (!m_value_did_change && m_old_value_valid) { 1135 // The value was gotten successfully, so we consider the value as 1136 // changed if the value string differs 1137 SetValueDidChange(m_old_value_str != m_value_str); 1138 } 1139 } 1140 } 1141 } 1142 if (m_value_str.empty()) 1143 return nullptr; 1144 return m_value_str.c_str(); 1145 } 1146 1147 // if > 8bytes, 0 is returned. this method should mostly be used to read 1148 // address values out of pointers 1149 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1150 // If our byte size is zero this is an aggregate type that has children 1151 if (CanProvideValue()) { 1152 Scalar scalar; 1153 if (ResolveValue(scalar)) { 1154 if (success) 1155 *success = true; 1156 return scalar.ULongLong(fail_value); 1157 } 1158 // fallthrough, otherwise... 1159 } 1160 1161 if (success) 1162 *success = false; 1163 return fail_value; 1164 } 1165 1166 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1167 // If our byte size is zero this is an aggregate type that has children 1168 if (CanProvideValue()) { 1169 Scalar scalar; 1170 if (ResolveValue(scalar)) { 1171 if (success) 1172 *success = true; 1173 return scalar.SLongLong(fail_value); 1174 } 1175 // fallthrough, otherwise... 1176 } 1177 1178 if (success) 1179 *success = false; 1180 return fail_value; 1181 } 1182 1183 // if any more "special cases" are added to 1184 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1185 // by returning true for your new special cases. We will eventually move to 1186 // checking this call result before trying to display special cases 1187 bool ValueObject::HasSpecialPrintableRepresentation( 1188 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1189 Flags flags(GetTypeInfo()); 1190 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1191 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1192 if (IsCStringContainer(true) && 1193 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1194 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1195 return true; 1196 1197 if (flags.Test(eTypeIsArray)) { 1198 if ((custom_format == eFormatBytes) || 1199 (custom_format == eFormatBytesWithASCII)) 1200 return true; 1201 1202 if ((custom_format == eFormatVectorOfChar) || 1203 (custom_format == eFormatVectorOfFloat32) || 1204 (custom_format == eFormatVectorOfFloat64) || 1205 (custom_format == eFormatVectorOfSInt16) || 1206 (custom_format == eFormatVectorOfSInt32) || 1207 (custom_format == eFormatVectorOfSInt64) || 1208 (custom_format == eFormatVectorOfSInt8) || 1209 (custom_format == eFormatVectorOfUInt128) || 1210 (custom_format == eFormatVectorOfUInt16) || 1211 (custom_format == eFormatVectorOfUInt32) || 1212 (custom_format == eFormatVectorOfUInt64) || 1213 (custom_format == eFormatVectorOfUInt8)) 1214 return true; 1215 } 1216 } 1217 return false; 1218 } 1219 1220 bool ValueObject::DumpPrintableRepresentation( 1221 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1222 Format custom_format, PrintableRepresentationSpecialCases special, 1223 bool do_dump_error) { 1224 1225 Flags flags(GetTypeInfo()); 1226 1227 bool allow_special = 1228 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1229 const bool only_special = false; 1230 1231 if (allow_special) { 1232 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1233 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1234 // when being asked to get a printable display an array or pointer type 1235 // directly, try to "do the right thing" 1236 1237 if (IsCStringContainer(true) && 1238 (custom_format == eFormatCString || 1239 custom_format == eFormatCharArray || custom_format == eFormatChar || 1240 custom_format == 1241 eFormatVectorOfChar)) // print char[] & char* directly 1242 { 1243 Status error; 1244 lldb::DataBufferSP buffer_sp; 1245 std::pair<size_t, bool> read_string = ReadPointedString( 1246 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1247 (custom_format == eFormatCharArray)); 1248 lldb_private::formatters::StringPrinter:: 1249 ReadBufferAndDumpToStreamOptions options(*this); 1250 options.SetData(DataExtractor( 1251 buffer_sp, lldb::eByteOrderInvalid, 1252 8)); // none of this matters for a string - pass some defaults 1253 options.SetStream(&s); 1254 options.SetPrefixToken(nullptr); 1255 options.SetQuote('"'); 1256 options.SetSourceSize(buffer_sp->GetByteSize()); 1257 options.SetIsTruncated(read_string.second); 1258 formatters::StringPrinter::ReadBufferAndDumpToStream< 1259 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1260 options); 1261 return !error.Fail(); 1262 } 1263 1264 if (custom_format == eFormatEnum) 1265 return false; 1266 1267 // this only works for arrays, because I have no way to know when the 1268 // pointed memory ends, and no special \0 end of data marker 1269 if (flags.Test(eTypeIsArray)) { 1270 if ((custom_format == eFormatBytes) || 1271 (custom_format == eFormatBytesWithASCII)) { 1272 const size_t count = GetNumChildren(); 1273 1274 s << '['; 1275 for (size_t low = 0; low < count; low++) { 1276 1277 if (low) 1278 s << ','; 1279 1280 ValueObjectSP child = GetChildAtIndex(low, true); 1281 if (!child.get()) { 1282 s << "<invalid child>"; 1283 continue; 1284 } 1285 child->DumpPrintableRepresentation( 1286 s, ValueObject::eValueObjectRepresentationStyleValue, 1287 custom_format); 1288 } 1289 1290 s << ']'; 1291 1292 return true; 1293 } 1294 1295 if ((custom_format == eFormatVectorOfChar) || 1296 (custom_format == eFormatVectorOfFloat32) || 1297 (custom_format == eFormatVectorOfFloat64) || 1298 (custom_format == eFormatVectorOfSInt16) || 1299 (custom_format == eFormatVectorOfSInt32) || 1300 (custom_format == eFormatVectorOfSInt64) || 1301 (custom_format == eFormatVectorOfSInt8) || 1302 (custom_format == eFormatVectorOfUInt128) || 1303 (custom_format == eFormatVectorOfUInt16) || 1304 (custom_format == eFormatVectorOfUInt32) || 1305 (custom_format == eFormatVectorOfUInt64) || 1306 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1307 // with ASCII or any vector 1308 // format should be printed 1309 // directly 1310 { 1311 const size_t count = GetNumChildren(); 1312 1313 Format format = FormatManager::GetSingleItemFormat(custom_format); 1314 1315 s << '['; 1316 for (size_t low = 0; low < count; low++) { 1317 1318 if (low) 1319 s << ','; 1320 1321 ValueObjectSP child = GetChildAtIndex(low, true); 1322 if (!child.get()) { 1323 s << "<invalid child>"; 1324 continue; 1325 } 1326 child->DumpPrintableRepresentation( 1327 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1328 } 1329 1330 s << ']'; 1331 1332 return true; 1333 } 1334 } 1335 1336 if ((custom_format == eFormatBoolean) || 1337 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1338 (custom_format == eFormatCharPrintable) || 1339 (custom_format == eFormatComplexFloat) || 1340 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1341 (custom_format == eFormatHexUppercase) || 1342 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1343 (custom_format == eFormatOSType) || 1344 (custom_format == eFormatUnicode16) || 1345 (custom_format == eFormatUnicode32) || 1346 (custom_format == eFormatUnsigned) || 1347 (custom_format == eFormatPointer) || 1348 (custom_format == eFormatComplexInteger) || 1349 (custom_format == eFormatComplex) || 1350 (custom_format == eFormatDefault)) // use the [] operator 1351 return false; 1352 } 1353 } 1354 1355 if (only_special) 1356 return false; 1357 1358 bool var_success = false; 1359 1360 { 1361 llvm::StringRef str; 1362 1363 // this is a local stream that we are using to ensure that the data pointed 1364 // to by cstr survives long enough for us to copy it to its destination - 1365 // it is necessary to have this temporary storage area for cases where our 1366 // desired output is not backed by some other longer-term storage 1367 StreamString strm; 1368 1369 if (custom_format != eFormatInvalid) 1370 SetFormat(custom_format); 1371 1372 switch (val_obj_display) { 1373 case eValueObjectRepresentationStyleValue: 1374 str = GetValueAsCString(); 1375 break; 1376 1377 case eValueObjectRepresentationStyleSummary: 1378 str = GetSummaryAsCString(); 1379 break; 1380 1381 case eValueObjectRepresentationStyleLanguageSpecific: 1382 str = GetObjectDescription(); 1383 break; 1384 1385 case eValueObjectRepresentationStyleLocation: 1386 str = GetLocationAsCString(); 1387 break; 1388 1389 case eValueObjectRepresentationStyleChildrenCount: 1390 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1391 str = strm.GetString(); 1392 break; 1393 1394 case eValueObjectRepresentationStyleType: 1395 str = GetTypeName().GetStringRef(); 1396 break; 1397 1398 case eValueObjectRepresentationStyleName: 1399 str = GetName().GetStringRef(); 1400 break; 1401 1402 case eValueObjectRepresentationStyleExpressionPath: 1403 GetExpressionPath(strm, false); 1404 str = strm.GetString(); 1405 break; 1406 } 1407 1408 if (str.empty()) { 1409 if (val_obj_display == eValueObjectRepresentationStyleValue) 1410 str = GetSummaryAsCString(); 1411 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1412 if (!CanProvideValue()) { 1413 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1414 GetLocationAsCString()); 1415 str = strm.GetString(); 