1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : m_parent(&parent), m_update_point(parent.GetUpdatePoint()), 80 m_manager(parent.GetManager()), m_id(++g_value_obj_uid) { 81 m_flags.m_is_synthetic_children_generated = 82 parent.m_flags.m_is_synthetic_children_generated; 83 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 84 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 85 m_manager->ManageObject(this); 86 } 87 88 // ValueObject constructor 89 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 90 ValueObjectManager &manager, 91 AddressType child_ptr_or_ref_addr_type) 92 : m_update_point(exe_scope), m_manager(&manager), 93 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 94 m_id(++g_value_obj_uid) { 95 if (exe_scope) { 96 TargetSP target_sp(exe_scope->CalculateTarget()); 97 if (target_sp) { 98 const ArchSpec &arch = target_sp->GetArchitecture(); 99 m_data.SetByteOrder(arch.GetByteOrder()); 100 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 101 } 102 } 103 m_manager->ManageObject(this); 104 } 105 106 // Destructor 107 ValueObject::~ValueObject() {} 108 109 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 110 111 bool did_change_formats = false; 112 113 if (update_format) 114 did_change_formats = UpdateFormatsIfNeeded(); 115 116 // If this is a constant value, then our success is predicated on whether we 117 // have an error or not 118 if (GetIsConstant()) { 119 // if you are constant, things might still have changed behind your back 120 // (e.g. you are a frozen object and things have changed deeper than you 121 // cared to freeze-dry yourself) in this case, your value has not changed, 122 // but "computed" entries might have, so you might now have a different 123 // summary, or a different object description. clear these so we will 124 // recompute them 125 if (update_format && !did_change_formats) 126 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 127 eClearUserVisibleDataItemsDescription); 128 return m_error.Success(); 129 } 130 131 bool first_update = IsChecksumEmpty(); 132 133 if (NeedsUpdating()) { 134 m_update_point.SetUpdated(); 135 136 // Save the old value using swap to avoid a string copy which also will 137 // clear our m_value_str 138 if (m_value_str.empty()) { 139 m_flags.m_old_value_valid = false; 140 } else { 141 m_flags.m_old_value_valid = true; 142 m_old_value_str.swap(m_value_str); 143 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 144 } 145 146 ClearUserVisibleData(); 147 148 if (IsInScope()) { 149 const bool value_was_valid = GetValueIsValid(); 150 SetValueDidChange(false); 151 152 m_error.Clear(); 153 154 // Call the pure virtual function to update the value 155 156 bool need_compare_checksums = false; 157 llvm::SmallVector<uint8_t, 16> old_checksum; 158 159 if (!first_update && CanProvideValue()) { 160 need_compare_checksums = true; 161 old_checksum.resize(m_value_checksum.size()); 162 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 163 old_checksum.begin()); 164 } 165 166 bool success = UpdateValue(); 167 168 SetValueIsValid(success); 169 170 if (success) { 171 UpdateChildrenAddressType(); 172 const uint64_t max_checksum_size = 128; 173 m_data.Checksum(m_value_checksum, max_checksum_size); 174 } else { 175 need_compare_checksums = false; 176 m_value_checksum.clear(); 177 } 178 179 assert(!need_compare_checksums || 180 (!old_checksum.empty() && !m_value_checksum.empty())); 181 182 if (first_update) 183 SetValueDidChange(false); 184 else if (!m_flags.m_value_did_change && !success) { 185 // The value wasn't gotten successfully, so we mark this as changed if 186 // the value used to be valid and now isn't 187 SetValueDidChange(value_was_valid); 188 } else if (need_compare_checksums) { 189 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 190 m_value_checksum.size())); 191 } 192 193 } else { 194 m_error.SetErrorString("out of scope"); 195 } 196 } 197 return m_error.Success(); 198 } 199 200 bool ValueObject::UpdateFormatsIfNeeded() { 201 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 202 LLDB_LOGF(log, 203 "[%s %p] checking for FormatManager revisions. ValueObject " 204 "rev: %d - Global rev: %d", 205 GetName().GetCString(), static_cast<void *>(this), 206 m_last_format_mgr_revision, 207 DataVisualization::GetCurrentRevision()); 208 209 bool any_change = false; 210 211 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 212 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 213 any_change = true; 214 215 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 216 SetSummaryFormat( 217 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 218 #if LLDB_ENABLE_PYTHON 219 SetSyntheticChildren( 220 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 221 #endif 222 } 223 224 return any_change; 225 } 226 227 void ValueObject::SetNeedsUpdate() { 228 m_update_point.SetNeedsUpdate(); 229 // We have to clear the value string here so ConstResult children will notice 230 // if their values are changed by hand (i.e. with SetValueAsCString). 231 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 232 } 233 234 void ValueObject::ClearDynamicTypeInformation() { 235 m_flags.m_children_count_valid = false; 236 m_flags.m_did_calculate_complete_objc_class_type = false; 237 m_last_format_mgr_revision = 0; 238 m_override_type = CompilerType(); 239 SetValueFormat(lldb::TypeFormatImplSP()); 240 SetSummaryFormat(lldb::TypeSummaryImplSP()); 241 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 242 } 243 244 CompilerType ValueObject::MaybeCalculateCompleteType() { 245 CompilerType compiler_type(GetCompilerTypeImpl()); 246 247 if (m_flags.m_did_calculate_complete_objc_class_type) { 248 if (m_override_type.IsValid()) 249 return m_override_type; 250 else 251 return compiler_type; 252 } 253 254 m_flags.m_did_calculate_complete_objc_class_type = true; 255 256 ProcessSP process_sp( 257 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 258 259 if (!process_sp) 260 return compiler_type; 261 262 if (auto *runtime = 263 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 264 if (llvm::Optional<CompilerType> complete_type = 265 runtime->GetRuntimeType(compiler_type)) { 266 m_override_type = complete_type.getValue(); 267 if (m_override_type.IsValid()) 268 return m_override_type; 269 } 270 } 271 return compiler_type; 272 } 273 274 CompilerType ValueObject::GetCompilerType() { 275 return MaybeCalculateCompleteType(); 276 } 277 278 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 279 280 DataExtractor &ValueObject::GetDataExtractor() { 281 UpdateValueIfNeeded(false); 282 return m_data; 283 } 284 285 const Status &ValueObject::GetError() { 286 UpdateValueIfNeeded(false); 287 return m_error; 288 } 289 290 ConstString ValueObject::GetName() const { return m_name; } 291 292 const char *ValueObject::GetLocationAsCString() { 293 return GetLocationAsCStringImpl(m_value, m_data); 294 } 295 296 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 297 const DataExtractor &data) { 298 if (UpdateValueIfNeeded(false)) { 299 if (m_location_str.empty()) { 300 StreamString sstr; 301 302 Value::ValueType value_type = value.GetValueType(); 303 304 switch (value_type) { 305 case Value::ValueType::Invalid: 306 m_location_str = "invalid"; 307 break; 308 case Value::ValueType::Scalar: 309 if (value.GetContextType() == Value::ContextType::RegisterInfo) { 310 RegisterInfo *reg_info = value.GetRegisterInfo(); 311 if (reg_info) { 312 if (reg_info->name) 313 m_location_str = reg_info->name; 314 else if (reg_info->alt_name) 315 m_location_str = reg_info->alt_name; 316 if (m_location_str.empty()) 317 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 318 ? "vector" 319 : "scalar"; 320 } 321 } 322 if (m_location_str.empty()) 323 m_location_str = "scalar"; 324 break; 325 326 case Value::ValueType::LoadAddress: 327 case Value::ValueType::FileAddress: 328 case Value::ValueType::HostAddress: { 329 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 330 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 331 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 332 m_location_str = std::string(sstr.GetString()); 333 } break; 334 } 335 } 336 } 337 return m_location_str.c_str(); 338 } 339 340 Value &ValueObject::GetValue() { return m_value; } 341 342 const Value &ValueObject::GetValue() const { return m_value; } 343 344 bool ValueObject::ResolveValue(Scalar &scalar) { 345 if (UpdateValueIfNeeded( 346 false)) // make sure that you are up to date before returning anything 347 { 348 ExecutionContext exe_ctx(GetExecutionContextRef()); 349 Value tmp_value(m_value); 350 scalar = tmp_value.ResolveValue(&exe_ctx); 351 if (scalar.IsValid()) { 352 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 353 if (bitfield_bit_size) 354 return scalar.ExtractBitfield(bitfield_bit_size, 355 GetBitfieldBitOffset()); 356 return true; 357 } 358 } 359 return false; 360 } 361 362 bool ValueObject::IsLogicalTrue(Status &error) { 363 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 364 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 365 switch (is_logical_true) { 366 case eLazyBoolYes: 367 case eLazyBoolNo: 368 return (is_logical_true == true); 369 case eLazyBoolCalculate: 370 break; 371 } 372 } 373 374 Scalar scalar_value; 375 376 if (!ResolveValue(scalar_value)) { 377 error.SetErrorString("failed to get a scalar result"); 378 return false; 379 } 380 381 bool ret; 382 ret = scalar_value.ULongLong(1) != 0; 383 error.Clear(); 384 return ret; 385 } 386 387 bool ValueObject::GetValueIsValid() const { return m_flags.m_value_is_valid; } 388 389 void ValueObject::SetValueIsValid(bool b) { m_flags.m_value_is_valid = b; } 390 391 bool ValueObject::GetValueDidChange() { return m_flags.m_value_did_change; } 392 393 void ValueObject::SetValueDidChange(bool value_changed) { 394 m_flags.m_value_did_change = value_changed; 395 } 396 397 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 398 ValueObjectSP child_sp; 399 // We may need to update our value if we are dynamic 400 if (IsPossibleDynamicType()) 401 UpdateValueIfNeeded(false); 402 if (idx < GetNumChildren()) { 403 // Check if we have already made the child value object? 404 if (can_create && !m_children.HasChildAtIndex(idx)) { 405 // No we haven't created the child at this index, so lets have our 406 // subclass do it and cache the result for quick future access. 407 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 408 } 409 410 ValueObject *child = m_children.GetChildAtIndex(idx); 411 if (child != nullptr) 412 return child->GetSP(); 413 } 414 return child_sp; 415 } 416 417 lldb::ValueObjectSP 418 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 419 size_t *index_of_error) { 420 if (idxs.size() == 0) 421 return GetSP(); 422 ValueObjectSP root(GetSP()); 423 for (size_t idx : idxs) { 424 root = root->GetChildAtIndex(idx, true); 425 if (!root) { 426 if (index_of_error) 427 *index_of_error = idx; 428 return root; 429 } 430 } 431 return root; 432 } 433 434 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 435 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 436 if (idxs.size() == 0) 437 return GetSP(); 438 ValueObjectSP root(GetSP()); 439 for (std::pair<size_t, bool> idx : idxs) { 440 root = root->GetChildAtIndex(idx.first, idx.second); 441 if (!root) { 442 if (index_of_error) 443 *index_of_error = idx.first; 444 return root; 445 } 446 } 447 return root; 448 } 449 450 lldb::ValueObjectSP 451 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 452 ConstString *name_of_error) { 453 if (names.size() == 0) 454 return GetSP(); 455 ValueObjectSP root(GetSP()); 456 for (ConstString name : names) { 457 root = root->GetChildMemberWithName(name, true); 458 if (!root) { 459 if (name_of_error) 460 *name_of_error = name; 461 return root; 462 } 463 } 464 return root; 465 } 466 467 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 468 llvm::ArrayRef<std::pair<ConstString, bool>> names, 469 ConstString *name_of_error) { 470 if (names.size() == 0) 471 return GetSP(); 472 ValueObjectSP root(GetSP()); 473 for (std::pair<ConstString, bool> name : names) { 474 root = root->GetChildMemberWithName(name.first, name.second); 475 if (!root) { 476 if (name_of_error) 477 *name_of_error = name.first; 478 return root; 479 } 480 } 481 return root; 482 } 483 484 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 485 bool omit_empty_base_classes = true; 486 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 487 omit_empty_base_classes); 488 } 489 490 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 491 bool can_create) { 492 // We may need to update our value if we are dynamic. 493 if (IsPossibleDynamicType()) 494 UpdateValueIfNeeded(false); 495 496 // When getting a child by name, it could be buried inside some base classes 497 // (which really aren't part of the expression path), so we need a vector of 498 // indexes that can get us down to the correct child. 