1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/ValueObject.h" 11 12 #include "lldb/Core/Address.h" 13 #include "lldb/Core/Module.h" 14 #include "lldb/Core/ValueObjectCast.h" 15 #include "lldb/Core/ValueObjectChild.h" 16 #include "lldb/Core/ValueObjectConstResult.h" 17 #include "lldb/Core/ValueObjectDynamicValue.h" 18 #include "lldb/Core/ValueObjectMemory.h" 19 #include "lldb/Core/ValueObjectSyntheticFilter.h" 20 #include "lldb/DataFormatters/DataVisualization.h" 21 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 22 #include "lldb/DataFormatters/FormatManager.h" 23 #include "lldb/DataFormatters/StringPrinter.h" 24 #include "lldb/DataFormatters/TypeFormat.h" 25 #include "lldb/DataFormatters/TypeSummary.h" 26 #include "lldb/DataFormatters/TypeValidator.h" 27 #include "lldb/DataFormatters/ValueObjectPrinter.h" 28 #include "lldb/Expression/ExpressionVariable.h" 29 #include "lldb/Symbol/ClangASTContext.h" 30 #include "lldb/Symbol/CompileUnit.h" 31 #include "lldb/Symbol/CompilerType.h" 32 #include "lldb/Symbol/Declaration.h" 33 #include "lldb/Symbol/SymbolContext.h" 34 #include "lldb/Symbol/Type.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/ObjCLanguageRuntime.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/StackFrame.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Target/ThreadList.h" 44 #include "lldb/Utility/DataBuffer.h" 45 #include "lldb/Utility/DataBufferHeap.h" 46 #include "lldb/Utility/Flags.h" 47 #include "lldb/Utility/Log.h" 48 #include "lldb/Utility/Logging.h" 49 #include "lldb/Utility/Scalar.h" 50 #include "lldb/Utility/SharingPtr.h" 51 #include "lldb/Utility/Stream.h" 52 #include "lldb/Utility/StreamString.h" 53 #include "lldb/lldb-private-types.h" 54 55 #include "llvm/Support/Compiler.h" 56 57 #include <algorithm> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <memory> 61 #include <tuple> 62 63 #include <assert.h> 64 #include <inttypes.h> 65 #include <stdio.h> 66 #include <string.h> 67 68 namespace lldb_private { 69 class ExecutionContextScope; 70 } 71 namespace lldb_private { 72 class SymbolContextScope; 73 } 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace lldb_utility; 78 79 static user_id_t g_value_obj_uid = 0; 80 81 //---------------------------------------------------------------------- 82 // ValueObject constructor 83 //---------------------------------------------------------------------- 84 ValueObject::ValueObject(ValueObject &parent) 85 : UserID(++g_value_obj_uid), // Unique identifier for every value object 86 m_parent(&parent), m_root(NULL), m_update_point(parent.GetUpdatePoint()), 87 m_name(), m_data(), m_value(), m_error(), m_value_str(), 88 m_old_value_str(), m_location_str(), m_summary_str(), m_object_desc_str(), 89 m_validation_result(), m_manager(parent.GetManager()), m_children(), 90 m_synthetic_children(), m_dynamic_value(NULL), m_synthetic_value(NULL), 91 m_deref_valobj(NULL), m_format(eFormatDefault), 92 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 93 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 94 m_type_validator_sp(), m_user_id_of_forced_summary(), 95 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 96 m_value_checksum(), 97 m_preferred_display_language(lldb::eLanguageTypeUnknown), 98 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 99 m_children_count_valid(false), m_old_value_valid(false), 100 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 101 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 102 m_is_getting_summary(false), 103 m_did_calculate_complete_objc_class_type(false), 104 m_is_synthetic_children_generated( 105 parent.m_is_synthetic_children_generated) { 106 m_manager->ManageObject(this); 107 } 108 109 //---------------------------------------------------------------------- 110 // ValueObject constructor 111 //---------------------------------------------------------------------- 112 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 113 AddressType child_ptr_or_ref_addr_type) 114 : UserID(++g_value_obj_uid), // Unique identifier for every value object 115 m_parent(NULL), m_root(NULL), m_update_point(exe_scope), m_name(), 116 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 117 m_location_str(), m_summary_str(), m_object_desc_str(), 118 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 119 m_dynamic_value(NULL), m_synthetic_value(NULL), m_deref_valobj(NULL), 120 m_format(eFormatDefault), m_last_format(eFormatDefault), 121 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 122 m_synthetic_children_sp(), m_type_validator_sp(), 123 m_user_id_of_forced_summary(), 124 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 125 m_value_checksum(), 126 m_preferred_display_language(lldb::eLanguageTypeUnknown), 127 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 128 m_children_count_valid(false), m_old_value_valid(false), 129 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 130 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 131 m_is_getting_summary(false), 132 m_did_calculate_complete_objc_class_type(false), 133 m_is_synthetic_children_generated(false) { 134 m_manager = new ValueObjectManager(); 135 m_manager->ManageObject(this); 136 } 137 138 //---------------------------------------------------------------------- 139 // Destructor 140 //---------------------------------------------------------------------- 141 ValueObject::~ValueObject() {} 142 143 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 144 145 bool did_change_formats = false; 146 147 if (update_format) 148 did_change_formats = UpdateFormatsIfNeeded(); 149 150 // If this is a constant value, then our success is predicated on whether we 151 // have an error or not 152 if (GetIsConstant()) { 153 // if you are constant, things might still have changed behind your back 154 // (e.g. you are a frozen object and things have changed deeper than you 155 // cared to freeze-dry yourself) in this case, your value has not changed, 156 // but "computed" entries might have, so you might now have a different 157 // summary, or a different object description. clear these so we will 158 // recompute them 159 if (update_format && !did_change_formats) 160 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 161 eClearUserVisibleDataItemsDescription); 162 return m_error.Success(); 163 } 164 165 bool first_update = IsChecksumEmpty(); 166 167 if (NeedsUpdating()) { 168 m_update_point.SetUpdated(); 169 170 // Save the old value using swap to avoid a string copy which also will 171 // clear our m_value_str 172 if (m_value_str.empty()) { 173 m_old_value_valid = false; 174 } else { 175 m_old_value_valid = true; 176 m_old_value_str.swap(m_value_str); 177 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 178 } 179 180 ClearUserVisibleData(); 181 182 if (IsInScope()) { 183 const bool value_was_valid = GetValueIsValid(); 184 SetValueDidChange(false); 185 186 m_error.Clear(); 187 188 // Call the pure virtual function to update the value 189 190 bool need_compare_checksums = false; 191 llvm::SmallVector<uint8_t, 16> old_checksum; 192 193 if (!first_update && CanProvideValue()) { 194 need_compare_checksums = true; 195 old_checksum.resize(m_value_checksum.size()); 196 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 197 old_checksum.begin()); 198 } 199 200 bool success = UpdateValue(); 201 202 SetValueIsValid(success); 203 204 if (success) { 205 const uint64_t max_checksum_size = 128; 206 m_data.Checksum(m_value_checksum, max_checksum_size); 207 } else { 208 need_compare_checksums = false; 209 m_value_checksum.clear(); 210 } 211 212 assert(!need_compare_checksums || 213 (!old_checksum.empty() && !m_value_checksum.empty())); 214 215 if (first_update) 216 SetValueDidChange(false); 217 else if (!m_value_did_change && !success) { 218 // The value wasn't gotten successfully, so we mark this as changed if 219 // the value used to be valid and now isn't 220 SetValueDidChange(value_was_valid); 221 } else if (need_compare_checksums) { 222 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 223 m_value_checksum.size())); 224 } 225 226 } else { 227 m_error.SetErrorString("out of scope"); 228 } 229 } 230 return m_error.Success(); 231 } 232 233 bool ValueObject::UpdateFormatsIfNeeded() { 234 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 235 if (log) 236 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject " 237 "rev: %d - Global rev: %d", 238 GetName().GetCString(), static_cast<void *>(this), 239 m_last_format_mgr_revision, 240 DataVisualization::GetCurrentRevision()); 241 242 bool any_change = false; 243 244 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 245 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 246 any_change = true; 247 248 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 249 SetSummaryFormat( 250 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 251 #ifndef LLDB_DISABLE_PYTHON 252 SetSyntheticChildren( 253 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 254 #endif 255 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 256 } 257 258 return any_change; 259 } 260 261 void ValueObject::SetNeedsUpdate() { 262 m_update_point.SetNeedsUpdate(); 263 // We have to clear the value string here so ConstResult children will notice 264 // if their values are changed by hand (i.e. with SetValueAsCString). 265 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 266 } 267 268 void ValueObject::ClearDynamicTypeInformation() { 269 m_children_count_valid = false; 270 m_did_calculate_complete_objc_class_type = false; 271 m_last_format_mgr_revision = 0; 272 m_override_type = CompilerType(); 273 SetValueFormat(lldb::TypeFormatImplSP()); 274 SetSummaryFormat(lldb::TypeSummaryImplSP()); 275 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 276 } 277 278 CompilerType ValueObject::MaybeCalculateCompleteType() { 279 CompilerType compiler_type(GetCompilerTypeImpl()); 280 281 if (m_did_calculate_complete_objc_class_type) { 282 if (m_override_type.IsValid()) 283 return m_override_type; 284 else 285 return compiler_type; 286 } 287 288 CompilerType class_type; 289 bool is_pointer_type = false; 290 291 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) { 292 is_pointer_type = true; 293 } else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) { 294 class_type = compiler_type; 295 } else { 296 return compiler_type; 297 } 298 299 m_did_calculate_complete_objc_class_type = true; 300 301 if (class_type) { 302 ConstString class_name(class_type.GetConstTypeName()); 303 304 if (class_name) { 305 ProcessSP process_sp( 306 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 307 308 if (process_sp) { 309 ObjCLanguageRuntime *objc_language_runtime( 310 process_sp->GetObjCLanguageRuntime()); 311 312 if (objc_language_runtime) { 313 TypeSP complete_objc_class_type_sp = 314 objc_language_runtime->LookupInCompleteClassCache(class_name); 315 316 if (complete_objc_class_type_sp) { 317 CompilerType complete_class( 318 complete_objc_class_type_sp->GetFullCompilerType()); 319 320 if (complete_class.GetCompleteType()) { 321 if (is_pointer_type) { 322 m_override_type = complete_class.GetPointerType(); 323 } else { 324 m_override_type = complete_class; 325 } 326 327 if (m_override_type.IsValid()) 328 return m_override_type; 329 } 330 } 331 } 332 } 333 } 334 } 335 return compiler_type; 336 } 337 338 CompilerType ValueObject::GetCompilerType() { 339 return MaybeCalculateCompleteType(); 340 } 341 342 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 343 344 DataExtractor &ValueObject::GetDataExtractor() { 345 UpdateValueIfNeeded(false); 346 return m_data; 347 } 348 349 const Status &ValueObject::GetError() { 350 UpdateValueIfNeeded(false); 351 return m_error; 352 } 353 354 const ConstString &ValueObject::GetName() const { return m_name; } 355 356 const char *ValueObject::GetLocationAsCString() { 357 return GetLocationAsCStringImpl(m_value, m_data); 358 } 359 360 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 361 const DataExtractor &data) { 362 if (UpdateValueIfNeeded(false)) { 363 if (m_location_str.empty()) { 364 StreamString sstr; 365 366 Value::ValueType value_type = value.GetValueType(); 367 368 switch (value_type) { 369 case Value::eValueTypeScalar: 370 case Value::eValueTypeVector: 371 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 