1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "lldb/Core/ValueObject.h" 13 14 // C Includes 15 #include <stdlib.h> 16 17 // C++ Includes 18 // Other libraries and framework includes 19 #include "llvm/Support/raw_ostream.h" 20 #include "clang/AST/Type.h" 21 22 // Project includes 23 #include "lldb/Core/DataBufferHeap.h" 24 #include "lldb/Core/Debugger.h" 25 #include "lldb/Core/Log.h" 26 #include "lldb/Core/Module.h" 27 #include "lldb/Core/StreamString.h" 28 #include "lldb/Core/ValueObjectCast.h" 29 #include "lldb/Core/ValueObjectChild.h" 30 #include "lldb/Core/ValueObjectConstResult.h" 31 #include "lldb/Core/ValueObjectDynamicValue.h" 32 #include "lldb/Core/ValueObjectList.h" 33 #include "lldb/Core/ValueObjectMemory.h" 34 #include "lldb/Core/ValueObjectSyntheticFilter.h" 35 36 #include "lldb/DataFormatters/DataVisualization.h" 37 #include "lldb/DataFormatters/StringPrinter.h" 38 #include "lldb/DataFormatters/ValueObjectPrinter.h" 39 40 #include "lldb/Expression/ClangExpressionVariable.h" 41 #include "lldb/Expression/ClangPersistentVariables.h" 42 43 #include "lldb/Host/Endian.h" 44 45 #include "lldb/Interpreter/CommandInterpreter.h" 46 #include "lldb/Interpreter/ScriptInterpreterPython.h" 47 48 #include "lldb/Symbol/ClangASTType.h" 49 #include "lldb/Symbol/ClangASTContext.h" 50 #include "lldb/Symbol/CompileUnit.h" 51 #include "lldb/Symbol/Type.h" 52 53 #include "lldb/Target/ExecutionContext.h" 54 #include "lldb/Target/LanguageRuntime.h" 55 #include "lldb/Target/ObjCLanguageRuntime.h" 56 #include "lldb/Target/Process.h" 57 #include "lldb/Target/RegisterContext.h" 58 #include "lldb/Target/SectionLoadList.h" 59 #include "lldb/Target/Target.h" 60 #include "lldb/Target/Thread.h" 61 62 using namespace lldb; 63 using namespace lldb_private; 64 using namespace lldb_utility; 65 66 static user_id_t g_value_obj_uid = 0; 67 68 //---------------------------------------------------------------------- 69 // ValueObject constructor 70 //---------------------------------------------------------------------- 71 ValueObject::ValueObject (ValueObject &parent) : 72 UserID (++g_value_obj_uid), // Unique identifier for every value object 73 m_parent (&parent), 74 m_root (NULL), 75 m_update_point (parent.GetUpdatePoint ()), 76 m_name (), 77 m_data (), 78 m_value (), 79 m_error (), 80 m_value_str (), 81 m_old_value_str (), 82 m_location_str (), 83 m_summary_str (), 84 m_object_desc_str (), 85 m_validation_result(), 86 m_manager(parent.GetManager()), 87 m_children (), 88 m_synthetic_children (), 89 m_dynamic_value (NULL), 90 m_synthetic_value(NULL), 91 m_deref_valobj(NULL), 92 m_format (eFormatDefault), 93 m_last_format (eFormatDefault), 94 m_last_format_mgr_revision(0), 95 m_type_summary_sp(), 96 m_type_format_sp(), 97 m_synthetic_children_sp(), 98 m_type_validator_sp(), 99 m_user_id_of_forced_summary(), 100 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 101 m_value_checksum(), 102 m_preferred_display_language(lldb::eLanguageTypeUnknown), 103 m_value_is_valid (false), 104 m_value_did_change (false), 105 m_children_count_valid (false), 106 m_old_value_valid (false), 107 m_is_deref_of_parent (false), 108 m_is_array_item_for_pointer(false), 109 m_is_bitfield_for_scalar(false), 110 m_is_child_at_offset(false), 111 m_is_getting_summary(false), 112 m_did_calculate_complete_objc_class_type(false), 113 m_is_synthetic_children_generated(parent.m_is_synthetic_children_generated) 114 { 115 m_manager->ManageObject(this); 116 } 117 118 //---------------------------------------------------------------------- 119 // ValueObject constructor 120 //---------------------------------------------------------------------- 121 ValueObject::ValueObject (ExecutionContextScope *exe_scope, 122 AddressType child_ptr_or_ref_addr_type) : 123 UserID (++g_value_obj_uid), // Unique identifier for every value object 124 m_parent (NULL), 125 m_root (NULL), 126 m_update_point (exe_scope), 127 m_name (), 128 m_data (), 129 m_value (), 130 m_error (), 131 m_value_str (), 132 m_old_value_str (), 133 m_location_str (), 134 m_summary_str (), 135 m_object_desc_str (), 136 m_validation_result(), 137 m_manager(), 138 m_children (), 139 m_synthetic_children (), 140 m_dynamic_value (NULL), 141 m_synthetic_value(NULL), 142 m_deref_valobj(NULL), 143 m_format (eFormatDefault), 144 m_last_format (eFormatDefault), 145 m_last_format_mgr_revision(0), 146 m_type_summary_sp(), 147 m_type_format_sp(), 148 m_synthetic_children_sp(), 149 m_type_validator_sp(), 150 m_user_id_of_forced_summary(), 151 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 152 m_value_checksum(), 153 m_preferred_display_language(lldb::eLanguageTypeUnknown), 154 m_value_is_valid (false), 155 m_value_did_change (false), 156 m_children_count_valid (false), 157 m_old_value_valid (false), 158 m_is_deref_of_parent (false), 159 m_is_array_item_for_pointer(false), 160 m_is_bitfield_for_scalar(false), 161 m_is_child_at_offset(false), 162 m_is_getting_summary(false), 163 m_did_calculate_complete_objc_class_type(false), 164 m_is_synthetic_children_generated(false) 165 { 166 m_manager = new ValueObjectManager(); 167 m_manager->ManageObject (this); 168 } 169 170 //---------------------------------------------------------------------- 171 // Destructor 172 //---------------------------------------------------------------------- 173 ValueObject::~ValueObject () 174 { 175 } 176 177 bool 178 ValueObject::UpdateValueIfNeeded (bool update_format) 179 { 180 181 bool did_change_formats = false; 182 183 if (update_format) 184 did_change_formats = UpdateFormatsIfNeeded(); 185 186 // If this is a constant value, then our success is predicated on whether 187 // we have an error or not 188 if (GetIsConstant()) 189 { 190 // if you are constant, things might still have changed behind your back 191 // (e.g. you are a frozen object and things have changed deeper than you cared to freeze-dry yourself) 192 // in this case, your value has not changed, but "computed" entries might have, so you might now have 193 // a different summary, or a different object description. clear these so we will recompute them 194 if (update_format && !did_change_formats) 195 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | eClearUserVisibleDataItemsDescription); 196 return m_error.Success(); 197 } 198 199 bool first_update = IsChecksumEmpty(); 200 201 if (m_update_point.NeedsUpdating()) 202 { 203 m_update_point.SetUpdated(); 204 205 // Save the old value using swap to avoid a string copy which 206 // also will clear our m_value_str 207 if (m_value_str.empty()) 208 { 209 m_old_value_valid = false; 210 } 211 else 212 { 213 m_old_value_valid = true; 214 m_old_value_str.swap (m_value_str); 215 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 216 } 217 218 ClearUserVisibleData(); 219 220 if (IsInScope()) 221 { 222 const bool value_was_valid = GetValueIsValid(); 223 SetValueDidChange (false); 224 225 m_error.Clear(); 226 227 // Call the pure virtual function to update the value 228 229 bool need_compare_checksums = false; 230 llvm::SmallVector<uint8_t, 16> old_checksum; 231 232 if (!first_update && CanProvideValue()) 233 { 234 need_compare_checksums = true; 235 old_checksum.resize(m_value_checksum.size()); 236 std::copy(m_value_checksum.begin(), m_value_checksum.end(), old_checksum.begin()); 237 } 238 239 bool success = UpdateValue (); 240 241 SetValueIsValid (success); 242 243 if (success) 244 { 245 const uint64_t max_checksum_size = 128; 246 m_data.Checksum(m_value_checksum, 247 max_checksum_size); 248 } 249 else 250 { 251 need_compare_checksums = false; 252 m_value_checksum.clear(); 253 } 254 255 assert (!need_compare_checksums || (!old_checksum.empty() && !m_value_checksum.empty())); 256 257 if (first_update) 258 SetValueDidChange (false); 259 else if (!m_value_did_change && success == false) 260 { 261 // The value wasn't gotten successfully, so we mark this 262 // as changed if the value used to be valid and now isn't 263 SetValueDidChange (value_was_valid); 264 } 265 else if (need_compare_checksums) 266 { 267 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], m_value_checksum.size())); 268 } 269 270 } 271 else 272 { 273 m_error.SetErrorString("out of scope"); 274 } 275 } 276 return m_error.Success(); 277 } 278 279 bool 280 ValueObject::UpdateFormatsIfNeeded() 281 { 282 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_TYPES)); 283 if (log) 284 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject rev: %d - Global rev: %d", 285 GetName().GetCString(), static_cast<void*>(this), 286 m_last_format_mgr_revision, 287 DataVisualization::GetCurrentRevision()); 288 289 bool any_change = false; 290 291 if ( (m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) 292 { 293 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 294 any_change = true; 295 296 SetValueFormat(DataVisualization::GetFormat (*this, eNoDynamicValues)); 297 SetSummaryFormat(DataVisualization::GetSummaryFormat (*this, GetDynamicValueType())); 298 #ifndef LLDB_DISABLE_PYTHON 299 SetSyntheticChildren(DataVisualization::GetSyntheticChildren (*this, GetDynamicValueType())); 300 #endif 301 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 302 } 303 304 return any_change; 305 } 306 307 void 308 ValueObject::SetNeedsUpdate () 309 { 310 m_update_point.SetNeedsUpdate(); 311 // We have to clear the value string here so ConstResult children will notice if their values are 312 // changed by hand (i.e. with SetValueAsCString). 313 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 314 } 315 316 void 317 ValueObject::ClearDynamicTypeInformation () 318 { 319 m_children_count_valid = false; 320 m_did_calculate_complete_objc_class_type = false; 321 m_last_format_mgr_revision = 0; 322 m_override_type = ClangASTType(); 323 SetValueFormat(lldb::TypeFormatImplSP()); 324 SetSummaryFormat(lldb::TypeSummaryImplSP()); 325 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 326 } 327 328 ClangASTType 329 ValueObject::MaybeCalculateCompleteType () 330 { 331 ClangASTType clang_type(GetClangTypeImpl()); 332 333 if (m_did_calculate_complete_objc_class_type) 334 { 335 if (m_override_type.IsValid()) 336 return m_override_type; 337 else 338 return clang_type; 339 } 340 341 ClangASTType class_type; 342 bool is_pointer_type = false; 343 344 if (clang_type.IsObjCObjectPointerType(&class_type)) 345 { 346 is_pointer_type = true; 347 } 348 else if (clang_type.IsObjCObjectOrInterfaceType()) 349 { 350 class_type = clang_type; 351 } 352 else 353 { 354 return clang_type; 355 } 356 357 m_did_calculate_complete_objc_class_type = true; 358 359 if (class_type) 360 { 361 ConstString class_name (class_type.GetConstTypeName()); 362 363 if (class_name) 364 { 365 ProcessSP process_sp(GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 366 367 if (process_sp) 368 { 369 ObjCLanguageRuntime *objc_language_runtime(process_sp->GetObjCLanguageRuntime()); 370 371 if (objc_language_runtime) 372 { 373 TypeSP complete_objc_class_type_sp = objc_language_runtime->LookupInCompleteClassCache(class_name); 374 375 if (complete_objc_class_type_sp) 376 { 377 ClangASTType complete_class(complete_objc_class_type_sp->GetClangFullType()); 378 379 if (complete_class.GetCompleteType()) 380 { 381 if (is_pointer_type) 382 { 383 m_override_type = complete_class.GetPointerType(); 384 } 385 else 386 { 387 m_override_type = complete_class; 388 } 389 390 if (m_override_type.IsValid()) 391 return m_override_type; 392 } 393 } 394 } 395 } 396 } 397 } 398 return clang_type; 399 } 400 401 ClangASTType 402 ValueObject::GetClangType () 403 { 404 return MaybeCalculateCompleteType(); 405 } 406 407 TypeImpl 408 ValueObject::GetTypeImpl () 409 { 410 return TypeImpl(GetClangType()); 411 } 412 413 DataExtractor & 414 ValueObject::GetDataExtractor () 415 { 416 UpdateValueIfNeeded(false); 417 return m_data; 418 } 419 420 const Error & 421 ValueObject::GetError() 422 { 423 UpdateValueIfNeeded(false); 424 return m_error; 425 } 426 427 const ConstString & 428 ValueObject::GetName() const 429 { 430 return m_name; 431 } 432 433 const char * 434 ValueObject::GetLocationAsCString () 435 { 436 return GetLocationAsCStringImpl(m_value, 437 m_data); 438 } 439 440 const char * 441 ValueObject::GetLocationAsCStringImpl (const Value& value, 442 const DataExtractor& data) 443 { 444 if (UpdateValueIfNeeded(false)) 445 { 446 if (m_location_str.empty()) 447 { 448 StreamString sstr; 449 450 Value::ValueType value_type = value.GetValueType(); 451 452 switch (value_type) 453 { 454 case Value::eValueTypeScalar: 455 case Value::eValueTypeVector: 456 if (value.GetContextType() == Value::eContextTypeRegisterInfo) 457 { 458 RegisterInfo *reg_info = value.GetRegisterInfo(); 459 if (reg_info) 460 { 461 if (reg_info->name) 462 m_location_str = reg_info->name; 463 else if (reg_info->alt_name) 464 m_location_str = reg_info->alt_name; 465 if (m_location_str.empty()) 466 m_location_str = (reg_info->encoding == lldb::eEncodingVector) ? "vector" : "scalar"; 467 } 468 } 469 if (m_location_str.empty()) 470 m_location_str = (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 471 break; 472 473 case Value::eValueTypeLoadAddress: 474 case Value::eValueTypeFileAddress: 475 case Value::eValueTypeHostAddress: 476 { 477 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 478 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 479 m_location_str.swap(sstr.GetString()); 480 } 481 break; 482 } 483 } 484 } 485 return m_location_str.c_str(); 486 } 487 488 Value & 489 ValueObject::GetValue() 490 { 491 return m_value; 492 } 493 494 const Value & 495 ValueObject::GetValue() const 496 { 497 return m_value; 498 } 499 500 bool 501 ValueObject::ResolveValue (Scalar &scalar) 502 { 503 if (UpdateValueIfNeeded(false)) // make sure that you are up to date before returning anything 504 { 505 ExecutionContext exe_ctx (GetExecutionContextRef()); 506 Value tmp_value(m_value); 507 scalar = tmp_value.ResolveValue(&exe_ctx); 508 if (scalar.IsValid()) 509 { 510 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 511 if (bitfield_bit_size) 512 return scalar.ExtractBitfield (bitfield_bit_size, GetBitfieldBitOffset()); 513 return true; 514 } 515 } 516 return false; 517 } 518 519 bool 520 ValueObject::GetValueIsValid () const 521 { 522 return m_value_is_valid; 523 } 524 525 526 void 527 ValueObject::SetValueIsValid (bool b) 528 { 529 m_value_is_valid = b; 530 } 531 532 bool 533 ValueObject::GetValueDidChange () 534 { 535 return m_value_did_change; 536 } 537 538 void 539 ValueObject::SetValueDidChange (bool value_changed) 540 { 541 m_value_did_change = value_changed; 542 } 543 544 ValueObjectSP 545 ValueObject::GetChildAtIndex (size_t idx, bool can_create) 546 { 547 ValueObjectSP child_sp; 548 // We may need to update our value if we are dynamic 549 if (IsPossibleDynamicType ()) 550 UpdateValueIfNeeded(false); 551 if (idx < GetNumChildren()) 552 { 553 // Check if we have already made the child value object? 554 if (can_create && !m_children.HasChildAtIndex(idx)) 555 { 556 // No we haven't created the child at this index, so lets have our 557 // subclass do it and cache the result for quick future access. 