1416 } else 1417 str = GetValueAsCString(); 1418 } 1419 } 1420 1421 if (!str.empty()) 1422 s << str; 1423 else { 1424 if (m_error.Fail()) { 1425 if (do_dump_error) 1426 s.Printf("<%s>", m_error.AsCString()); 1427 else 1428 return false; 1429 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1430 s.PutCString("<no summary available>"); 1431 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1432 s.PutCString("<no value available>"); 1433 else if (val_obj_display == 1434 eValueObjectRepresentationStyleLanguageSpecific) 1435 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1436 // have other runtimes 1437 // that support a 1438 // description 1439 else 1440 s.PutCString("<no printable representation>"); 1441 } 1442 1443 // we should only return false here if we could not do *anything* even if 1444 // we have an error message as output, that's a success from our callers' 1445 // perspective, so return true 1446 var_success = true; 1447 1448 if (custom_format != eFormatInvalid) 1449 SetFormat(eFormatDefault); 1450 } 1451 1452 return var_success; 1453 } 1454 1455 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1456 AddressType *address_type) { 1457 // Can't take address of a bitfield 1458 if (IsBitfield()) 1459 return LLDB_INVALID_ADDRESS; 1460 1461 if (!UpdateValueIfNeeded(false)) 1462 return LLDB_INVALID_ADDRESS; 1463 1464 switch (m_value.GetValueType()) { 1465 case Value::eValueTypeScalar: 1466 case Value::eValueTypeVector: 1467 if (scalar_is_load_address) { 1468 if (address_type) 1469 *address_type = eAddressTypeLoad; 1470 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1471 } 1472 break; 1473 1474 case Value::eValueTypeLoadAddress: 1475 case Value::eValueTypeFileAddress: { 1476 if (address_type) 1477 *address_type = m_value.GetValueAddressType(); 1478 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1479 } break; 1480 case Value::eValueTypeHostAddress: { 1481 if (address_type) 1482 *address_type = m_value.GetValueAddressType(); 1483 return LLDB_INVALID_ADDRESS; 1484 } break; 1485 } 1486 if (address_type) 1487 *address_type = eAddressTypeInvalid; 1488 return LLDB_INVALID_ADDRESS; 1489 } 1490 1491 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1492 addr_t address = LLDB_INVALID_ADDRESS; 1493 if (address_type) 1494 *address_type = eAddressTypeInvalid; 1495 1496 if (!UpdateValueIfNeeded(false)) 1497 return address; 1498 1499 switch (m_value.GetValueType()) { 1500 case Value::eValueTypeScalar: 1501 case Value::eValueTypeVector: 1502 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1503 break; 1504 1505 case Value::eValueTypeHostAddress: 1506 case Value::eValueTypeLoadAddress: 1507 case Value::eValueTypeFileAddress: { 1508 lldb::offset_t data_offset = 0; 1509 address = m_data.GetPointer(&data_offset); 1510 } break; 1511 } 1512 1513 if (address_type) 1514 *address_type = GetAddressTypeOfChildren(); 1515 1516 return address; 1517 } 1518 1519 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1520 error.Clear(); 1521 // Make sure our value is up to date first so that our location and location 1522 // type is valid. 1523 if (!UpdateValueIfNeeded(false)) { 1524 error.SetErrorString("unable to read value"); 1525 return false; 1526 } 1527 1528 uint64_t count = 0; 1529 const Encoding encoding = GetCompilerType().GetEncoding(count); 1530 1531 const size_t byte_size = GetByteSize(); 1532 1533 Value::ValueType value_type = m_value.GetValueType(); 1534 1535 if (value_type == Value::eValueTypeScalar) { 1536 // If the value is already a scalar, then let the scalar change itself: 1537 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1538 } else if (byte_size <= 16) { 1539 // If the value fits in a scalar, then make a new scalar and again let the 1540 // scalar code do the conversion, then figure out where to put the new 1541 // value. 1542 Scalar new_scalar; 1543 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1544 if (error.Success()) { 1545 switch (value_type) { 1546 case Value::eValueTypeLoadAddress: { 1547 // If it is a load address, then the scalar value is the storage 1548 // location of the data, and we have to shove this value down to that 1549 // load location. 1550 ExecutionContext exe_ctx(GetExecutionContextRef()); 1551 Process *process = exe_ctx.GetProcessPtr(); 1552 if (process) { 1553 addr_t target_addr = 1554 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1555 size_t bytes_written = process->WriteScalarToMemory( 1556 target_addr, new_scalar, byte_size, error); 1557 if (!error.Success()) 1558 return false; 1559 if (bytes_written != byte_size) { 1560 error.SetErrorString("unable to write value to memory"); 1561 return false; 1562 } 1563 } 1564 } break; 1565 case Value::eValueTypeHostAddress: { 1566 // If it is a host address, then we stuff the scalar as a DataBuffer 1567 // into the Value's data. 1568 DataExtractor new_data; 1569 new_data.SetByteOrder(m_data.GetByteOrder()); 1570 1571 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1572 m_data.SetData(buffer_sp, 0); 1573 bool success = new_scalar.GetData(new_data); 1574 if (success) { 1575 new_data.CopyByteOrderedData( 1576 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1577 byte_size, m_data.GetByteOrder()); 1578 } 1579 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1580 1581 } break; 1582 case Value::eValueTypeFileAddress: 1583 case Value::eValueTypeScalar: 1584 case Value::eValueTypeVector: 1585 break; 1586 } 1587 } else { 1588 return false; 1589 } 1590 } else { 1591 // We don't support setting things bigger than a scalar at present. 1592 error.SetErrorString("unable to write aggregate data type"); 1593 return false; 1594 } 1595 1596 // If we have reached this point, then we have successfully changed the 1597 // value. 1598 SetNeedsUpdate(); 1599 return true; 1600 } 1601 1602 bool ValueObject::GetDeclaration(Declaration &decl) { 1603 decl.Clear(); 1604 return false; 1605 } 1606 1607 ConstString ValueObject::GetTypeName() { 1608 return GetCompilerType().GetConstTypeName(); 1609 } 1610 1611 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1612 1613 ConstString ValueObject::GetQualifiedTypeName() { 1614 return GetCompilerType().GetConstQualifiedTypeName(); 1615 } 1616 1617 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1618 return GetCompilerType().GetMinimumLanguage(); 1619 } 1620 1621 void ValueObject::AddSyntheticChild(ConstString key, 1622 ValueObject *valobj) { 1623 m_synthetic_children[key] = valobj; 1624 } 1625 1626 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1627 ValueObjectSP synthetic_child_sp; 1628 std::map<ConstString, ValueObject *>::const_iterator pos = 1629 m_synthetic_children.find(key); 1630 if (pos != m_synthetic_children.end()) 1631 synthetic_child_sp = pos->second->GetSP(); 1632 return synthetic_child_sp; 1633 } 1634 1635 uint32_t 1636 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1637 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1638 } 1639 1640 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1641 1642 bool ValueObject::IsArrayType() { 1643 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1644 } 1645 1646 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1647 1648 bool ValueObject::IsIntegerType(bool &is_signed) { 1649 return GetCompilerType().IsIntegerType(is_signed); 1650 } 1651 1652 bool ValueObject::IsPointerOrReferenceType() { 1653 return GetCompilerType().IsPointerOrReferenceType(); 1654 } 1655 1656 bool ValueObject::IsPossibleDynamicType() { 1657 ExecutionContext exe_ctx(GetExecutionContextRef()); 1658 Process *process = exe_ctx.GetProcessPtr(); 1659 if (process) 1660 return process->IsPossibleDynamicValue(*this); 1661 else 1662 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1663 } 1664 1665 bool ValueObject::IsRuntimeSupportValue() { 1666 Process *process(GetProcessSP().get()); 1667 if (!process) 1668 return false; 1669 1670 // We trust the the compiler did the right thing and marked runtime support 1671 // values as artificial. 1672 if (!GetVariable() || !GetVariable()->IsArtificial()) 1673 return false; 1674 1675 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1676 if (runtime->IsWhitelistedRuntimeValue(GetName())) 1677 return false; 1678 1679 return true; 1680 } 1681 1682 bool ValueObject::IsNilReference() { 1683 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1684 return language->IsNilReference(*this); 1685 } 1686 return false; 1687 } 1688 1689 bool ValueObject::IsUninitializedReference() { 1690 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1691 return language->IsUninitializedReference(*this); 1692 } 1693 return false; 1694 } 1695 1696 // This allows you to create an array member using and index that doesn't not 1697 // fall in the normal bounds of the array. Many times structure can be defined 1698 // as: struct Collection { 1699 // uint32_t item_count; 1700 // Item item_array[0]; 1701 // }; 1702 // The size of the "item_array" is 1, but many times in practice there are more 1703 // items in "item_array". 