372 RegisterInfo *reg_info = value.GetRegisterInfo(); 373 if (reg_info) { 374 if (reg_info->name) 375 m_location_str = reg_info->name; 376 else if (reg_info->alt_name) 377 m_location_str = reg_info->alt_name; 378 if (m_location_str.empty()) 379 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 380 ? "vector" 381 : "scalar"; 382 } 383 } 384 if (m_location_str.empty()) 385 m_location_str = 386 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 387 break; 388 389 case Value::eValueTypeLoadAddress: 390 case Value::eValueTypeFileAddress: 391 case Value::eValueTypeHostAddress: { 392 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 393 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 394 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 395 m_location_str = sstr.GetString(); 396 } break; 397 } 398 } 399 } 400 return m_location_str.c_str(); 401 } 402 403 Value &ValueObject::GetValue() { return m_value; } 404 405 const Value &ValueObject::GetValue() const { return m_value; } 406 407 bool ValueObject::ResolveValue(Scalar &scalar) { 408 if (UpdateValueIfNeeded( 409 false)) // make sure that you are up to date before returning anything 410 { 411 ExecutionContext exe_ctx(GetExecutionContextRef()); 412 Value tmp_value(m_value); 413 scalar = tmp_value.ResolveValue(&exe_ctx); 414 if (scalar.IsValid()) { 415 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 416 if (bitfield_bit_size) 417 return scalar.ExtractBitfield(bitfield_bit_size, 418 GetBitfieldBitOffset()); 419 return true; 420 } 421 } 422 return false; 423 } 424 425 bool ValueObject::IsLogicalTrue(Status &error) { 426 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 427 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 428 switch (is_logical_true) { 429 case eLazyBoolYes: 430 case eLazyBoolNo: 431 return (is_logical_true == true); 432 case eLazyBoolCalculate: 433 break; 434 } 435 } 436 437 Scalar scalar_value; 438 439 if (!ResolveValue(scalar_value)) { 440 error.SetErrorString("failed to get a scalar result"); 441 return false; 442 } 443 444 bool ret; 445 ret = scalar_value.ULongLong(1) != 0; 446 error.Clear(); 447 return ret; 448 } 449 450 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 451 452 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 453 454 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 455 456 void ValueObject::SetValueDidChange(bool value_changed) { 457 m_value_did_change = value_changed; 458 } 459 460 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 461 ValueObjectSP child_sp; 462 // We may need to update our value if we are dynamic 463 if (IsPossibleDynamicType()) 464 UpdateValueIfNeeded(false); 465 if (idx < GetNumChildren()) { 466 // Check if we have already made the child value object? 467 if (can_create && !m_children.HasChildAtIndex(idx)) { 468 // No we haven't created the child at this index, so lets have our 469 // subclass do it and cache the result for quick future access. 470 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 471 } 472 473 ValueObject *child = m_children.GetChildAtIndex(idx); 474 if (child != NULL) 475 return child->GetSP(); 476 } 477 return child_sp; 478 } 479 480 lldb::ValueObjectSP 481 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 482 size_t *index_of_error) { 483 if (idxs.size() == 0) 484 return GetSP(); 485 ValueObjectSP root(GetSP()); 486 for (size_t idx : idxs) { 487 root = root->GetChildAtIndex(idx, true); 488 if (!root) { 489 if (index_of_error) 490 *index_of_error = idx; 491 return root; 492 } 493 } 494 return root; 495 } 496 497 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 498 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 499 if (idxs.size() == 0) 500 return GetSP(); 501 ValueObjectSP root(GetSP()); 502 for (std::pair<size_t, bool> idx : idxs) { 503 root = root->GetChildAtIndex(idx.first, idx.second); 504 if (!root) { 505 if (index_of_error) 506 *index_of_error = idx.first; 507 return root; 508 } 509 } 510 return root; 511 } 512 513 lldb::ValueObjectSP 514 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 515 ConstString *name_of_error) { 516 if (names.size() == 0) 517 return GetSP(); 518 ValueObjectSP root(GetSP()); 519 for (ConstString name : names) { 520 root = root->GetChildMemberWithName(name, true); 521 if (!root) { 522 if (name_of_error) 523 *name_of_error = name; 524 return root; 525 } 526 } 527 return root; 528 } 529 530 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 531 llvm::ArrayRef<std::pair<ConstString, bool>> names, 532 ConstString *name_of_error) { 533 if (names.size() == 0) 534 return GetSP(); 535 ValueObjectSP root(GetSP()); 536 for (std::pair<ConstString, bool> name : names) { 537 root = root->GetChildMemberWithName(name.first, name.second); 538 if (!root) { 539 if (name_of_error) 540 *name_of_error = name.first; 541 return root; 542 } 543 } 544 return root; 545 } 546 547 size_t ValueObject::GetIndexOfChildWithName(const ConstString &name) { 548 bool omit_empty_base_classes = true; 549 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 550 omit_empty_base_classes); 551 } 552 553 ValueObjectSP ValueObject::GetChildMemberWithName(const ConstString &name, 554 bool can_create) { 555 // when getting a child by name, it could be buried inside some base classes 556 // (which really aren't part of the expression path), so we need a vector of 557 // indexes that can get us down to the correct child 558 ValueObjectSP child_sp; 559 560 // We may need to update our value if we are dynamic 561 if (IsPossibleDynamicType()) 562 UpdateValueIfNeeded(false); 563 564 std::vector<uint32_t> child_indexes; 565 bool omit_empty_base_classes = true; 566 const size_t num_child_indexes = 567 GetCompilerType().GetIndexOfChildMemberWithName( 568 name.GetCString(), omit_empty_base_classes, child_indexes); 569 if (num_child_indexes > 0) { 570 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 571 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 572 573 child_sp = GetChildAtIndex(*pos, can_create); 574 for (++pos; pos != end; ++pos) { 575 if (child_sp) { 576 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 577 child_sp = new_child_sp; 