558 m_children.SetChildAtIndex(idx,CreateChildAtIndex (idx, false, 0)); 559 } 560 561 ValueObject* child = m_children.GetChildAtIndex(idx); 562 if (child != NULL) 563 return child->GetSP(); 564 } 565 return child_sp; 566 } 567 568 ValueObjectSP 569 ValueObject::GetChildAtIndexPath (const std::initializer_list<size_t>& idxs, 570 size_t* index_of_error) 571 { 572 if (idxs.size() == 0) 573 return GetSP(); 574 ValueObjectSP root(GetSP()); 575 for (size_t idx : idxs) 576 { 577 root = root->GetChildAtIndex(idx, true); 578 if (!root) 579 { 580 if (index_of_error) 581 *index_of_error = idx; 582 return root; 583 } 584 } 585 return root; 586 } 587 588 ValueObjectSP 589 ValueObject::GetChildAtIndexPath (const std::initializer_list< std::pair<size_t, bool> >& idxs, 590 size_t* index_of_error) 591 { 592 if (idxs.size() == 0) 593 return GetSP(); 594 ValueObjectSP root(GetSP()); 595 for (std::pair<size_t, bool> idx : idxs) 596 { 597 root = root->GetChildAtIndex(idx.first, idx.second); 598 if (!root) 599 { 600 if (index_of_error) 601 *index_of_error = idx.first; 602 return root; 603 } 604 } 605 return root; 606 } 607 608 lldb::ValueObjectSP 609 ValueObject::GetChildAtIndexPath (const std::vector<size_t> &idxs, 610 size_t* index_of_error) 611 { 612 if (idxs.size() == 0) 613 return GetSP(); 614 ValueObjectSP root(GetSP()); 615 for (size_t idx : idxs) 616 { 617 root = root->GetChildAtIndex(idx, true); 618 if (!root) 619 { 620 if (index_of_error) 621 *index_of_error = idx; 622 return root; 623 } 624 } 625 return root; 626 } 627 628 lldb::ValueObjectSP 629 ValueObject::GetChildAtIndexPath (const std::vector< std::pair<size_t, bool> > &idxs, 630 size_t* index_of_error) 631 { 632 if (idxs.size() == 0) 633 return GetSP(); 634 ValueObjectSP root(GetSP()); 635 for (std::pair<size_t, bool> idx : idxs) 636 { 637 root = root->GetChildAtIndex(idx.first, idx.second); 638 if (!root) 639 { 640 if (index_of_error) 641 *index_of_error = idx.first; 642 return root; 643 } 644 } 645 return root; 646 } 647 648 lldb::ValueObjectSP 649 ValueObject::GetChildAtNamePath (const std::initializer_list<ConstString> &names, 650 ConstString* name_of_error) 651 { 652 if (names.size() == 0) 653 return GetSP(); 654 ValueObjectSP root(GetSP()); 655 for (ConstString name : names) 656 { 657 root = root->GetChildMemberWithName(name, true); 658 if (!root) 659 { 660 if (name_of_error) 661 *name_of_error = name; 662 return root; 663 } 664 } 665 return root; 666 } 667 668 lldb::ValueObjectSP 669 ValueObject::GetChildAtNamePath (const std::vector<ConstString> &names, 670 ConstString* name_of_error) 671 { 672 if (names.size() == 0) 673 return GetSP(); 674 ValueObjectSP root(GetSP()); 675 for (ConstString name : names) 676 { 677 root = root->GetChildMemberWithName(name, true); 678 if (!root) 679 { 680 if (name_of_error) 681 *name_of_error = name; 682 return root; 683 } 684 } 685 return root; 686 } 687 688 lldb::ValueObjectSP 689 ValueObject::GetChildAtNamePath (const std::initializer_list< std::pair<ConstString, bool> > &names, 690 ConstString* name_of_error) 691 { 692 if (names.size() == 0) 693 return GetSP(); 694 ValueObjectSP root(GetSP()); 695 for (std::pair<ConstString, bool> name : names) 696 { 697 root = root->GetChildMemberWithName(name.first, name.second); 698 if (!root) 699 { 700 if (name_of_error) 701 *name_of_error = name.first; 702 return root; 703 } 704 } 705 return root; 706 } 707 708 lldb::ValueObjectSP 709 ValueObject::GetChildAtNamePath (const std::vector< std::pair<ConstString, bool> > &names, 710 ConstString* name_of_error) 711 { 712 if (names.size() == 0) 713 return GetSP(); 714 ValueObjectSP root(GetSP()); 715 for (std::pair<ConstString, bool> name : names) 716 { 717 root = root->GetChildMemberWithName(name.first, name.second); 718 if (!root) 719 { 720 if (name_of_error) 721 *name_of_error = name.first; 722 return root; 723 } 724 } 725 return root; 726 } 727 728 size_t 729 ValueObject::GetIndexOfChildWithName (const ConstString &name) 730 { 731 bool omit_empty_base_classes = true; 732 return GetClangType().GetIndexOfChildWithName (name.GetCString(), omit_empty_base_classes); 733 } 734 735 ValueObjectSP 736 ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create) 737 { 738 // when getting a child by name, it could be buried inside some base 739 // classes (which really aren't part of the expression path), so we 740 // need a vector of indexes that can get us down to the correct child 741 ValueObjectSP child_sp; 742 743 // We may need to update our value if we are dynamic 744 if (IsPossibleDynamicType ()) 745 UpdateValueIfNeeded(false); 746 747 std::vector<uint32_t> child_indexes; 748 bool omit_empty_base_classes = true; 749 const size_t num_child_indexes = GetClangType().GetIndexOfChildMemberWithName (name.GetCString(), 750 omit_empty_base_classes, 751 child_indexes); 752 if (num_child_indexes > 0) 753 { 754 std::vector<uint32_t>::const_iterator pos = child_indexes.begin (); 755 std::vector<uint32_t>::const_iterator end = child_indexes.end (); 756 757 child_sp = GetChildAtIndex(*pos, can_create); 758 for (++pos; pos != end; ++pos) 759 { 760 if (child_sp) 761 { 762 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create)); 763 child_sp = new_child_sp; 764 } 765 else 766 { 767 child_sp.reset(); 768 } 769 770 } 771 } 772 return child_sp; 773 } 774 775 776 size_t 777 ValueObject::GetNumChildren () 778 { 779 UpdateValueIfNeeded(); 780 if (!m_children_count_valid) 781 { 782 SetNumChildren (CalculateNumChildren()); 783 } 784 return m_children.GetChildrenCount(); 785 } 786 787 bool 788 ValueObject::MightHaveChildren() 789 { 790 bool has_children = false; 791 const uint32_t type_info = GetTypeInfo(); 792 if (type_info) 793 { 794 if (type_info & (eTypeHasChildren | 795 eTypeIsPointer | 796 eTypeIsReference)) 797 has_children = true; 798 } 799 else 800 { 801 has_children = GetNumChildren () > 0; 802 } 803 return has_children; 804 } 805 806 // Should only be called by ValueObject::GetNumChildren() 807 void 808 ValueObject::SetNumChildren (size_t num_children) 809 { 810 m_children_count_valid = true; 811 m_children.SetChildrenCount(num_children); 812 } 813 814 void 815 ValueObject::SetName (const ConstString &name) 816 { 817 m_name = name; 818 } 819 820 ValueObject * 821 ValueObject::CreateChildAtIndex (size_t idx, bool synthetic_array_member, int32_t synthetic_index) 822 { 823 ValueObject *valobj = NULL; 824 825 bool omit_empty_base_classes = true; 826 bool ignore_array_bounds = synthetic_array_member; 827 std::string child_name_str; 828 uint32_t child_byte_size = 0; 829 int32_t child_byte_offset = 0; 830 uint32_t child_bitfield_bit_size = 0; 831 uint32_t child_bitfield_bit_offset = 0; 832 bool child_is_base_class = false; 833 bool child_is_deref_of_parent = false; 834 835 const bool transparent_pointers = synthetic_array_member == false; 836 ClangASTType child_clang_type; 837 838 ExecutionContext exe_ctx (GetExecutionContextRef()); 839 840 child_clang_type = GetClangType().GetChildClangTypeAtIndex (&exe_ctx, 841 idx, 842 transparent_pointers, 843 omit_empty_base_classes, 844 ignore_array_bounds, 845 child_name_str, 846 child_byte_size, 847 child_byte_offset, 848 child_bitfield_bit_size, 849 child_bitfield_bit_offset, 850 child_is_base_class, 851 child_is_deref_of_parent, 852 this); 853 if (child_clang_type) 854 { 855 if (synthetic_index) 856 child_byte_offset += child_byte_size * synthetic_index; 857 858 ConstString child_name; 859 if (!child_name_str.empty()) 860 child_name.SetCString (child_name_str.c_str()); 861 862 valobj = new ValueObjectChild (*this, 863 child_clang_type, 864 child_name, 865 child_byte_size, 866 child_byte_offset, 867 child_bitfield_bit_size, 868 child_bitfield_bit_offset, 869 child_is_base_class, 870 child_is_deref_of_parent, 871 eAddressTypeInvalid); 872 //if (valobj) 873 // valobj->SetAddressTypeOfChildren(eAddressTypeInvalid); 874 } 875 876 return valobj; 877 } 878 879 bool 880 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 881 std::string& destination) 882 { 883 return GetSummaryAsCString(summary_ptr, destination, TypeSummaryOptions()); 884 } 885 886 bool 887 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 888 std::string& destination, 889 const TypeSummaryOptions& options) 890 { 891 destination.clear(); 892 893 // ideally we would like to bail out if passing NULL, but if we do so 894 // we end up not providing the summary for function pointers anymore 895 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 896 return false; 897 898 m_is_getting_summary = true; 899 900 // this is a hot path in code and we prefer to avoid setting this string all too often also clearing out other 901 // information that we might care to see in a crash log. might be useful in very specific situations though. 902 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. Summary provider's description is %s", 903 GetTypeName().GetCString(), 904 GetName().GetCString(), 905 summary_ptr->GetDescription().c_str());*/ 906 907 if (UpdateValueIfNeeded (false) && summary_ptr) 908 { 909 if (HasSyntheticValue()) 910 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on the synthetic children being up-to-date (e.g. ${svar%#}) 911 summary_ptr->FormatObject(this, destination, options); 912 } 913 m_is_getting_summary = false; 914 return !destination.empty(); 915 } 916 917 const char * 918 ValueObject::GetSummaryAsCString () 919 { 920 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) 921 { 922 GetSummaryAsCString(GetSummaryFormat().get(), 923 m_summary_str, 924 TypeSummaryOptions()); 925 } 926 if (m_summary_str.empty()) 927 return NULL; 928 return m_summary_str.c_str(); 929 } 930 931 bool 932 ValueObject::GetSummaryAsCString (std::string& destination, 933 const TypeSummaryOptions& options) 934 { 935 return GetSummaryAsCString(GetSummaryFormat().get(), 936 destination, 937 options); 938 } 939 940 bool 941 ValueObject::IsCStringContainer(bool check_pointer) 942 { 943 ClangASTType pointee_or_element_clang_type; 944 const Flags type_flags (GetTypeInfo (&pointee_or_element_clang_type)); 945 bool is_char_arr_ptr (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 946 pointee_or_element_clang_type.IsCharType ()); 947 if (!is_char_arr_ptr) 948 return false; 949 if (!check_pointer) 950 return true; 951 if (type_flags.Test(eTypeIsArray)) 952 return true; 953 addr_t cstr_address = LLDB_INVALID_ADDRESS; 954 AddressType cstr_address_type = eAddressTypeInvalid; 955 cstr_address = GetAddressOf (true, &cstr_address_type); 956 return (cstr_address != LLDB_INVALID_ADDRESS); 957 } 958 959 size_t 960 ValueObject::GetPointeeData (DataExtractor& data, 961 uint32_t item_idx, 962 uint32_t item_count) 963 { 964 ClangASTType pointee_or_element_clang_type; 965 const uint32_t type_info = GetTypeInfo (&pointee_or_element_clang_type); 966 const bool is_pointer_type = type_info & eTypeIsPointer; 967 const bool is_array_type = type_info & eTypeIsArray; 968 if (!(is_pointer_type || is_array_type)) 969 return 0; 970 971 if (item_count == 0) 972 return 0; 973 974 ExecutionContext exe_ctx (GetExecutionContextRef()); 975 976 const uint64_t item_type_size = pointee_or_element_clang_type.GetByteSize(&exe_ctx); 977 const uint64_t bytes = item_count * item_type_size; 978 const uint64_t offset = item_idx * item_type_size; 979 980 if (item_idx == 0 && item_count == 1) // simply a deref 981 { 982 if (is_pointer_type) 983 { 984 Error error; 985 ValueObjectSP pointee_sp = Dereference(error); 986 if (error.Fail() || pointee_sp.get() == NULL) 987 return 0; 988 return pointee_sp->GetData(data, error); 989 } 990 else 991 { 992 ValueObjectSP child_sp = GetChildAtIndex(0, true); 993 if (child_sp.get() == NULL) 994 return 0; 995 Error error; 996 return child_sp->GetData(data, error); 997 } 998 return true; 999 } 1000 else /* (items > 1) */ 1001 { 1002 Error error; 1003 lldb_private::DataBufferHeap* heap_buf_ptr = NULL; 1004 lldb::DataBufferSP data_sp(heap_buf_ptr = new lldb_private::DataBufferHeap()); 1005 1006 AddressType addr_type; 1007 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) : GetAddressOf(true, &addr_type); 1008 1009 switch (addr_type) 1010 { 1011 case eAddressTypeFile: 1012 { 1013 ModuleSP module_sp (GetModule()); 1014 if (module_sp) 1015 { 1016 addr = addr + offset; 1017 Address so_addr; 1018 module_sp->ResolveFileAddress(addr, so_addr); 1019 ExecutionContext exe_ctx (GetExecutionContextRef()); 1020 Target* target = exe_ctx.GetTargetPtr(); 1021 if (target) 1022 { 1023 heap_buf_ptr->SetByteSize(bytes); 1024 size_t bytes_read = target->ReadMemory(so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 1025 if (error.Success()) 1026 { 1027 data.SetData(data_sp); 1028 return bytes_read; 1029 } 1030 } 1031 } 1032 } 1033 break; 1034 case eAddressTypeLoad: 1035 { 1036 ExecutionContext exe_ctx (GetExecutionContextRef()); 1037 Process *process = exe_ctx.GetProcessPtr(); 1038 if (process) 1039 { 1040 heap_buf_ptr->SetByteSize(bytes); 1041 size_t bytes_read = process->ReadMemory(addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 1042 if (error.Success() || bytes_read > 0) 1043 { 1044 data.SetData(data_sp); 1045 return bytes_read; 1046 } 1047 } 1048 } 1049 break; 1050 case eAddressTypeHost: 1051 { 1052 const uint64_t max_bytes = GetClangType().GetByteSize(&exe_ctx); 1053 if (max_bytes > offset) 1054 { 1055 size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes); 1056 heap_buf_ptr->CopyData((uint8_t*)(addr + offset), bytes_read); 1057 data.SetData(data_sp); 1058 return bytes_read; 1059 } 1060 } 1061 break; 1062 case eAddressTypeInvalid: 1063 break; 1064 } 1065 } 1066 return 0; 1067 } 1068 1069 uint64_t 1070 ValueObject::GetData (DataExtractor& data, Error &error) 1071 { 1072 UpdateValueIfNeeded(false); 1073 ExecutionContext exe_ctx (GetExecutionContextRef()); 1074 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 1075 if (error.Fail()) 1076 { 1077 if (m_data.GetByteSize()) 1078 { 1079 data = m_data; 1080 return data.GetByteSize(); 1081 } 1082 else 1083 { 1084 return 0; 1085 } 1086 } 1087 data.SetAddressByteSize(m_data.GetAddressByteSize()); 1088 data.SetByteOrder(m_data.GetByteOrder()); 1089 return data.GetByteSize(); 1090 } 1091 1092 bool 1093 ValueObject::SetData (DataExtractor &data, Error &error) 1094 { 1095 error.Clear(); 1096 // Make sure our value is up to date first so that our location and location 1097 // type is valid. 1098 if (!UpdateValueIfNeeded(false)) 1099 { 1100 error.SetErrorString("unable to read value"); 1101 return false; 1102 } 1103 1104 uint64_t count = 0; 1105 const Encoding encoding = GetClangType().GetEncoding(count); 1106 1107 const size_t byte_size = GetByteSize(); 1108 1109 Value::ValueType value_type = m_value.GetValueType(); 1110 1111 switch (value_type) 1112 { 1113 case Value::eValueTypeScalar: 1114 { 1115 Error set_error = m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 1116 1117 if (!set_error.Success()) 1118 { 1119 error.SetErrorStringWithFormat("unable to set scalar value: %s", set_error.AsCString()); 1120 return false; 1121 } 1122 } 1123 break; 1124 case Value::eValueTypeLoadAddress: 1125 { 1126 // If it is a load address, then the scalar value is the storage location 1127 // of the data, and we have to shove this value down to that load location. 1128 ExecutionContext exe_ctx (GetExecutionContextRef()); 1129 Process *process = exe_ctx.GetProcessPtr(); 1130 if (process) 1131 { 1132 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1133 size_t bytes_written = process->WriteMemory(target_addr, 1134 data.GetDataStart(), 1135 byte_size, 1136 error); 1137 if (!error.Success()) 1138 return false; 1139 if (bytes_written != byte_size) 1140 { 1141 error.SetErrorString("unable to write value to memory"); 1142 return false; 1143 } 1144 } 1145 } 1146 break; 1147 case Value::eValueTypeHostAddress: 1148 { 1149 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1150 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1151 m_data.SetData(buffer_sp, 0); 1152 data.CopyByteOrderedData (0, 1153 byte_size, 1154 const_cast<uint8_t *>(m_data.GetDataStart()), 1155 byte_size, 1156 m_data.GetByteOrder()); 1157 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1158 } 1159 break; 1160 case Value::eValueTypeFileAddress: 1161 case Value::eValueTypeVector: 1162 break; 1163 } 1164 1165 // If we have reached this point, then we have successfully changed the value. 