1704 1705 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1706 bool can_create) { 1707 ValueObjectSP synthetic_child_sp; 1708 if (IsPointerType() || IsArrayType()) { 1709 char index_str[64]; 1710 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1711 ConstString index_const_str(index_str); 1712 // Check if we have already created a synthetic array member in this valid 1713 // object. If we have we will re-use it. 1714 synthetic_child_sp = GetSyntheticChild(index_const_str); 1715 if (!synthetic_child_sp) { 1716 ValueObject *synthetic_child; 1717 // We haven't made a synthetic array member for INDEX yet, so lets make 1718 // one and cache it for any future reference. 1719 synthetic_child = CreateChildAtIndex(0, true, index); 1720 1721 // Cache the value if we got one back... 1722 if (synthetic_child) { 1723 AddSyntheticChild(index_const_str, synthetic_child); 1724 synthetic_child_sp = synthetic_child->GetSP(); 1725 synthetic_child_sp->SetName(ConstString(index_str)); 1726 synthetic_child_sp->m_is_array_item_for_pointer = true; 1727 } 1728 } 1729 } 1730 return synthetic_child_sp; 1731 } 1732 1733 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1734 bool can_create) { 1735 ValueObjectSP synthetic_child_sp; 1736 if (IsScalarType()) { 1737 char index_str[64]; 1738 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1739 ConstString index_const_str(index_str); 1740 // Check if we have already created a synthetic array member in this valid 1741 // object. If we have we will re-use it. 1742 synthetic_child_sp = GetSyntheticChild(index_const_str); 1743 if (!synthetic_child_sp) { 1744 uint32_t bit_field_size = to - from + 1; 1745 uint32_t bit_field_offset = from; 1746 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1747 bit_field_offset = 1748 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1749 // We haven't made a synthetic array member for INDEX yet, so lets make 1750 // one and cache it for any future reference. 1751 ValueObjectChild *synthetic_child = new ValueObjectChild( 1752 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1753 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1754 0); 1755 1756 // Cache the value if we got one back... 1757 if (synthetic_child) { 1758 AddSyntheticChild(index_const_str, synthetic_child); 1759 synthetic_child_sp = synthetic_child->GetSP(); 1760 synthetic_child_sp->SetName(ConstString(index_str)); 1761 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1762 } 1763 } 1764 } 1765 return synthetic_child_sp; 1766 } 1767 1768 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1769 uint32_t offset, const CompilerType &type, bool can_create, 1770 ConstString name_const_str) { 1771 1772 ValueObjectSP synthetic_child_sp; 1773 1774 if (name_const_str.IsEmpty()) { 1775 char name_str[64]; 1776 snprintf(name_str, sizeof(name_str), "@%i", offset); 1777 name_const_str.SetCString(name_str); 1778 } 1779 1780 // Check if we have already created a synthetic array member in this valid 1781 // object. If we have we will re-use it. 1782 synthetic_child_sp = GetSyntheticChild(name_const_str); 1783 1784 if (synthetic_child_sp.get()) 1785 return synthetic_child_sp; 1786 1787 if (!can_create) 1788 return {}; 1789 1790 ExecutionContext exe_ctx(GetExecutionContextRef()); 1791 llvm::Optional<uint64_t> size = 1792 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1793 if (!size) 1794 return {}; 1795 ValueObjectChild *synthetic_child = 1796 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1797 false, false, eAddressTypeInvalid, 0); 1798 if (synthetic_child) { 1799 AddSyntheticChild(name_const_str, synthetic_child); 1800 synthetic_child_sp = synthetic_child->GetSP(); 1801 synthetic_child_sp->SetName(name_const_str); 1802 synthetic_child_sp->m_is_child_at_offset = true; 1803 } 1804 return synthetic_child_sp; 1805 } 1806 1807 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1808 const CompilerType &type, 1809 bool can_create, 1810 ConstString name_const_str) { 1811 ValueObjectSP synthetic_child_sp; 1812 1813 if (name_const_str.IsEmpty()) { 1814 char name_str[128]; 1815 snprintf(name_str, sizeof(name_str), "base%s@%i", 1816 type.GetTypeName().AsCString("<unknown>"), offset); 1817 name_const_str.SetCString(name_str); 1818 } 1819 1820 // Check if we have already created a synthetic array member in this valid 1821 // object. If we have we will re-use it. 1822 synthetic_child_sp = GetSyntheticChild(name_const_str); 1823 1824 if (synthetic_child_sp.get()) 1825 return synthetic_child_sp; 1826 1827 if (!can_create) 1828 return {}; 1829 1830 const bool is_base_class = true; 1831 1832 ExecutionContext exe_ctx(GetExecutionContextRef()); 1833 llvm::Optional<uint64_t> size = 1834 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1835 if (!size) 1836 return {}; 1837 ValueObjectChild *synthetic_child = 1838 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1839 is_base_class, false, eAddressTypeInvalid, 0); 1840 if (synthetic_child) { 1841 AddSyntheticChild(name_const_str, synthetic_child); 1842 synthetic_child_sp = synthetic_child->GetSP(); 1843 synthetic_child_sp->SetName(name_const_str); 1844 } 1845 return synthetic_child_sp; 1846 } 1847 1848 // your expression path needs to have a leading . or -> (unless it somehow 1849 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1850 // is meaningful and should be shown to the user, . and -> are just parser 1851 // design, but by no means added information for the user.. strip them off 1852 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1853 if (!expression || !expression[0]) 1854 return expression; 1855 if (expression[0] == '.') 1856 return expression + 1; 1857 if (expression[0] == '-' && expression[1] == '>') 1858 return expression + 2; 1859 return expression; 1860 } 1861 1862 ValueObjectSP 1863 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1864 bool can_create) { 1865 ValueObjectSP synthetic_child_sp; 1866 ConstString name_const_string(expression); 1867 // Check if we have already created a synthetic array member in this valid 1868 // object. If we have we will re-use it. 1869 synthetic_child_sp = GetSyntheticChild(name_const_string); 1870 if (!synthetic_child_sp) { 1871 // We haven't made a synthetic array member for expression yet, so lets 1872 // make one and cache it for any future reference. 1873 synthetic_child_sp = GetValueForExpressionPath( 1874 expression, nullptr, nullptr, 1875 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1876 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1877 None)); 1878 1879 // Cache the value if we got one back... 1880 if (synthetic_child_sp.get()) { 1881 // FIXME: this causes a "real" child to end up with its name changed to 1882 // the contents of expression 1883 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1884 synthetic_child_sp->SetName( 1885 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1886 } 1887 } 1888 return synthetic_child_sp; 1889 } 1890 1891 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1892 if (!use_synthetic) 1893 return; 1894 1895 TargetSP target_sp(GetTargetSP()); 1896 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1897 m_synthetic_value = nullptr; 1898 return; 1899 } 1900 1901 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1902 1903 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1904 return; 1905 1906 if (m_synthetic_children_sp.get() == nullptr) 1907 return; 1908 1909 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1910 return; 1911 1912 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1913 } 1914 1915 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1916 if (use_dynamic == eNoDynamicValues) 1917 return; 1918 1919 if (!m_dynamic_value && !IsDynamic()) { 1920 ExecutionContext exe_ctx(GetExecutionContextRef()); 1921 Process *process = exe_ctx.GetProcessPtr(); 1922 if (process && process->IsPossibleDynamicValue(*this)) { 1923 ClearDynamicTypeInformation(); 1924 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1925 } 1926 } 1927 } 1928 1929 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1930 if (use_dynamic == eNoDynamicValues) 1931 return ValueObjectSP(); 1932 1933 if (!IsDynamic() && m_dynamic_value == nullptr) { 1934 CalculateDynamicValue(use_dynamic); 1935 } 1936 if (m_dynamic_value) 1937 return m_dynamic_value->GetSP(); 1938 else 1939 return ValueObjectSP(); 1940 } 1941 1942 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1943 1944 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1945 1946 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1947 if (!use_synthetic) 1948 return ValueObjectSP(); 1949 1950 CalculateSyntheticValue(use_synthetic); 1951 1952 if (m_synthetic_value) 1953 return m_synthetic_value->GetSP(); 1954 else 1955 return ValueObjectSP(); 1956 } 1957 1958 bool ValueObject::HasSyntheticValue() { 1959 UpdateFormatsIfNeeded(); 1960 1961 if (m_synthetic_children_sp.get() == nullptr) 1962 return false; 1963 1964 CalculateSyntheticValue(true); 1965 1966 return m_synthetic_value != nullptr; 1967 } 1968 1969 bool ValueObject::GetBaseClassPath(Stream &s) { 1970 if (IsBaseClass()) { 1971 bool parent_had_base_class = 1972 GetParent() && GetParent()->GetBaseClassPath(s); 1973 CompilerType compiler_type = GetCompilerType(); 1974 std::string cxx_class_name; 1975 bool this_had_base_class = 1976 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 1977 if (this_had_base_class) { 1978 if (parent_had_base_class) 1979 s.PutCString("::"); 1980 s.PutCString(cxx_class_name); 1981 } 1982 return parent_had_base_class || this_had_base_class; 1983 } 1984 return false; 1985 } 1986 1987 ValueObject *ValueObject::GetNonBaseClassParent() { 1988 if (GetParent()) { 1989 if (GetParent()->IsBaseClass()) 1990 return GetParent()->GetNonBaseClassParent(); 1991 else 1992 return GetParent(); 1993 } 1994 return nullptr; 1995 } 1996 1997 bool ValueObject::IsBaseClass(uint32_t &depth) { 1998 if (!IsBaseClass()) { 1999 depth = 0; 2000 return false; 2001 } 2002 if (GetParent()) { 2003 GetParent()->IsBaseClass(depth); 2004 depth = depth + 1; 2005 return true; 2006 } 2007 // TODO: a base of no parent? weird.. 