499 std::vector<uint32_t> child_indexes; 500 bool omit_empty_base_classes = true; 501 502 if (!GetCompilerType().IsValid()) 503 return ValueObjectSP(); 504 505 const size_t num_child_indexes = 506 GetCompilerType().GetIndexOfChildMemberWithName( 507 name.GetCString(), omit_empty_base_classes, child_indexes); 508 if (num_child_indexes == 0) 509 return nullptr; 510 511 ValueObjectSP child_sp = GetSP(); 512 for (uint32_t idx : child_indexes) 513 if (child_sp) 514 child_sp = child_sp->GetChildAtIndex(idx, can_create); 515 return child_sp; 516 } 517 518 size_t ValueObject::GetNumChildren(uint32_t max) { 519 UpdateValueIfNeeded(); 520 521 if (max < UINT32_MAX) { 522 if (m_flags.m_children_count_valid) { 523 size_t children_count = m_children.GetChildrenCount(); 524 return children_count <= max ? children_count : max; 525 } else 526 return CalculateNumChildren(max); 527 } 528 529 if (!m_flags.m_children_count_valid) { 530 SetNumChildren(CalculateNumChildren()); 531 } 532 return m_children.GetChildrenCount(); 533 } 534 535 bool ValueObject::MightHaveChildren() { 536 bool has_children = false; 537 const uint32_t type_info = GetTypeInfo(); 538 if (type_info) { 539 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 540 has_children = true; 541 } else { 542 has_children = GetNumChildren() > 0; 543 } 544 return has_children; 545 } 546 547 // Should only be called by ValueObject::GetNumChildren() 548 void ValueObject::SetNumChildren(size_t num_children) { 549 m_flags.m_children_count_valid = true; 550 m_children.SetChildrenCount(num_children); 551 } 552 553 void ValueObject::SetName(ConstString name) { m_name = name; } 554 555 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 556 bool synthetic_array_member, 557 int32_t synthetic_index) { 558 ValueObject *valobj = nullptr; 559 560 bool omit_empty_base_classes = true; 561 bool ignore_array_bounds = synthetic_array_member; 562 std::string child_name_str; 563 uint32_t child_byte_size = 0; 564 int32_t child_byte_offset = 0; 565 uint32_t child_bitfield_bit_size = 0; 566 uint32_t child_bitfield_bit_offset = 0; 567 bool child_is_base_class = false; 568 bool child_is_deref_of_parent = false; 569 uint64_t language_flags = 0; 570 571 const bool transparent_pointers = !synthetic_array_member; 572 CompilerType child_compiler_type; 573 574 ExecutionContext exe_ctx(GetExecutionContextRef()); 575 576 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 577 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 578 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 579 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 580 child_is_deref_of_parent, this, language_flags); 581 if (child_compiler_type) { 582 if (synthetic_index) 583 child_byte_offset += child_byte_size * synthetic_index; 584 585 ConstString child_name; 586 if (!child_name_str.empty()) 587 child_name.SetCString(child_name_str.c_str()); 588 589 valobj = new ValueObjectChild( 590 *this, child_compiler_type, child_name, child_byte_size, 591 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 592 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 593 language_flags); 594 } 595 596 // In case of an incomplete type, try to use the ValueObject's 597 // synthetic value to create the child ValueObject. 598 if (!valobj && synthetic_array_member) { 599 if (ValueObjectSP synth_valobj_sp = GetSyntheticValue()) { 600 valobj = synth_valobj_sp 601 ->GetChildAtIndex(synthetic_index, synthetic_array_member) 602 .get(); 603 } 604 } 605 606 return valobj; 607 } 608 609 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 610 std::string &destination, 611 lldb::LanguageType lang) { 612 return GetSummaryAsCString(summary_ptr, destination, 613 TypeSummaryOptions().SetLanguage(lang)); 614 } 615 616 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 617 std::string &destination, 618 const TypeSummaryOptions &options) { 619 destination.clear(); 620 621 // ideally we would like to bail out if passing NULL, but if we do so we end 622 // up not providing the summary for function pointers anymore 623 if (/*summary_ptr == NULL ||*/ m_flags.m_is_getting_summary) 624 return false; 625 626 m_flags.m_is_getting_summary = true; 627 628 TypeSummaryOptions actual_options(options); 629 630 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 631 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 632 633 // this is a hot path in code and we prefer to avoid setting this string all 634 // too often also clearing out other information that we might care to see in 635 // a crash log. might be useful in very specific situations though. 636 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 637 Summary provider's description is %s", 638 GetTypeName().GetCString(), 639 GetName().GetCString(), 640 summary_ptr->GetDescription().c_str());*/ 641 642 if (UpdateValueIfNeeded(false) && summary_ptr) { 643 if (HasSyntheticValue()) 644 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 645 // the synthetic children being 646 // up-to-date (e.g. ${svar%#}) 647 summary_ptr->FormatObject(this, destination, actual_options); 648 } 649 m_flags.m_is_getting_summary = false; 650 return !destination.empty(); 651 } 652 653 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 654 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 655 TypeSummaryOptions summary_options; 656 summary_options.SetLanguage(lang); 657 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 658 summary_options); 659 } 660 if (m_summary_str.empty()) 661 return nullptr; 662 return m_summary_str.c_str(); 663 } 664 665 bool ValueObject::GetSummaryAsCString(std::string &destination, 666 const TypeSummaryOptions &options) { 667 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 668 } 669 670 bool ValueObject::IsCStringContainer(bool check_pointer) { 671 CompilerType pointee_or_element_compiler_type; 672 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 673 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 674 pointee_or_element_compiler_type.IsCharType()); 675 if (!is_char_arr_ptr) 676 return false; 677 if (!check_pointer) 678 return true; 679 if (type_flags.Test(eTypeIsArray)) 680 return true; 681 addr_t cstr_address = LLDB_INVALID_ADDRESS; 682 AddressType cstr_address_type = eAddressTypeInvalid; 683 cstr_address = GetPointerValue(&cstr_address_type); 684 return (cstr_address != LLDB_INVALID_ADDRESS); 685 } 686 687 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 688 uint32_t item_count) { 689 CompilerType pointee_or_element_compiler_type; 690 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 691 const bool is_pointer_type = type_info & eTypeIsPointer; 692 const bool is_array_type = type_info & eTypeIsArray; 693 if (!(is_pointer_type || is_array_type)) 694 return 0; 695 696 if (item_count == 0) 697 return 0; 698 699 ExecutionContext exe_ctx(GetExecutionContextRef()); 700 701 llvm::Optional<uint64_t> item_type_size = 702 pointee_or_element_compiler_type.GetByteSize( 703 exe_ctx.GetBestExecutionContextScope()); 704 if (!item_type_size) 705 return 0; 706 const uint64_t bytes = item_count * *item_type_size; 707 const uint64_t offset = item_idx * *item_type_size; 708 709 if (item_idx == 0 && item_count == 1) // simply a deref 710 { 711 if (is_pointer_type) { 712 Status error; 713 ValueObjectSP pointee_sp = Dereference(error); 714 if (error.Fail() || pointee_sp.get() == nullptr) 715 return 0; 716 return pointee_sp->GetData(data, error); 717 } else { 718 ValueObjectSP child_sp = GetChildAtIndex(0, true); 719 if (child_sp.get() == nullptr) 720 return 0; 721 Status error; 722 return child_sp->GetData(data, error); 723 } 724 return true; 725 } else /* (items > 1) */ 726 { 727 Status error; 728 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 729 lldb::DataBufferSP data_sp(heap_buf_ptr = 730 new lldb_private::DataBufferHeap()); 731 732 AddressType addr_type; 733 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 734 : GetAddressOf(true, &addr_type); 735 736 switch (addr_type) { 737 case eAddressTypeFile: { 738 ModuleSP module_sp(GetModule()); 739 if (module_sp) { 740 addr = addr + offset; 741 Address so_addr; 742 module_sp->ResolveFileAddress(addr, so_addr); 743 ExecutionContext exe_ctx(GetExecutionContextRef()); 744 Target *target = exe_ctx.GetTargetPtr(); 745 if (target) { 746 heap_buf_ptr->SetByteSize(bytes); 747 size_t bytes_read = target->ReadMemory( 748 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 749 if (error.Success()) { 750 data.SetData(data_sp); 751 return bytes_read; 752 } 753 } 754 } 755 } break; 756 case eAddressTypeLoad: { 757 ExecutionContext exe_ctx(GetExecutionContextRef()); 758 Process *process = exe_ctx.GetProcessPtr(); 759 if (process) { 760 heap_buf_ptr->SetByteSize(bytes); 761 size_t bytes_read = process->ReadMemory( 762 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 763 if (error.Success() || bytes_read > 0) { 764 data.SetData(data_sp); 765 return bytes_read; 766 } 767 } 768 } break; 769 case eAddressTypeHost: { 770 auto max_bytes = 771 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 772 if (max_bytes && *max_bytes > offset) { 773 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 774 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 775 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 776 break; 777 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 778 data.SetData(data_sp); 779 return bytes_read; 780 } 781 } break; 782 case eAddressTypeInvalid: 783 break; 784 } 785 } 786 return 0; 787 } 788 789 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 790 UpdateValueIfNeeded(false); 791 ExecutionContext exe_ctx(GetExecutionContextRef()); 792 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 793 if (error.Fail()) { 794 if (m_data.GetByteSize()) { 795 data = m_data; 796 error.Clear(); 797 return data.GetByteSize(); 798 } else { 799 return 0; 800 } 801 } 802 data.SetAddressByteSize(m_data.GetAddressByteSize()); 803 data.SetByteOrder(m_data.GetByteOrder()); 804 return data.GetByteSize(); 805 } 806 807 bool ValueObject::SetData(DataExtractor &data, Status &error) { 808 error.Clear(); 809 // Make sure our value is up to date first so that our location and location 810 // type is valid. 811 if (!UpdateValueIfNeeded(false)) { 812 error.SetErrorString("unable to read value"); 813 return false; 814 } 815 816 uint64_t count = 0; 817 const Encoding encoding = GetCompilerType().GetEncoding(count); 818 819 const size_t byte_size = GetByteSize().getValueOr(0); 820 821 Value::ValueType value_type = m_value.GetValueType(); 822 823 switch (value_type) { 824 case Value::ValueType::Invalid: 825 error.SetErrorString("invalid location"); 826 return false; 827 case Value::ValueType::Scalar: { 828 Status set_error = 829 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 830 831 if (!set_error.Success()) { 832 error.SetErrorStringWithFormat("unable to set scalar value: %s", 833 set_error.AsCString()); 834 return false; 835 } 836 } break; 837 case Value::ValueType::LoadAddress: { 838 // If it is a load address, then the scalar value is the storage location 839 // of the data, and we have to shove this value down to that load location. 840 ExecutionContext exe_ctx(GetExecutionContextRef()); 841 Process *process = exe_ctx.GetProcessPtr(); 842 if (process) { 843 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 844 size_t bytes_written = process->WriteMemory( 845 target_addr, data.GetDataStart(), byte_size, error); 846 if (!error.Success()) 847 return false; 848 if (bytes_written != byte_size) { 849 error.SetErrorString("unable to write value to memory"); 850 return false; 851 } 852 } 853 } break; 854 case Value::ValueType::HostAddress: { 855 // If it is a host address, then we stuff the scalar as a DataBuffer into 856 // the Value's data. 857 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 858 m_data.SetData(buffer_sp, 0); 859 data.CopyByteOrderedData(0, byte_size, 860 const_cast<uint8_t *>(m_data.GetDataStart()), 861 byte_size, m_data.GetByteOrder()); 862 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 863 } break; 864 case Value::ValueType::FileAddress: 865 break; 866 } 867 868 // If we have reached this point, then we have successfully changed the 869 // value. 