1166 SetNeedsUpdate(); 1167 return true; 1168 } 1169 1170 // will compute strlen(str), but without consuming more than 1171 // maxlen bytes out of str (this serves the purpose of reading 1172 // chunks of a string without having to worry about 1173 // missing NULL terminators in the chunk) 1174 // of course, if strlen(str) > maxlen, the function will return 1175 // maxlen_value (which should be != maxlen, because that allows you 1176 // to know whether strlen(str) == maxlen or strlen(str) > maxlen) 1177 static uint32_t 1178 strlen_or_inf (const char* str, 1179 uint32_t maxlen, 1180 uint32_t maxlen_value) 1181 { 1182 uint32_t len = 0; 1183 if (str) 1184 { 1185 while(*str) 1186 { 1187 len++;str++; 1188 if (len >= maxlen) 1189 return maxlen_value; 1190 } 1191 } 1192 return len; 1193 } 1194 1195 static bool 1196 CopyStringDataToBufferSP(const StreamString& source, 1197 lldb::DataBufferSP& destination) 1198 { 1199 destination.reset(new DataBufferHeap(source.GetSize()+1,0)); 1200 memcpy(destination->GetBytes(), source.GetString().c_str(), source.GetSize()); 1201 return true; 1202 } 1203 1204 size_t 1205 ValueObject::ReadPointedString (lldb::DataBufferSP& buffer_sp, 1206 Error& error, 1207 uint32_t max_length, 1208 bool honor_array, 1209 Format item_format) 1210 { 1211 StreamString s; 1212 ExecutionContext exe_ctx (GetExecutionContextRef()); 1213 Target* target = exe_ctx.GetTargetPtr(); 1214 1215 if (!target) 1216 { 1217 s << "<no target to read from>"; 1218 error.SetErrorString("no target to read from"); 1219 CopyStringDataToBufferSP(s, buffer_sp); 1220 return 0; 1221 } 1222 1223 if (max_length == 0) 1224 max_length = target->GetMaximumSizeOfStringSummary(); 1225 1226 size_t bytes_read = 0; 1227 size_t total_bytes_read = 0; 1228 1229 ClangASTType clang_type = GetClangType(); 1230 ClangASTType elem_or_pointee_clang_type; 1231 const Flags type_flags (GetTypeInfo (&elem_or_pointee_clang_type)); 1232 if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 1233 elem_or_pointee_clang_type.IsCharType ()) 1234 { 1235 addr_t cstr_address = LLDB_INVALID_ADDRESS; 1236 AddressType cstr_address_type = eAddressTypeInvalid; 1237 1238 size_t cstr_len = 0; 1239 bool capped_data = false; 1240 if (type_flags.Test (eTypeIsArray)) 1241 { 1242 // We have an array 1243 uint64_t array_size = 0; 1244 if (clang_type.IsArrayType(NULL, &array_size, NULL)) 1245 { 1246 cstr_len = array_size; 1247 if (cstr_len > max_length) 1248 { 1249 capped_data = true; 1250 cstr_len = max_length; 1251 } 1252 } 1253 cstr_address = GetAddressOf (true, &cstr_address_type); 1254 } 1255 else 1256 { 1257 // We have a pointer 1258 cstr_address = GetPointerValue (&cstr_address_type); 1259 } 1260 1261 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) 1262 { 1263 s << "<invalid address>"; 1264 error.SetErrorString("invalid address"); 1265 CopyStringDataToBufferSP(s, buffer_sp); 1266 return 0; 1267 } 1268 1269 Address cstr_so_addr (cstr_address); 1270 DataExtractor data; 1271 if (cstr_len > 0 && honor_array) 1272 { 1273 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1274 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1275 GetPointeeData(data, 0, cstr_len); 1276 1277 if ((bytes_read = data.GetByteSize()) > 0) 1278 { 1279 total_bytes_read = bytes_read; 1280 for (size_t offset = 0; offset < bytes_read; offset++) 1281 s.Printf("%c", *data.PeekData(offset, 1)); 1282 if (capped_data) 1283 s << "..."; 1284 } 1285 } 1286 else 1287 { 1288 cstr_len = max_length; 1289 const size_t k_max_buf_size = 64; 1290 1291 size_t offset = 0; 1292 1293 int cstr_len_displayed = -1; 1294 bool capped_cstr = false; 1295 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1296 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1297 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) 1298 { 1299 total_bytes_read += bytes_read; 1300 const char *cstr = data.PeekCStr(0); 1301 size_t len = strlen_or_inf (cstr, k_max_buf_size, k_max_buf_size+1); 1302 if (len > k_max_buf_size) 1303 len = k_max_buf_size; 1304 1305 if (cstr_len_displayed < 0) 1306 cstr_len_displayed = len; 1307 1308 if (len == 0) 1309 break; 1310 cstr_len_displayed += len; 1311 if (len > bytes_read) 1312 len = bytes_read; 1313 if (len > cstr_len) 1314 len = cstr_len; 1315 1316 for (size_t offset = 0; offset < bytes_read; offset++) 1317 s.Printf("%c", *data.PeekData(offset, 1)); 1318 1319 if (len < k_max_buf_size) 1320 break; 1321 1322 if (len >= cstr_len) 1323 { 1324 capped_cstr = true; 1325 break; 1326 } 1327 1328 cstr_len -= len; 1329 offset += len; 1330 } 1331 1332 if (cstr_len_displayed >= 0) 1333 { 1334 if (capped_cstr) 1335 s << "..."; 1336 } 1337 } 1338 } 1339 else 1340 { 1341 error.SetErrorString("not a string object"); 1342 s << "<not a string object>"; 1343 } 1344 CopyStringDataToBufferSP(s, buffer_sp); 1345 return total_bytes_read; 1346 } 1347 1348 std::pair<TypeValidatorResult, std::string> 1349 ValueObject::GetValidationStatus () 1350 { 1351 if (!UpdateValueIfNeeded(true)) 1352 return {TypeValidatorResult::Success,""}; // not the validator's job to discuss update problems 1353 1354 if (m_validation_result.hasValue()) 1355 return m_validation_result.getValue(); 1356 1357 if (!m_type_validator_sp) 1358 return {TypeValidatorResult::Success,""}; // no validator no failure 1359 1360 auto outcome = m_type_validator_sp->FormatObject(this); 1361 1362 return (m_validation_result = {outcome.m_result,outcome.m_message}).getValue(); 1363 } 1364 1365 const char * 1366 ValueObject::GetObjectDescription () 1367 { 1368 1369 if (!UpdateValueIfNeeded (true)) 1370 return NULL; 1371 1372 if (!m_object_desc_str.empty()) 1373 return m_object_desc_str.c_str(); 1374 1375 ExecutionContext exe_ctx (GetExecutionContextRef()); 1376 Process *process = exe_ctx.GetProcessPtr(); 1377 if (process == NULL) 1378 return NULL; 1379 1380 StreamString s; 1381 1382 LanguageType language = GetObjectRuntimeLanguage(); 1383 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1384 1385 if (runtime == NULL) 1386 { 1387 // Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway... 1388 ClangASTType clang_type = GetClangType(); 1389 if (clang_type) 1390 { 1391 bool is_signed; 1392 if (clang_type.IsIntegerType (is_signed) || clang_type.IsPointerType ()) 1393 { 1394 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1395 } 1396 } 1397 } 1398 1399 if (runtime && runtime->GetObjectDescription(s, *this)) 1400 { 1401 m_object_desc_str.append (s.GetData()); 1402 } 1403 1404 if (m_object_desc_str.empty()) 1405 return NULL; 1406 else 1407 return m_object_desc_str.c_str(); 1408 } 1409 1410 bool 1411 ValueObject::GetValueAsCString (const lldb_private::TypeFormatImpl& format, 1412 std::string& destination) 1413 { 1414 if (UpdateValueIfNeeded(false)) 1415 return format.FormatObject(this,destination); 1416 else 1417 return false; 1418 } 1419 1420 bool 1421 ValueObject::GetValueAsCString (lldb::Format format, 1422 std::string& destination) 1423 { 1424 return GetValueAsCString(TypeFormatImpl_Format(format),destination); 1425 } 1426 1427 const char * 1428 ValueObject::GetValueAsCString () 1429 { 1430 if (UpdateValueIfNeeded(true)) 1431 { 1432 lldb::TypeFormatImplSP format_sp; 1433 lldb::Format my_format = GetFormat(); 1434 if (my_format == lldb::eFormatDefault) 1435 { 1436 if (m_type_format_sp) 1437 format_sp = m_type_format_sp; 1438 else 1439 { 1440 if (m_is_bitfield_for_scalar) 1441 my_format = eFormatUnsigned; 1442 else 1443 { 1444 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) 1445 { 1446 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1447 if (reg_info) 1448 my_format = reg_info->format; 1449 } 1450 else 1451 { 1452 my_format = GetValue().GetClangType().GetFormat(); 1453 } 1454 } 1455 } 1456 } 1457 if (my_format != m_last_format || m_value_str.empty()) 1458 { 1459 m_last_format = my_format; 1460 if (!format_sp) 1461 format_sp.reset(new TypeFormatImpl_Format(my_format)); 1462 if (GetValueAsCString(*format_sp.get(), m_value_str)) 1463 { 1464 if (!m_value_did_change && m_old_value_valid) 1465 { 1466 // The value was gotten successfully, so we consider the 1467 // value as changed if the value string differs 1468 SetValueDidChange (m_old_value_str != m_value_str); 1469 } 1470 } 1471 } 1472 } 1473 if (m_value_str.empty()) 1474 return NULL; 1475 return m_value_str.c_str(); 1476 } 1477 1478 // if > 8bytes, 0 is returned. this method should mostly be used 1479 // to read address values out of pointers 1480 uint64_t 1481 ValueObject::GetValueAsUnsigned (uint64_t fail_value, bool *success) 1482 { 1483 // If our byte size is zero this is an aggregate type that has children 1484 if (CanProvideValue()) 1485 { 1486 Scalar scalar; 1487 if (ResolveValue (scalar)) 1488 { 1489 if (success) 1490 *success = true; 1491 return scalar.ULongLong(fail_value); 1492 } 1493 // fallthrough, otherwise... 1494 } 1495 1496 if (success) 1497 *success = false; 1498 return fail_value; 1499 } 1500 1501 int64_t 1502 ValueObject::GetValueAsSigned (int64_t fail_value, bool *success) 1503 { 1504 // If our byte size is zero this is an aggregate type that has children 1505 if (CanProvideValue()) 1506 { 1507 Scalar scalar; 1508 if (ResolveValue (scalar)) 1509 { 1510 if (success) 1511 *success = true; 1512 return scalar.SLongLong(fail_value); 1513 } 1514 // fallthrough, otherwise... 1515 } 1516 1517 if (success) 1518 *success = false; 1519 return fail_value; 1520 } 1521 1522 // if any more "special cases" are added to ValueObject::DumpPrintableRepresentation() please keep 1523 // this call up to date by returning true for your new special cases. We will eventually move 1524 // to checking this call result before trying to display special cases 1525 bool 1526 ValueObject::HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display, 1527 Format custom_format) 1528 { 1529 Flags flags(GetTypeInfo()); 1530 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1531 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1532 { 1533 if (IsCStringContainer(true) && 1534 (custom_format == eFormatCString || 1535 custom_format == eFormatCharArray || 1536 custom_format == eFormatChar || 1537 custom_format == eFormatVectorOfChar)) 1538 return true; 1539 1540 if (flags.Test(eTypeIsArray)) 1541 { 1542 if ((custom_format == eFormatBytes) || 1543 (custom_format == eFormatBytesWithASCII)) 1544 return true; 1545 1546 if ((custom_format == eFormatVectorOfChar) || 1547 (custom_format == eFormatVectorOfFloat32) || 1548 (custom_format == eFormatVectorOfFloat64) || 1549 (custom_format == eFormatVectorOfSInt16) || 1550 (custom_format == eFormatVectorOfSInt32) || 1551 (custom_format == eFormatVectorOfSInt64) || 1552 (custom_format == eFormatVectorOfSInt8) || 1553 (custom_format == eFormatVectorOfUInt128) || 1554 (custom_format == eFormatVectorOfUInt16) || 1555 (custom_format == eFormatVectorOfUInt32) || 1556 (custom_format == eFormatVectorOfUInt64) || 1557 (custom_format == eFormatVectorOfUInt8)) 1558 return true; 1559 } 1560 } 1561 return false; 1562 } 1563 1564 bool 1565 ValueObject::DumpPrintableRepresentation(Stream& s, 1566 ValueObjectRepresentationStyle val_obj_display, 1567 Format custom_format, 1568 PrintableRepresentationSpecialCases special, 1569 bool do_dump_error) 1570 { 1571 1572 Flags flags(GetTypeInfo()); 1573 1574 bool allow_special = ((special & ePrintableRepresentationSpecialCasesAllow) == ePrintableRepresentationSpecialCasesAllow); 1575 bool only_special = ((special & ePrintableRepresentationSpecialCasesOnly) == ePrintableRepresentationSpecialCasesOnly); 1576 1577 if (allow_special) 1578 { 1579 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1580 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1581 { 1582 // when being asked to get a printable display an array or pointer type directly, 1583 // try to "do the right thing" 1584 1585 if (IsCStringContainer(true) && 1586 (custom_format == eFormatCString || 1587 custom_format == eFormatCharArray || 1588 custom_format == eFormatChar || 1589 custom_format == eFormatVectorOfChar)) // print char[] & char* directly 1590 { 1591 Error error; 1592 lldb::DataBufferSP buffer_sp; 1593 ReadPointedString(buffer_sp, 1594 error, 1595 0, 1596 (custom_format == eFormatVectorOfChar) || 1597 (custom_format == eFormatCharArray)); 1598 lldb_private::formatters::ReadBufferAndDumpToStreamOptions options(*this); 1599 options.SetData(DataExtractor(buffer_sp, lldb::eByteOrderInvalid, 8)); // none of this matters for a string - pass some defaults 1600 options.SetStream(&s); 1601 options.SetPrefixToken(0); 1602 options.SetQuote('"'); 1603 options.SetSourceSize(buffer_sp->GetByteSize()); 1604 lldb_private::formatters::ReadBufferAndDumpToStream<lldb_private::formatters::StringElementType::ASCII>(options); 1605 return !error.Fail(); 1606 } 1607 1608 if (custom_format == eFormatEnum) 1609 return false; 1610 1611 // this only works for arrays, because I have no way to know when 1612 // the pointed memory ends, and no special \0 end of data marker 1613 if (flags.Test(eTypeIsArray)) 1614 { 1615 if ((custom_format == eFormatBytes) || 1616 (custom_format == eFormatBytesWithASCII)) 1617 { 1618 const size_t count = GetNumChildren(); 1619 1620 s << '['; 1621 for (size_t low = 0; low < count; low++) 1622 { 1623 1624 if (low) 1625 s << ','; 1626 1627 ValueObjectSP child = GetChildAtIndex(low,true); 1628 if (!child.get()) 1629 { 1630 s << "<invalid child>"; 1631 continue; 1632 } 1633 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, custom_format); 1634 } 1635 1636 s << ']'; 1637 1638 return true; 1639 } 1640 1641 if ((custom_format == eFormatVectorOfChar) || 1642 (custom_format == eFormatVectorOfFloat32) || 1643 (custom_format == eFormatVectorOfFloat64) || 1644 (custom_format == eFormatVectorOfSInt16) || 1645 (custom_format == eFormatVectorOfSInt32) || 1646 (custom_format == eFormatVectorOfSInt64) || 1647 (custom_format == eFormatVectorOfSInt8) || 1648 (custom_format == eFormatVectorOfUInt128) || 1649 (custom_format == eFormatVectorOfUInt16) || 1650 (custom_format == eFormatVectorOfUInt32) || 1651 (custom_format == eFormatVectorOfUInt64) || 1652 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes with ASCII or any vector format should be printed directly 1653 { 1654 const size_t count = GetNumChildren(); 1655 1656 Format format = FormatManager::GetSingleItemFormat(custom_format); 1657 1658 s << '['; 1659 for (size_t low = 0; low < count; low++) 1660 { 1661 1662 if (low) 1663 s << ','; 1664 1665 ValueObjectSP child = GetChildAtIndex(low,true); 1666 if (!child.get()) 1667 { 1668 s << "<invalid child>"; 1669 continue; 1670 } 1671 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, format); 1672 } 1673 1674 s << ']'; 1675 1676 return true; 1677 } 1678 } 1679 1680 if ((custom_format == eFormatBoolean) || 1681 (custom_format == eFormatBinary) || 1682 (custom_format == eFormatChar) || 1683 (custom_format == eFormatCharPrintable) || 1684 (custom_format == eFormatComplexFloat) || 