2008 depth = 1; 2009 return true; 2010 } 2011 2012 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2013 GetExpressionPathFormat epformat) { 2014 // synthetic children do not actually "exist" as part of the hierarchy, and 2015 // sometimes they are consed up in ways that don't make sense from an 2016 // underlying language/API standpoint. So, use a special code path here to 2017 // return something that can hopefully be used in expression 2018 if (m_is_synthetic_children_generated) { 2019 UpdateValueIfNeeded(); 2020 2021 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2022 if (IsPointerOrReferenceType()) { 2023 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2024 GetValueAsUnsigned(0)); 2025 return; 2026 } else { 2027 uint64_t load_addr = 2028 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2029 if (load_addr != LLDB_INVALID_ADDRESS) { 2030 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2031 load_addr); 2032 return; 2033 } 2034 } 2035 } 2036 2037 if (CanProvideValue()) { 2038 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2039 GetValueAsCString()); 2040 return; 2041 } 2042 2043 return; 2044 } 2045 2046 const bool is_deref_of_parent = IsDereferenceOfParent(); 2047 2048 if (is_deref_of_parent && 2049 epformat == eGetExpressionPathFormatDereferencePointers) { 2050 // this is the original format of GetExpressionPath() producing code like 2051 // *(a_ptr).memberName, which is entirely fine, until you put this into 2052 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2053 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2054 // in this latter format 2055 s.PutCString("*("); 2056 } 2057 2058 ValueObject *parent = GetParent(); 2059 2060 if (parent) 2061 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2062 2063 // if we are a deref_of_parent just because we are synthetic array members 2064 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2065 // name ([%d]) to the expression path 2066 if (m_is_array_item_for_pointer && 2067 epformat == eGetExpressionPathFormatHonorPointers) 2068 s.PutCString(m_name.AsCString()); 2069 2070 if (!IsBaseClass()) { 2071 if (!is_deref_of_parent) { 2072 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2073 if (non_base_class_parent && 2074 !non_base_class_parent->GetName().IsEmpty()) { 2075 CompilerType non_base_class_parent_compiler_type = 2076 non_base_class_parent->GetCompilerType(); 2077 if (non_base_class_parent_compiler_type) { 2078 if (parent && parent->IsDereferenceOfParent() && 2079 epformat == eGetExpressionPathFormatHonorPointers) { 2080 s.PutCString("->"); 2081 } else { 2082 const uint32_t non_base_class_parent_type_info = 2083 non_base_class_parent_compiler_type.GetTypeInfo(); 2084 2085 if (non_base_class_parent_type_info & eTypeIsPointer) { 2086 s.PutCString("->"); 2087 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2088 !(non_base_class_parent_type_info & eTypeIsArray)) { 2089 s.PutChar('.'); 2090 } 2091 } 2092 } 2093 } 2094 2095 const char *name = GetName().GetCString(); 2096 if (name) { 2097 if (qualify_cxx_base_classes) { 2098 if (GetBaseClassPath(s)) 2099 s.PutCString("::"); 2100 } 2101 s.PutCString(name); 2102 } 2103 } 2104 } 2105 2106 if (is_deref_of_parent && 2107 epformat == eGetExpressionPathFormatDereferencePointers) { 2108 s.PutChar(')'); 2109 } 2110 } 2111 2112 ValueObjectSP ValueObject::GetValueForExpressionPath( 2113 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2114 ExpressionPathEndResultType *final_value_type, 2115 const GetValueForExpressionPathOptions &options, 2116 ExpressionPathAftermath *final_task_on_target) { 2117 2118 ExpressionPathScanEndReason dummy_reason_to_stop = 2119 ValueObject::eExpressionPathScanEndReasonUnknown; 2120 ExpressionPathEndResultType dummy_final_value_type = 2121 ValueObject::eExpressionPathEndResultTypeInvalid; 2122 ExpressionPathAftermath dummy_final_task_on_target = 2123 ValueObject::eExpressionPathAftermathNothing; 2124 2125 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2126 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2127 final_value_type ? final_value_type : &dummy_final_value_type, options, 2128 final_task_on_target ? final_task_on_target 2129 : &dummy_final_task_on_target); 2130 2131 if (!final_task_on_target || 2132 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2133 return ret_val; 2134 2135 if (ret_val.get() && 2136 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2137 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2138 // of plain objects 2139 { 2140 if ((final_task_on_target ? *final_task_on_target 2141 : dummy_final_task_on_target) == 2142 ValueObject::eExpressionPathAftermathDereference) { 2143 Status error; 2144 ValueObjectSP final_value = ret_val->Dereference(error); 2145 if (error.Fail() || !final_value.get()) { 2146 if (reason_to_stop) 2147 *reason_to_stop = 2148 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2149 if (final_value_type) 2150 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2151 return ValueObjectSP(); 2152 } else { 2153 if (final_task_on_target) 2154 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2155 return final_value; 2156 } 2157 } 2158 if (*final_task_on_target == 2159 ValueObject::eExpressionPathAftermathTakeAddress) { 2160 Status error; 2161 ValueObjectSP final_value = ret_val->AddressOf(error); 2162 if (error.Fail() || !final_value.get()) { 2163 if (reason_to_stop) 2164 *reason_to_stop = 2165 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2166 if (final_value_type) 2167 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2168 return ValueObjectSP(); 2169 } else { 2170 if (final_task_on_target) 2171 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2172 return final_value; 2173 } 2174 } 2175 } 2176 return ret_val; // final_task_on_target will still have its original value, so 2177 // you know I did not do it 2178 } 2179 2180 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2181 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2182 ExpressionPathEndResultType *final_result, 2183 const GetValueForExpressionPathOptions &options, 2184 ExpressionPathAftermath *what_next) { 2185 ValueObjectSP root = GetSP(); 2186 2187 if (!root) 2188 return nullptr; 2189 2190 llvm::StringRef remainder = expression; 2191 2192 while (true) { 2193 llvm::StringRef temp_expression = remainder; 2194 2195 CompilerType root_compiler_type = root->GetCompilerType(); 2196 CompilerType pointee_compiler_type; 2197 Flags pointee_compiler_type_info; 2198 2199 Flags root_compiler_type_info( 2200 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2201 if (pointee_compiler_type) 2202 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2203 2204 if (temp_expression.empty()) { 2205 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2206 return root; 2207 } 2208 2209 switch (temp_expression.front()) { 2210 case '-': { 2211 temp_expression = temp_expression.drop_front(); 2212 if (options.m_check_dot_vs_arrow_syntax && 2213 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2214 // use -> on a 2215 // non-pointer and I 2216 // must catch the error 2217 { 2218 *reason_to_stop = 2219 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2220 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2221 return ValueObjectSP(); 2222 } 2223 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2224 // extract an ObjC IVar 2225 // when this is forbidden 2226 root_compiler_type_info.Test(eTypeIsPointer) && 2227 options.m_no_fragile_ivar) { 2228 *reason_to_stop = 2229 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2230 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2231 return ValueObjectSP(); 2232 } 2233 if (!temp_expression.startswith(">")) { 2234 *reason_to_stop = 2235 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2236 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2237 return ValueObjectSP(); 2238 } 2239 } 2240 LLVM_FALLTHROUGH; 2241 case '.': // or fallthrough from -> 2242 { 2243 if (options.m_check_dot_vs_arrow_syntax && 2244 temp_expression.front() == '.' && 2245 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2246 // use . on a pointer 2247 // and I must catch the 2248 // error 2249 { 2250 *reason_to_stop = 2251 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2252 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2253 return nullptr; 2254 } 2255 temp_expression = temp_expression.drop_front(); // skip . or > 2256 2257 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2258 ConstString child_name; 2259 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2260 // expand this last layer 2261 { 2262 child_name.SetString(temp_expression); 2263 ValueObjectSP child_valobj_sp = 2264 root->GetChildMemberWithName(child_name, true); 2265 2266 if (child_valobj_sp.get()) // we know we are done, so just return 2267 { 2268 *reason_to_stop = 2269 ValueObject::eExpressionPathScanEndReasonEndOfString; 2270 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2271 return child_valobj_sp; 2272 } else { 2273 switch (options.m_synthetic_children_traversal) { 2274 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2275 None: 2276 break; 2277 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2278 FromSynthetic: 2279 if (root->IsSynthetic()) { 2280 child_valobj_sp = root->GetNonSyntheticValue(); 2281 if (child_valobj_sp.get()) 2282 child_valobj_sp = 2283 child_valobj_sp->GetChildMemberWithName(child_name, true); 2284 } 2285 break; 2286 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2287 ToSynthetic: 2288 if (!root->IsSynthetic()) { 2289 child_valobj_sp = root->GetSyntheticValue(); 2290 if (child_valobj_sp.get()) 2291 child_valobj_sp = 2292 child_valobj_sp->GetChildMemberWithName(child_name, true); 2293 } 2294 break; 2295 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2296 Both: 2297 if (root->IsSynthetic()) { 2298 child_valobj_sp = root->GetNonSyntheticValue(); 2299 if (child_valobj_sp.get()) 2300 child_valobj_sp = 2301 child_valobj_sp->GetChildMemberWithName(child_name, true); 2302 } else { 2303 child_valobj_sp = root->GetSyntheticValue(); 2304 if (child_valobj_sp.get()) 2305 child_valobj_sp = 2306 child_valobj_sp->GetChildMemberWithName(child_name, true); 2307 } 2308 break; 2309 } 2310 } 2311 2312 // if we are here and options.m_no_synthetic_children is true, 2313 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2314 // branch, and return an error 2315 if (child_valobj_sp.get()) // if it worked, just return 2316 { 2317 *reason_to_stop = 2318 ValueObject::eExpressionPathScanEndReasonEndOfString; 2319 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2320 return child_valobj_sp; 2321 } else { 2322 *reason_to_stop = 2323 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2324 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2325 return nullptr; 2326 } 2327 } else // other layers do expand 2328 { 2329 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2330 2331 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2332 2333 ValueObjectSP child_valobj_sp = 2334 root->GetChildMemberWithName(child_name, true); 2335 if (child_valobj_sp.get()) // store the new root and move on 2336 { 2337 root = child_valobj_sp; 2338 remainder = next_separator; 2339 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2340 continue; 2341 } else { 2342 switch (options.m_synthetic_children_traversal) { 2343 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2344 None: 2345 break; 2346 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2347 FromSynthetic: 2348 if (root->IsSynthetic()) { 2349 child_valobj_sp = root->GetNonSyntheticValue(); 2350 if (child_valobj_sp.get()) 2351 child_valobj_sp = 2352 child_valobj_sp->GetChildMemberWithName(child_name, true); 2353 } 2354 break; 2355 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2356 ToSynthetic: 2357 if (!root->IsSynthetic()) { 2358 child_valobj_sp = root->GetSyntheticValue(); 2359 if (child_valobj_sp.get()) 2360 child_valobj_sp = 2361 child_valobj_sp->GetChildMemberWithName(child_name, true); 2362 } 2363 break; 2364 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2365 Both: 2366 if (root->IsSynthetic()) { 2367 child_valobj_sp = root->GetNonSyntheticValue(); 2368 if (child_valobj_sp.get()) 2369 child_valobj_sp = 2370 child_valobj_sp->GetChildMemberWithName(child_name, true); 2371 } else { 2372 child_valobj_sp = root->GetSyntheticValue(); 2373 if (child_valobj_sp.get()) 2374 child_valobj_sp = 2375 child_valobj_sp->GetChildMemberWithName(child_name, true); 2376 } 2377 break; 2378 } 2379 } 2380 2381 // if we are here and options.m_no_synthetic_children is true, 2382 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2383 // branch, and return an error 2384 if (child_valobj_sp.get()) // if it worked, move on 2385 { 2386 root = child_valobj_sp; 2387 remainder = next_separator; 2388 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2389 continue; 2390 } else { 2391 *reason_to_stop = 2392 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2393 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2394 return nullptr; 2395 } 2396 } 2397 break; 2398 } 2399 case '[': { 2400 if (!root_compiler_type_info.Test(eTypeIsArray) && 2401 !root_compiler_type_info.Test(eTypeIsPointer) && 2402 !root_compiler_type_info.Test( 2403 eTypeIsVector)) // if this is not a T[] nor a T* 2404 { 2405 if (!root_compiler_type_info.Test( 2406 eTypeIsScalar)) // if this is not even a scalar... 2407 { 2408 if (options.m_synthetic_children_traversal == 2409 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2410 None) // ...only chance left is synthetic 2411 { 2412 *reason_to_stop = 2413 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2414 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2415 return ValueObjectSP(); 2416 } 2417 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2418 // check that we can 2419 // expand bitfields 2420 { 2421 *reason_to_stop = 2422 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2423 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2424 return ValueObjectSP(); 2425 } 2426 } 2427 if (temp_expression[1] == 2428 ']') // if this is an unbounded range it only works for arrays 2429 { 2430 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2431 *reason_to_stop = 2432 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2433 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2434 return nullptr; 2435 } else // even if something follows, we cannot expand unbounded ranges, 2436 // just let the caller do it 2437 { 2438 *reason_to_stop = 2439 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2440 *final_result = 2441 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2442 return root; 2443 } 2444 } 2445 2446 size_t close_bracket_position = temp_expression.find(']', 1); 2447 if (close_bracket_position == 2448 llvm::StringRef::npos) // if there is no ], this is a syntax error 2449 { 2450 *reason_to_stop = 2451 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2452 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2453 return nullptr; 2454 } 2455 2456 llvm::StringRef bracket_expr = 2457 temp_expression.slice(1, close_bracket_position); 2458 2459 // If this was an empty expression it would have been caught by the if 2460 // above. 2461 assert(!bracket_expr.empty()); 2462 2463 if (!bracket_expr.contains('-')) { 2464 // if no separator, this is of the form [N]. Note that this cannot be 2465 // an unbounded range of the form [], because that case was handled 2466 // above with an unconditional return. 2467 unsigned long index = 0; 2468 if (bracket_expr.getAsInteger(0, index)) { 2469 *reason_to_stop = 2470 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2471 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2472 return nullptr; 2473 } 2474 2475 // from here on we do have a valid index 2476 if (root_compiler_type_info.Test(eTypeIsArray)) { 2477 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2478 if (!child_valobj_sp) 2479 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2480 if (!child_valobj_sp) 2481 if (root->HasSyntheticValue() && 2482 root->GetSyntheticValue()->GetNumChildren() > index) 2483 child_valobj_sp = 2484 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2485 if (child_valobj_sp) { 2486 root = child_valobj_sp; 2487 remainder = 2488 temp_expression.substr(close_bracket_position + 1); // skip ] 2489 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2490 continue; 2491 } else { 2492 *reason_to_stop = 2493 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2494 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2495 return nullptr; 2496 } 2497 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2498 if (*what_next == 2499 ValueObject:: 2500 eExpressionPathAftermathDereference && // if this is a 2501 // ptr-to-scalar, I 2502 // am accessing it 2503 // by index and I 2504 // would have 2505 // deref'ed anyway, 2506 // then do it now 2507 // and use this as 2508 // a bitfield 2509 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2510 Status error; 2511 root = root->Dereference(error); 2512 if (error.Fail() || !root) { 2513 *reason_to_stop = 2514 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2515 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2516 return nullptr; 2517 } else { 2518 *what_next = eExpressionPathAftermathNothing; 2519 continue; 2520 } 2521 } else { 2522 if (root->GetCompilerType().GetMinimumLanguage() == 2523 eLanguageTypeObjC && 2524 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2525 