870 SetNeedsUpdate(); 871 return true; 872 } 873 874 static bool CopyStringDataToBufferSP(const StreamString &source, 875 lldb::DataBufferSP &destination) { 876 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 877 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 878 return true; 879 } 880 881 std::pair<size_t, bool> 882 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 883 uint32_t max_length, bool honor_array, 884 Format item_format) { 885 bool was_capped = false; 886 StreamString s; 887 ExecutionContext exe_ctx(GetExecutionContextRef()); 888 Target *target = exe_ctx.GetTargetPtr(); 889 890 if (!target) { 891 s << "<no target to read from>"; 892 error.SetErrorString("no target to read from"); 893 CopyStringDataToBufferSP(s, buffer_sp); 894 return {0, was_capped}; 895 } 896 897 if (max_length == 0) 898 max_length = target->GetMaximumSizeOfStringSummary(); 899 900 size_t bytes_read = 0; 901 size_t total_bytes_read = 0; 902 903 CompilerType compiler_type = GetCompilerType(); 904 CompilerType elem_or_pointee_compiler_type; 905 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 906 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 907 elem_or_pointee_compiler_type.IsCharType()) { 908 addr_t cstr_address = LLDB_INVALID_ADDRESS; 909 AddressType cstr_address_type = eAddressTypeInvalid; 910 911 size_t cstr_len = 0; 912 bool capped_data = false; 913 const bool is_array = type_flags.Test(eTypeIsArray); 914 if (is_array) { 915 // We have an array 916 uint64_t array_size = 0; 917 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 918 cstr_len = array_size; 919 if (cstr_len > max_length) { 920 capped_data = true; 921 cstr_len = max_length; 922 } 923 } 924 cstr_address = GetAddressOf(true, &cstr_address_type); 925 } else { 926 // We have a pointer 927 cstr_address = GetPointerValue(&cstr_address_type); 928 } 929 930 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 931 if (cstr_address_type == eAddressTypeHost && is_array) { 932 const char *cstr = GetDataExtractor().PeekCStr(0); 933 if (cstr == nullptr) { 934 s << "<invalid address>"; 935 error.SetErrorString("invalid address"); 936 CopyStringDataToBufferSP(s, buffer_sp); 937 return {0, was_capped}; 938 } 939 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 940 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 941 return {cstr_len, was_capped}; 942 } else { 943 s << "<invalid address>"; 944 error.SetErrorString("invalid address"); 945 CopyStringDataToBufferSP(s, buffer_sp); 946 return {0, was_capped}; 947 } 948 } 949 950 Address cstr_so_addr(cstr_address); 951 DataExtractor data; 952 if (cstr_len > 0 && honor_array) { 953 // I am using GetPointeeData() here to abstract the fact that some 954 // ValueObjects are actually frozen pointers in the host but the pointed- 955 // to data lives in the debuggee, and GetPointeeData() automatically 956 // takes care of this 957 GetPointeeData(data, 0, cstr_len); 958 959 if ((bytes_read = data.GetByteSize()) > 0) { 960 total_bytes_read = bytes_read; 961 for (size_t offset = 0; offset < bytes_read; offset++) 962 s.Printf("%c", *data.PeekData(offset, 1)); 963 if (capped_data) 964 was_capped = true; 965 } 966 } else { 967 cstr_len = max_length; 968 const size_t k_max_buf_size = 64; 969 970 size_t offset = 0; 971 972 int cstr_len_displayed = -1; 973 bool capped_cstr = false; 974 // I am using GetPointeeData() here to abstract the fact that some 975 // ValueObjects are actually frozen pointers in the host but the pointed- 976 // to data lives in the debuggee, and GetPointeeData() automatically 977 // takes care of this 978 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 979 total_bytes_read += bytes_read; 980 const char *cstr = data.PeekCStr(0); 981 size_t len = strnlen(cstr, k_max_buf_size); 982 if (cstr_len_displayed < 0) 983 cstr_len_displayed = len; 984 985 if (len == 0) 986 break; 987 cstr_len_displayed += len; 988 if (len > bytes_read) 989 len = bytes_read; 990 if (len > cstr_len) 991 len = cstr_len; 992 993 for (size_t offset = 0; offset < bytes_read; offset++) 994 s.Printf("%c", *data.PeekData(offset, 1)); 995 996 if (len < k_max_buf_size) 997 break; 998 999 if (len >= cstr_len) { 1000 capped_cstr = true; 1001 break; 1002 } 1003 1004 cstr_len -= len; 1005 offset += len; 1006 } 1007 1008 if (cstr_len_displayed >= 0) { 1009 if (capped_cstr) 1010 was_capped = true; 1011 } 1012 } 1013 } else { 1014 error.SetErrorString("not a string object"); 1015 s << "<not a string object>"; 1016 } 1017 CopyStringDataToBufferSP(s, buffer_sp); 1018 return {total_bytes_read, was_capped}; 1019 } 1020 1021 const char *ValueObject::GetObjectDescription() { 1022 if (!UpdateValueIfNeeded(true)) 1023 return nullptr; 1024 1025 // Return cached value. 1026 if (!m_object_desc_str.empty()) 1027 return m_object_desc_str.c_str(); 1028 1029 ExecutionContext exe_ctx(GetExecutionContextRef()); 1030 Process *process = exe_ctx.GetProcessPtr(); 1031 if (!process) 1032 return nullptr; 1033 1034 // Returns the object description produced by one language runtime. 1035 auto get_object_description = [&](LanguageType language) -> const char * { 1036 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1037 StreamString s; 1038 if (runtime->GetObjectDescription(s, *this)) { 1039 m_object_desc_str.append(std::string(s.GetString())); 1040 return m_object_desc_str.c_str(); 1041 } 1042 } 1043 return nullptr; 1044 }; 1045 1046 // Try the native language runtime first. 1047 LanguageType native_language = GetObjectRuntimeLanguage(); 1048 if (const char *desc = get_object_description(native_language)) 1049 return desc; 1050 1051 // Try the Objective-C language runtime. This fallback is necessary 1052 // for Objective-C++ and mixed Objective-C / C++ programs. 1053 if (Language::LanguageIsCFamily(native_language)) 1054 return get_object_description(eLanguageTypeObjC); 1055 return nullptr; 1056 } 1057 1058 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1059 std::string &destination) { 1060 if (UpdateValueIfNeeded(false)) 1061 return format.FormatObject(this, destination); 1062 else 1063 return false; 1064 } 1065 1066 bool ValueObject::GetValueAsCString(lldb::Format format, 1067 std::string &destination) { 1068 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1069 } 1070 1071 const char *ValueObject::GetValueAsCString() { 1072 if (UpdateValueIfNeeded(true)) { 1073 lldb::TypeFormatImplSP format_sp; 1074 lldb::Format my_format = GetFormat(); 1075 if (my_format == lldb::eFormatDefault) { 1076 if (m_type_format_sp) 1077 format_sp = m_type_format_sp; 1078 else { 1079 if (m_flags.m_is_bitfield_for_scalar) 1080 my_format = eFormatUnsigned; 1081 else { 1082 if (m_value.GetContextType() == Value::ContextType::RegisterInfo) { 1083 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1084 if (reg_info) 1085 my_format = reg_info->format; 1086 } else { 1087 my_format = GetValue().GetCompilerType().GetFormat(); 1088 } 1089 } 1090 } 1091 } 1092 if (my_format != m_last_format || m_value_str.empty()) { 1093 m_last_format = my_format; 1094 if (!format_sp) 1095 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1096 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1097 if (!m_flags.m_value_did_change && m_flags.m_old_value_valid) { 1098 // The value was gotten successfully, so we consider the value as 1099 // changed if the value string differs 1100 SetValueDidChange(m_old_value_str != m_value_str); 1101 } 1102 } 1103 } 1104 } 1105 if (m_value_str.empty()) 1106 return nullptr; 1107 return m_value_str.c_str(); 1108 } 1109 1110 // if > 8bytes, 0 is returned. this method should mostly be used to read 1111 // address values out of pointers 1112 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1113 // If our byte size is zero this is an aggregate type that has children 1114 if (CanProvideValue()) { 1115 Scalar scalar; 1116 if (ResolveValue(scalar)) { 1117 if (success) 1118 *success = true; 1119 scalar.MakeUnsigned(); 1120 return scalar.ULongLong(fail_value); 1121 } 1122 // fallthrough, otherwise... 1123 } 1124 1125 if (success) 1126 *success = false; 1127 return fail_value; 1128 } 1129 1130 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1131 // If our byte size is zero this is an aggregate type that has children 1132 if (CanProvideValue()) { 1133 Scalar scalar; 1134 if (ResolveValue(scalar)) { 1135 if (success) 1136 *success = true; 1137 scalar.MakeSigned(); 1138 return scalar.SLongLong(fail_value); 1139 } 1140 // fallthrough, otherwise... 1141 } 1142 1143 if (success) 1144 *success = false; 1145 return fail_value; 1146 } 1147 1148 // if any more "special cases" are added to 1149 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1150 // by returning true for your new special cases. We will eventually move to 1151 // checking this call result before trying to display special cases 1152 bool ValueObject::HasSpecialPrintableRepresentation( 1153 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1154 Flags flags(GetTypeInfo()); 1155 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1156 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1157 if (IsCStringContainer(true) && 1158 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1159 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1160 return true; 1161 1162 if (flags.Test(eTypeIsArray)) { 1163 if ((custom_format == eFormatBytes) || 1164 (custom_format == eFormatBytesWithASCII)) 1165 return true; 1166 1167 if ((custom_format == eFormatVectorOfChar) || 1168 (custom_format == eFormatVectorOfFloat32) || 1169 (custom_format == eFormatVectorOfFloat64) || 1170 (custom_format == eFormatVectorOfSInt16) || 1171 (custom_format == eFormatVectorOfSInt32) || 1172 (custom_format == eFormatVectorOfSInt64) || 1173 (custom_format == eFormatVectorOfSInt8) || 1174 (custom_format == eFormatVectorOfUInt128) || 1175 (custom_format == eFormatVectorOfUInt16) || 1176 (custom_format == eFormatVectorOfUInt32) || 1177 (custom_format == eFormatVectorOfUInt64) || 1178 (custom_format == eFormatVectorOfUInt8)) 1179 return true; 1180 } 1181 } 1182 return false; 1183 } 1184 1185 bool ValueObject::DumpPrintableRepresentation( 1186 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1187 Format custom_format, PrintableRepresentationSpecialCases special, 1188 bool do_dump_error) { 1189 1190 Flags flags(GetTypeInfo()); 1191 1192 bool allow_special = 1193 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1194 const bool only_special = false; 1195 1196 if (allow_special) { 1197 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1198 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1199 // when being asked to get a printable display an array or pointer type 1200 // directly, try to "do the right thing" 1201 1202 if (IsCStringContainer(true) && 1203 (custom_format == eFormatCString || 1204 custom_format == eFormatCharArray || custom_format == eFormatChar || 1205 custom_format == 1206 eFormatVectorOfChar)) // print char[] & char* directly 1207 { 1208 Status error; 1209 lldb::DataBufferSP buffer_sp; 1210 std::pair<size_t, bool> read_string = ReadPointedString( 1211 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1212 (custom_format == eFormatCharArray)); 1213 lldb_private::formatters::StringPrinter:: 1214 ReadBufferAndDumpToStreamOptions options(*this); 1215 options.SetData(DataExtractor( 1216 buffer_sp, lldb::eByteOrderInvalid, 1217 8)); // none of this matters for a string - pass some defaults 1218 options.SetStream(&s); 1219 options.SetPrefixToken(nullptr); 1220 options.SetQuote('"'); 1221 options.SetSourceSize(buffer_sp->GetByteSize()); 1222 options.SetIsTruncated(read_string.second); 1223 formatters::StringPrinter::ReadBufferAndDumpToStream< 1224 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1225 options); 1226 return !error.Fail(); 1227 } 1228 1229 if (custom_format == eFormatEnum) 1230 return false; 1231 1232 // this only works for arrays, because I have no way to know when the 1233 // pointed memory ends, and no special \0 end of data marker 1234 if (flags.Test(eTypeIsArray)) { 1235 if ((custom_format == eFormatBytes) || 1236 (custom_format == eFormatBytesWithASCII)) { 1237 const size_t count = GetNumChildren(); 1238 1239 s << '['; 1240 for (size_t low = 0; low < count; low++) { 1241 1242 if (low) 1243 s << ','; 1244 1245 ValueObjectSP child = GetChildAtIndex(low, true); 1246 if (!child.get()) { 1247 s << "<invalid child>"; 1248 continue; 1249 } 1250 child->DumpPrintableRepresentation( 1251 s, ValueObject::eValueObjectRepresentationStyleValue, 1252 custom_format); 1253 } 1254 1255 s << ']'; 1256 1257 return true; 1258 } 1259 1260 if ((custom_format == eFormatVectorOfChar) || 1261 (custom_format == eFormatVectorOfFloat32) || 1262 (custom_format == eFormatVectorOfFloat64) || 1263 (custom_format == eFormatVectorOfSInt16) || 1264 (custom_format == eFormatVectorOfSInt32) || 1265 (custom_format == eFormatVectorOfSInt64) || 1266 (custom_format == eFormatVectorOfSInt8) || 1267 (custom_format == eFormatVectorOfUInt128) || 1268 (custom_format == eFormatVectorOfUInt16) || 1269 (custom_format == eFormatVectorOfUInt32) || 1270 (custom_format == eFormatVectorOfUInt64) || 1271 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1272 // with ASCII or any vector 1273 // format should be printed 1274 // directly 1275 { 1276 const size_t count = GetNumChildren(); 1277 1278 Format format = FormatManager::GetSingleItemFormat(custom_format); 1279 1280 s << '['; 1281 for (size_t low = 0; low < count; low++) { 1282 1283 if (low) 1284 s << ','; 1285 1286 ValueObjectSP child = GetChildAtIndex(low, true); 1287 if (!child.get()) { 1288 s << "<invalid child>"; 1289 continue; 1290 } 1291 child->DumpPrintableRepresentation( 1292 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1293 } 1294 1295 s << ']'; 1296 1297 return true; 1298 } 1299 } 1300 1301 if ((custom_format == eFormatBoolean) || 1302 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1303 (custom_format == eFormatCharPrintable) || 1304 (custom_format == eFormatComplexFloat) || 1305 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1306 (custom_format == eFormatHexUppercase) || 1307 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1308 (custom_format == eFormatOSType) || 1309 (custom_format == eFormatUnicode16) || 1310 (custom_format == eFormatUnicode32) || 1311 (custom_format == eFormatUnsigned) || 1312 (custom_format == eFormatPointer) || 1313 (custom_format == eFormatComplexInteger) || 1314 (custom_format == eFormatComplex) || 