1685 (custom_format == eFormatDecimal) || 1686 (custom_format == eFormatHex) || 1687 (custom_format == eFormatHexUppercase) || 1688 (custom_format == eFormatFloat) || 1689 (custom_format == eFormatOctal) || 1690 (custom_format == eFormatOSType) || 1691 (custom_format == eFormatUnicode16) || 1692 (custom_format == eFormatUnicode32) || 1693 (custom_format == eFormatUnsigned) || 1694 (custom_format == eFormatPointer) || 1695 (custom_format == eFormatComplexInteger) || 1696 (custom_format == eFormatComplex) || 1697 (custom_format == eFormatDefault)) // use the [] operator 1698 return false; 1699 } 1700 } 1701 1702 if (only_special) 1703 return false; 1704 1705 bool var_success = false; 1706 1707 { 1708 const char *cstr = NULL; 1709 1710 // this is a local stream that we are using to ensure that the data pointed to by cstr survives 1711 // long enough for us to copy it to its destination - it is necessary to have this temporary storage 1712 // area for cases where our desired output is not backed by some other longer-term storage 1713 StreamString strm; 1714 1715 if (custom_format != eFormatInvalid) 1716 SetFormat(custom_format); 1717 1718 switch(val_obj_display) 1719 { 1720 case eValueObjectRepresentationStyleValue: 1721 cstr = GetValueAsCString(); 1722 break; 1723 1724 case eValueObjectRepresentationStyleSummary: 1725 cstr = GetSummaryAsCString(); 1726 break; 1727 1728 case eValueObjectRepresentationStyleLanguageSpecific: 1729 cstr = GetObjectDescription(); 1730 break; 1731 1732 case eValueObjectRepresentationStyleLocation: 1733 cstr = GetLocationAsCString(); 1734 break; 1735 1736 case eValueObjectRepresentationStyleChildrenCount: 1737 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1738 cstr = strm.GetString().c_str(); 1739 break; 1740 1741 case eValueObjectRepresentationStyleType: 1742 cstr = GetTypeName().AsCString(); 1743 break; 1744 1745 case eValueObjectRepresentationStyleName: 1746 cstr = GetName().AsCString(); 1747 break; 1748 1749 case eValueObjectRepresentationStyleExpressionPath: 1750 GetExpressionPath(strm, false); 1751 cstr = strm.GetString().c_str(); 1752 break; 1753 } 1754 1755 if (!cstr) 1756 { 1757 if (val_obj_display == eValueObjectRepresentationStyleValue) 1758 cstr = GetSummaryAsCString(); 1759 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1760 { 1761 if (!CanProvideValue()) 1762 { 1763 strm.Printf("%s @ %s", GetTypeName().AsCString(), GetLocationAsCString()); 1764 cstr = strm.GetString().c_str(); 1765 } 1766 else 1767 cstr = GetValueAsCString(); 1768 } 1769 } 1770 1771 if (cstr) 1772 s.PutCString(cstr); 1773 else 1774 { 1775 if (m_error.Fail()) 1776 { 1777 if (do_dump_error) 1778 s.Printf("<%s>", m_error.AsCString()); 1779 else 1780 return false; 1781 } 1782 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1783 s.PutCString("<no summary available>"); 1784 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1785 s.PutCString("<no value available>"); 1786 else if (val_obj_display == eValueObjectRepresentationStyleLanguageSpecific) 1787 s.PutCString("<not a valid Objective-C object>"); // edit this if we have other runtimes that support a description 1788 else 1789 s.PutCString("<no printable representation>"); 1790 } 1791 1792 // we should only return false here if we could not do *anything* 1793 // even if we have an error message as output, that's a success 1794 // from our callers' perspective, so return true 1795 var_success = true; 1796 1797 if (custom_format != eFormatInvalid) 1798 SetFormat(eFormatDefault); 1799 } 1800 1801 return var_success; 1802 } 1803 1804 addr_t 1805 ValueObject::GetAddressOf (bool scalar_is_load_address, AddressType *address_type) 1806 { 1807 if (!UpdateValueIfNeeded(false)) 1808 return LLDB_INVALID_ADDRESS; 1809 1810 switch (m_value.GetValueType()) 1811 { 1812 case Value::eValueTypeScalar: 1813 case Value::eValueTypeVector: 1814 if (scalar_is_load_address) 1815 { 1816 if(address_type) 1817 *address_type = eAddressTypeLoad; 1818 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1819 } 1820 break; 1821 1822 case Value::eValueTypeLoadAddress: 1823 case Value::eValueTypeFileAddress: 1824 case Value::eValueTypeHostAddress: 1825 { 1826 if(address_type) 1827 *address_type = m_value.GetValueAddressType (); 1828 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1829 } 1830 break; 1831 } 1832 if (address_type) 1833 *address_type = eAddressTypeInvalid; 1834 return LLDB_INVALID_ADDRESS; 1835 } 1836 1837 addr_t 1838 ValueObject::GetPointerValue (AddressType *address_type) 1839 { 1840 addr_t address = LLDB_INVALID_ADDRESS; 1841 if(address_type) 1842 *address_type = eAddressTypeInvalid; 1843 1844 if (!UpdateValueIfNeeded(false)) 1845 return address; 1846 1847 switch (m_value.GetValueType()) 1848 { 1849 case Value::eValueTypeScalar: 1850 case Value::eValueTypeVector: 1851 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1852 break; 1853 1854 case Value::eValueTypeHostAddress: 1855 case Value::eValueTypeLoadAddress: 1856 case Value::eValueTypeFileAddress: 1857 { 1858 lldb::offset_t data_offset = 0; 1859 address = m_data.GetPointer(&data_offset); 1860 } 1861 break; 1862 } 1863 1864 if (address_type) 1865 *address_type = GetAddressTypeOfChildren(); 1866 1867 return address; 1868 } 1869 1870 bool 1871 ValueObject::SetValueFromCString (const char *value_str, Error& error) 1872 { 1873 error.Clear(); 1874 // Make sure our value is up to date first so that our location and location 1875 // type is valid. 1876 if (!UpdateValueIfNeeded(false)) 1877 { 1878 error.SetErrorString("unable to read value"); 1879 return false; 1880 } 1881 1882 uint64_t count = 0; 1883 const Encoding encoding = GetClangType().GetEncoding (count); 1884 1885 const size_t byte_size = GetByteSize(); 1886 1887 Value::ValueType value_type = m_value.GetValueType(); 1888 1889 if (value_type == Value::eValueTypeScalar) 1890 { 1891 // If the value is already a scalar, then let the scalar change itself: 1892 m_value.GetScalar().SetValueFromCString (value_str, encoding, byte_size); 1893 } 1894 else if (byte_size <= Scalar::GetMaxByteSize()) 1895 { 1896 // If the value fits in a scalar, then make a new scalar and again let the 1897 // scalar code do the conversion, then figure out where to put the new value. 1898 Scalar new_scalar; 1899 error = new_scalar.SetValueFromCString (value_str, encoding, byte_size); 1900 if (error.Success()) 1901 { 1902 switch (value_type) 1903 { 1904 case Value::eValueTypeLoadAddress: 1905 { 1906 // If it is a load address, then the scalar value is the storage location 1907 // of the data, and we have to shove this value down to that load location. 1908 ExecutionContext exe_ctx (GetExecutionContextRef()); 1909 Process *process = exe_ctx.GetProcessPtr(); 1910 if (process) 1911 { 1912 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1913 size_t bytes_written = process->WriteScalarToMemory (target_addr, 1914 new_scalar, 1915 byte_size, 1916 error); 1917 if (!error.Success()) 1918 return false; 1919 if (bytes_written != byte_size) 1920 { 1921 error.SetErrorString("unable to write value to memory"); 1922 return false; 1923 } 1924 } 1925 } 1926 break; 1927 case Value::eValueTypeHostAddress: 1928 { 1929 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1930 DataExtractor new_data; 1931 new_data.SetByteOrder (m_data.GetByteOrder()); 1932 1933 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1934 m_data.SetData(buffer_sp, 0); 1935 bool success = new_scalar.GetData(new_data); 1936 if (success) 1937 { 1938 new_data.CopyByteOrderedData (0, 1939 byte_size, 1940 const_cast<uint8_t *>(m_data.GetDataStart()), 1941 byte_size, 1942 m_data.GetByteOrder()); 1943 } 1944 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1945 1946 } 1947 break; 1948 case Value::eValueTypeFileAddress: 1949 case Value::eValueTypeScalar: 1950 case Value::eValueTypeVector: 1951 break; 1952 } 1953 } 1954 else 1955 { 1956 return false; 1957 } 1958 } 1959 else 1960 { 1961 // We don't support setting things bigger than a scalar at present. 1962 error.SetErrorString("unable to write aggregate data type"); 1963 return false; 1964 } 1965 1966 // If we have reached this point, then we have successfully changed the value. 1967 SetNeedsUpdate(); 1968 return true; 1969 } 1970 1971 bool 1972 ValueObject::GetDeclaration (Declaration &decl) 1973 { 1974 decl.Clear(); 1975 return false; 1976 } 1977 1978 ConstString 1979 ValueObject::GetTypeName() 1980 { 1981 return GetClangType().GetConstTypeName(); 1982 } 1983 1984 ConstString 1985 ValueObject::GetDisplayTypeName() 1986 { 1987 return GetTypeName(); 1988 } 1989 1990 ConstString 1991 ValueObject::GetQualifiedTypeName() 1992 { 1993 return GetClangType().GetConstQualifiedTypeName(); 1994 } 1995 1996 1997 LanguageType 1998 ValueObject::GetObjectRuntimeLanguage () 1999 { 2000 return GetClangType().GetMinimumLanguage (); 2001 } 2002 2003 void 2004 ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj) 2005 { 2006 m_synthetic_children[key] = valobj; 2007 } 2008 2009 ValueObjectSP 2010 ValueObject::GetSyntheticChild (const ConstString &key) const 2011 { 2012 ValueObjectSP synthetic_child_sp; 2013 std::map<ConstString, ValueObject *>::const_iterator pos = m_synthetic_children.find (key); 2014 if (pos != m_synthetic_children.end()) 2015 synthetic_child_sp = pos->second->GetSP(); 2016 return synthetic_child_sp; 2017 } 2018 2019 uint32_t 2020 ValueObject::GetTypeInfo (ClangASTType *pointee_or_element_clang_type) 2021 { 2022 return GetClangType().GetTypeInfo (pointee_or_element_clang_type); 2023 } 2024 2025 bool 2026 ValueObject::IsPointerType () 2027 { 2028 return GetClangType().IsPointerType(); 2029 } 2030 2031 bool 2032 ValueObject::IsArrayType () 2033 { 2034 return GetClangType().IsArrayType (NULL, NULL, NULL); 2035 } 2036 2037 bool 2038 ValueObject::IsScalarType () 2039 { 2040 return GetClangType().IsScalarType (); 2041 } 2042 2043 bool 2044 ValueObject::IsIntegerType (bool &is_signed) 2045 { 2046 return GetClangType().IsIntegerType (is_signed); 2047 } 2048 2049 bool 2050 ValueObject::IsPointerOrReferenceType () 2051 { 2052 return GetClangType().IsPointerOrReferenceType (); 2053 } 2054 2055 bool 2056 ValueObject::IsPossibleDynamicType () 2057 { 2058 ExecutionContext exe_ctx (GetExecutionContextRef()); 2059 Process *process = exe_ctx.GetProcessPtr(); 2060 if (process) 2061 return process->IsPossibleDynamicValue(*this); 2062 else 2063 return GetClangType().IsPossibleDynamicType (NULL, true, true); 2064 } 2065 2066 bool 2067 ValueObject::IsRuntimeSupportValue () 2068 { 2069 Process *process(GetProcessSP().get()); 2070 if (process) 2071 { 2072 LanguageRuntime *runtime = process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 2073 if (!runtime) 2074 runtime = process->GetObjCLanguageRuntime(); 2075 if (runtime) 2076 return runtime->IsRuntimeSupportValue(*this); 2077 } 2078 return false; 2079 } 2080 2081 bool 2082 ValueObject::IsObjCNil () 2083 { 2084 const uint32_t mask = eTypeIsObjC | eTypeIsPointer; 2085 bool isObjCpointer = (((GetClangType().GetTypeInfo(NULL)) & mask) == mask); 2086 if (!isObjCpointer) 2087 return false; 2088 bool canReadValue = true; 2089 bool isZero = GetValueAsUnsigned(0,&canReadValue) == 0; 2090 return canReadValue && isZero; 2091 } 2092 2093 ValueObjectSP 2094 ValueObject::GetSyntheticArrayMember (size_t index, bool can_create) 2095 { 2096 const uint32_t type_info = GetTypeInfo (); 2097 if (type_info & eTypeIsArray) 2098 return GetSyntheticArrayMemberFromArray(index, can_create); 2099 2100 if (type_info & eTypeIsPointer) 2101 return GetSyntheticArrayMemberFromPointer(index, can_create); 2102 2103 return ValueObjectSP(); 2104 2105 } 2106 2107 ValueObjectSP 2108 ValueObject::GetSyntheticArrayMemberFromPointer (size_t index, bool can_create) 2109 { 2110 ValueObjectSP synthetic_child_sp; 2111 if (IsPointerType ()) 2112 { 2113 char index_str[64]; 2114 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 2115 ConstString index_const_str(index_str); 2116 // Check if we have already created a synthetic array member in this 2117 // valid object. If we have we will re-use it. 2118 synthetic_child_sp = GetSyntheticChild (index_const_str); 2119 if (!synthetic_child_sp) 2120 { 2121 ValueObject *synthetic_child; 2122 // We haven't made a synthetic array member for INDEX yet, so 2123 // lets make one and cache it for any future reference. 2124 synthetic_child = CreateChildAtIndex(0, true, index); 2125 2126 // Cache the value if we got one back... 2127 if (synthetic_child) 2128 { 2129 AddSyntheticChild(index_const_str, synthetic_child); 2130 synthetic_child_sp = synthetic_child->GetSP(); 2131 synthetic_child_sp->SetName(ConstString(index_str)); 2132 synthetic_child_sp->m_is_array_item_for_pointer = true; 2133 } 2134 } 2135 } 2136 return synthetic_child_sp; 2137 } 2138 2139 // This allows you to create an array member using and index 2140 // that doesn't not fall in the normal bounds of the array. 2141 // Many times structure can be defined as: 2142 // struct Collection 2143 // { 2144 // uint32_t item_count; 2145 // Item item_array[0]; 2146 // }; 2147 // The size of the "item_array" is 1, but many times in practice 2148 // there are more items in "item_array". 2149 2150 ValueObjectSP 2151 ValueObject::GetSyntheticArrayMemberFromArray (size_t index, bool can_create) 2152 { 2153 ValueObjectSP synthetic_child_sp; 2154 if (IsArrayType ()) 2155 { 2156 char index_str[64]; 2157 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 2158 ConstString index_const_str(index_str); 2159 // Check if we have already created a synthetic array member in this 2160 // valid object. If we have we will re-use it. 2161 synthetic_child_sp = GetSyntheticChild (index_const_str); 2162 if (!synthetic_child_sp) 2163 { 2164 ValueObject *synthetic_child; 2165 // We haven't made a synthetic array member for INDEX yet, so 2166 // lets make one and cache it for any future reference. 2167 synthetic_child = CreateChildAtIndex(0, true, index); 2168 2169 // Cache the value if we got one back... 2170 if (synthetic_child) 2171 { 2172 AddSyntheticChild(index_const_str, synthetic_child); 2173 synthetic_child_sp = synthetic_child->GetSP(); 2174 synthetic_child_sp->SetName(ConstString(index_str)); 2175 synthetic_child_sp->m_is_array_item_for_pointer = true; 2176 } 2177 } 2178 } 2179 return synthetic_child_sp; 2180 } 2181 2182 ValueObjectSP 2183 ValueObject::GetSyntheticBitFieldChild (uint32_t from, uint32_t to, bool can_create) 2184 { 2185 ValueObjectSP synthetic_child_sp; 2186 if (IsScalarType ()) 2187 { 2188 char index_str[64]; 2189 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 2190 ConstString index_const_str(index_str); 2191 // Check if we have already created a synthetic array member in this 2192 // valid object. If we have we will re-use it. 2193 synthetic_child_sp = GetSyntheticChild (index_const_str); 2194 if (!synthetic_child_sp) 2195 { 2196 // We haven't made a synthetic array member for INDEX yet, so 2197 // lets make one and cache it for any future reference. 