root->HasSyntheticValue() && 2526 (options.m_synthetic_children_traversal == 2527 GetValueForExpressionPathOptions:: 2528 SyntheticChildrenTraversal::ToSynthetic || 2529 options.m_synthetic_children_traversal == 2530 GetValueForExpressionPathOptions:: 2531 SyntheticChildrenTraversal::Both)) { 2532 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2533 } else 2534 root = root->GetSyntheticArrayMember(index, true); 2535 if (!root) { 2536 *reason_to_stop = 2537 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2538 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2539 return nullptr; 2540 } else { 2541 remainder = 2542 temp_expression.substr(close_bracket_position + 1); // skip ] 2543 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2544 continue; 2545 } 2546 } 2547 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2548 root = root->GetSyntheticBitFieldChild(index, index, true); 2549 if (!root) { 2550 *reason_to_stop = 2551 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2552 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2553 return nullptr; 2554 } else // we do not know how to expand members of bitfields, so we 2555 // just return and let the caller do any further processing 2556 { 2557 *reason_to_stop = ValueObject:: 2558 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2559 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2560 return root; 2561 } 2562 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2563 root = root->GetChildAtIndex(index, true); 2564 if (!root) { 2565 *reason_to_stop = 2566 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2567 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2568 return ValueObjectSP(); 2569 } else { 2570 remainder = 2571 temp_expression.substr(close_bracket_position + 1); // skip ] 2572 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2573 continue; 2574 } 2575 } else if (options.m_synthetic_children_traversal == 2576 GetValueForExpressionPathOptions:: 2577 SyntheticChildrenTraversal::ToSynthetic || 2578 options.m_synthetic_children_traversal == 2579 GetValueForExpressionPathOptions:: 2580 SyntheticChildrenTraversal::Both) { 2581 if (root->HasSyntheticValue()) 2582 root = root->GetSyntheticValue(); 2583 else if (!root->IsSynthetic()) { 2584 *reason_to_stop = 2585 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2586 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2587 return nullptr; 2588 } 2589 // if we are here, then root itself is a synthetic VO.. should be 2590 // good to go 2591 2592 if (!root) { 2593 *reason_to_stop = 2594 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2595 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2596 return nullptr; 2597 } 2598 root = root->GetChildAtIndex(index, true); 2599 if (!root) { 2600 *reason_to_stop = 2601 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2602 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2603 return nullptr; 2604 } else { 2605 remainder = 2606 temp_expression.substr(close_bracket_position + 1); // skip ] 2607 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2608 continue; 2609 } 2610 } else { 2611 *reason_to_stop = 2612 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2613 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2614 return nullptr; 2615 } 2616 } else { 2617 // we have a low and a high index 2618 llvm::StringRef sleft, sright; 2619 unsigned long low_index, high_index; 2620 std::tie(sleft, sright) = bracket_expr.split('-'); 2621 if (sleft.getAsInteger(0, low_index) || 2622 sright.getAsInteger(0, high_index)) { 2623 *reason_to_stop = 2624 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2625 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2626 return nullptr; 2627 } 2628 2629 if (low_index > high_index) // swap indices if required 2630 std::swap(low_index, high_index); 2631 2632 if (root_compiler_type_info.Test( 2633 eTypeIsScalar)) // expansion only works for scalars 2634 { 2635 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2636 if (!root) { 2637 *reason_to_stop = 2638 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2639 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2640 return nullptr; 2641 } else { 2642 *reason_to_stop = ValueObject:: 2643 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2644 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2645 return root; 2646 } 2647 } else if (root_compiler_type_info.Test( 2648 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2649 // accessing it by index and I would 2650 // have deref'ed anyway, then do it 2651 // now and use this as a bitfield 2652 *what_next == 2653 ValueObject::eExpressionPathAftermathDereference && 2654 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2655 Status error; 2656 root = root->Dereference(error); 2657 if (error.Fail() || !root) { 2658 *reason_to_stop = 2659 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2660 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2661 return nullptr; 2662 } else { 2663 *what_next = ValueObject::eExpressionPathAftermathNothing; 2664 continue; 2665 } 2666 } else { 2667 *reason_to_stop = 2668 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2669 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2670 return root; 2671 } 2672 } 2673 break; 2674 } 2675 default: // some non-separator is in the way 2676 { 2677 *reason_to_stop = 2678 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2679 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2680 return nullptr; 2681 } 2682 } 2683 } 2684 } 2685 2686 void ValueObject::LogValueObject(Log *log) { 2687 if (log) 2688 return LogValueObject(log, DumpValueObjectOptions(*this)); 2689 } 2690 2691 void ValueObject::LogValueObject(Log *log, 2692 const DumpValueObjectOptions &options) { 2693 if (log) { 2694 StreamString s; 2695 Dump(s, options); 2696 if (s.GetSize()) 2697 log->PutCString(s.GetData()); 2698 } 2699 } 2700 2701 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2702 2703 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2704 ValueObjectPrinter printer(this, &s, options); 2705 printer.PrintValueObject(); 2706 } 2707 2708 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2709 ValueObjectSP valobj_sp; 2710 2711 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2712 ExecutionContext exe_ctx(GetExecutionContextRef()); 2713 2714 DataExtractor data; 2715 data.SetByteOrder(m_data.GetByteOrder()); 2716 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2717 2718 if (IsBitfield()) { 2719 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2720 m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2721 } else 2722 m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2723 2724 valobj_sp = ValueObjectConstResult::Create( 2725 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2726 GetAddressOf()); 2727 } 2728 2729 if (!valobj_sp) { 2730 ExecutionContext exe_ctx(GetExecutionContextRef()); 2731 valobj_sp = ValueObjectConstResult::Create( 2732 exe_ctx.GetBestExecutionContextScope(), m_error); 2733 } 2734 return valobj_sp; 2735 } 2736 2737 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2738 lldb::DynamicValueType dynValue, bool synthValue) { 2739 ValueObjectSP result_sp(GetSP()); 2740 2741 switch (dynValue) { 2742 case lldb::eDynamicCanRunTarget: 2743 case lldb::eDynamicDontRunTarget: { 2744 if (!result_sp->IsDynamic()) { 2745 if (result_sp->GetDynamicValue(dynValue)) 2746 result_sp = result_sp->GetDynamicValue(dynValue); 2747 } 2748 } break; 2749 case lldb::eNoDynamicValues: { 2750 if (result_sp->IsDynamic()) { 2751 if (result_sp->GetStaticValue()) 2752 result_sp = result_sp->GetStaticValue(); 2753 } 2754 } break; 2755 } 2756 2757 if (synthValue) { 2758 if (!result_sp->IsSynthetic()) { 2759 if (result_sp->GetSyntheticValue()) 2760 result_sp = result_sp->GetSyntheticValue(); 2761 } 2762 } else { 2763 if (result_sp->IsSynthetic()) { 2764 if (result_sp->GetNonSyntheticValue()) 2765 result_sp = result_sp->GetNonSyntheticValue(); 2766 } 2767 } 2768 2769 return result_sp; 2770 } 2771 2772 ValueObjectSP ValueObject::Dereference(Status &error) { 2773 if (m_deref_valobj) 2774 return m_deref_valobj->GetSP(); 2775 2776 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2777 if (is_pointer_or_reference_type) { 2778 bool omit_empty_base_classes = true; 2779 bool ignore_array_bounds = false; 2780 2781 std::string child_name_str; 2782 uint32_t child_byte_size = 0; 2783 int32_t child_byte_offset = 0; 2784 uint32_t child_bitfield_bit_size = 0; 2785 uint32_t child_bitfield_bit_offset = 0; 2786 bool child_is_base_class = false; 2787 bool child_is_deref_of_parent = false; 2788 const bool transparent_pointers = false; 2789 CompilerType compiler_type = GetCompilerType(); 2790 CompilerType child_compiler_type; 2791 uint64_t language_flags; 2792 2793 ExecutionContext exe_ctx(GetExecutionContextRef()); 2794 2795 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2796 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2797 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2798 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2799 child_is_deref_of_parent, this, language_flags); 