578 } else { 579 child_sp.reset(); 580 } 581 } 582 } 583 return child_sp; 584 } 585 586 size_t ValueObject::GetNumChildren(uint32_t max) { 587 UpdateValueIfNeeded(); 588 589 if (max < UINT32_MAX) { 590 if (m_children_count_valid) { 591 size_t children_count = m_children.GetChildrenCount(); 592 return children_count <= max ? children_count : max; 593 } else 594 return CalculateNumChildren(max); 595 } 596 597 if (!m_children_count_valid) { 598 SetNumChildren(CalculateNumChildren()); 599 } 600 return m_children.GetChildrenCount(); 601 } 602 603 bool ValueObject::MightHaveChildren() { 604 bool has_children = false; 605 const uint32_t type_info = GetTypeInfo(); 606 if (type_info) { 607 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 608 has_children = true; 609 } else { 610 has_children = GetNumChildren() > 0; 611 } 612 return has_children; 613 } 614 615 // Should only be called by ValueObject::GetNumChildren() 616 void ValueObject::SetNumChildren(size_t num_children) { 617 m_children_count_valid = true; 618 m_children.SetChildrenCount(num_children); 619 } 620 621 void ValueObject::SetName(const ConstString &name) { m_name = name; } 622 623 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 624 bool synthetic_array_member, 625 int32_t synthetic_index) { 626 ValueObject *valobj = NULL; 627 628 bool omit_empty_base_classes = true; 629 bool ignore_array_bounds = synthetic_array_member; 630 std::string child_name_str; 631 uint32_t child_byte_size = 0; 632 int32_t child_byte_offset = 0; 633 uint32_t child_bitfield_bit_size = 0; 634 uint32_t child_bitfield_bit_offset = 0; 635 bool child_is_base_class = false; 636 bool child_is_deref_of_parent = false; 637 uint64_t language_flags = 0; 638 639 const bool transparent_pointers = !synthetic_array_member; 640 CompilerType child_compiler_type; 641 642 ExecutionContext exe_ctx(GetExecutionContextRef()); 643 644 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 645 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 646 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 647 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 648 child_is_deref_of_parent, this, language_flags); 649 if (child_compiler_type) { 650 if (synthetic_index) 651 child_byte_offset += child_byte_size * synthetic_index; 652 653 ConstString child_name; 654 if (!child_name_str.empty()) 655 child_name.SetCString(child_name_str.c_str()); 656 657 valobj = new ValueObjectChild( 658 *this, child_compiler_type, child_name, child_byte_size, 659 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 660 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 661 language_flags); 662 } 663 664 return valobj; 665 } 666 667 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 668 std::string &destination, 669 lldb::LanguageType lang) { 670 return GetSummaryAsCString(summary_ptr, destination, 671 TypeSummaryOptions().SetLanguage(lang)); 672 } 673 674 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 675 std::string &destination, 676 const TypeSummaryOptions &options) { 677 destination.clear(); 678 679 // ideally we would like to bail out if passing NULL, but if we do so we end 680 // up not providing the summary for function pointers anymore 681 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 682 return false; 683 684 m_is_getting_summary = true; 685 686 TypeSummaryOptions actual_options(options); 687 688 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 689 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 690 691 // this is a hot path in code and we prefer to avoid setting this string all 692 // too often also clearing out other information that we might care to see in 693 // a crash log. might be useful in very specific situations though. 694 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 695 Summary provider's description is %s", 696 GetTypeName().GetCString(), 697 GetName().GetCString(), 698 summary_ptr->GetDescription().c_str());*/ 699 700 if (UpdateValueIfNeeded(false) && summary_ptr) { 701 if (HasSyntheticValue()) 702 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 703 // the synthetic children being 704 // up-to-date (e.g. ${svar%#}) 705 summary_ptr->FormatObject(this, destination, actual_options); 706 } 707 m_is_getting_summary = false; 708 return !destination.empty(); 709 } 710 711 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 712 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 713 TypeSummaryOptions summary_options; 714 summary_options.SetLanguage(lang); 715 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 716 summary_options); 717 } 718 if (m_summary_str.empty()) 719 return NULL; 720 return m_summary_str.c_str(); 721 } 722 723 bool ValueObject::GetSummaryAsCString(std::string &destination, 724 const TypeSummaryOptions &options) { 725 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 726 } 727 728 bool ValueObject::IsCStringContainer(bool check_pointer) { 729 CompilerType pointee_or_element_compiler_type; 730 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 731 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 732 pointee_or_element_compiler_type.IsCharType()); 733 if (!is_char_arr_ptr) 734 return false; 735 if (!check_pointer) 736 return true; 737 if (type_flags.Test(eTypeIsArray)) 738 return true; 739 addr_t cstr_address = LLDB_INVALID_ADDRESS; 740 AddressType cstr_address_type = eAddressTypeInvalid; 741 cstr_address = GetAddressOf(true, &cstr_address_type); 742 return (cstr_address != LLDB_INVALID_ADDRESS); 743 } 744 745 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 746 uint32_t item_count) { 747 CompilerType pointee_or_element_compiler_type; 748 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 749 const bool is_pointer_type = type_info & eTypeIsPointer; 750 const bool is_array_type = type_info & eTypeIsArray; 751 if (!