2198 ValueObjectChild *synthetic_child = new ValueObjectChild (*this, 2199 GetClangType(), 2200 index_const_str, 2201 GetByteSize(), 2202 0, 2203 to-from+1, 2204 from, 2205 false, 2206 false, 2207 eAddressTypeInvalid); 2208 2209 // Cache the value if we got one back... 2210 if (synthetic_child) 2211 { 2212 AddSyntheticChild(index_const_str, synthetic_child); 2213 synthetic_child_sp = synthetic_child->GetSP(); 2214 synthetic_child_sp->SetName(ConstString(index_str)); 2215 synthetic_child_sp->m_is_bitfield_for_scalar = true; 2216 } 2217 } 2218 } 2219 return synthetic_child_sp; 2220 } 2221 2222 ValueObjectSP 2223 ValueObject::GetSyntheticChildAtOffset(uint32_t offset, const ClangASTType& type, bool can_create) 2224 { 2225 2226 ValueObjectSP synthetic_child_sp; 2227 2228 char name_str[64]; 2229 snprintf(name_str, sizeof(name_str), "@%i", offset); 2230 ConstString name_const_str(name_str); 2231 2232 // Check if we have already created a synthetic array member in this 2233 // valid object. If we have we will re-use it. 2234 synthetic_child_sp = GetSyntheticChild (name_const_str); 2235 2236 if (synthetic_child_sp.get()) 2237 return synthetic_child_sp; 2238 2239 if (!can_create) 2240 return ValueObjectSP(); 2241 2242 ExecutionContext exe_ctx (GetExecutionContextRef()); 2243 2244 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2245 type, 2246 name_const_str, 2247 type.GetByteSize(&exe_ctx), 2248 offset, 2249 0, 2250 0, 2251 false, 2252 false, 2253 eAddressTypeInvalid); 2254 if (synthetic_child) 2255 { 2256 AddSyntheticChild(name_const_str, synthetic_child); 2257 synthetic_child_sp = synthetic_child->GetSP(); 2258 synthetic_child_sp->SetName(name_const_str); 2259 synthetic_child_sp->m_is_child_at_offset = true; 2260 } 2261 return synthetic_child_sp; 2262 } 2263 2264 ValueObjectSP 2265 ValueObject::GetSyntheticBase (uint32_t offset, const ClangASTType& type, bool can_create) 2266 { 2267 ValueObjectSP synthetic_child_sp; 2268 2269 char name_str[64]; 2270 snprintf(name_str, sizeof(name_str), "%s", type.GetTypeName().AsCString("<unknown>")); 2271 ConstString name_const_str(name_str); 2272 2273 // Check if we have already created a synthetic array member in this 2274 // valid object. If we have we will re-use it. 2275 synthetic_child_sp = GetSyntheticChild (name_const_str); 2276 2277 if (synthetic_child_sp.get()) 2278 return synthetic_child_sp; 2279 2280 if (!can_create) 2281 return ValueObjectSP(); 2282 2283 const bool is_base_class = true; 2284 2285 ExecutionContext exe_ctx (GetExecutionContextRef()); 2286 2287 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2288 type, 2289 name_const_str, 2290 type.GetByteSize(&exe_ctx), 2291 offset, 2292 0, 2293 0, 2294 is_base_class, 2295 false, 2296 eAddressTypeInvalid); 2297 if (synthetic_child) 2298 { 2299 AddSyntheticChild(name_const_str, synthetic_child); 2300 synthetic_child_sp = synthetic_child->GetSP(); 2301 synthetic_child_sp->SetName(name_const_str); 2302 } 2303 return synthetic_child_sp; 2304 } 2305 2306 2307 // your expression path needs to have a leading . or -> 2308 // (unless it somehow "looks like" an array, in which case it has 2309 // a leading [ symbol). while the [ is meaningful and should be shown 2310 // to the user, . and -> are just parser design, but by no means 2311 // added information for the user.. strip them off 2312 static const char* 2313 SkipLeadingExpressionPathSeparators(const char* expression) 2314 { 2315 if (!expression || !expression[0]) 2316 return expression; 2317 if (expression[0] == '.') 2318 return expression+1; 2319 if (expression[0] == '-' && expression[1] == '>') 2320 return expression+2; 2321 return expression; 2322 } 2323 2324 ValueObjectSP 2325 ValueObject::GetSyntheticExpressionPathChild(const char* expression, bool can_create) 2326 { 2327 ValueObjectSP synthetic_child_sp; 2328 ConstString name_const_string(expression); 2329 // Check if we have already created a synthetic array member in this 2330 // valid object. If we have we will re-use it. 2331 synthetic_child_sp = GetSyntheticChild (name_const_string); 2332 if (!synthetic_child_sp) 2333 { 2334 // We haven't made a synthetic array member for expression yet, so 2335 // lets make one and cache it for any future reference. 2336 synthetic_child_sp = GetValueForExpressionPath(expression, 2337 NULL, NULL, NULL, 2338 GetValueForExpressionPathOptions().DontAllowSyntheticChildren()); 2339 2340 // Cache the value if we got one back... 2341 if (synthetic_child_sp.get()) 2342 { 2343 // FIXME: this causes a "real" child to end up with its name changed to the contents of expression 2344 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 2345 synthetic_child_sp->SetName(ConstString(SkipLeadingExpressionPathSeparators(expression))); 2346 } 2347 } 2348 return synthetic_child_sp; 2349 } 2350 2351 void 2352 ValueObject::CalculateSyntheticValue (bool use_synthetic) 2353 { 2354 if (use_synthetic == false) 2355 return; 2356 2357 TargetSP target_sp(GetTargetSP()); 2358 if (target_sp && target_sp->GetEnableSyntheticValue() == false) 2359 { 2360 m_synthetic_value = NULL; 2361 return; 2362 } 2363 2364 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 2365 2366 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 2367 return; 2368 2369 if (m_synthetic_children_sp.get() == NULL) 2370 return; 2371 2372 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 2373 return; 2374 2375 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 2376 } 2377 2378 void 2379 ValueObject::CalculateDynamicValue (DynamicValueType use_dynamic) 2380 { 2381 if (use_dynamic == eNoDynamicValues) 2382 return; 2383 2384 if (!m_dynamic_value && !IsDynamic()) 2385 { 2386 ExecutionContext exe_ctx (GetExecutionContextRef()); 2387 Process *process = exe_ctx.GetProcessPtr(); 2388 if (process && process->IsPossibleDynamicValue(*this)) 2389 { 2390 ClearDynamicTypeInformation (); 2391 m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic); 2392 } 2393 } 2394 } 2395 2396 ValueObjectSP 2397 ValueObject::GetDynamicValue (DynamicValueType use_dynamic) 2398 { 2399 if (use_dynamic == eNoDynamicValues) 2400 return ValueObjectSP(); 2401 2402 if (!IsDynamic() && m_dynamic_value == NULL) 2403 { 2404 CalculateDynamicValue(use_dynamic); 2405 } 2406 if (m_dynamic_value) 2407 return m_dynamic_value->GetSP(); 2408 else 2409 return ValueObjectSP(); 2410 } 2411 2412 ValueObjectSP 2413 ValueObject::GetStaticValue() 2414 { 2415 return GetSP(); 2416 } 2417 2418 lldb::ValueObjectSP 2419 ValueObject::GetNonSyntheticValue () 2420 { 2421 return GetSP(); 2422 } 2423 2424 ValueObjectSP 2425 ValueObject::GetSyntheticValue (bool use_synthetic) 2426 { 2427 if (use_synthetic == false) 2428 return ValueObjectSP(); 2429 2430 CalculateSyntheticValue(use_synthetic); 2431 2432 if (m_synthetic_value) 2433 return m_synthetic_value->GetSP(); 2434 else 2435 return ValueObjectSP(); 2436 } 2437 2438 bool 2439 ValueObject::HasSyntheticValue() 2440 { 2441 UpdateFormatsIfNeeded(); 2442 2443 if (m_synthetic_children_sp.get() == NULL) 2444 return false; 2445 2446 CalculateSyntheticValue(true); 2447 2448 if (m_synthetic_value) 2449 return true; 2450 else 2451 return false; 2452 } 2453 2454 bool 2455 ValueObject::GetBaseClassPath (Stream &s) 2456 { 2457 if (IsBaseClass()) 2458 { 2459 bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s); 2460 ClangASTType clang_type = GetClangType(); 2461 std::string cxx_class_name; 2462 bool this_had_base_class = clang_type.GetCXXClassName (cxx_class_name); 2463 if (this_had_base_class) 2464 { 2465 if (parent_had_base_class) 2466 s.PutCString("::"); 2467 s.PutCString(cxx_class_name.c_str()); 2468 } 2469 return parent_had_base_class || this_had_base_class; 2470 } 2471 return false; 2472 } 2473 2474 2475 ValueObject * 2476 ValueObject::GetNonBaseClassParent() 2477 { 2478 if (GetParent()) 2479 { 2480 if (GetParent()->IsBaseClass()) 2481 return GetParent()->GetNonBaseClassParent(); 2482 else 2483 return GetParent(); 2484 } 2485 return NULL; 2486 } 2487 2488 2489 bool 2490 ValueObject::IsBaseClass (uint32_t& depth) 2491 { 2492 if (!IsBaseClass()) 2493 { 2494 depth = 0; 2495 return false; 2496 } 2497 if (GetParent()) 2498 { 2499 GetParent()->IsBaseClass(depth); 2500 depth = depth + 1; 2501 return true; 2502 } 2503 // TODO: a base of no parent? weird.. 2504 depth = 1; 2505 return true; 2506 } 2507 2508 void 2509 ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes, GetExpressionPathFormat epformat) 2510 { 2511 // synthetic children do not actually "exist" as part of the hierarchy, and sometimes they are consed up in ways 2512 // that don't make sense from an underlying language/API standpoint. So, use a special code path here to return 2513 // something that can hopefully be used in expression 2514 if (m_is_synthetic_children_generated) 2515 { 2516 UpdateValueIfNeeded(); 2517 2518 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) 2519 { 2520 if (IsPointerOrReferenceType()) 2521 { 2522 s.Printf("((%s)0x%" PRIx64 ")", 2523 GetTypeName().AsCString("void"), 2524 GetValueAsUnsigned(0)); 2525 return; 2526 } 2527 else 2528 { 2529 uint64_t load_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2530 if (load_addr != LLDB_INVALID_ADDRESS) 2531 { 2532 s.Printf("(*( (%s *)0x%" PRIx64 "))", 2533 GetTypeName().AsCString("void"), 2534 load_addr); 2535 return; 2536 } 2537 } 2538 } 2539 2540 if (CanProvideValue()) 2541 { 2542 s.Printf("((%s)%s)", 2543 GetTypeName().AsCString("void"), 2544 GetValueAsCString()); 2545 return; 2546 } 2547 2548 return; 2549 } 2550 2551 const bool is_deref_of_parent = IsDereferenceOfParent (); 2552 2553 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2554 { 2555 // this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely 2556 // fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName. 2557 // the eHonorPointers mode is meant to produce strings in this latter format 2558 s.PutCString("*("); 2559 } 2560 2561 ValueObject* parent = GetParent(); 2562 2563 if (parent) 2564 parent->GetExpressionPath (s, qualify_cxx_base_classes, epformat); 2565 2566 // if we are a deref_of_parent just because we are synthetic array 2567 // members made up to allow ptr[%d] syntax to work in variable 2568 // printing, then add our name ([%d]) to the expression path 2569 if (m_is_array_item_for_pointer && epformat == eGetExpressionPathFormatHonorPointers) 2570 s.PutCString(m_name.AsCString()); 2571 2572 if (!IsBaseClass()) 2573 { 2574 if (!is_deref_of_parent) 2575 { 2576 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2577 if (non_base_class_parent) 2578 { 2579 ClangASTType non_base_class_parent_clang_type = non_base_class_parent->GetClangType(); 2580 if (non_base_class_parent_clang_type) 2581 { 2582 if (parent && parent->IsDereferenceOfParent() && epformat == eGetExpressionPathFormatHonorPointers) 2583 { 2584 s.PutCString("->"); 2585 } 2586 else 2587 { 2588 const uint32_t non_base_class_parent_type_info = non_base_class_parent_clang_type.GetTypeInfo(); 2589 2590 if (non_base_class_parent_type_info & eTypeIsPointer) 2591 { 2592 s.PutCString("->"); 2593 } 2594 else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2595 !(non_base_class_parent_type_info & eTypeIsArray)) 2596 { 2597 s.PutChar('.'); 2598 } 2599 } 2600 } 2601 } 2602 2603 const char *name = GetName().GetCString(); 2604 if (name) 2605 { 2606 if (qualify_cxx_base_classes) 2607 { 2608 if (GetBaseClassPath (s)) 2609 s.PutCString("::"); 2610 } 2611 s.PutCString(name); 2612 } 2613 } 2614 } 2615 2616 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2617 { 2618 s.PutChar(')'); 2619 } 2620 } 2621 2622 ValueObjectSP 2623 ValueObject::GetValueForExpressionPath(const char* expression, 2624 const char** first_unparsed, 2625 ExpressionPathScanEndReason* reason_to_stop, 2626 ExpressionPathEndResultType* final_value_type, 2627 const GetValueForExpressionPathOptions& options, 2628 ExpressionPathAftermath* final_task_on_target) 2629 { 2630 2631 const char* dummy_first_unparsed; 2632 ExpressionPathScanEndReason dummy_reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnknown; 2633 ExpressionPathEndResultType dummy_final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2634 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2635 2636 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2637 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2638 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2639 final_value_type ? final_value_type : &dummy_final_value_type, 2640 options, 2641 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2642 2643 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2644 return ret_val; 2645 2646 if (ret_val.get() && ((final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress of plain objects 2647 { 2648 if ( (final_task_on_target ? *final_task_on_target : dummy_final_task_on_target) == ValueObject::eExpressionPathAftermathDereference) 2649 { 2650 Error error; 2651 ValueObjectSP final_value = ret_val->Dereference(error); 2652 if (error.Fail() || !final_value.get()) 2653 { 2654 if (reason_to_stop) 2655 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2656 if (final_value_type) 2657 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2658 return ValueObjectSP(); 2659 } 2660 else 2661 { 2662 if (final_task_on_target) 2663 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2664 return final_value; 2665 } 2666 } 2667 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2668 { 2669 Error error; 2670 ValueObjectSP final_value = ret_val->AddressOf(error); 2671 if (error.Fail() || !final_value.get()) 2672 { 2673 if (reason_to_stop) 2674 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2675 if (final_value_type) 2676 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2677 return ValueObjectSP(); 2678 } 2679 else 2680 { 2681 if (final_task_on_target) 2682 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2683 return final_value; 2684 } 2685 } 2686 } 2687 return ret_val; // final_task_on_target will still have its original value, so you know I did not do it 2688 } 2689 2690 int 2691 ValueObject::GetValuesForExpressionPath(const char* expression, 2692 ValueObjectListSP& list, 2693 const char** first_unparsed, 2694 ExpressionPathScanEndReason* reason_to_stop, 2695 ExpressionPathEndResultType* final_value_type, 2696 const GetValueForExpressionPathOptions& options, 2697 ExpressionPathAftermath* final_task_on_target) 2698 { 2699 const char* dummy_first_unparsed; 2700 ExpressionPathScanEndReason dummy_reason_to_stop; 2701 ExpressionPathEndResultType dummy_final_value_type; 2702 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2703 2704 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2705 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2706 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2707 final_value_type ? final_value_type : &dummy_final_value_type, 2708 options, 2709 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2710 2711 if (!ret_val.get()) // if there are errors, I add nothing to the list 2712 return 0; 2713 2714 if ( (reason_to_stop ? *reason_to_stop : dummy_reason_to_stop) != eExpressionPathScanEndReasonArrayRangeOperatorMet) 2715 { 2716 // I need not expand a range, just post-process the final value and return 2717 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2718 { 2719 list->Append(ret_val); 2720 return 1; 2721 } 2722 if (ret_val.get() && (final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain) // I can only deref and takeaddress of plain objects 2723 { 2724 if (*final_task_on_target == ValueObject::eExpressionPathAftermathDereference) 2725 { 2726 Error error; 2727 ValueObjectSP final_value = ret_val->Dereference(error); 2728 if (error.Fail() || !final_value.get()) 2729 { 2730 if (reason_to_stop) 2731 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2732 if (final_value_type) 2733 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2734 return 0; 2735 } 2736 else 2737 { 2738 