2800 if (child_compiler_type && child_byte_size) { 2801 ConstString child_name; 2802 if (!child_name_str.empty()) 2803 child_name.SetCString(child_name_str.c_str()); 2804 2805 m_deref_valobj = new ValueObjectChild( 2806 *this, child_compiler_type, child_name, child_byte_size, 2807 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2808 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2809 language_flags); 2810 } 2811 } else if (HasSyntheticValue()) { 2812 m_deref_valobj = 2813 GetSyntheticValue() 2814 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2815 .get(); 2816 } 2817 2818 if (m_deref_valobj) { 2819 error.Clear(); 2820 return m_deref_valobj->GetSP(); 2821 } else { 2822 StreamString strm; 2823 GetExpressionPath(strm, true); 2824 2825 if (is_pointer_or_reference_type) 2826 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2827 GetTypeName().AsCString("<invalid type>"), 2828 strm.GetData()); 2829 else 2830 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2831 GetTypeName().AsCString("<invalid type>"), 2832 strm.GetData()); 2833 return ValueObjectSP(); 2834 } 2835 } 2836 2837 ValueObjectSP ValueObject::AddressOf(Status &error) { 2838 if (m_addr_of_valobj_sp) 2839 return m_addr_of_valobj_sp; 2840 2841 AddressType address_type = eAddressTypeInvalid; 2842 const bool scalar_is_load_address = false; 2843 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2844 error.Clear(); 2845 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2846 switch (address_type) { 2847 case eAddressTypeInvalid: { 2848 StreamString expr_path_strm; 2849 GetExpressionPath(expr_path_strm, true); 2850 error.SetErrorStringWithFormat("'%s' is not in memory", 2851 expr_path_strm.GetData()); 2852 } break; 2853 2854 case eAddressTypeFile: 2855 case eAddressTypeLoad: { 2856 CompilerType compiler_type = GetCompilerType(); 2857 if (compiler_type) { 2858 std::string name(1, '&'); 2859 name.append(m_name.AsCString("")); 2860 ExecutionContext exe_ctx(GetExecutionContextRef()); 2861 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2862 exe_ctx.GetBestExecutionContextScope(), 2863 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2864 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2865 } 2866 } break; 2867 default: 2868 break; 2869 } 2870 } else { 2871 StreamString expr_path_strm; 2872 GetExpressionPath(expr_path_strm, true); 2873 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2874 expr_path_strm.GetData()); 2875 } 2876 2877 return m_addr_of_valobj_sp; 2878 } 2879 2880 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2881 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2882 } 2883 2884 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2885 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2886 } 2887 2888 ValueObjectSP ValueObject::CastPointerType(const char *name, 2889 CompilerType &compiler_type) { 2890 ValueObjectSP valobj_sp; 2891 AddressType address_type; 2892 addr_t ptr_value = GetPointerValue(&address_type); 2893 2894 if (ptr_value != LLDB_INVALID_ADDRESS) { 2895 Address ptr_addr(ptr_value); 2896 ExecutionContext exe_ctx(GetExecutionContextRef()); 2897 valobj_sp = ValueObjectMemory::Create( 2898 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2899 } 2900 return valobj_sp; 2901 } 2902 2903 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2904 ValueObjectSP valobj_sp; 2905 AddressType address_type; 2906 addr_t ptr_value = GetPointerValue(&address_type); 2907 2908 if (ptr_value != LLDB_INVALID_ADDRESS) { 2909 Address ptr_addr(ptr_value); 2910 ExecutionContext exe_ctx(GetExecutionContextRef()); 2911 valobj_sp = ValueObjectMemory::Create( 2912 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2913 } 2914 return valobj_sp; 2915 } 2916 2917 ValueObject::EvaluationPoint::EvaluationPoint() 2918 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2919 2920 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2921 bool use_selected) 2922 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2923 ExecutionContext exe_ctx(exe_scope); 2924 TargetSP target_sp(exe_ctx.GetTargetSP()); 2925 if (target_sp) { 2926 m_exe_ctx_ref.SetTargetSP(target_sp); 2927 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2928 if (!process_sp) 2929 process_sp = target_sp->GetProcessSP(); 2930 2931 if (process_sp) { 2932 m_mod_id = process_sp->GetModID(); 2933 m_exe_ctx_ref.SetProcessSP(process_sp); 2934 2935 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2936 2937 if (!thread_sp) { 2938 if (use_selected) 2939 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2940 } 2941 2942 if (thread_sp) { 2943 m_exe_ctx_ref.SetThreadSP(thread_sp); 2944 2945 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2946 if (!frame_sp) { 2947 if (use_selected) 2948 frame_sp = thread_sp->GetSelectedFrame(); 2949 } 2950 if (frame_sp) 2951 m_exe_ctx_ref.SetFrameSP(frame_sp); 2952 } 2953 } 2954 } 2955 } 2956 2957 ValueObject::EvaluationPoint::EvaluationPoint( 2958 const ValueObject::EvaluationPoint &rhs) 2959 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2960 2961 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2962 2963 // This function checks the EvaluationPoint against the current process state. 2964 // If the current state matches the evaluation point, or the evaluation point 2965 // is already invalid, then we return false, meaning "no change". If the 2966 // current state is different, we update our state, and return true meaning 2967 // "yes, change". If we did see a change, we also set m_needs_update to true, 2968 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2969 // the current execution context scope. 2970 2971 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2972 bool accept_invalid_exe_ctx) { 2973 // Start with the target, if it is NULL, then we're obviously not going to 2974 // get any further: 2975 const bool thread_and_frame_only_if_stopped = true; 2976 ExecutionContext exe_ctx( 2977 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 2978 2979 if (exe_ctx.GetTargetPtr() == nullptr) 2980 return false; 2981 2982 // If we don't have a process nothing can change. 2983 Process *process = exe_ctx.GetProcessPtr(); 2984 if (process == nullptr) 2985 return false; 2986 2987 // If our stop id is the current stop ID, nothing has changed: 2988 ProcessModID current_mod_id = process->GetModID(); 2989 2990 // If the current stop id is 0, either we haven't run yet, or the process 2991 // state has been cleared. In either case, we aren't going to be able to sync 2992 // with the process state. 2993 if (current_mod_id.GetStopID() == 0) 2994 return false; 2995 2996 bool changed = false; 2997 const bool was_valid = m_mod_id.IsValid(); 2998 if (was_valid) { 2999 if (m_mod_id == current_mod_id) { 3000 // Everything is already up to date in this object, no need to update the 3001 // execution context scope. 3002 changed = false; 3003 } else { 3004 m_mod_id = current_mod_id; 3005 m_needs_update = true; 3006 changed = true; 3007 } 3008 } 3009 3010 // Now re-look up the thread and frame in case the underlying objects have 3011 // gone away & been recreated. That way we'll be sure to return a valid 3012 // exe_scope. If we used to have a thread or a frame but can't find it 3013 // anymore, then mark ourselves as invalid. 3014 3015 if (!accept_invalid_exe_ctx) { 3016 if (m_exe_ctx_ref.HasThreadRef()) { 3017 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3018 if (thread_sp) { 3019 if (m_exe_ctx_ref.HasFrameRef()) { 3020 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3021 if (!frame_sp) { 3022 // We used to have a frame, but now it is gone 3023 SetInvalid(); 3024 changed = was_valid; 3025 } 3026 } 3027 } else { 3028 // We used to have a thread, but now it is gone 3029 SetInvalid(); 3030 changed = was_valid; 3031 } 3032 } 3033 } 3034 3035 return changed; 3036 } 3037 3038 void ValueObject::EvaluationPoint::SetUpdated() { 3039 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3040 if (process_sp) 3041 m_mod_id = process_sp->GetModID(); 3042 m_needs_update = false; 3043 } 3044 3045 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3046 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3047 eClearUserVisibleDataItemsValue) 3048 m_value_str.clear(); 3049 3050 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3051 eClearUserVisibleDataItemsLocation) 3052 m_location_str.clear(); 3053 3054 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3055 eClearUserVisibleDataItemsSummary) 3056 m_summary_str.clear(); 3057 3058 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3059 eClearUserVisibleDataItemsDescription) 3060 m_object_desc_str.clear(); 3061 3062 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3063 eClearUserVisibleDataItemsSyntheticChildren) { 3064 if (m_synthetic_value) 3065 m_synthetic_value = nullptr; 3066 } 3067 3068 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3069 eClearUserVisibleDataItemsValidator) 3070 m_validation_result.reset(); 3071 } 3072 3073 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3074 if (m_parent) { 3075 if (!m_parent->IsPointerOrReferenceType()) 3076 return m_parent->GetSymbolContextScope(); 3077 } 3078 return