1315 (custom_format == eFormatDefault)) // use the [] operator 1316 return false; 1317 } 1318 } 1319 1320 if (only_special) 1321 return false; 1322 1323 bool var_success = false; 1324 1325 { 1326 llvm::StringRef str; 1327 1328 // this is a local stream that we are using to ensure that the data pointed 1329 // to by cstr survives long enough for us to copy it to its destination - 1330 // it is necessary to have this temporary storage area for cases where our 1331 // desired output is not backed by some other longer-term storage 1332 StreamString strm; 1333 1334 if (custom_format != eFormatInvalid) 1335 SetFormat(custom_format); 1336 1337 switch (val_obj_display) { 1338 case eValueObjectRepresentationStyleValue: 1339 str = GetValueAsCString(); 1340 break; 1341 1342 case eValueObjectRepresentationStyleSummary: 1343 str = GetSummaryAsCString(); 1344 break; 1345 1346 case eValueObjectRepresentationStyleLanguageSpecific: 1347 str = GetObjectDescription(); 1348 break; 1349 1350 case eValueObjectRepresentationStyleLocation: 1351 str = GetLocationAsCString(); 1352 break; 1353 1354 case eValueObjectRepresentationStyleChildrenCount: 1355 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1356 str = strm.GetString(); 1357 break; 1358 1359 case eValueObjectRepresentationStyleType: 1360 str = GetTypeName().GetStringRef(); 1361 break; 1362 1363 case eValueObjectRepresentationStyleName: 1364 str = GetName().GetStringRef(); 1365 break; 1366 1367 case eValueObjectRepresentationStyleExpressionPath: 1368 GetExpressionPath(strm); 1369 str = strm.GetString(); 1370 break; 1371 } 1372 1373 if (str.empty()) { 1374 if (val_obj_display == eValueObjectRepresentationStyleValue) 1375 str = GetSummaryAsCString(); 1376 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1377 if (!CanProvideValue()) { 1378 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1379 GetLocationAsCString()); 1380 str = strm.GetString(); 1381 } else 1382 str = GetValueAsCString(); 1383 } 1384 } 1385 1386 if (!str.empty()) 1387 s << str; 1388 else { 1389 if (m_error.Fail()) { 1390 if (do_dump_error) 1391 s.Printf("<%s>", m_error.AsCString()); 1392 else 1393 return false; 1394 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1395 s.PutCString("<no summary available>"); 1396 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1397 s.PutCString("<no value available>"); 1398 else if (val_obj_display == 1399 eValueObjectRepresentationStyleLanguageSpecific) 1400 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1401 // have other runtimes 1402 // that support a 1403 // description 1404 else 1405 s.PutCString("<no printable representation>"); 1406 } 1407 1408 // we should only return false here if we could not do *anything* even if 1409 // we have an error message as output, that's a success from our callers' 1410 // perspective, so return true 1411 var_success = true; 1412 1413 if (custom_format != eFormatInvalid) 1414 SetFormat(eFormatDefault); 1415 } 1416 1417 return var_success; 1418 } 1419 1420 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1421 AddressType *address_type) { 1422 // Can't take address of a bitfield 1423 if (IsBitfield()) 1424 return LLDB_INVALID_ADDRESS; 1425 1426 if (!UpdateValueIfNeeded(false)) 1427 return LLDB_INVALID_ADDRESS; 1428 1429 switch (m_value.GetValueType()) { 1430 case Value::ValueType::Invalid: 1431 return LLDB_INVALID_ADDRESS; 1432 case Value::ValueType::Scalar: 1433 if (scalar_is_load_address) { 1434 if (address_type) 1435 *address_type = eAddressTypeLoad; 1436 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1437 } 1438 break; 1439 1440 case Value::ValueType::LoadAddress: 1441 case Value::ValueType::FileAddress: { 1442 if (address_type) 1443 *address_type = m_value.GetValueAddressType(); 1444 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1445 } break; 1446 case Value::ValueType::HostAddress: { 1447 if (address_type) 1448 *address_type = m_value.GetValueAddressType(); 1449 return LLDB_INVALID_ADDRESS; 1450 } break; 1451 } 1452 if (address_type) 1453 *address_type = eAddressTypeInvalid; 1454 return LLDB_INVALID_ADDRESS; 1455 } 1456 1457 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1458 addr_t address = LLDB_INVALID_ADDRESS; 1459 if (address_type) 1460 *address_type = eAddressTypeInvalid; 1461 1462 if (!UpdateValueIfNeeded(false)) 1463 return address; 1464 1465 switch (m_value.GetValueType()) { 1466 case Value::ValueType::Invalid: 1467 return LLDB_INVALID_ADDRESS; 1468 case Value::ValueType::Scalar: 1469 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1470 break; 1471 1472 case Value::ValueType::HostAddress: 1473 case Value::ValueType::LoadAddress: 1474 case Value::ValueType::FileAddress: { 1475 lldb::offset_t data_offset = 0; 1476 address = m_data.GetAddress(&data_offset); 1477 } break; 1478 } 1479 1480 if (address_type) 1481 *address_type = GetAddressTypeOfChildren(); 1482 1483 return address; 1484 } 1485 1486 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1487 error.Clear(); 1488 // Make sure our value is up to date first so that our location and location 1489 // type is valid. 1490 if (!UpdateValueIfNeeded(false)) { 1491 error.SetErrorString("unable to read value"); 1492 return false; 1493 } 1494 1495 uint64_t count = 0; 1496 const Encoding encoding = GetCompilerType().GetEncoding(count); 1497 1498 const size_t byte_size = GetByteSize().getValueOr(0); 1499 1500 Value::ValueType value_type = m_value.GetValueType(); 1501 1502 if (value_type == Value::ValueType::Scalar) { 1503 // If the value is already a scalar, then let the scalar change itself: 1504 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1505 } else if (byte_size <= 16) { 1506 // If the value fits in a scalar, then make a new scalar and again let the 1507 // scalar code do the conversion, then figure out where to put the new 1508 // value. 1509 Scalar new_scalar; 1510 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1511 if (error.Success()) { 1512 switch (value_type) { 1513 case Value::ValueType::LoadAddress: { 1514 // If it is a load address, then the scalar value is the storage 1515 // location of the data, and we have to shove this value down to that 1516 // load location. 1517 ExecutionContext exe_ctx(GetExecutionContextRef()); 1518 Process *process = exe_ctx.GetProcessPtr(); 1519 if (process) { 1520 addr_t target_addr = 1521 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1522 size_t bytes_written = process->WriteScalarToMemory( 1523 target_addr, new_scalar, byte_size, error); 1524 if (!error.Success()) 1525 return false; 1526 if (bytes_written != byte_size) { 1527 error.SetErrorString("unable to write value to memory"); 1528 return false; 1529 } 1530 } 1531 } break; 1532 case Value::ValueType::HostAddress: { 1533 // If it is a host address, then we stuff the scalar as a DataBuffer 1534 // into the Value's data. 1535 DataExtractor new_data; 1536 new_data.SetByteOrder(m_data.GetByteOrder()); 1537 1538 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1539 m_data.SetData(buffer_sp, 0); 1540 bool success = new_scalar.GetData(new_data); 1541 if (success) { 1542 new_data.CopyByteOrderedData( 1543 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1544 byte_size, m_data.GetByteOrder()); 1545 } 1546 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1547 1548 } break; 1549 case Value::ValueType::Invalid: 1550 error.SetErrorString("invalid location"); 1551 return false; 1552 case Value::ValueType::FileAddress: 1553 case Value::ValueType::Scalar: 1554 break; 1555 } 1556 } else { 1557 return false; 1558 } 1559 } else { 1560 // We don't support setting things bigger than a scalar at present. 1561 error.SetErrorString("unable to write aggregate data type"); 1562 return false; 1563 } 1564 1565 // If we have reached this point, then we have successfully changed the 1566 // value. 1567 SetNeedsUpdate(); 1568 return true; 1569 } 1570 1571 bool ValueObject::GetDeclaration(Declaration &decl) { 1572 decl.Clear(); 1573 return false; 1574 } 1575 1576 ConstString ValueObject::GetTypeName() { 1577 return GetCompilerType().GetTypeName(); 1578 } 1579 1580 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1581 1582 ConstString ValueObject::GetQualifiedTypeName() { 1583 return GetCompilerType().GetTypeName(); 1584 } 1585 1586 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1587 return GetCompilerType().GetMinimumLanguage(); 1588 } 1589 1590 void ValueObject::AddSyntheticChild(ConstString key, 1591 ValueObject *valobj) { 1592 m_synthetic_children[key] = valobj; 1593 } 1594 1595 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1596 ValueObjectSP synthetic_child_sp; 1597 std::map<ConstString, ValueObject *>::const_iterator pos = 1598 m_synthetic_children.find(key); 1599 if (pos != m_synthetic_children.end()) 1600 synthetic_child_sp = pos->second->GetSP(); 1601 return synthetic_child_sp; 1602 } 1603 1604 uint32_t 1605 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1606 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1607 } 1608 1609 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1610 1611 bool ValueObject::IsArrayType() { 1612 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1613 } 1614 1615 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1616 1617 bool ValueObject::IsIntegerType(bool &is_signed) { 1618 return GetCompilerType().IsIntegerType(is_signed); 1619 } 1620 1621 bool ValueObject::IsPointerOrReferenceType() { 1622 return GetCompilerType().IsPointerOrReferenceType(); 1623 } 1624 1625 bool ValueObject::IsPossibleDynamicType() { 1626 ExecutionContext exe_ctx(GetExecutionContextRef()); 1627 Process *process = exe_ctx.GetProcessPtr(); 1628 if (process) 1629 return process->IsPossibleDynamicValue(*this); 1630 else 1631 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1632 } 1633 1634 bool ValueObject::IsRuntimeSupportValue() { 1635 Process *process(GetProcessSP().get()); 1636 if (!process) 1637 return false; 1638 1639 // We trust the the compiler did the right thing and marked runtime support 1640 // values as artificial. 1641 if (!GetVariable() || !GetVariable()->IsArtificial()) 1642 return false; 1643 1644 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1645 if (runtime->IsAllowedRuntimeValue(GetName())) 1646 return false; 1647 1648 return true; 1649 } 1650 1651 bool ValueObject::IsNilReference() { 1652 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1653 return language->IsNilReference(*this); 1654 } 1655 return false; 1656 } 1657 1658 bool ValueObject::IsUninitializedReference() { 1659 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1660 return language->IsUninitializedReference(*this); 1661 } 1662 return false; 1663 } 1664 1665 // This allows you to create an array member using and index that doesn't not 1666 // fall in the normal bounds of the array. Many times structure can be defined 1667 // as: struct Collection { 1668 // uint32_t item_count; 1669 // Item item_array[0]; 1670 // }; 1671 // The size of the "item_array" is 1, but many times in practice there are more 1672 // items in "item_array". 1673 1674 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1675 bool can_create) { 1676 ValueObjectSP synthetic_child_sp; 1677 if (IsPointerType() || IsArrayType()) { 1678 std::string index_str = llvm::formatv("[{0}]", index); 1679 ConstString index_const_str(index_str); 1680 // Check if we have already created a synthetic array member in this valid 1681 // object. If we have we will re-use it. 1682 synthetic_child_sp = GetSyntheticChild(index_const_str); 1683 if (!synthetic_child_sp) { 1684 ValueObject *synthetic_child; 1685 // We haven't made a synthetic array member for INDEX yet, so lets make 1686 // one and cache it for any future reference. 1687 synthetic_child = CreateChildAtIndex(0, true, index); 1688 1689 // Cache the value if we got one back... 1690 if (synthetic_child) { 1691 AddSyntheticChild(index_const_str, synthetic_child); 1692 synthetic_child_sp = synthetic_child->GetSP(); 1693 synthetic_child_sp->SetName(ConstString(index_str)); 1694 synthetic_child_sp->m_flags.m_is_array_item_for_pointer = true; 1695 } 1696 } 1697 } 1698 return synthetic_child_sp; 1699 } 1700 1701 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1702 bool can_create) { 1703 ValueObjectSP synthetic_child_sp; 1704 if (IsScalarType()) { 1705 std::string index_str = llvm::formatv("[{0}-{1}]", from, to); 1706 ConstString index_const_str(index_str); 1707 // Check if we have already created a synthetic array member in this valid 1708 // object. If we have we will re-use it. 1709 synthetic_child_sp = GetSyntheticChild(index_const_str); 1710 if (!synthetic_child_sp) { 1711 uint32_t bit_field_size = to - from + 1; 1712 uint32_t bit_field_offset = from; 1713 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1714 bit_field_offset = 1715 GetByteSize().getValueOr(0) * 8 - bit_field_size - bit_field_offset; 1716 // We haven't made a synthetic array member for INDEX yet, so lets make 1717 // one and cache it for any future reference. 