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2739 list->Append(final_value); 2740 return 1; 2741 } 2742 } 2743 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2744 { 2745 Error error; 2746 ValueObjectSP final_value = ret_val->AddressOf(error); 2747 if (error.Fail() || !final_value.get()) 2748 { 2749 if (reason_to_stop) 2750 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2751 if (final_value_type) 2752 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2753 return 0; 2754 } 2755 else 2756 { 2757 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2758 list->Append(final_value); 2759 return 1; 2760 } 2761 } 2762 } 2763 } 2764 else 2765 { 2766 return ExpandArraySliceExpression(first_unparsed ? *first_unparsed : dummy_first_unparsed, 2767 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2768 ret_val, 2769 list, 2770 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2771 final_value_type ? final_value_type : &dummy_final_value_type, 2772 options, 2773 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2774 } 2775 // in any non-covered case, just do the obviously right thing 2776 list->Append(ret_val); 2777 return 1; 2778 } 2779 2780 ValueObjectSP 2781 ValueObject::GetValueForExpressionPath_Impl(const char* expression_cstr, 2782 const char** first_unparsed, 2783 ExpressionPathScanEndReason* reason_to_stop, 2784 ExpressionPathEndResultType* final_result, 2785 const GetValueForExpressionPathOptions& options, 2786 ExpressionPathAftermath* what_next) 2787 { 2788 ValueObjectSP root = GetSP(); 2789 2790 if (!root.get()) 2791 return ValueObjectSP(); 2792 2793 *first_unparsed = expression_cstr; 2794 2795 while (true) 2796 { 2797 2798 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 2799 2800 ClangASTType root_clang_type = root->GetClangType(); 2801 ClangASTType pointee_clang_type; 2802 Flags pointee_clang_type_info; 2803 2804 Flags root_clang_type_info(root_clang_type.GetTypeInfo(&pointee_clang_type)); 2805 if (pointee_clang_type) 2806 pointee_clang_type_info.Reset(pointee_clang_type.GetTypeInfo()); 2807 2808 if (!expression_cstr || *expression_cstr == '\0') 2809 { 2810 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2811 return root; 2812 } 2813 2814 switch (*expression_cstr) 2815 { 2816 case '-': 2817 { 2818 if (options.m_check_dot_vs_arrow_syntax && 2819 root_clang_type_info.Test(eTypeIsPointer) ) // if you are trying to use -> on a non-pointer and I must catch the error 2820 { 2821 *first_unparsed = expression_cstr; 2822 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2823 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2824 return ValueObjectSP(); 2825 } 2826 if (root_clang_type_info.Test(eTypeIsObjC) && // if yo are trying to extract an ObjC IVar when this is forbidden 2827 root_clang_type_info.Test(eTypeIsPointer) && 2828 options.m_no_fragile_ivar) 2829 { 2830 *first_unparsed = expression_cstr; 2831 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2832 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2833 return ValueObjectSP(); 2834 } 2835 if (expression_cstr[1] != '>') 2836 { 2837 *first_unparsed = expression_cstr; 2838 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2839 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2840 return ValueObjectSP(); 2841 } 2842 expression_cstr++; // skip the - 2843 } 2844 case '.': // or fallthrough from -> 2845 { 2846 if (options.m_check_dot_vs_arrow_syntax && *expression_cstr == '.' && 2847 root_clang_type_info.Test(eTypeIsPointer)) // if you are trying to use . on a pointer and I must catch the error 2848 { 2849 *first_unparsed = expression_cstr; 2850 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2851 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2852 return ValueObjectSP(); 2853 } 2854 expression_cstr++; // skip . 2855 const char *next_separator = strpbrk(expression_cstr+1,"-.["); 2856 ConstString child_name; 2857 if (!next_separator) // if no other separator just expand this last layer 2858 { 2859 child_name.SetCString (expression_cstr); 2860 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2861 2862 if (child_valobj_sp.get()) // we know we are done, so just return 2863 { 2864 *first_unparsed = ""; 2865 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2866 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2867 return child_valobj_sp; 2868 } 2869 else if (options.m_no_synthetic_children == false) // let's try with synthetic children 2870 { 2871 if (root->IsSynthetic()) 2872 { 2873 *first_unparsed = expression_cstr; 2874 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchSyntheticChild; 2875 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2876 return ValueObjectSP(); 2877 } 2878 2879 child_valobj_sp = root->GetSyntheticValue(); 2880 if (child_valobj_sp.get()) 2881 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2882 } 2883 2884 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2885 // so we hit the "else" branch, and return an error 2886 if(child_valobj_sp.get()) // if it worked, just return 2887 { 2888 *first_unparsed = ""; 2889 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2890 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2891 return child_valobj_sp; 2892 } 2893 else 2894 { 2895 *first_unparsed = expression_cstr; 2896 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2897 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2898 return ValueObjectSP(); 2899 } 2900 } 2901 else // other layers do expand 2902 { 2903 child_name.SetCStringWithLength(expression_cstr, next_separator - expression_cstr); 2904 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2905 if (child_valobj_sp.get()) // store the new root and move on 2906 { 2907 root = child_valobj_sp; 2908 *first_unparsed = next_separator; 2909 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2910 continue; 2911 } 2912 else if (options.m_no_synthetic_children == false) // let's try with synthetic children 2913 { 2914 if (root->IsSynthetic()) 2915 { 2916 *first_unparsed = expression_cstr; 2917 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2918 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2919 return ValueObjectSP(); 2920 } 2921 2922 child_valobj_sp = root->GetSyntheticValue(true); 2923 if (child_valobj_sp) 2924 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2925 } 2926 2927 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2928 // so we hit the "else" branch, and return an error 2929 if(child_valobj_sp.get()) // if it worked, move on 2930 { 2931 root = child_valobj_sp; 2932 *first_unparsed = next_separator; 2933 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2934 continue; 2935 } 2936 else 2937 { 2938 *first_unparsed = expression_cstr; 2939 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2940 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2941 return ValueObjectSP(); 2942 } 2943 } 2944 break; 2945 } 2946 case '[': 2947 { 2948 if (!root_clang_type_info.Test(eTypeIsArray) && !root_clang_type_info.Test(eTypeIsPointer) && !root_clang_type_info.Test(eTypeIsVector)) // if this is not a T[] nor a T* 2949 { 2950 if (!root_clang_type_info.Test(eTypeIsScalar)) // if this is not even a scalar... 2951 { 2952 if (options.m_no_synthetic_children) // ...only chance left is synthetic 2953 { 2954 *first_unparsed = expression_cstr; 2955 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2956 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2957 return ValueObjectSP(); 2958 } 2959 } 2960 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 2961 { 2962 *first_unparsed = expression_cstr; 2963 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2964 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2965 return ValueObjectSP(); 2966 } 2967 } 2968 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 2969 { 2970 if (!root_clang_type_info.Test(eTypeIsArray)) 2971 { 2972 *first_unparsed = expression_cstr; 2973 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2974 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2975 return ValueObjectSP(); 2976 } 2977 else // even if something follows, we cannot expand unbounded ranges, just let the caller do it 2978 { 2979 *first_unparsed = expression_cstr+2; 2980 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2981 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2982 return root; 2983 } 2984 } 2985 const char *separator_position = ::strchr(expression_cstr+1,'-'); 2986 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 2987 if (!close_bracket_position) // if there is no ], this is a syntax error 2988 { 2989 *first_unparsed = expression_cstr; 2990 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2991 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2992 return ValueObjectSP(); 2993 } 2994 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 2995 { 2996 char *end = NULL; 2997 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 2998 if (!end || end != close_bracket_position) // if something weird is in our way return an error 2999 { 3000 *first_unparsed = expression_cstr; 3001 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3002 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3003 return ValueObjectSP(); 3004 } 3005 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3006 { 3007 if (root_clang_type_info.Test(eTypeIsArray)) 3008 { 3009 *first_unparsed = expression_cstr+2; 3010 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3011 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 3012 return root; 3013 } 3014 else 3015 { 3016 *first_unparsed = expression_cstr; 3017 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3018 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3019 return ValueObjectSP(); 3020 } 3021 } 3022 // from here on we do have a valid index 3023 if (root_clang_type_info.Test(eTypeIsArray)) 3024 { 3025 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 3026 if (!child_valobj_sp) 3027 child_valobj_sp = root->GetSyntheticArrayMemberFromArray(index, true); 3028 if (!child_valobj_sp) 3029 if (root->HasSyntheticValue() && root->GetSyntheticValue()->GetNumChildren() > index) 3030 child_valobj_sp = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3031 if (child_valobj_sp) 3032 { 3033 root = child_valobj_sp; 3034 *first_unparsed = end+1; // skip ] 3035 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3036 continue; 3037 } 3038 else 3039 { 3040 *first_unparsed = expression_cstr; 3041 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3042 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3043 return ValueObjectSP(); 3044 } 3045 } 3046 else if (root_clang_type_info.Test(eTypeIsPointer)) 3047 { 3048 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3049 pointee_clang_type_info.Test(eTypeIsScalar)) 3050 { 3051 Error error; 3052 root = root->Dereference(error); 3053 if (error.Fail() || !root.get()) 3054 { 3055 *first_unparsed = expression_cstr; 3056 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3057 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3058 return ValueObjectSP(); 3059 } 3060 else 3061 { 3062 *what_next = eExpressionPathAftermathNothing; 3063 continue; 3064 } 3065 } 3066 else 3067 { 3068 if (root->GetClangType().GetMinimumLanguage() == eLanguageTypeObjC 3069 && pointee_clang_type_info.AllClear(eTypeIsPointer) 3070 && root->HasSyntheticValue() 3071 && options.m_no_synthetic_children == false) 3072 { 3073 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3074 } 3075 else 3076 root = root->GetSyntheticArrayMemberFromPointer(index, true); 3077 if (!root.get()) 3078 { 3079 *first_unparsed = expression_cstr; 3080 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3081 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3082 return ValueObjectSP(); 3083 } 3084 else 3085 { 3086 *first_unparsed = end+1; // skip ] 3087 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3088 continue; 3089 } 3090 } 3091 } 3092 else if (root_clang_type_info.Test(eTypeIsScalar)) 3093 { 3094 root = root->GetSyntheticBitFieldChild(index, index, true); 3095 if (!root.get()) 3096 { 3097 *first_unparsed = expression_cstr; 3098 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3099 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3100 return ValueObjectSP(); 3101 } 3102 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3103 { 3104 *first_unparsed = end+1; // skip ] 3105 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3106 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3107 return root; 3108 } 3109 } 3110 else if (root_clang_type_info.Test(eTypeIsVector)) 3111 { 3112 root = root->GetChildAtIndex(index, true); 3113 if (!root.get()) 3114 { 3115 *first_unparsed = expression_cstr; 3116 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3117 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3118 return ValueObjectSP(); 3119 } 3120 else 3121 { 3122 *first_unparsed = end+1; // skip ] 3123 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3124 continue; 3125 } 3126 } 3127 else if (options.m_no_synthetic_children == false) 3128 { 3129 if (root->HasSyntheticValue()) 3130 root = root->GetSyntheticValue(); 3131 else if (!root->IsSynthetic()) 3132 { 3133 *first_unparsed = expression_cstr; 3134 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3135 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3136 return ValueObjectSP(); 3137 } 3138 // if we are here, then root itself is a synthetic VO.. should be good to go 3139 3140 if (!root.get()) 3141 { 3142 *first_unparsed = expression_cstr; 3143 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3144 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3145 return ValueObjectSP(); 3146 } 3147 root = root->GetChildAtIndex(index, true); 3148 if (!root.get()) 3149 { 3150 *first_unparsed = expression_cstr; 3151 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3152 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3153 return ValueObjectSP(); 3154 } 3155 else 3156 { 3157 *first_unparsed = end+1; // skip ] 3158 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3159 continue; 3160 } 3161 } 3162 else 3163 { 3164 *first_unparsed = expression_cstr; 3165 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3166 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3167 return ValueObjectSP(); 3168 } 3169 } 3170 else // we have a low and a high index 3171 { 3172 char *end = NULL; 3173 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3174 if (!end || end != separator_position) // if something weird is in our way return an error 3175 { 3176 *first_unparsed = expression_cstr; 3177 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3178 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3179 return ValueObjectSP(); 3180 } 3181 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3182 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3183 { 3184 *first_unparsed = expression_cstr; 3185 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3186 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3187 return ValueObjectSP(); 3188 } 3189 if (index_lower > index_higher) // swap indices if required 3190 { 3191 unsigned long temp = index_lower; 3192 index_lower = index_higher; 3193 index_higher = temp; 3194 } 3195 if (root_clang_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3196 { 3197 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3198 if (!root.get()) 3199 { 3200 *first_unparsed = expression_cstr; 3201 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3202 