nullptr; 3079 } 3080 3081 lldb::ValueObjectSP 3082 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3083 llvm::StringRef expression, 3084 const ExecutionContext &exe_ctx) { 3085 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3086 EvaluateExpressionOptions()); 3087 } 3088 3089 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3090 llvm::StringRef name, llvm::StringRef expression, 3091 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3092 lldb::ValueObjectSP retval_sp; 3093 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3094 if (!target_sp) 3095 return retval_sp; 3096 if (expression.empty()) 3097 return retval_sp; 3098 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3099 retval_sp, options); 3100 if (retval_sp && !name.empty()) 3101 retval_sp->SetName(ConstString(name)); 3102 return retval_sp; 3103 } 3104 3105 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3106 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3107 CompilerType type) { 3108 if (type) { 3109 CompilerType pointer_type(type.GetPointerType()); 3110 if (pointer_type) { 3111 lldb::DataBufferSP buffer( 3112 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3113 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3114 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3115 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3116 exe_ctx.GetAddressByteSize())); 3117 if (ptr_result_valobj_sp) { 3118 ptr_result_valobj_sp->GetValue().SetValueType( 3119 Value::eValueTypeLoadAddress); 3120 Status err; 3121 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3122 if (ptr_result_valobj_sp && !name.empty()) 3123 ptr_result_valobj_sp->SetName(ConstString(name)); 3124 } 3125 return ptr_result_valobj_sp; 3126 } 3127 } 3128 return lldb::ValueObjectSP(); 3129 } 3130 3131 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3132 llvm::StringRef name, const DataExtractor &data, 3133 const ExecutionContext &exe_ctx, CompilerType type) { 3134 lldb::ValueObjectSP new_value_sp; 3135 new_value_sp = ValueObjectConstResult::Create( 3136 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3137 LLDB_INVALID_ADDRESS); 3138 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3139 if (new_value_sp && !name.empty()) 3140 new_value_sp->SetName(ConstString(name)); 3141 return new_value_sp; 3142 } 3143 3144 ModuleSP ValueObject::GetModule() { 3145 ValueObject *root(GetRoot()); 3146 if (root != this) 3147 return root->GetModule(); 3148 return lldb::ModuleSP(); 3149 } 3150 3151 ValueObject *ValueObject::GetRoot() { 3152 if (m_root) 3153 return m_root; 3154 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3155 return (vo->m_parent != nullptr); 3156 })); 3157 } 3158 3159 ValueObject * 3160 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3161 ValueObject *vo = this; 3162 while (vo) { 3163 if (!f(vo)) 3164 break; 3165 vo = vo->m_parent; 3166 } 3167 return vo; 3168 } 3169 3170 AddressType ValueObject::GetAddressTypeOfChildren() { 3171 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3172 ValueObject *root(GetRoot()); 3173 if (root != this) 3174 return root->GetAddressTypeOfChildren(); 3175 } 3176 return m_address_type_of_ptr_or_ref_children; 3177 } 3178 3179 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3180 ValueObject *with_dv_info = this; 3181 while (with_dv_info) { 3182 if (with_dv_info->HasDynamicValueTypeInfo()) 3183 return with_dv_info->GetDynamicValueTypeImpl(); 3184 with_dv_info = with_dv_info->m_parent; 3185 } 3186 return lldb::eNoDynamicValues; 3187 } 3188 3189 lldb::Format ValueObject::GetFormat() const { 3190 const ValueObject *with_fmt_info = this; 3191 while (with_fmt_info) { 3192 if (with_fmt_info->m_format != lldb::eFormatDefault) 3193 return with_fmt_info->m_format; 3194 with_fmt_info = with_fmt_info->m_parent; 3195 } 3196 return m_format; 3197 } 3198 3199 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3200 lldb::LanguageType type = m_preferred_display_language; 3201 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3202 if (GetRoot()) { 3203 if (GetRoot() == this) { 3204 if (StackFrameSP frame_sp = GetFrameSP()) { 3205 const SymbolContext &sc( 3206 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3207 if (CompileUnit *cu = sc.comp_unit) 3208 type = cu->GetLanguage(); 3209 } 3210 } else { 3211 type = GetRoot()->GetPreferredDisplayLanguage(); 3212 } 3213 } 3214 } 3215 return (m_preferred_display_language = type); // only compute it once 3216 } 3217 3218 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3219 m_preferred_display_language = lt; 3220 } 3221 3222 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3223 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3224 SetPreferredDisplayLanguage(lt); 3225 } 3226 3227 bool ValueObject::CanProvideValue() { 3228 // we need to support invalid types as providers of values because some bare- 3229 // board debugging scenarios have no notion of types, but still manage to 3230 // have raw numeric values for things like registers. sigh. 3231 const CompilerType &type(GetCompilerType()); 3232 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3233 } 3234 3235 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3236 3237 ValueObjectSP ValueObject::Persist() { 3238 if (!UpdateValueIfNeeded()) 3239 return nullptr; 3240 3241 TargetSP target_sp(GetTargetSP()); 3242 if (!target_sp) 3243 return nullptr; 3244 3245 PersistentExpressionState *persistent_state = 3246 target_sp->GetPersistentExpressionStateForLanguage( 3247 GetPreferredDisplayLanguage()); 3248 3249 if (!persistent_state) 3250 return nullptr; 3251 3252 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3253 ConstString name = 3254 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3255 3256 ValueObjectSP const_result_sp = 3257 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3258 3259 ExpressionVariableSP clang_var_sp = 3260 persistent_state->CreatePersistentVariable(const_result_sp); 3261 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3262 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3263 3264 return clang_var_sp->GetValueObject(); 3265 } 3266 3267 bool ValueObject::IsSyntheticChildrenGenerated() { 3268 return m_is_synthetic_children_generated; 3269 } 3270 3271 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3272 m_is_synthetic_children_generated = b; 3273 } 3274 3275 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3276 3277 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3278 3279 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3280 lldb::DynamicValueType use_dynamic, 3281 bool use_synthetic) : m_root_valobj_sp(), 3282 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3283 m_use_synthetic(use_synthetic) { 3284 if (!in_valobj_sp) 3285 return; 3286 // If the user passes in a value object that is dynamic or synthetic, then 3287 // water it down to the static type. 3288 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3289 } 3290 3291 bool ValueObjectManager::IsValid() const { 3292 if (!m_root_valobj_sp) 3293 return false; 3294 lldb::TargetSP target_sp = GetTargetSP(); 3295 if (target_sp) 3296 return target_sp->IsValid(); 3297 return false; 3298 } 3299 3300 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3301 lldb::ProcessSP process_sp = GetProcessSP(); 3302 if (!process_sp) 3303 return lldb::ValueObjectSP(); 3304 3305 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3306 if (current_stop_id == m_stop_id) 3307 return m_user_valobj_sp; 3308 3309 m_stop_id = current_stop_id; 3310 3311 if (!m_root_valobj_sp) { 3312 m_user_valobj_sp.reset(); 3313 return m_root_valobj_sp; 3314 } 3315 3316 m_user_valobj_sp = m_root_valobj_sp; 3317 3318 if (m_use_dynamic != lldb::eNoDynamicValues) { 3319 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3320 if (dynamic_sp) 3321 m_user_valobj_sp = dynamic_sp; 3322 } 3323 3324 if (m_use_synthetic) { 3325 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3326 if (synthetic_sp) 3327 m_user_valobj_sp = synthetic_sp; 3328 } 3329 3330 return m_user_valobj_sp; 3331 } 3332 3333 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3334 if (use_dynamic != m_use_dynamic) { 3335 m_use_dynamic = use_dynamic; 3336 m_user_valobj_sp.reset(); 3337 m_stop_id = UINT32_MAX; 3338 } 3339 } 3340 3341 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3342 if (m_use_synthetic != use_synthetic) { 3343 m_use_synthetic = use_synthetic; 3344 m_user_valobj_sp.reset(); 3345 m_stop_id = UINT32_MAX; 3346 } 3347 } 3348 3349 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3350 if (!m_root_valobj_sp) 3351 return m_root_valobj_sp->GetTargetSP(); 3352 return lldb::TargetSP(); 3353 } 3354 3355 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3356 if (m_root_valobj_sp) 3357 return m_root_valobj_sp->GetProcessSP(); 3358 return lldb::ProcessSP(); 3359 } 3360 3361 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3362 if (m_root_valobj_sp) 3363 return m_root_valobj_sp->GetThreadSP(); 3364 return lldb::ThreadSP(); 3365 } 3366 3367 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3368 if (m_root_valobj_sp) 3369 return m_root_valobj_sp->GetFrameSP(); 3370 return lldb::StackFrameSP(); 3371 } 3372