1718 ValueObjectChild *synthetic_child = new ValueObjectChild( 1719 *this, GetCompilerType(), index_const_str, 1720 GetByteSize().getValueOr(0), 0, bit_field_size, bit_field_offset, 1721 false, false, eAddressTypeInvalid, 0); 1722 1723 // Cache the value if we got one back... 1724 if (synthetic_child) { 1725 AddSyntheticChild(index_const_str, synthetic_child); 1726 synthetic_child_sp = synthetic_child->GetSP(); 1727 synthetic_child_sp->SetName(ConstString(index_str)); 1728 synthetic_child_sp->m_flags.m_is_bitfield_for_scalar = true; 1729 } 1730 } 1731 } 1732 return synthetic_child_sp; 1733 } 1734 1735 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1736 uint32_t offset, const CompilerType &type, bool can_create, 1737 ConstString name_const_str) { 1738 1739 ValueObjectSP synthetic_child_sp; 1740 1741 if (name_const_str.IsEmpty()) { 1742 name_const_str.SetString("@" + std::to_string(offset)); 1743 } 1744 1745 // Check if we have already created a synthetic array member in this valid 1746 // object. If we have we will re-use it. 1747 synthetic_child_sp = GetSyntheticChild(name_const_str); 1748 1749 if (synthetic_child_sp.get()) 1750 return synthetic_child_sp; 1751 1752 if (!can_create) 1753 return {}; 1754 1755 ExecutionContext exe_ctx(GetExecutionContextRef()); 1756 llvm::Optional<uint64_t> size = 1757 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1758 if (!size) 1759 return {}; 1760 ValueObjectChild *synthetic_child = 1761 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1762 false, false, eAddressTypeInvalid, 0); 1763 if (synthetic_child) { 1764 AddSyntheticChild(name_const_str, synthetic_child); 1765 synthetic_child_sp = synthetic_child->GetSP(); 1766 synthetic_child_sp->SetName(name_const_str); 1767 synthetic_child_sp->m_flags.m_is_child_at_offset = true; 1768 } 1769 return synthetic_child_sp; 1770 } 1771 1772 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1773 const CompilerType &type, 1774 bool can_create, 1775 ConstString name_const_str) { 1776 ValueObjectSP synthetic_child_sp; 1777 1778 if (name_const_str.IsEmpty()) { 1779 char name_str[128]; 1780 snprintf(name_str, sizeof(name_str), "base%s@%i", 1781 type.GetTypeName().AsCString("<unknown>"), offset); 1782 name_const_str.SetCString(name_str); 1783 } 1784 1785 // Check if we have already created a synthetic array member in this valid 1786 // object. If we have we will re-use it. 1787 synthetic_child_sp = GetSyntheticChild(name_const_str); 1788 1789 if (synthetic_child_sp.get()) 1790 return synthetic_child_sp; 1791 1792 if (!can_create) 1793 return {}; 1794 1795 const bool is_base_class = true; 1796 1797 ExecutionContext exe_ctx(GetExecutionContextRef()); 1798 llvm::Optional<uint64_t> size = 1799 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1800 if (!size) 1801 return {}; 1802 ValueObjectChild *synthetic_child = 1803 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1804 is_base_class, false, eAddressTypeInvalid, 0); 1805 if (synthetic_child) { 1806 AddSyntheticChild(name_const_str, synthetic_child); 1807 synthetic_child_sp = synthetic_child->GetSP(); 1808 synthetic_child_sp->SetName(name_const_str); 1809 } 1810 return synthetic_child_sp; 1811 } 1812 1813 // your expression path needs to have a leading . or -> (unless it somehow 1814 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1815 // is meaningful and should be shown to the user, . and -> are just parser 1816 // design, but by no means added information for the user.. strip them off 1817 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1818 if (!expression || !expression[0]) 1819 return expression; 1820 if (expression[0] == '.') 1821 return expression + 1; 1822 if (expression[0] == '-' && expression[1] == '>') 1823 return expression + 2; 1824 return expression; 1825 } 1826 1827 ValueObjectSP 1828 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1829 bool can_create) { 1830 ValueObjectSP synthetic_child_sp; 1831 ConstString name_const_string(expression); 1832 // Check if we have already created a synthetic array member in this valid 1833 // object. If we have we will re-use it. 1834 synthetic_child_sp = GetSyntheticChild(name_const_string); 1835 if (!synthetic_child_sp) { 1836 // We haven't made a synthetic array member for expression yet, so lets 1837 // make one and cache it for any future reference. 1838 synthetic_child_sp = GetValueForExpressionPath( 1839 expression, nullptr, nullptr, 1840 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1841 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1842 None)); 1843 1844 // Cache the value if we got one back... 1845 if (synthetic_child_sp.get()) { 1846 // FIXME: this causes a "real" child to end up with its name changed to 1847 // the contents of expression 1848 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1849 synthetic_child_sp->SetName( 1850 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1851 } 1852 } 1853 return synthetic_child_sp; 1854 } 1855 1856 void ValueObject::CalculateSyntheticValue() { 1857 TargetSP target_sp(GetTargetSP()); 1858 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1859 m_synthetic_value = nullptr; 1860 return; 1861 } 1862 1863 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1864 1865 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1866 return; 1867 1868 if (m_synthetic_children_sp.get() == nullptr) 1869 return; 1870 1871 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1872 return; 1873 1874 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1875 } 1876 1877 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1878 if (use_dynamic == eNoDynamicValues) 1879 return; 1880 1881 if (!m_dynamic_value && !IsDynamic()) { 1882 ExecutionContext exe_ctx(GetExecutionContextRef()); 1883 Process *process = exe_ctx.GetProcessPtr(); 1884 if (process && process->IsPossibleDynamicValue(*this)) { 1885 ClearDynamicTypeInformation(); 1886 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1887 } 1888 } 1889 } 1890 1891 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1892 if (use_dynamic == eNoDynamicValues) 1893 return ValueObjectSP(); 1894 1895 if (!IsDynamic() && m_dynamic_value == nullptr) { 1896 CalculateDynamicValue(use_dynamic); 1897 } 1898 if (m_dynamic_value) 1899 return m_dynamic_value->GetSP(); 1900 else 1901 return ValueObjectSP(); 1902 } 1903 1904 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1905 1906 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1907 1908 ValueObjectSP ValueObject::GetSyntheticValue() { 1909 CalculateSyntheticValue(); 1910 1911 if (m_synthetic_value) 1912 return m_synthetic_value->GetSP(); 1913 else 1914 return ValueObjectSP(); 1915 } 1916 1917 bool ValueObject::HasSyntheticValue() { 1918 UpdateFormatsIfNeeded(); 1919 1920 if (m_synthetic_children_sp.get() == nullptr) 1921 return false; 1922 1923 CalculateSyntheticValue(); 1924 1925 return m_synthetic_value != nullptr; 1926 } 1927 1928 ValueObject *ValueObject::GetNonBaseClassParent() { 1929 if (GetParent()) { 1930 if (GetParent()->IsBaseClass()) 1931 return GetParent()->GetNonBaseClassParent(); 1932 else 1933 return GetParent(); 1934 } 1935 return nullptr; 1936 } 1937 1938 bool ValueObject::IsBaseClass(uint32_t &depth) { 1939 if (!IsBaseClass()) { 1940 depth = 0; 1941 return false; 1942 } 1943 if (GetParent()) { 1944 GetParent()->IsBaseClass(depth); 1945 depth = depth + 1; 1946 return true; 1947 } 1948 // TODO: a base of no parent? weird.. 1949 depth = 1; 1950 return true; 1951 } 1952 1953 void ValueObject::GetExpressionPath(Stream &s, 1954 GetExpressionPathFormat epformat) { 1955 // synthetic children do not actually "exist" as part of the hierarchy, and 1956 // sometimes they are consed up in ways that don't make sense from an 1957 // underlying language/API standpoint. So, use a special code path here to 1958 // return something that can hopefully be used in expression 1959 if (m_flags.m_is_synthetic_children_generated) { 1960 UpdateValueIfNeeded(); 1961 1962 if (m_value.GetValueType() == Value::ValueType::LoadAddress) { 1963 if (IsPointerOrReferenceType()) { 1964 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 1965 GetValueAsUnsigned(0)); 1966 return; 1967 } else { 1968 uint64_t load_addr = 1969 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1970 if (load_addr != LLDB_INVALID_ADDRESS) { 1971 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 1972 load_addr); 1973 return; 1974 } 1975 } 1976 } 1977 1978 if (CanProvideValue()) { 1979 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 1980 GetValueAsCString()); 1981 return; 1982 } 1983 1984 return; 1985 } 1986 1987 const bool is_deref_of_parent = IsDereferenceOfParent(); 1988 1989 if (is_deref_of_parent && 1990 epformat == eGetExpressionPathFormatDereferencePointers) { 1991 // this is the original format of GetExpressionPath() producing code like 1992 // *(a_ptr).memberName, which is entirely fine, until you put this into 1993 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 1994 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 1995 // in this latter format 1996 s.PutCString("*("); 1997 } 1998 1999 ValueObject *parent = GetParent(); 2000 2001 if (parent) 2002 parent->GetExpressionPath(s, epformat); 2003 2004 // if we are a deref_of_parent just because we are synthetic array members 2005 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2006 // name ([%d]) to the expression path 2007 if (m_flags.m_is_array_item_for_pointer && 2008 epformat == eGetExpressionPathFormatHonorPointers) 2009 s.PutCString(m_name.GetStringRef()); 2010 2011 if (!IsBaseClass()) { 2012 if (!is_deref_of_parent) { 2013 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2014 if (non_base_class_parent && 2015 !non_base_class_parent->GetName().IsEmpty()) { 2016 CompilerType non_base_class_parent_compiler_type = 2017 non_base_class_parent->GetCompilerType(); 2018 if (non_base_class_parent_compiler_type) { 2019 if (parent && parent->IsDereferenceOfParent() && 2020 epformat == eGetExpressionPathFormatHonorPointers) { 2021 s.PutCString("->"); 2022 } else { 2023 const uint32_t non_base_class_parent_type_info = 2024 non_base_class_parent_compiler_type.GetTypeInfo(); 2025 2026 if (non_base_class_parent_type_info & eTypeIsPointer) { 2027 s.PutCString("->"); 2028 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2029 !(non_base_class_parent_type_info & eTypeIsArray)) { 2030 s.PutChar('.'); 2031 } 2032 } 2033 } 2034 } 2035 2036 const char *name = GetName().GetCString(); 2037 if (name) 2038 s.PutCString(name); 2039 } 2040 } 2041 2042 if (is_deref_of_parent && 2043 epformat == eGetExpressionPathFormatDereferencePointers) { 2044 s.PutChar(')'); 2045 } 2046 } 2047 2048 ValueObjectSP ValueObject::GetValueForExpressionPath( 2049 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2050 ExpressionPathEndResultType *final_value_type, 2051 const GetValueForExpressionPathOptions &options, 2052 ExpressionPathAftermath *final_task_on_target) { 2053 2054 ExpressionPathScanEndReason dummy_reason_to_stop = 2055 ValueObject::eExpressionPathScanEndReasonUnknown; 2056 ExpressionPathEndResultType dummy_final_value_type = 2057 ValueObject::eExpressionPathEndResultTypeInvalid; 2058 ExpressionPathAftermath dummy_final_task_on_target = 2059 ValueObject::eExpressionPathAftermathNothing; 2060 2061 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2062 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2063 final_value_type ? final_value_type : &dummy_final_value_type, options, 2064 final_task_on_target ? final_task_on_target 2065 : &dummy_final_task_on_target); 2066 2067 if (!final_task_on_target || 2068 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2069 return ret_val; 2070 2071 if (ret_val.get() && 2072 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2073 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2074 // of plain objects 2075 { 2076 if ((final_task_on_target ? *final_task_on_target 2077 : dummy_final_task_on_target) == 2078 ValueObject::eExpressionPathAftermathDereference) { 2079 Status error; 2080 ValueObjectSP final_value = ret_val->Dereference(error); 2081 if (error.Fail() || !final_value.get()) { 2082 if (reason_to_stop) 2083 *reason_to_stop = 2084 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2085 if (final_value_type) 2086 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2087 return ValueObjectSP(); 2088 } else { 2089 if (final_task_on_target) 2090 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2091 return final_value; 2092 } 2093 } 2094 if (*final_task_on_target == 2095 ValueObject::eExpressionPathAftermathTakeAddress) { 2096 Status error; 2097 ValueObjectSP final_value = ret_val->AddressOf(error); 2098 if (error.Fail() || !final_value.get()) { 2099 if (reason_to_stop) 2100 *reason_to_stop = 2101 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2102 if (final_value_type) 2103 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2104 return ValueObjectSP(); 2105 } else { 2106 if (final_task_on_target) 2107 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2108 return final_value; 2109 } 2110 } 2111 } 2112 return ret_val; // final_task_on_target will still have its original value, so 2113 // you know I did not do it 2114 } 2115 2116 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2117 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2118 ExpressionPathEndResultType *final_result, 2119 const GetValueForExpressionPathOptions &options, 2120 ExpressionPathAftermath *what_next) { 2121 ValueObjectSP root = GetSP(); 2122 2123 if (!root) 2124 return nullptr; 2125 2126 llvm::StringRef remainder = expression; 2127 2128 while (true) { 2129 llvm::StringRef temp_expression = remainder; 2130 2131 CompilerType root_compiler_type = root->GetCompilerType(); 2132 CompilerType pointee_compiler_type; 2133 Flags pointee_compiler_type_info; 2134 2135 Flags root_compiler_type_info( 2136 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2137 if (pointee_compiler_type) 2138 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2139 2140 if (temp_expression.empty()) { 2141 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2142 return root; 2143 } 2144 2145 switch (temp_expression.front()) { 2146 case '-': { 2147 temp_expression = temp_expression.drop_front(); 2148 if (options.m_check_dot_vs_arrow_syntax && 2149 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2150 // use -> on a 2151 // non-pointer and I 2152 // must catch the error 2153 { 2154 *reason_to_stop = 2155 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2156 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2157 return ValueObjectSP(); 2158 } 2159 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2160 // extract an ObjC IVar 2161 // when this is forbidden 2162 root_compiler_type_info.Test(eTypeIsPointer) && 2163 options.m_no_fragile_ivar) { 2164 *reason_to_stop = 2165 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2166 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2167 return ValueObjectSP(); 2168 } 2169 if (!temp_expression.startswith(">")) { 2170 *reason_to_stop = 2171 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2172 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2173 return ValueObjectSP(); 2174 } 2175 } 2176 LLVM_FALLTHROUGH; 2177 case '.': // or fallthrough from -> 2178 { 2179 if (options.m_check_dot_vs_arrow_syntax && 2180 temp_expression.front() == '.' && 2181 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2182 // use . on a pointer 2183 // and I must catch the 2184 // error 2185 { 2186 *reason_to_stop = 2187 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2188 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2189 return nullptr; 2190 } 2191 temp_expression = temp_expression.drop_front(); // skip . or > 2192 2193 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2194 ConstString child_name; 2195 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2196 // expand this last layer 2197 { 2198 child_name.SetString(temp_expression); 2199 ValueObjectSP child_valobj_sp = 2200 root->GetChildMemberWithName(child_name, true); 2201 2202 if (child_valobj_sp.get()) // we know we are done, so just return 2203 { 2204 *reason_to_stop = 2205 ValueObject::eExpressionPathScanEndReasonEndOfString; 2206 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2207 return child_valobj_sp; 2208 } else { 2209 switch (options.m_synthetic_children_traversal) { 2210 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2211 None: 2212 break; 2213 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2214 FromSynthetic: 2215 if (root->IsSynthetic()) { 2216 child_valobj_sp = root->GetNonSyntheticValue(); 2217 if (child_valobj_sp.get()) 2218 child_valobj_sp = 2219 child_valobj_sp->GetChildMemberWithName(child_name, true); 2220 } 2221 break; 2222 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2223 ToSynthetic: 2224 if (!root->IsSynthetic()) { 2225 child_valobj_sp = root->GetSyntheticValue(); 2226 if (child_valobj_sp.get()) 2227 child_valobj_sp = 2228 child_valobj_sp->GetChildMemberWithName(child_name, true); 2229 } 2230 break; 2231 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2232 Both: 2233 if (root->IsSynthetic()) { 2234 child_valobj_sp = root->GetNonSyntheticValue(); 2235 if (child_valobj_sp.get()) 2236 child_valobj_sp = 2237 child_valobj_sp->GetChildMemberWithName(child_name, true); 2238 } else { 2239 child_valobj_sp = root->GetSyntheticValue(); 2240 if (child_valobj_sp.get()) 2241 child_valobj_sp = 2242 child_valobj_sp->GetChildMemberWithName(child_name, true); 2243 } 2244 break; 2245 } 2246 } 2247 2248 // if we are here and options.m_no_synthetic_children is true, 2249 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2250 // branch, and return an error 2251 if (child_valobj_sp.get()) // if it worked, just return 2252 { 2253 *reason_to_stop = 2254 ValueObject::eExpressionPathScanEndReasonEndOfString; 2255 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2256 return child_valobj_sp; 2257 } else { 2258 *reason_to_stop = 2259 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2260 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2261 return nullptr; 2262 } 2263 } else // other layers do expand 2264 { 2265 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2266 2267 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2268 2269 ValueObjectSP child_valobj_sp = 2270 root->GetChildMemberWithName(child_name, true); 2271 if (child_valobj_sp.get()) // store the new root and move on 2272 { 2273 root = child_valobj_sp; 2274 remainder = next_separator; 2275 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2276 continue; 2277 } else { 2278 switch (options.m_synthetic_children_traversal) { 2279 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2280 None: 2281 break; 2282 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2283 FromSynthetic: 2284 if (root->IsSynthetic()) { 2285 child_valobj_sp = root->GetNonSyntheticValue(); 2286 if (child_valobj_sp.get()) 2287 child_valobj_sp = 2288 child_valobj_sp->GetChildMemberWithName(child_name, true); 2289 } 2290 break; 2291 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2292 ToSynthetic: 2293 if (!root->IsSynthetic()) { 2294 child_valobj_sp = root->GetSyntheticValue(); 2295 if (child_valobj_sp.get()) 2296 child_valobj_sp = 2297 child_valobj_sp->GetChildMemberWithName(child_name, true); 2298 } 2299 break; 2300 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2301 Both: 2302 if (root->IsSynthetic()) { 2303 child_valobj_sp = root->GetNonSyntheticValue(); 2304 if (child_valobj_sp.get()) 2305 child_valobj_sp = 2306 child_valobj_sp->GetChildMemberWithName(child_name, true); 2307 } else { 2308 child_valobj_sp = root->GetSyntheticValue(); 2309 if (child_valobj_sp.get()) 2310 child_valobj_sp = 2311 child_valobj_sp->GetChildMemberWithName(child_name, true); 2312 } 2313 break; 2314 } 2315 } 2316 2317 // if we are here and options.m_no_synthetic_children is true, 2318 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2319 // branch, and return an error 2320 if (child_valobj_sp.get()) // if it worked, move on 2321 { 2322 root = child_valobj_sp; 2323 remainder = next_separator; 2324 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2325 continue; 2326 } else { 2327 *reason_to_stop = 2328 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2329 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2330 return nullptr; 2331 } 2332 } 2333 break; 2334 } 2335 case '[': { 2336 if (!root_compiler_type_info.Test(eTypeIsArray) && 2337 !root_compiler_type_info.Test(eTypeIsPointer) && 2338 !root_compiler_type_info.Test( 2339 eTypeIsVector)) // if this is not a T[] nor a T* 2340 { 2341 if (!root_compiler_type_info.Test( 2342 eTypeIsScalar)) // if this is not even a scalar... 2343 { 2344 if (options.m_synthetic_children_traversal == 2345 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2346 None) // ...only chance left is synthetic 2347 { 2348 *reason_to_stop = 2349 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2350 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2351 return ValueObjectSP(); 2352 } 2353 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2354 // check that we can 2355 // expand bitfields 2356 { 2357 *reason_to_stop = 2358 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2359 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2360 return ValueObjectSP(); 2361 } 2362 } 2363 if (temp_expression[1] == 2364 ']') // if this is an unbounded range it only works for arrays 2365 { 2366 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2367 *reason_to_stop = 2368 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2369 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2370 return nullptr; 2371 } else // even if something follows, we cannot expand unbounded ranges, 2372 // just let the caller do it 2373 { 2374 *reason_to_stop = 2375 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2376 *final_result = 2377 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2378 return root; 2379 } 2380 } 2381 2382 size_t close_bracket_position = temp_expression.find(']', 1); 2383 if (close_bracket_position == 2384 llvm::StringRef::npos) // if there is no ], this is a syntax error 2385 { 2386 *reason_to_stop = 2387 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2388 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2389 return nullptr; 2390 } 2391 2392 llvm::StringRef bracket_expr = 2393 temp_expression.slice(1, close_bracket_position); 2394 2395 // If this was an empty expression it would have been caught by the if 2396 // above. 2397 assert(!bracket_expr.empty()); 2398 2399 if (!bracket_expr.contains('-')) { 2400 // if no separator, this is of the form [N]. Note that this cannot be 2401 // an unbounded range of the form [], because that case was handled 2402 // above with an unconditional return. 2403 unsigned long index = 0; 2404 if (bracket_expr.getAsInteger(0, index)) { 2405 *reason_to_stop = 2406 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2407 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2408 return nullptr; 2409 } 2410 2411 // from here on we do have a valid index 2412 if (root_compiler_type_info.Test(eTypeIsArray)) { 2413 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2414 if (!child_valobj_sp) 2415 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2416 if (!child_valobj_sp) 2417 if (root->HasSyntheticValue() && 2418 root->GetSyntheticValue()->GetNumChildren() > index) 2419 child_valobj_sp = 2420 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2421 if (child_valobj_sp) { 2422 root = child_valobj_sp; 2423 remainder = 2424 temp_expression.substr(close_bracket_position + 1); // skip ] 2425 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2426 continue; 2427 } else { 2428 *reason_to_stop = 2429 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2430 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2431 return nullptr; 2432 } 2433 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2434 if (*what_next == 2435 ValueObject:: 2436 eExpressionPathAftermathDereference && // if this is a 2437 // ptr-to-scalar, I 2438 // am accessing it 2439 // by index and I 2440 // would have 2441 // deref'ed anyway, 2442 // then do it now 2443 // and use this as 2444 // a bitfield 2445 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2446 Status error; 2447 root = root->Dereference(error); 2448 if (error.Fail() || !root) { 2449 *reason_to_stop = 2450 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2451 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2452 return nullptr; 2453 } else { 2454 *what_next = eExpressionPathAftermathNothing; 2455 continue; 2456 } 2457 } else { 2458 if (root->GetCompilerType().GetMinimumLanguage() == 2459 eLanguageTypeObjC && 2460 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2461 root->HasSyntheticValue() && 2462 (options.m_synthetic_children_traversal == 2463 GetValueForExpressionPathOptions:: 2464 SyntheticChildrenTraversal::ToSynthetic || 2465 options.m_synthetic_children_traversal == 2466 GetValueForExpressionPathOptions:: 2467 SyntheticChildrenTraversal::Both)) { 2468 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2469 } else 2470 root = root->GetSyntheticArrayMember(index, true); 2471 if (!root) { 2472 *reason_to_stop = 2473 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2474 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2475 return nullptr; 2476 } else { 2477 remainder = 2478 temp_expression.substr(close_bracket_position + 1); // skip ] 2479 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2480 continue; 2481 } 2482 } 2483 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2484 root = root->GetSyntheticBitFieldChild(index, index, true); 2485 if (!root) { 2486 *reason_to_stop = 2487 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2488 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2489 return nullptr; 2490 } else // we do not know how to expand members of bitfields, so we 2491 // just return and let the caller do any further processing 2492 { 2493 *reason_to_stop = ValueObject:: 2494 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2495 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2496 return root; 2497 } 2498 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2499 root = root->GetChildAtIndex(index, true); 2500 if (!root) { 2501 *reason_to_stop = 2502 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2503 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2504 return ValueObjectSP(); 2505 } else { 2506 remainder = 2507 temp_expression.substr(close_bracket_position + 1); // skip ] 2508 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2509 continue; 2510 } 2511 } else if (options.m_synthetic_children_traversal == 2512 GetValueForExpressionPathOptions:: 2513 SyntheticChildrenTraversal::ToSynthetic || 2514 options.m_synthetic_children_traversal == 2515 GetValueForExpressionPathOptions:: 2516 SyntheticChildrenTraversal::Both) { 2517 if (root->HasSyntheticValue()) 2518 root = root->GetSyntheticValue(); 2519 else if (!root->IsSynthetic()) { 2520 *reason_to_stop = 2521 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2522 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2523 return nullptr; 2524 } 2525 // if we are here, then root itself is a synthetic VO.. should be 2526 // good to go 2527 2528 if (!root) { 2529 *reason_to_stop = 2530 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2531 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2532 return nullptr; 2533 } 2534 root = root->GetChildAtIndex(index, true); 2535 if (!root) { 2536 *reason_to_stop = 2537 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2538 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2539 return nullptr; 2540 } else { 2541 remainder = 2542 temp_expression.substr(close_bracket_position + 1); // skip ] 2543 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2544 continue; 2545 } 2546 } else { 2547 *reason_to_stop = 2548 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2549 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2550 return nullptr; 2551 } 2552 } else { 2553 // we have a low and a high index 2554 llvm::StringRef sleft, sright; 2555 unsigned long low_index, high_index; 2556 std::tie(sleft, sright) = bracket_expr.split('-'); 2557 if (sleft.getAsInteger(0, low_index) || 2558 sright.getAsInteger(0, high_index)) { 2559 *reason_to_stop = 2560 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2561 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2562 return nullptr; 2563 } 2564 2565 if (low_index > high_index) // swap indices if required 2566 std::swap(low_index, high_index); 2567 2568 if (root_compiler_type_info.Test( 2569 eTypeIsScalar)) // expansion only works for scalars 2570 { 2571 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2572 if (!root) { 2573 *reason_to_stop = 2574 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2575 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2576 return nullptr; 2577 } else { 2578 *reason_to_stop = ValueObject:: 2579 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2580 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2581 return root; 2582 } 2583 } else if (root_compiler_type_info.Test( 2584 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2585 // accessing it by index and I would 2586 // have deref'ed anyway, then do it 2587 // now and use this as a bitfield 2588 *what_next == 2589 ValueObject::eExpressionPathAftermathDereference && 2590 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2591 Status error; 2592 root = root->Dereference(error); 2593 if (error.Fail() || !root) { 2594 *reason_to_stop = 2595 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2596 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2597 return nullptr; 2598 } else { 2599 *what_next = ValueObject::eExpressionPathAftermathNothing; 2600 continue; 2601 } 2602 } else { 2603 *reason_to_stop = 2604 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2605 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2606 return root; 2607 } 2608 } 2609 break; 2610 } 2611 default: // some non-separator is in the way 2612 { 2613 *reason_to_stop = 2614 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2615 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2616 return nullptr; 2617 } 2618 } 2619 } 2620 } 2621 2622 void ValueObject::LogValueObject(Log *log) { 2623 if (log) 2624 return LogValueObject(log, DumpValueObjectOptions(*this)); 2625 } 2626 2627 void ValueObject::LogValueObject(Log *log, 2628 const DumpValueObjectOptions &options) { 2629 if (log) { 2630 StreamString s; 2631 Dump(s, options); 2632 if (s.GetSize()) 2633 log->PutCString(s.GetData()); 2634 } 2635 } 2636 2637 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2638 2639 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2640 ValueObjectPrinter printer(this, &s, options); 2641 printer.PrintValueObject(); 2642 } 2643 2644 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2645 ValueObjectSP valobj_sp; 2646 2647 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2648 ExecutionContext exe_ctx(GetExecutionContextRef()); 2649 2650 DataExtractor data; 2651 data.SetByteOrder(m_data.GetByteOrder()); 2652 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2653 2654 if (IsBitfield()) { 2655 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2656 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2657 } else 2658 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2659 2660 valobj_sp = ValueObjectConstResult::Create( 2661 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2662 GetAddressOf()); 2663 } 2664 2665 if (!valobj_sp) { 2666 ExecutionContext exe_ctx(GetExecutionContextRef()); 2667 valobj_sp = ValueObjectConstResult::Create( 2668 exe_ctx.GetBestExecutionContextScope(), m_error); 2669 } 2670 return valobj_sp; 2671 } 2672 2673 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2674 lldb::DynamicValueType dynValue, bool synthValue) { 2675 ValueObjectSP result_sp(GetSP()); 2676 2677 switch (dynValue) { 2678 case lldb::eDynamicCanRunTarget: 2679 case lldb::eDynamicDontRunTarget: { 2680 if (!result_sp->IsDynamic()) { 2681 if (result_sp->GetDynamicValue(dynValue)) 2682 result_sp = result_sp->GetDynamicValue(dynValue); 2683 } 2684 } break; 2685 case lldb::eNoDynamicValues: { 2686 if (result_sp->IsDynamic()) { 2687 if (result_sp->GetStaticValue()) 2688 result_sp = result_sp->GetStaticValue(); 2689 } 2690 } break; 2691 } 2692 2693 if (synthValue) { 2694 if (!result_sp->IsSynthetic()) { 2695 if (result_sp->GetSyntheticValue()) 2696 result_sp = result_sp->GetSyntheticValue(); 2697 } 2698 } else { 2699 if (result_sp->IsSynthetic()) { 2700 if (result_sp->GetNonSyntheticValue()) 2701 result_sp = result_sp->GetNonSyntheticValue(); 2702 } 2703 } 2704 2705 return result_sp; 2706 } 2707 2708 ValueObjectSP ValueObject::Dereference(Status &error) { 2709 if (m_deref_valobj) 2710 return m_deref_valobj->GetSP(); 2711 2712 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2713 if (is_pointer_or_reference_type) { 2714 bool omit_empty_base_classes = true; 2715 bool ignore_array_bounds = false; 2716 2717 std::string child_name_str; 2718 uint32_t child_byte_size = 0; 2719 int32_t child_byte_offset = 0; 2720 uint32_t child_bitfield_bit_size = 0; 2721 uint32_t child_bitfield_bit_offset = 0; 2722 bool child_is_base_class = false; 2723 bool child_is_deref_of_parent = false; 2724 const bool transparent_pointers = false; 2725 CompilerType compiler_type = GetCompilerType(); 2726 CompilerType child_compiler_type; 2727 uint64_t language_flags = 0; 2728 2729 ExecutionContext exe_ctx(GetExecutionContextRef()); 2730 2731 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2732 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2733 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2734 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2735 child_is_deref_of_parent, this, language_flags); 2736 if (child_compiler_type && child_byte_size) { 2737 ConstString child_name; 2738 if (!child_name_str.empty()) 2739 child_name.SetCString(child_name_str.c_str()); 2740 2741 m_deref_valobj = new ValueObjectChild( 2742 *this, child_compiler_type, child_name, child_byte_size, 2743 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2744 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2745 language_flags); 2746 } 2747 2748 // In case of incomplete child compiler type, use the pointee type and try 2749 // to recreate a new ValueObjectChild using it. 2750 if (!m_deref_valobj) { 2751 if (HasSyntheticValue()) { 2752 child_compiler_type = compiler_type.GetPointeeType(); 2753 2754 if (child_compiler_type) { 2755 ConstString child_name; 2756 if (!child_name_str.empty()) 2757 child_name.SetCString(child_name_str.c_str()); 2758 2759 m_deref_valobj = new ValueObjectChild( 2760 *this, child_compiler_type, child_name, child_byte_size, 2761 child_byte_offset, child_bitfield_bit_size, 2762 child_bitfield_bit_offset, child_is_base_class, 2763 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2764 } 2765 } 2766 } 2767 2768 } else if (HasSyntheticValue()) { 2769 m_deref_valobj = 2770 GetSyntheticValue() 2771 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2772 .get(); 2773 } else if (IsSynthetic()) { 2774 m_deref_valobj = 2775 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2776 } 2777 2778 if (m_deref_valobj) { 2779 error.Clear(); 2780 return m_deref_valobj->GetSP(); 2781 } else { 2782 StreamString strm; 2783 GetExpressionPath(strm); 2784 2785 if (is_pointer_or_reference_type) 2786 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2787 GetTypeName().AsCString("<invalid type>"), 2788 strm.GetData()); 2789 else 2790 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2791 GetTypeName().AsCString("<invalid type>"), 2792 strm.GetData()); 2793 return ValueObjectSP(); 2794 } 2795 } 2796 2797 ValueObjectSP ValueObject::AddressOf(Status &error) { 2798 if (m_addr_of_valobj_sp) 2799 return m_addr_of_valobj_sp; 2800 2801 AddressType address_type = eAddressTypeInvalid; 2802 const bool scalar_is_load_address = false; 2803 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2804 error.Clear(); 2805 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2806 switch (address_type) { 2807 case eAddressTypeInvalid: { 2808 StreamString expr_path_strm; 2809 GetExpressionPath(expr_path_strm); 2810 error.SetErrorStringWithFormat("'%s' is not in memory", 2811 expr_path_strm.GetData()); 2812 } break; 2813 2814 case eAddressTypeFile: 2815 case eAddressTypeLoad: { 2816 CompilerType compiler_type = GetCompilerType(); 2817 if (compiler_type) { 2818 std::string name(1, '&'); 2819 name.append(m_name.AsCString("")); 2820 ExecutionContext exe_ctx(GetExecutionContextRef()); 2821 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2822 exe_ctx.GetBestExecutionContextScope(), 2823 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2824 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2825 } 2826 } break; 2827 default: 2828 break; 2829 } 2830 } else { 2831 StreamString expr_path_strm; 2832 GetExpressionPath(expr_path_strm); 2833 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2834 expr_path_strm.GetData()); 2835 } 2836 2837 return m_addr_of_valobj_sp; 2838 } 2839 2840 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2841 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2842 } 2843 2844 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2845 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2846 } 2847 2848 ValueObjectSP ValueObject::CastPointerType(const char *name, 2849 CompilerType &compiler_type) { 2850 ValueObjectSP valobj_sp; 2851 AddressType address_type; 2852 addr_t ptr_value = GetPointerValue(&address_type); 2853 2854 if (ptr_value != LLDB_INVALID_ADDRESS) { 2855 Address ptr_addr(ptr_value); 2856 ExecutionContext exe_ctx(GetExecutionContextRef()); 2857 valobj_sp = ValueObjectMemory::Create( 2858 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2859 } 2860 return valobj_sp; 2861 } 2862 2863 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2864 ValueObjectSP valobj_sp; 2865 AddressType address_type; 2866 addr_t ptr_value = GetPointerValue(&address_type); 2867 2868 if (ptr_value != LLDB_INVALID_ADDRESS) { 2869 Address ptr_addr(ptr_value); 2870 ExecutionContext exe_ctx(GetExecutionContextRef()); 2871 valobj_sp = ValueObjectMemory::Create( 2872 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2873 } 2874 return valobj_sp; 2875 } 2876 2877 ValueObject::EvaluationPoint::EvaluationPoint() 2878 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2879 2880 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2881 bool use_selected) 2882 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2883 ExecutionContext exe_ctx(exe_scope); 2884 TargetSP target_sp(exe_ctx.GetTargetSP()); 2885 if (target_sp) { 2886 m_exe_ctx_ref.SetTargetSP(target_sp); 2887 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2888 if (!process_sp) 2889 process_sp = target_sp->GetProcessSP(); 2890 2891 if (process_sp) { 2892 m_mod_id = process_sp->GetModID(); 2893 m_exe_ctx_ref.SetProcessSP(process_sp); 2894 2895 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2896 2897 if (!thread_sp) { 2898 if (use_selected) 2899 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2900 } 2901 2902 if (thread_sp) { 2903 m_exe_ctx_ref.SetThreadSP(thread_sp); 2904 2905 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2906 if (!frame_sp) { 2907 if (use_selected) 2908 frame_sp = thread_sp->GetSelectedFrame(); 2909 } 2910 if (frame_sp) 2911 m_exe_ctx_ref.SetFrameSP(frame_sp); 2912 } 2913 } 2914 } 2915 } 2916 2917 ValueObject::EvaluationPoint::EvaluationPoint( 2918 const ValueObject::EvaluationPoint &rhs) 2919 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2920 2921 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2922 2923 // This function checks the EvaluationPoint against the current process state. 