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3203 return ValueObjectSP(); 3204 } 3205 else 3206 { 3207 *first_unparsed = end+1; // skip ] 3208 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3209 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3210 return root; 3211 } 3212 } 3213 else if (root_clang_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3214 *what_next == ValueObject::eExpressionPathAftermathDereference && 3215 pointee_clang_type_info.Test(eTypeIsScalar)) 3216 { 3217 Error error; 3218 root = root->Dereference(error); 3219 if (error.Fail() || !root.get()) 3220 { 3221 *first_unparsed = expression_cstr; 3222 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3223 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3224 return ValueObjectSP(); 3225 } 3226 else 3227 { 3228 *what_next = ValueObject::eExpressionPathAftermathNothing; 3229 continue; 3230 } 3231 } 3232 else 3233 { 3234 *first_unparsed = expression_cstr; 3235 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3236 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 3237 return root; 3238 } 3239 } 3240 break; 3241 } 3242 default: // some non-separator is in the way 3243 { 3244 *first_unparsed = expression_cstr; 3245 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3246 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3247 return ValueObjectSP(); 3248 break; 3249 } 3250 } 3251 } 3252 } 3253 3254 int 3255 ValueObject::ExpandArraySliceExpression(const char* expression_cstr, 3256 const char** first_unparsed, 3257 ValueObjectSP root, 3258 ValueObjectListSP& list, 3259 ExpressionPathScanEndReason* reason_to_stop, 3260 ExpressionPathEndResultType* final_result, 3261 const GetValueForExpressionPathOptions& options, 3262 ExpressionPathAftermath* what_next) 3263 { 3264 if (!root.get()) 3265 return 0; 3266 3267 *first_unparsed = expression_cstr; 3268 3269 while (true) 3270 { 3271 3272 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 3273 3274 ClangASTType root_clang_type = root->GetClangType(); 3275 ClangASTType pointee_clang_type; 3276 Flags pointee_clang_type_info; 3277 Flags root_clang_type_info(root_clang_type.GetTypeInfo(&pointee_clang_type)); 3278 if (pointee_clang_type) 3279 pointee_clang_type_info.Reset(pointee_clang_type.GetTypeInfo()); 3280 3281 if (!expression_cstr || *expression_cstr == '\0') 3282 { 3283 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 3284 list->Append(root); 3285 return 1; 3286 } 3287 3288 switch (*expression_cstr) 3289 { 3290 case '[': 3291 { 3292 if (!root_clang_type_info.Test(eTypeIsArray) && !root_clang_type_info.Test(eTypeIsPointer)) // if this is not a T[] nor a T* 3293 { 3294 if (!root_clang_type_info.Test(eTypeIsScalar)) // if this is not even a scalar, this syntax is just plain wrong! 3295 { 3296 *first_unparsed = expression_cstr; 3297 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 3298 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3299 return 0; 3300 } 3301 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 3302 { 3303 *first_unparsed = expression_cstr; 3304 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 3305 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3306 return 0; 3307 } 3308 } 3309 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 3310 { 3311 if (!root_clang_type_info.Test(eTypeIsArray)) 3312 { 3313 *first_unparsed = expression_cstr; 3314 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3315 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3316 return 0; 3317 } 3318 else // expand this into list 3319 { 3320 const size_t max_index = root->GetNumChildren() - 1; 3321 for (size_t index = 0; index < max_index; index++) 3322 { 3323 ValueObjectSP child = 3324 root->GetChildAtIndex(index, true); 3325 list->Append(child); 3326 } 3327 *first_unparsed = expression_cstr+2; 3328 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3329 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3330 return max_index; // tell me number of items I added to the VOList 3331 } 3332 } 3333 const char *separator_position = ::strchr(expression_cstr+1,'-'); 3334 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 3335 if (!close_bracket_position) // if there is no ], this is a syntax error 3336 { 3337 *first_unparsed = expression_cstr; 3338 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3339 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3340 return 0; 3341 } 3342 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3343 { 3344 char *end = NULL; 3345 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3346 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3347 { 3348 *first_unparsed = expression_cstr; 3349 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3350 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3351 return 0; 3352 } 3353 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3354 { 3355 if (root_clang_type_info.Test(eTypeIsArray)) 3356 { 3357 const size_t max_index = root->GetNumChildren() - 1; 3358 for (size_t index = 0; index < max_index; index++) 3359 { 3360 ValueObjectSP child = 3361 root->GetChildAtIndex(index, true); 3362 list->Append(child); 3363 } 3364 *first_unparsed = expression_cstr+2; 3365 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3366 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3367 return max_index; // tell me number of items I added to the VOList 3368 } 3369 else 3370 { 3371 *first_unparsed = expression_cstr; 3372 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3373 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3374 return 0; 3375 } 3376 } 3377 // from here on we do have a valid index 3378 if (root_clang_type_info.Test(eTypeIsArray)) 3379 { 3380 root = root->GetChildAtIndex(index, true); 3381 if (!root.get()) 3382 { 3383 *first_unparsed = expression_cstr; 3384 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3385 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3386 return 0; 3387 } 3388 else 3389 { 3390 list->Append(root); 3391 *first_unparsed = end+1; // skip ] 3392 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3393 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3394 return 1; 3395 } 3396 } 3397 else if (root_clang_type_info.Test(eTypeIsPointer)) 3398 { 3399 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3400 pointee_clang_type_info.Test(eTypeIsScalar)) 3401 { 3402 Error error; 3403 root = root->Dereference(error); 3404 if (error.Fail() || !root.get()) 3405 { 3406 *first_unparsed = expression_cstr; 3407 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3408 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3409 return 0; 3410 } 3411 else 3412 { 3413 *what_next = eExpressionPathAftermathNothing; 3414 continue; 3415 } 3416 } 3417 else 3418 { 3419 root = root->GetSyntheticArrayMemberFromPointer(index, true); 3420 if (!root.get()) 3421 { 3422 *first_unparsed = expression_cstr; 3423 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3424 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3425 return 0; 3426 } 3427 else 3428 { 3429 list->Append(root); 3430 *first_unparsed = end+1; // skip ] 3431 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3432 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3433 return 1; 3434 } 3435 } 3436 } 3437 else /*if (ClangASTContext::IsScalarType(root_clang_type))*/ 3438 { 3439 root = root->GetSyntheticBitFieldChild(index, index, true); 3440 if (!root.get()) 3441 { 3442 *first_unparsed = expression_cstr; 3443 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3444 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3445 return 0; 3446 } 3447 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3448 { 3449 list->Append(root); 3450 *first_unparsed = end+1; // skip ] 3451 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3452 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3453 return 1; 3454 } 3455 } 3456 } 3457 else // we have a low and a high index 3458 { 3459 char *end = NULL; 3460 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3461 if (!end || end != separator_position) // if something weird is in our way return an error 3462 { 3463 *first_unparsed = expression_cstr; 3464 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3465 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3466 return 0; 3467 } 3468 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3469 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3470 { 3471 *first_unparsed = expression_cstr; 3472 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3473 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3474 return 0; 3475 } 3476 if (index_lower > index_higher) // swap indices if required 3477 { 3478 unsigned long temp = index_lower; 3479 index_lower = index_higher; 3480 index_higher = temp; 3481 } 3482 if (root_clang_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3483 { 3484 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3485 if (!root.get()) 3486 { 3487 *first_unparsed = expression_cstr; 3488 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3489 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3490 return 0; 3491 } 3492 else 3493 { 3494 list->Append(root); 3495 *first_unparsed = end+1; // skip ] 3496 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3497 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3498 return 1; 3499 } 3500 } 3501 else if (root_clang_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3502 *what_next == ValueObject::eExpressionPathAftermathDereference && 3503 pointee_clang_type_info.Test(eTypeIsScalar)) 3504 { 3505 Error error; 3506 root = root->Dereference(error); 3507 if (error.Fail() || !root.get()) 3508 { 3509 *first_unparsed = expression_cstr; 3510 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3511 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3512 return 0; 3513 } 3514 else 3515 { 3516 *what_next = ValueObject::eExpressionPathAftermathNothing; 3517 continue; 3518 } 3519 } 3520 else 3521 { 3522 for (unsigned long index = index_lower; 3523 index <= index_higher; index++) 3524 { 3525 ValueObjectSP child = 3526 root->GetChildAtIndex(index, true); 3527 list->Append(child); 3528 } 3529 *first_unparsed = end+1; 3530 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3531 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3532 return index_higher-index_lower+1; // tell me number of items I added to the VOList 3533 } 3534 } 3535 break; 3536 } 3537 default: // some non-[ separator, or something entirely wrong, is in the way 3538 { 3539 *first_unparsed = expression_cstr; 3540 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3541 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3542 return 0; 3543 break; 3544 } 3545 } 3546 } 3547 } 3548 3549 void 3550 ValueObject::LogValueObject (Log *log) 3551 { 3552 if (log) 3553 return LogValueObject (log, DumpValueObjectOptions::DefaultOptions()); 3554 } 3555 3556 void 3557 ValueObject::LogValueObject (Log *log, const DumpValueObjectOptions& options) 3558 { 3559 if (log) 3560 { 3561 StreamString s; 3562 Dump (s, options); 3563 if (s.GetSize()) 3564 log->PutCString(s.GetData()); 3565 } 3566 } 3567 3568 void 3569 ValueObject::Dump (Stream &s) 3570 { 3571 Dump (s, DumpValueObjectOptions::DefaultOptions()); 3572 } 3573 3574 void 3575 ValueObject::Dump (Stream &s, 3576 const DumpValueObjectOptions& options) 3577 { 3578 ValueObjectPrinter printer(this,&s,options); 3579 printer.PrintValueObject(); 3580 } 3581 3582 ValueObjectSP 3583 ValueObject::CreateConstantValue (const ConstString &name) 3584 { 3585 ValueObjectSP valobj_sp; 3586 3587 if (UpdateValueIfNeeded(false) && m_error.Success()) 3588 { 3589 ExecutionContext exe_ctx (GetExecutionContextRef()); 3590 3591 DataExtractor data; 3592 data.SetByteOrder (m_data.GetByteOrder()); 3593 data.SetAddressByteSize(m_data.GetAddressByteSize()); 3594 3595 if (IsBitfield()) 3596 { 3597 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 3598 m_error = v.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3599 } 3600 else 3601 m_error = m_value.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3602 3603 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3604 GetClangType(), 3605 name, 3606 data, 3607 GetAddressOf()); 3608 } 3609 3610 if (!valobj_sp) 3611 { 3612 ExecutionContext exe_ctx (GetExecutionContextRef()); 3613 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), m_error); 3614 } 3615 return valobj_sp; 3616 } 3617 3618 ValueObjectSP 3619 ValueObject::GetQualifiedRepresentationIfAvailable (lldb::DynamicValueType dynValue, 3620 bool synthValue) 3621 { 3622 ValueObjectSP result_sp(GetSP()); 3623 3624 switch (dynValue) 3625 { 3626 case lldb::eDynamicCanRunTarget: 3627 case lldb::eDynamicDontRunTarget: 3628 { 3629 if (!result_sp->IsDynamic()) 3630 { 3631 if (result_sp->GetDynamicValue(dynValue)) 3632 result_sp = result_sp->GetDynamicValue(dynValue); 3633 } 3634 } 3635 break; 3636 case lldb::eNoDynamicValues: 3637 { 3638 if (result_sp->IsDynamic()) 3639 { 3640 if (result_sp->GetStaticValue()) 3641 result_sp = result_sp->GetStaticValue(); 3642 } 3643 } 3644 break; 3645 } 3646 3647 if (synthValue) 3648 { 3649 if (!result_sp->IsSynthetic()) 3650 { 3651 if (result_sp->GetSyntheticValue()) 3652 result_sp = result_sp->GetSyntheticValue(); 3653 } 3654 } 3655 else 3656 { 3657 if (result_sp->IsSynthetic()) 3658 { 3659 if (result_sp->GetNonSyntheticValue()) 3660 result_sp = result_sp->GetNonSyntheticValue(); 3661 } 3662 } 3663 3664 return result_sp; 3665 } 3666 3667 lldb::addr_t 3668 ValueObject::GetCPPVTableAddress (AddressType &address_type) 3669 { 3670 ClangASTType pointee_type; 3671 ClangASTType this_type(GetClangType()); 3672 uint32_t type_info = this_type.GetTypeInfo(&pointee_type); 3673 if (type_info) 3674 { 3675 bool ptr_or_ref = false; 3676 if (type_info & (eTypeIsPointer | eTypeIsReference)) 3677 { 3678 ptr_or_ref = true; 3679 type_info = pointee_type.GetTypeInfo(); 3680 } 3681 3682 const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus; 3683 if ((type_info & cpp_class) == cpp_class) 3684 { 3685 if (ptr_or_ref) 3686 { 3687 address_type = GetAddressTypeOfChildren(); 3688 return GetValueAsUnsigned(LLDB_INVALID_ADDRESS); 3689 } 3690 else 3691 return GetAddressOf (false, &address_type); 3692 } 3693 } 3694 3695 address_type = eAddressTypeInvalid; 3696 return LLDB_INVALID_ADDRESS; 3697 } 3698 3699 ValueObjectSP 3700 ValueObject::Dereference (Error &error) 3701 { 3702 if (m_deref_valobj) 3703 return m_deref_valobj->GetSP(); 3704 3705 const bool is_pointer_type = IsPointerType(); 3706 if (is_pointer_type) 3707 { 3708 bool omit_empty_base_classes = true; 3709 bool ignore_array_bounds = false; 3710 3711 std::string child_name_str; 3712 uint32_t child_byte_size = 0; 3713 int32_t child_byte_offset = 0; 3714 uint32_t child_bitfield_bit_size = 0; 3715 uint32_t child_bitfield_bit_offset = 0; 3716 bool child_is_base_class = false; 3717 bool child_is_deref_of_parent = false; 3718 const bool transparent_pointers = false; 3719 ClangASTType clang_type = GetClangType(); 3720 ClangASTType child_clang_type; 3721 3722 ExecutionContext exe_ctx (GetExecutionContextRef()); 3723 3724 child_clang_type = clang_type.GetChildClangTypeAtIndex (&exe_ctx, 3725 0, 3726 transparent_pointers, 3727 omit_empty_base_classes, 3728 ignore_array_bounds, 3729 child_name_str, 3730 child_byte_size, 3731 child_byte_offset, 3732 child_bitfield_bit_size, 3733 child_bitfield_bit_offset, 3734 child_is_base_class, 