(is_pointer_type || is_array_type)) 752 return 0; 753 754 if (item_count == 0) 755 return 0; 756 757 ExecutionContext exe_ctx(GetExecutionContextRef()); 758 759 const uint64_t item_type_size = pointee_or_element_compiler_type.GetByteSize( 760 exe_ctx.GetBestExecutionContextScope()); 761 const uint64_t bytes = item_count * item_type_size; 762 const uint64_t offset = item_idx * item_type_size; 763 764 if (item_idx == 0 && item_count == 1) // simply a deref 765 { 766 if (is_pointer_type) { 767 Status error; 768 ValueObjectSP pointee_sp = Dereference(error); 769 if (error.Fail() || pointee_sp.get() == NULL) 770 return 0; 771 return pointee_sp->GetData(data, error); 772 } else { 773 ValueObjectSP child_sp = GetChildAtIndex(0, true); 774 if (child_sp.get() == NULL) 775 return 0; 776 Status error; 777 return child_sp->GetData(data, error); 778 } 779 return true; 780 } else /* (items > 1) */ 781 { 782 Status error; 783 lldb_private::DataBufferHeap *heap_buf_ptr = NULL; 784 lldb::DataBufferSP data_sp(heap_buf_ptr = 785 new lldb_private::DataBufferHeap()); 786 787 AddressType addr_type; 788 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 789 : GetAddressOf(true, &addr_type); 790 791 switch (addr_type) { 792 case eAddressTypeFile: { 793 ModuleSP module_sp(GetModule()); 794 if (module_sp) { 795 addr = addr + offset; 796 Address so_addr; 797 module_sp->ResolveFileAddress(addr, so_addr); 798 ExecutionContext exe_ctx(GetExecutionContextRef()); 799 Target *target = exe_ctx.GetTargetPtr(); 800 if (target) { 801 heap_buf_ptr->SetByteSize(bytes); 802 size_t bytes_read = target->ReadMemory( 803 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 804 if (error.Success()) { 805 data.SetData(data_sp); 806 return bytes_read; 807 } 808 } 809 } 810 } break; 811 case eAddressTypeLoad: { 812 ExecutionContext exe_ctx(GetExecutionContextRef()); 813 Process *process = exe_ctx.GetProcessPtr(); 814 if (process) { 815 heap_buf_ptr->SetByteSize(bytes); 816 size_t bytes_read = process->ReadMemory( 817 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 818 if (error.Success() || bytes_read > 0) { 819 data.SetData(data_sp); 820 return bytes_read; 821 } 822 } 823 } break; 824 case eAddressTypeHost: { 825 const uint64_t max_bytes = 826 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 827 if (max_bytes > offset) { 828 size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes); 829 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 830 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 831 break; 832 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 833 data.SetData(data_sp); 834 return bytes_read; 835 } 836 } break; 837 case eAddressTypeInvalid: 838 break; 839 } 840 } 841 return 0; 842 } 843 844 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 845 UpdateValueIfNeeded(false); 846 ExecutionContext exe_ctx(GetExecutionContextRef()); 847 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 848 if (error.Fail()) { 849 if (m_data.GetByteSize()) { 850 data = m_data; 851 error.Clear(); 852 return data.GetByteSize(); 853 } else { 854 return 0; 855 } 856 } 857 data.SetAddressByteSize(m_data.GetAddressByteSize()); 858 data.SetByteOrder(m_data.GetByteOrder()); 859 return data.GetByteSize(); 860 } 861 862 bool ValueObject::SetData(DataExtractor &data, Status &error) { 863 error.Clear(); 864 // Make sure our value is up to date first so that our location and location 865 // type is valid. 866 if (!UpdateValueIfNeeded(false)) { 867 error.SetErrorString("unable to read value"); 868 return false; 869 } 870 871 uint64_t count = 0; 872 const Encoding encoding = GetCompilerType().GetEncoding(count); 873 874 const size_t byte_size = GetByteSize(); 875 876 Value::ValueType value_type = m_value.GetValueType(); 877 878 switch (value_type) { 879 case Value::eValueTypeScalar: { 880 Status set_error = 881 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 882 883 if (!set_error.Success()) { 884 error.SetErrorStringWithFormat("unable to set scalar value: %s", 885 set_error.AsCString()); 886 return false; 887 } 888 } break; 889 case Value::eValueTypeLoadAddress: { 890 // If it is a load address, then the scalar value is the storage location 891 // of the data, and we have to shove this value down to that load location. 892 ExecutionContext exe_ctx(GetExecutionContextRef()); 893 Process *process = exe_ctx.GetProcessPtr(); 894 if (process) { 895 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 896 size_t bytes_written = process->WriteMemory( 897 target_addr, data.GetDataStart(), byte_size, error); 898 if (!error.Success()) 899 return false; 900 if (bytes_written != byte_size) { 901 error.SetErrorString("unable to write value to memory"); 902 return false; 903 } 904 } 905 } break; 906 case Value::eValueTypeHostAddress: { 907 // If it is a host address, then we stuff the scalar as a DataBuffer into 908 // the Value's data. 909 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 910 m_data.SetData(buffer_sp, 0); 911 data.CopyByteOrderedData(0, byte_size, 912 const_cast<uint8_t *>(m_data.GetDataStart()), 913 byte_size, m_data.GetByteOrder()); 914 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 915 } break; 916 case Value::eValueTypeFileAddress: 917 case Value::eValueTypeVector: 918 break; 919 } 920 921 // If we have reached this point, then we have successfully changed the 922 // value. 923 SetNeedsUpdate(); 924 return true; 925 } 926 927 static bool CopyStringDataToBufferSP(const StreamString &source, 928 lldb::DataBufferSP &destination) { 929 destination.reset(new DataBufferHeap(source.GetSize() + 1, 0)); 930 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 931 return true; 932 } 933 934 std::pair<size_t, bool> 935 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 936 uint32_t max_length, bool honor_array, 937 Format item_format) { 938 bool was_capped = false; 939 StreamString s; 940 ExecutionContext exe_ctx(GetExecutionContextRef()); 941 Target *target = exe_ctx.GetTargetPtr(); 942 943 if (!target) { 944 s << "<no target to read from>"; 945 error.SetErrorString("no target to read from"); 946 CopyStringDataToBufferSP(s, buffer_sp); 947 return {0, was_capped}; 948 } 949 950 if (max_length == 0) 951 max_length = target->GetMaximumSizeOfStringSummary(); 952 953 size_t bytes_read = 0; 954 size_t total_bytes_read = 0; 955 956 CompilerType compiler_type = GetCompilerType(); 957 CompilerType elem_or_pointee_compiler_type; 958 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 