2924 // If the current state matches the evaluation point, or the evaluation point 2925 // is already invalid, then we return false, meaning "no change". If the 2926 // current state is different, we update our state, and return true meaning 2927 // "yes, change". If we did see a change, we also set m_needs_update to true, 2928 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2929 // the current execution context scope. 2930 2931 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2932 bool accept_invalid_exe_ctx) { 2933 // Start with the target, if it is NULL, then we're obviously not going to 2934 // get any further: 2935 const bool thread_and_frame_only_if_stopped = true; 2936 ExecutionContext exe_ctx( 2937 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 2938 2939 if (exe_ctx.GetTargetPtr() == nullptr) 2940 return false; 2941 2942 // If we don't have a process nothing can change. 2943 Process *process = exe_ctx.GetProcessPtr(); 2944 if (process == nullptr) 2945 return false; 2946 2947 // If our stop id is the current stop ID, nothing has changed: 2948 ProcessModID current_mod_id = process->GetModID(); 2949 2950 // If the current stop id is 0, either we haven't run yet, or the process 2951 // state has been cleared. In either case, we aren't going to be able to sync 2952 // with the process state. 2953 if (current_mod_id.GetStopID() == 0) 2954 return false; 2955 2956 bool changed = false; 2957 const bool was_valid = m_mod_id.IsValid(); 2958 if (was_valid) { 2959 if (m_mod_id == current_mod_id) { 2960 // Everything is already up to date in this object, no need to update the 2961 // execution context scope. 2962 changed = false; 2963 } else { 2964 m_mod_id = current_mod_id; 2965 m_needs_update = true; 2966 changed = true; 2967 } 2968 } 2969 2970 // Now re-look up the thread and frame in case the underlying objects have 2971 // gone away & been recreated. That way we'll be sure to return a valid 2972 // exe_scope. If we used to have a thread or a frame but can't find it 2973 // anymore, then mark ourselves as invalid. 2974 2975 if (!accept_invalid_exe_ctx) { 2976 if (m_exe_ctx_ref.HasThreadRef()) { 2977 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 2978 if (thread_sp) { 2979 if (m_exe_ctx_ref.HasFrameRef()) { 2980 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 2981 if (!frame_sp) { 2982 // We used to have a frame, but now it is gone 2983 SetInvalid(); 2984 changed = was_valid; 2985 } 2986 } 2987 } else { 2988 // We used to have a thread, but now it is gone 2989 SetInvalid(); 2990 changed = was_valid; 2991 } 2992 } 2993 } 2994 2995 return changed; 2996 } 2997 2998 void ValueObject::EvaluationPoint::SetUpdated() { 2999 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3000 if (process_sp) 3001 m_mod_id = process_sp->GetModID(); 3002 m_needs_update = false; 3003 } 3004 3005 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3006 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3007 eClearUserVisibleDataItemsValue) 3008 m_value_str.clear(); 3009 3010 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3011 eClearUserVisibleDataItemsLocation) 3012 m_location_str.clear(); 3013 3014 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3015 eClearUserVisibleDataItemsSummary) 3016 m_summary_str.clear(); 3017 3018 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3019 eClearUserVisibleDataItemsDescription) 3020 m_object_desc_str.clear(); 3021 3022 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3023 eClearUserVisibleDataItemsSyntheticChildren) { 3024 if (m_synthetic_value) 3025 m_synthetic_value = nullptr; 3026 } 3027 } 3028 3029 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3030 if (m_parent) { 3031 if (!m_parent->IsPointerOrReferenceType()) 3032 return m_parent->GetSymbolContextScope(); 3033 } 3034 return nullptr; 3035 } 3036 3037 lldb::ValueObjectSP 3038 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3039 llvm::StringRef expression, 3040 const ExecutionContext &exe_ctx) { 3041 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3042 EvaluateExpressionOptions()); 3043 } 3044 3045 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3046 llvm::StringRef name, llvm::StringRef expression, 3047 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3048 lldb::ValueObjectSP retval_sp; 3049 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3050 if (!target_sp) 3051 return retval_sp; 3052 if (expression.empty()) 3053 return retval_sp; 3054 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3055 retval_sp, options); 3056 if (retval_sp && !name.empty()) 3057 retval_sp->SetName(ConstString(name)); 3058 return retval_sp; 3059 } 3060 3061 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3062 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3063 CompilerType type) { 3064 if (type) { 3065 CompilerType pointer_type(type.GetPointerType()); 3066 if (pointer_type) { 3067 lldb::DataBufferSP buffer( 3068 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3069 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3070 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3071 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3072 exe_ctx.GetAddressByteSize())); 3073 if (ptr_result_valobj_sp) { 3074 ptr_result_valobj_sp->GetValue().SetValueType( 3075 Value::ValueType::LoadAddress); 3076 Status err; 3077 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3078 if (ptr_result_valobj_sp && !name.empty()) 3079 ptr_result_valobj_sp->SetName(ConstString(name)); 3080 } 3081 return ptr_result_valobj_sp; 3082 } 3083 } 3084 return lldb::ValueObjectSP(); 3085 } 3086 3087 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3088 llvm::StringRef name, const DataExtractor &data, 3089 const ExecutionContext &exe_ctx, CompilerType type) { 3090 lldb::ValueObjectSP new_value_sp; 3091 new_value_sp = ValueObjectConstResult::Create( 3092 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3093 LLDB_INVALID_ADDRESS); 3094 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3095 if (new_value_sp && !name.empty()) 3096 new_value_sp->SetName(ConstString(name)); 3097 return new_value_sp; 3098 } 3099 3100 ModuleSP ValueObject::GetModule() { 3101 ValueObject *root(GetRoot()); 3102 if (root != this) 3103 return root->GetModule(); 3104 return lldb::ModuleSP(); 3105 } 3106 3107 ValueObject *ValueObject::GetRoot() { 3108 if (m_root) 3109 return m_root; 3110 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3111 return (vo->m_parent != nullptr); 3112 })); 3113 } 3114 3115 ValueObject * 3116 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3117 ValueObject *vo = this; 3118 while (vo) { 3119 if (!f(vo)) 3120 break; 3121 vo = vo->m_parent; 3122 } 3123 return vo; 3124 } 3125 3126 AddressType ValueObject::GetAddressTypeOfChildren() { 3127 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3128 ValueObject *root(GetRoot()); 3129 if (root != this) 3130 return root->GetAddressTypeOfChildren(); 3131 } 3132 return m_address_type_of_ptr_or_ref_children; 3133 } 3134 3135 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3136 ValueObject *with_dv_info = this; 3137 while (with_dv_info) { 3138 if (with_dv_info->HasDynamicValueTypeInfo()) 3139 return with_dv_info->GetDynamicValueTypeImpl(); 3140 with_dv_info = with_dv_info->m_parent; 3141 } 3142 return lldb::eNoDynamicValues; 3143 } 3144 3145 lldb::Format ValueObject::GetFormat() const { 3146 const ValueObject *with_fmt_info = this; 3147 while (with_fmt_info) { 3148 if (with_fmt_info->m_format != lldb::eFormatDefault) 3149 return with_fmt_info->m_format; 3150 with_fmt_info = with_fmt_info->m_parent; 3151 } 3152 return m_format; 3153 } 3154 3155 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3156 lldb::LanguageType type = m_preferred_display_language; 3157 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3158 if (GetRoot()) { 3159 if (GetRoot() == this) { 3160 if (StackFrameSP frame_sp = GetFrameSP()) { 3161 const SymbolContext &sc( 3162 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3163 if (CompileUnit *cu = sc.comp_unit) 3164 type = cu->GetLanguage(); 3165 } 3166 } else { 3167 type = GetRoot()->GetPreferredDisplayLanguage(); 3168 } 3169 } 3170 } 3171 return (m_preferred_display_language = type); // only compute it once 3172 } 3173 3174 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3175 m_preferred_display_language = lt; 3176 } 3177 3178 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3179 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3180 SetPreferredDisplayLanguage(lt); 3181 } 3182 3183 bool ValueObject::CanProvideValue() { 3184 // we need to support invalid types as providers of values because some bare- 3185 // board debugging scenarios have no notion of types, but still manage to 3186 // have raw numeric values for things like registers. sigh. 3187 CompilerType type = GetCompilerType(); 3188 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3189 } 3190 3191 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3192 3193 ValueObjectSP ValueObject::Persist() { 3194 if (!UpdateValueIfNeeded()) 3195 return nullptr; 3196 3197 TargetSP target_sp(GetTargetSP()); 3198 if (!target_sp) 3199 return nullptr; 3200 3201 PersistentExpressionState *persistent_state = 3202 target_sp->GetPersistentExpressionStateForLanguage( 3203 GetPreferredDisplayLanguage()); 3204 3205 if (!persistent_state) 3206 return nullptr; 3207 3208 ConstString name = persistent_state->GetNextPersistentVariableName(); 3209 3210 ValueObjectSP const_result_sp = 3211 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3212 3213 ExpressionVariableSP persistent_var_sp = 3214 persistent_state->CreatePersistentVariable(const_result_sp); 3215 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3216 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3217 3218 return persistent_var_sp->GetValueObject(); 3219 } 3220 3221 bool ValueObject::IsSyntheticChildrenGenerated() { 3222 return m_flags.m_is_synthetic_children_generated; 3223 } 3224 3225 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3226 m_flags.m_is_synthetic_children_generated = b; 3227 } 3228 3229 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3230 3231 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3232 3233 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3234 lldb::DynamicValueType use_dynamic, 3235 bool use_synthetic) : m_root_valobj_sp(), 3236 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3237 m_use_synthetic(use_synthetic) { 3238 if (!in_valobj_sp) 3239 return; 3240 // If the user passes in a value object that is dynamic or synthetic, then 3241 // water it down to the static type. 3242 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3243 } 3244 3245 bool ValueObjectManager::IsValid() const { 3246 if (!m_root_valobj_sp) 3247 return false; 3248 lldb::TargetSP target_sp = GetTargetSP(); 3249 if (target_sp) 3250 return target_sp->IsValid(); 3251 return false; 3252 } 3253 3254 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3255 lldb::ProcessSP process_sp = GetProcessSP(); 3256 if (!process_sp) 3257 return lldb::ValueObjectSP(); 3258 3259 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3260 if (current_stop_id == m_stop_id) 3261 return m_user_valobj_sp; 3262 3263 m_stop_id = current_stop_id; 3264 3265 if (!m_root_valobj_sp) { 3266 m_user_valobj_sp.reset(); 3267 return m_root_valobj_sp; 3268 } 3269 3270 m_user_valobj_sp = m_root_valobj_sp; 3271 3272 if (m_use_dynamic != lldb::eNoDynamicValues) { 3273 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3274 if (dynamic_sp) 3275 m_user_valobj_sp = dynamic_sp; 3276 } 3277 3278 if (m_use_synthetic) { 3279 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(); 3280 if (synthetic_sp) 3281 m_user_valobj_sp = synthetic_sp; 3282 } 3283 3284 return m_user_valobj_sp; 3285 } 3286 3287 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3288 if (use_dynamic != m_use_dynamic) { 3289 m_use_dynamic = use_dynamic; 3290 m_user_valobj_sp.reset(); 3291 m_stop_id = UINT32_MAX; 3292 } 3293 } 3294 3295 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3296 if (m_use_synthetic != use_synthetic) { 3297 m_use_synthetic = use_synthetic; 3298 m_user_valobj_sp.reset(); 3299 m_stop_id = UINT32_MAX; 3300 } 3301 } 3302 3303 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3304 if (!m_root_valobj_sp) 3305 return m_root_valobj_sp->GetTargetSP(); 3306 return lldb::TargetSP(); 3307 } 3308 3309 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3310 if (m_root_valobj_sp) 3311 return m_root_valobj_sp->GetProcessSP(); 3312 return lldb::ProcessSP(); 3313 } 3314 3315 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3316 if (m_root_valobj_sp) 3317 return m_root_valobj_sp->GetThreadSP(); 3318 return lldb::ThreadSP(); 3319 } 3320 3321 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3322 if (m_root_valobj_sp) 3323 return m_root_valobj_sp->GetFrameSP(); 3324 return lldb::StackFrameSP(); 3325 } 3326