3735 child_is_deref_of_parent, 3736 this); 3737 if (child_clang_type && child_byte_size) 3738 { 3739 ConstString child_name; 3740 if (!child_name_str.empty()) 3741 child_name.SetCString (child_name_str.c_str()); 3742 3743 m_deref_valobj = new ValueObjectChild (*this, 3744 child_clang_type, 3745 child_name, 3746 child_byte_size, 3747 child_byte_offset, 3748 child_bitfield_bit_size, 3749 child_bitfield_bit_offset, 3750 child_is_base_class, 3751 child_is_deref_of_parent, 3752 eAddressTypeInvalid); 3753 } 3754 } 3755 3756 if (m_deref_valobj) 3757 { 3758 error.Clear(); 3759 return m_deref_valobj->GetSP(); 3760 } 3761 else 3762 { 3763 StreamString strm; 3764 GetExpressionPath(strm, true); 3765 3766 if (is_pointer_type) 3767 error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3768 else 3769 error.SetErrorStringWithFormat("not a pointer type: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3770 return ValueObjectSP(); 3771 } 3772 } 3773 3774 ValueObjectSP 3775 ValueObject::AddressOf (Error &error) 3776 { 3777 if (m_addr_of_valobj_sp) 3778 return m_addr_of_valobj_sp; 3779 3780 AddressType address_type = eAddressTypeInvalid; 3781 const bool scalar_is_load_address = false; 3782 addr_t addr = GetAddressOf (scalar_is_load_address, &address_type); 3783 error.Clear(); 3784 if (addr != LLDB_INVALID_ADDRESS) 3785 { 3786 switch (address_type) 3787 { 3788 case eAddressTypeInvalid: 3789 { 3790 StreamString expr_path_strm; 3791 GetExpressionPath(expr_path_strm, true); 3792 error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str()); 3793 } 3794 break; 3795 3796 case eAddressTypeFile: 3797 case eAddressTypeLoad: 3798 case eAddressTypeHost: 3799 { 3800 ClangASTType clang_type = GetClangType(); 3801 if (clang_type) 3802 { 3803 std::string name (1, '&'); 3804 name.append (m_name.AsCString("")); 3805 ExecutionContext exe_ctx (GetExecutionContextRef()); 3806 m_addr_of_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3807 clang_type.GetPointerType(), 3808 ConstString (name.c_str()), 3809 addr, 3810 eAddressTypeInvalid, 3811 m_data.GetAddressByteSize()); 3812 } 3813 } 3814 break; 3815 } 3816 } 3817 else 3818 { 3819 StreamString expr_path_strm; 3820 GetExpressionPath(expr_path_strm, true); 3821 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", expr_path_strm.GetString().c_str()); 3822 } 3823 3824 return m_addr_of_valobj_sp; 3825 } 3826 3827 ValueObjectSP 3828 ValueObject::Cast (const ClangASTType &clang_ast_type) 3829 { 3830 return ValueObjectCast::Create (*this, GetName(), clang_ast_type); 3831 } 3832 3833 ValueObjectSP 3834 ValueObject::CastPointerType (const char *name, ClangASTType &clang_ast_type) 3835 { 3836 ValueObjectSP valobj_sp; 3837 AddressType address_type; 3838 addr_t ptr_value = GetPointerValue (&address_type); 3839 3840 if (ptr_value != LLDB_INVALID_ADDRESS) 3841 { 3842 Address ptr_addr (ptr_value); 3843 ExecutionContext exe_ctx (GetExecutionContextRef()); 3844 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3845 name, 3846 ptr_addr, 3847 clang_ast_type); 3848 } 3849 return valobj_sp; 3850 } 3851 3852 ValueObjectSP 3853 ValueObject::CastPointerType (const char *name, TypeSP &type_sp) 3854 { 3855 ValueObjectSP valobj_sp; 3856 AddressType address_type; 3857 addr_t ptr_value = GetPointerValue (&address_type); 3858 3859 if (ptr_value != LLDB_INVALID_ADDRESS) 3860 { 3861 Address ptr_addr (ptr_value); 3862 ExecutionContext exe_ctx (GetExecutionContextRef()); 3863 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3864 name, 3865 ptr_addr, 3866 type_sp); 3867 } 3868 return valobj_sp; 3869 } 3870 3871 ValueObject::EvaluationPoint::EvaluationPoint () : 3872 m_mod_id(), 3873 m_exe_ctx_ref(), 3874 m_needs_update (true) 3875 { 3876 } 3877 3878 ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected): 3879 m_mod_id(), 3880 m_exe_ctx_ref(), 3881 m_needs_update (true) 3882 { 3883 ExecutionContext exe_ctx(exe_scope); 3884 TargetSP target_sp (exe_ctx.GetTargetSP()); 3885 if (target_sp) 3886 { 3887 m_exe_ctx_ref.SetTargetSP (target_sp); 3888 ProcessSP process_sp (exe_ctx.GetProcessSP()); 3889 if (!process_sp) 3890 process_sp = target_sp->GetProcessSP(); 3891 3892 if (process_sp) 3893 { 3894 m_mod_id = process_sp->GetModID(); 3895 m_exe_ctx_ref.SetProcessSP (process_sp); 3896 3897 ThreadSP thread_sp (exe_ctx.GetThreadSP()); 3898 3899 if (!thread_sp) 3900 { 3901 if (use_selected) 3902 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 3903 } 3904 3905 if (thread_sp) 3906 { 3907 m_exe_ctx_ref.SetThreadSP(thread_sp); 3908 3909 StackFrameSP frame_sp (exe_ctx.GetFrameSP()); 3910 if (!frame_sp) 3911 { 3912 if (use_selected) 3913 frame_sp = thread_sp->GetSelectedFrame(); 3914 } 3915 if (frame_sp) 3916 m_exe_ctx_ref.SetFrameSP(frame_sp); 3917 } 3918 } 3919 } 3920 } 3921 3922 ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) : 3923 m_mod_id(), 3924 m_exe_ctx_ref(rhs.m_exe_ctx_ref), 3925 m_needs_update (true) 3926 { 3927 } 3928 3929 ValueObject::EvaluationPoint::~EvaluationPoint () 3930 { 3931 } 3932 3933 // This function checks the EvaluationPoint against the current process state. If the current 3934 // state matches the evaluation point, or the evaluation point is already invalid, then we return 3935 // false, meaning "no change". If the current state is different, we update our state, and return 3936 // true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so 3937 // future calls to NeedsUpdate will return true. 3938 // exe_scope will be set to the current execution context scope. 3939 3940 bool 3941 ValueObject::EvaluationPoint::SyncWithProcessState() 3942 { 3943 3944 // Start with the target, if it is NULL, then we're obviously not going to get any further: 3945 const bool thread_and_frame_only_if_stopped = true; 3946 ExecutionContext exe_ctx(m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3947 3948 if (exe_ctx.GetTargetPtr() == NULL) 3949 return false; 3950 3951 // If we don't have a process nothing can change. 3952 Process *process = exe_ctx.GetProcessPtr(); 3953 if (process == NULL) 3954 return false; 3955 3956 // If our stop id is the current stop ID, nothing has changed: 3957 ProcessModID current_mod_id = process->GetModID(); 3958 3959 // If the current stop id is 0, either we haven't run yet, or the process state has been cleared. 3960 // In either case, we aren't going to be able to sync with the process state. 3961 if (current_mod_id.GetStopID() == 0) 3962 return false; 3963 3964 bool changed = false; 3965 const bool was_valid = m_mod_id.IsValid(); 3966 if (was_valid) 3967 { 3968 if (m_mod_id == current_mod_id) 3969 { 3970 // Everything is already up to date in this object, no need to 3971 // update the execution context scope. 3972 changed = false; 3973 } 3974 else 3975 { 3976 m_mod_id = current_mod_id; 3977 m_needs_update = true; 3978 changed = true; 3979 } 3980 } 3981 3982 // Now re-look up the thread and frame in case the underlying objects have gone away & been recreated. 3983 // That way we'll be sure to return a valid exe_scope. 3984 // If we used to have a thread or a frame but can't find it anymore, then mark ourselves as invalid. 3985 3986 if (m_exe_ctx_ref.HasThreadRef()) 3987 { 3988 ThreadSP thread_sp (m_exe_ctx_ref.GetThreadSP()); 3989 if (thread_sp) 3990 { 3991 if (m_exe_ctx_ref.HasFrameRef()) 3992 { 3993 StackFrameSP frame_sp (m_exe_ctx_ref.GetFrameSP()); 3994 if (!frame_sp) 3995 { 3996 // We used to have a frame, but now it is gone 3997 SetInvalid(); 3998 changed = was_valid; 3999 } 4000 } 4001 } 4002 else 4003 { 4004 // We used to have a thread, but now it is gone 4005 SetInvalid(); 4006 changed = was_valid; 4007 } 4008 4009 } 4010 return changed; 4011 } 4012 4013 void 4014 ValueObject::EvaluationPoint::SetUpdated () 4015 { 4016 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 4017 if (process_sp) 4018 m_mod_id = process_sp->GetModID(); 4019 m_needs_update = false; 4020 } 4021 4022 4023 4024 void 4025 ValueObject::ClearUserVisibleData(uint32_t clear_mask) 4026 { 4027 if ((clear_mask & eClearUserVisibleDataItemsValue) == eClearUserVisibleDataItemsValue) 4028 m_value_str.clear(); 4029 4030 if ((clear_mask & eClearUserVisibleDataItemsLocation) == eClearUserVisibleDataItemsLocation) 4031 m_location_str.clear(); 4032 4033 if ((clear_mask & eClearUserVisibleDataItemsSummary) == eClearUserVisibleDataItemsSummary) 4034 m_summary_str.clear(); 4035 4036 if ((clear_mask & eClearUserVisibleDataItemsDescription) == eClearUserVisibleDataItemsDescription) 4037 m_object_desc_str.clear(); 4038 4039 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == eClearUserVisibleDataItemsSyntheticChildren) 4040 { 4041 if (m_synthetic_value) 4042 m_synthetic_value = NULL; 4043 } 4044 4045 if ((clear_mask & eClearUserVisibleDataItemsValidator) == eClearUserVisibleDataItemsValidator) 4046 m_validation_result.reset(); 4047 } 4048 4049 SymbolContextScope * 4050 ValueObject::GetSymbolContextScope() 4051 { 4052 if (m_parent) 4053 { 4054 if (!m_parent->IsPointerOrReferenceType()) 4055 return m_parent->GetSymbolContextScope(); 4056 } 4057 return NULL; 4058 } 4059 4060 lldb::ValueObjectSP 4061 ValueObject::CreateValueObjectFromExpression (const char* name, 4062 const char* expression, 4063 const ExecutionContext& exe_ctx) 4064 { 4065 return CreateValueObjectFromExpression(name, expression, exe_ctx, EvaluateExpressionOptions()); 4066 } 4067 4068 4069 lldb::ValueObjectSP 4070 ValueObject::CreateValueObjectFromExpression (const char* name, 4071 const char* expression, 4072 const ExecutionContext& exe_ctx, 4073 const EvaluateExpressionOptions& options) 4074 { 4075 lldb::ValueObjectSP retval_sp; 4076 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 4077 if (!target_sp) 4078 return retval_sp; 4079 if (!expression || !*expression) 4080 return retval_sp; 4081 target_sp->EvaluateExpression (expression, 4082 exe_ctx.GetFrameSP().get(), 4083 retval_sp, 4084 options); 4085 if (retval_sp && name && *name) 4086 retval_sp->SetName(ConstString(name)); 4087 return retval_sp; 4088 } 4089 4090 lldb::ValueObjectSP 4091 ValueObject::CreateValueObjectFromAddress (const char* name, 4092 uint64_t address, 4093 const ExecutionContext& exe_ctx, 4094 ClangASTType type) 4095 { 4096 if (type) 4097 { 4098 ClangASTType pointer_type(type.GetPointerType()); 4099 if (pointer_type) 4100 { 4101 lldb::DataBufferSP buffer(new lldb_private::DataBufferHeap(&address,sizeof(lldb::addr_t))); 4102 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4103 pointer_type, 4104 ConstString(name), 4105 buffer, 4106 exe_ctx.GetByteOrder(), 4107 exe_ctx.GetAddressByteSize())); 4108 if (ptr_result_valobj_sp) 4109 { 4110 ptr_result_valobj_sp->GetValue().SetValueType(Value::eValueTypeLoadAddress); 4111 Error err; 4112 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 4113 if (ptr_result_valobj_sp && name && *name) 4114 ptr_result_valobj_sp->SetName(ConstString(name)); 4115 } 4116 return ptr_result_valobj_sp; 4117 } 4118 } 4119 return lldb::ValueObjectSP(); 4120 } 4121 4122 lldb::ValueObjectSP 4123 ValueObject::CreateValueObjectFromData (const char* name, 4124 const DataExtractor& data, 4125 const ExecutionContext& exe_ctx, 4126 ClangASTType type) 4127 { 4128 lldb::ValueObjectSP new_value_sp; 4129 new_value_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4130 type, 4131 ConstString(name), 4132 data, 4133 LLDB_INVALID_ADDRESS); 4134 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 4135 if (new_value_sp && name && *name) 4136 new_value_sp->SetName(ConstString(name)); 4137 return new_value_sp; 4138 } 4139 4140 ModuleSP 4141 ValueObject::GetModule () 4142 { 4143 ValueObject* root(GetRoot()); 4144 if (root != this) 4145 return root->GetModule(); 4146 return lldb::ModuleSP(); 4147 } 4148 4149 ValueObject* 4150 ValueObject::GetRoot () 4151 { 4152 if (m_root) 4153 return m_root; 4154 return (m_root = FollowParentChain( [] (ValueObject* vo) -> bool { 4155 return (vo->m_parent != nullptr); 4156 })); 4157 } 4158 4159 ValueObject* 4160 ValueObject::FollowParentChain (std::function<bool(ValueObject*)> f) 4161 { 4162 ValueObject* vo = this; 4163 while (vo) 4164 { 4165 if (f(vo) == false) 4166 break; 4167 vo = vo->m_parent; 4168 } 4169 return vo; 4170 } 4171 4172 AddressType 4173 ValueObject::GetAddressTypeOfChildren() 4174 { 4175 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) 4176 { 4177 ValueObject* root(GetRoot()); 4178 if (root != this) 4179 return root->GetAddressTypeOfChildren(); 4180 } 4181 return m_address_type_of_ptr_or_ref_children; 4182 } 4183 4184 lldb::DynamicValueType 4185 ValueObject::GetDynamicValueType () 4186 { 4187 ValueObject* with_dv_info = this; 4188 while (with_dv_info) 4189 { 4190 if (with_dv_info->HasDynamicValueTypeInfo()) 4191 return with_dv_info->GetDynamicValueTypeImpl(); 4192 with_dv_info = with_dv_info->m_parent; 4193 } 4194 return lldb::eNoDynamicValues; 4195 } 4196 4197 lldb::Format 4198 ValueObject::GetFormat () const 4199 { 4200 const ValueObject* with_fmt_info = this; 4201 while (with_fmt_info) 4202 { 4203 if (with_fmt_info->m_format != lldb::eFormatDefault) 4204 return with_fmt_info->m_format; 4205 with_fmt_info = with_fmt_info->m_parent; 4206 } 4207 return m_format; 4208 } 4209 4210 lldb::LanguageType 4211 ValueObject::GetPreferredDisplayLanguage () 4212 { 4213 lldb::LanguageType type = m_preferred_display_language; 4214 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 4215 { 4216 if (GetRoot()) 4217 { 4218 if (GetRoot() == this) 4219 { 4220 if (StackFrameSP frame_sp = GetFrameSP()) 4221 { 4222 const SymbolContext& sc(frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 4223 if (CompileUnit* cu = sc.comp_unit) 4224 type = cu->GetLanguage(); 4225 } 4226 } 4227 else 4228 { 4229 type = GetRoot()->GetPreferredDisplayLanguage(); 4230 } 4231 } 4232 } 4233 return (m_preferred_display_language = type); // only compute it once 4234 } 4235 4236 void 4237 ValueObject::SetPreferredDisplayLanguage (lldb::LanguageType lt) 4238 { 4239 m_preferred_display_language = lt; 4240 } 4241 4242 bool 4243 ValueObject::CanProvideValue () 4244 { 4245 // we need to support invalid types as providers of values because some bare-board 4246 // debugging scenarios have no notion of types, but still manage to have raw numeric 4247 // values for things like registers. sigh. 4248 const ClangASTType &type(GetClangType()); 4249 return (false == type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 4250 } 4251 4252 bool 4253 ValueObject::IsChecksumEmpty () 4254 { 4255 return m_value_checksum.empty(); 4256 } 4257 4258 ValueObjectSP 4259 ValueObject::Persist () 4260 { 4261 if (!UpdateValueIfNeeded()) 4262 return nullptr; 4263 4264 TargetSP target_sp(GetTargetSP()); 4265 if (!target_sp) 4266 return nullptr; 4267 4268 ConstString name(target_sp->GetPersistentVariables().GetNextPersistentVariableName()); 4269 4270 ClangExpressionVariableSP clang_var_sp(new ClangExpressionVariable(target_sp.get(), GetValue(), name)); 4271 if (clang_var_sp) 4272 { 4273 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 4274 clang_var_sp->m_flags |= ClangExpressionVariable::EVIsProgramReference; 4275 target_sp->GetPersistentVariables().AddVariable(clang_var_sp); 4276 } 4277 4278 return clang_var_sp->GetValueObject(); 4279 } 4280 4281 bool 4282 ValueObject::IsSyntheticChildrenGenerated () 4283 { 4284 return m_is_synthetic_children_generated; 4285 } 4286 4287 void 4288 ValueObject::SetSyntheticChildrenGenerated (bool b) 4289 { 4290 m_is_synthetic_children_generated = b; 4291 } 4292