959 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 960 elem_or_pointee_compiler_type.IsCharType()) { 961 addr_t cstr_address = LLDB_INVALID_ADDRESS; 962 AddressType cstr_address_type = eAddressTypeInvalid; 963 964 size_t cstr_len = 0; 965 bool capped_data = false; 966 const bool is_array = type_flags.Test(eTypeIsArray); 967 if (is_array) { 968 // We have an array 969 uint64_t array_size = 0; 970 if (compiler_type.IsArrayType(NULL, &array_size, NULL)) { 971 cstr_len = array_size; 972 if (cstr_len > max_length) { 973 capped_data = true; 974 cstr_len = max_length; 975 } 976 } 977 cstr_address = GetAddressOf(true, &cstr_address_type); 978 } else { 979 // We have a pointer 980 cstr_address = GetPointerValue(&cstr_address_type); 981 } 982 983 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 984 if (cstr_address_type == eAddressTypeHost && is_array) { 985 const char *cstr = GetDataExtractor().PeekCStr(0); 986 if (cstr == nullptr) { 987 s << "<invalid address>"; 988 error.SetErrorString("invalid address"); 989 CopyStringDataToBufferSP(s, buffer_sp); 990 return {0, was_capped}; 991 } 992 buffer_sp.reset(new DataBufferHeap(cstr_len, 0)); 993 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 994 return {cstr_len, was_capped}; 995 } else { 996 s << "<invalid address>"; 997 error.SetErrorString("invalid address"); 998 CopyStringDataToBufferSP(s, buffer_sp); 999 return {0, was_capped}; 1000 } 1001 } 1002 1003 Address cstr_so_addr(cstr_address); 1004 DataExtractor data; 1005 if (cstr_len > 0 && honor_array) { 1006 // I am using GetPointeeData() here to abstract the fact that some 1007 // ValueObjects are actually frozen pointers in the host but the pointed- 1008 // to data lives in the debuggee, and GetPointeeData() automatically 1009 // takes care of this 1010 GetPointeeData(data, 0, cstr_len); 1011 1012 if ((bytes_read = data.GetByteSize()) > 0) { 1013 total_bytes_read = bytes_read; 1014 for (size_t offset = 0; offset < bytes_read; offset++) 1015 s.Printf("%c", *data.PeekData(offset, 1)); 1016 if (capped_data) 1017 was_capped = true; 1018 } 1019 } else { 1020 cstr_len = max_length; 1021 const size_t k_max_buf_size = 64; 1022 1023 size_t offset = 0; 1024 1025 int cstr_len_displayed = -1; 1026 bool capped_cstr = false; 1027 // I am using GetPointeeData() here to abstract the fact that some 1028 // ValueObjects are actually frozen pointers in the host but the pointed- 1029 // to data lives in the debuggee, and GetPointeeData() automatically 1030 // takes care of this 1031 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1032 total_bytes_read += bytes_read; 1033 const char *cstr = data.PeekCStr(0); 1034 size_t len = strnlen(cstr, k_max_buf_size); 1035 if (cstr_len_displayed < 0) 1036 cstr_len_displayed = len; 1037 1038 if (len == 0) 1039 break; 1040 cstr_len_displayed += len; 1041 if (len > bytes_read) 1042 len = bytes_read; 1043 if (len > cstr_len) 1044 len = cstr_len; 1045 1046 for (size_t offset = 0; offset < bytes_read; offset++) 1047 s.Printf("%c", *data.PeekData(offset, 1)); 1048 1049 if (len < k_max_buf_size) 1050 break; 1051 1052 if (len >= cstr_len) { 1053 capped_cstr = true; 1054 break; 1055 } 1056 1057 cstr_len -= len; 1058 offset += len; 1059 } 1060 1061 if (cstr_len_displayed >= 0) { 1062 if (capped_cstr) 1063 was_capped = true; 1064 } 1065 } 1066 } else { 1067 error.SetErrorString("not a string object"); 1068 s << "<not a string object>"; 1069 } 1070 CopyStringDataToBufferSP(s, buffer_sp); 1071 return {total_bytes_read, was_capped}; 1072 } 1073 1074 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1075 if (!UpdateValueIfNeeded(true)) 1076 return {TypeValidatorResult::Success, 1077 ""}; // not the validator's job to discuss update problems 1078 1079 if (m_validation_result.hasValue()) 1080 return m_validation_result.getValue(); 1081 1082 if (!m_type_validator_sp) 1083 return {TypeValidatorResult::Success, ""}; // no validator no failure 1084 1085 auto outcome = m_type_validator_sp->FormatObject(this); 1086 1087 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1088 .getValue(); 1089 } 1090 1091 const char *ValueObject::GetObjectDescription() { 1092 1093 if (!UpdateValueIfNeeded(true)) 1094 return NULL; 1095 1096 if (!m_object_desc_str.empty()) 1097 return m_object_desc_str.c_str(); 1098 1099 ExecutionContext exe_ctx(GetExecutionContextRef()); 1100 Process *process = exe_ctx.GetProcessPtr(); 1101 if (process == NULL) 1102 return NULL; 1103 1104 StreamString s; 1105 1106 LanguageType language = GetObjectRuntimeLanguage(); 1107 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1108 1109 if (runtime == NULL) { 1110 // Aw, hell, if the things a pointer, or even just an integer, let's try 1111 // ObjC anyway... 1112 CompilerType compiler_type = GetCompilerType(); 1113 if (compiler_type) { 1114 bool is_signed; 1115 if (compiler_type.IsIntegerType(is_signed) || 1116 compiler_type.IsPointerType()) { 1117 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1118 } 1119 } 1120 } 1121 1122 if (runtime && runtime->GetObjectDescription(s, *this)) { 1123 m_object_desc_str.append(s.GetString()); 1124 } 1125 1126 if (m_object_desc_str.empty()) 1127 return NULL; 1128 else 1129 return m_object_desc_str.c_str(); 1130 } 1131 1132 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1133 std::string &destination) { 1134 if (UpdateValueIfNeeded(false)) 1135 return format.FormatObject(this, destination); 1136 else 1137 return false; 1138 } 1139 1140 bool ValueObject::GetValueAsCString(lldb::Format format, 1141 std::string &destination) { 1142 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1143 } 1144 1145 const char *ValueObject::GetValueAsCString() { 1146 if (UpdateValueIfNeeded(true)) { 1147 lldb::TypeFormatImplSP format_sp; 1148 lldb::Format my_format = GetFormat(); 1149 if (my_format == lldb::eFormatDefault) { 1150 if (m_type_format_sp) 1151 format_sp = m_type_format_sp; 1152 else { 1153 if (m_is_bitfield_for_scalar) 1154 my_format = eFormatUnsigned; 1155 else { 1156 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1157 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1158 if (reg_info) 1159 my_format = reg_info->format; 1160 } else { 1161 my_format = GetValue().GetCompilerType().GetFormat(); 1162 } 1163 } 1164 } 1165 } 1166 if (my_format != m_last_format || m_value_str.empty()) { 1167 m_last_format = my_format; 1168 if (!format_sp) 1169 format_sp.reset(new TypeFormatImpl_Format(my_format)); 1170 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1171 if (!m_value_did_change && m_old_value_valid) { 1172 // The value was gotten successfully, so we consider the value as 1173 // changed if the value string differs 1174 SetValueDidChange(m_old_value_str != m_value_str); 1175 } 1176 } 1177 } 1178 } 1179 if (m_value_str.empty()) 1180 return NULL; 1181 return m_value_str.c_str(); 1182 } 1183 1184 // if > 8bytes, 0 is returned. this method should mostly be used to read 1185 // address values out of pointers 1186 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1187 // If our byte size is zero this is an aggregate type that has children 1188 if (CanProvideValue()) { 1189 Scalar scalar; 1190 if (ResolveValue(scalar)) { 1191 if (success) 1192 *success = true; 1193 return scalar.ULongLong(fail_value); 1194 } 1195 // fallthrough, otherwise... 1196 } 1197 1198 if (success) 1199 *success = false; 1200 return fail_value; 1201 } 1202 1203 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1204 // If our byte size is zero this is an aggregate type that has children 1205 if (CanProvideValue()) { 1206 Scalar scalar; 1207 if (ResolveValue(scalar)) { 1208 if (success) 1209 *success = true; 1210 return scalar.SLongLong(fail_value); 1211 } 1212 // fallthrough, otherwise... 1213 } 1214 1215 if (success) 1216 *success = false; 1217 return fail_value; 1218 } 1219 1220 // if any more "special cases" are added to 1221 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1222 // by returning true for your new special cases. We will eventually move to 1223 // checking this call result before trying to display special cases 1224 bool ValueObject::HasSpecialPrintableRepresentation( 1225 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1226 Flags flags(GetTypeInfo()); 1227 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1228 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1229 if (IsCStringContainer(true) && 1230 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1231 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1232 return true; 1233 1234 if (flags.Test(eTypeIsArray)) { 1235 if ((custom_format == eFormatBytes) || 1236 (custom_format == eFormatBytesWithASCII)) 1237 return true; 1238 1239 if ((custom_format == eFormatVectorOfChar) || 1240 (custom_format == eFormatVectorOfFloat32) || 1241 (custom_format == eFormatVectorOfFloat64) || 1242 (custom_format == eFormatVectorOfSInt16) || 1243 (custom_format == eFormatVectorOfSInt32) || 1244 (custom_format == eFormatVectorOfSInt64) || 1245 (custom_format == eFormatVectorOfSInt8) || 1246 (custom_format == eFormatVectorOfUInt128) || 1247 (custom_format == eFormatVectorOfUInt16) || 1248 (custom_format == eFormatVectorOfUInt32) || 1249 (custom_format == eFormatVectorOfUInt64) || 1250 (custom_format == eFormatVectorOfUInt8)) 1251 return true; 1252 } 1253 } 1254 return false; 1255 } 1256 1257 bool ValueObject::DumpPrintableRepresentation( 1258 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1259 Format custom_format, PrintableRepresentationSpecialCases special, 1260 bool do_dump_error) { 1261 1262 Flags flags(GetTypeInfo()); 1263 1264 bool allow_special = 1265 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1266 const bool only_special = false; 1267 1268 if (allow_special) { 1269 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1270 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1271 // when being asked to get a printable display an array or pointer type 1272 // directly, try to "do the right thing" 1273 1274 if (IsCStringContainer(true) && 1275 (custom_format == eFormatCString || 1276 custom_format == eFormatCharArray || custom_format == eFormatChar || 1277 custom_format == 1278 eFormatVectorOfChar)) // print char[] & char* directly 1279 { 1280 Status error; 1281 lldb::DataBufferSP buffer_sp; 1282 std::pair<size_t, bool> read_string = ReadPointedString( 1283 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1284 (custom_format == eFormatCharArray)); 1285 lldb_private::formatters::StringPrinter:: 1286 ReadBufferAndDumpToStreamOptions options(*this); 1287 options.SetData(DataExtractor( 1288 buffer_sp, lldb::eByteOrderInvalid, 1289 8)); // none of this matters for a string - pass some defaults 1290 options.SetStream(&s); 1291 options.SetPrefixToken(0); 1292 options.SetQuote('"'); 1293 options.SetSourceSize(buffer_sp->GetByteSize()); 1294 options.SetIsTruncated(read_string.second); 1295 formatters::StringPrinter::ReadBufferAndDumpToStream< 1296 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1297 options); 1298 return !error.Fail(); 1299 } 1300 1301 if (custom_format == eFormatEnum) 1302 return false; 1303 1304 // this only works for arrays, because I have no way to know when the 1305 // pointed memory ends, and no special \0 end of data marker 1306 if (flags.Test(eTypeIsArray)) { 1307 if ((custom_format == eFormatBytes) || 1308 (custom_format == eFormatBytesWithASCII)) { 1309 const size_t count = GetNumChildren(); 1310 1311 s << '['; 1312 for (size_t low = 0; low < count; low++) { 1313 1314 if (low) 1315 s << ','; 1316 1317 ValueObjectSP child = GetChildAtIndex(low, true); 1318 if (!child.get()) { 1319 s << "<invalid child>"; 1320 continue; 1321 } 1322 child->DumpPrintableRepresentation( 1323 s, ValueObject::eValueObjectRepresentationStyleValue, 1324 custom_format); 1325 } 1326 1327 s << ']'; 1328 1329 return true; 1330 } 1331 1332 if ((custom_format == eFormatVectorOfChar) || 1333 (custom_format == eFormatVectorOfFloat32) || 1334 (custom_format == eFormatVectorOfFloat64) || 1335 (custom_format == eFormatVectorOfSInt16) || 1336 (custom_format == eFormatVectorOfSInt32) || 1337 (custom_format == eFormatVectorOfSInt64) || 1338 (custom_format == eFormatVectorOfSInt8) || 1339 (custom_format == eFormatVectorOfUInt128) || 1340 (custom_format == eFormatVectorOfUInt16) || 1341 (custom_format == eFormatVectorOfUInt32) || 1342 (custom_format == eFormatVectorOfUInt64) || 1343 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1344 // with ASCII or any vector 1345 // format should be printed 1346 // directly 1347 { 1348 const size_t count = GetNumChildren(); 1349 1350 Format format = FormatManager::GetSingleItemFormat(custom_format); 1351 1352 s << '['; 1353 for (size_t low = 0; low < count; low++) { 1354 1355 if (low) 1356 s << ','; 1357 1358 ValueObjectSP child = GetChildAtIndex(low, true); 1359 if (!child.get()) { 1360 s << "<invalid child>"; 1361 continue; 1362 } 1363 child->DumpPrintableRepresentation( 1364 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1365 } 1366 1367 s << ']'; 1368 1369 return true; 1370 } 1371 } 1372 1373 if ((custom_format == eFormatBoolean) || 1374 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1375 (custom_format == eFormatCharPrintable) || 1376 (custom_format == eFormatComplexFloat) || 1377 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1378 (custom_format == eFormatHexUppercase) || 1379 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1380 (custom_format == eFormatOSType) || 1381 (custom_format == eFormatUnicode16) || 1382 (custom_format == eFormatUnicode32) || 1383 (custom_format == eFormatUnsigned) || 1384 (custom_format == eFormatPointer) || 1385 (custom_format == eFormatComplexInteger) || 1386 (custom_format == eFormatComplex) || 1387 (custom_format == eFormatDefault)) // use the [] operator 1388 return false; 1389 } 1390 } 1391 1392 if (only_special) 1393 return false; 1394 1395 bool var_success = false; 1396 1397 { 1398 llvm::StringRef str; 1399 1400 // this is a local stream that we are using to ensure that the data pointed 1401 // to by cstr survives long enough for us to copy it to its destination - 1402 // it is necessary to have this temporary storage area for cases where our 1403 // desired output is not backed by some other longer-term storage 1404 StreamString strm; 1405 1406 if (custom_format != eFormatInvalid) 1407 SetFormat(custom_format); 1408 1409 switch (val_obj_display) { 1410 case eValueObjectRepresentationStyleValue: 1411 str = GetValueAsCString(); 1412 break; 1413 1414 case eValueObjectRepresentationStyleSummary: 1415 str = GetSummaryAsCString(); 1416 break; 1417 1418 case eValueObjectRepresentationStyleLanguageSpecific: 1419 str = GetObjectDescription(); 1420 break; 1421 1422 case eValueObjectRepresentationStyleLocation: 1423 str = GetLocationAsCString(); 1424 break; 1425 1426 case eValueObjectRepresentationStyleChildrenCount: 1427 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1428 str = strm.GetString(); 1429 break; 1430 1431 case eValueObjectRepresentationStyleType: 1432 str = GetTypeName().GetStringRef(); 1433 break; 1434 1435 case eValueObjectRepresentationStyleName: 1436 str = GetName().GetStringRef(); 1437 break; 1438 1439 case eValueObjectRepresentationStyleExpressionPath: 1440 GetExpressionPath(strm, false); 1441 str = strm.GetString(); 1442 break; 1443 } 1444 1445 if (str.empty()) { 1446 if (val_obj_display == eValueObjectRepresentationStyleValue) 1447 str = GetSummaryAsCString(); 1448 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1449 if (!CanProvideValue()) { 1450 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1451 GetLocationAsCString()); 1452 str = strm.GetString(); 1453 } else 1454 str = GetValueAsCString(); 1455 } 1456 } 1457 1458 if (!str.empty()) 1459 s << str; 1460 else { 1461 if (m_error.Fail()) { 1462 if (do_dump_error) 1463 s.Printf("<%s>", m_error.AsCString()); 1464 else 1465 return false; 1466 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1467 s.PutCString("<no summary available>"); 1468 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1469 s.PutCString("<no value available>"); 1470 else if (val_obj_display == 1471 eValueObjectRepresentationStyleLanguageSpecific) 1472 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1473 // have other runtimes 1474 // that support a 1475 // description 1476 else 1477 s.PutCString("<no printable representation>"); 1478 } 1479 1480 // we should only return false here if we could not do *anything* even if 1481 // we have an error message as output, that's a success from our callers' 1482 // perspective, so return true 1483 var_success = true; 1484 1485 if (custom_format != eFormatInvalid) 1486 SetFormat(eFormatDefault); 1487 } 1488 1489 return var_success; 1490 } 1491 1492 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1493 AddressType *address_type) { 1494 // Can't take address of a bitfield 1495 if (IsBitfield()) 1496 return LLDB_INVALID_ADDRESS; 1497 1498 if (!UpdateValueIfNeeded(false)) 1499 return LLDB_INVALID_ADDRESS; 1500 1501 switch (m_value.GetValueType()) { 1502 case Value::eValueTypeScalar: 1503 case Value::eValueTypeVector: 1504 if (scalar_is_load_address) { 1505 if (address_type) 1506 *address_type = eAddressTypeLoad; 1507 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1508 } 1509 break; 1510 1511 case Value::eValueTypeLoadAddress: 1512 case Value::eValueTypeFileAddress: { 1513 if (address_type) 1514 *address_type = m_value.GetValueAddressType(); 1515 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1516 } break; 1517 case Value::eValueTypeHostAddress: { 1518 if (address_type) 1519 *address_type = m_value.GetValueAddressType(); 1520 return LLDB_INVALID_ADDRESS; 1521 } break; 1522 } 1523 if (address_type) 1524 *address_type = eAddressTypeInvalid; 1525 return LLDB_INVALID_ADDRESS; 1526 } 1527 1528 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1529 addr_t address = LLDB_INVALID_ADDRESS; 1530 if (address_type) 1531 *address_type = eAddressTypeInvalid; 1532 1533 if (!UpdateValueIfNeeded(false)) 1534 return address; 1535 1536 switch (m_value.GetValueType()) { 1537 case Value::eValueTypeScalar: 1538 case Value::eValueTypeVector: 1539 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1540 break; 1541 1542 case Value::eValueTypeHostAddress: 1543 case Value::eValueTypeLoadAddress: 1544 case Value::eValueTypeFileAddress: { 1545 lldb::offset_t data_offset = 0; 1546 address = m_data.GetPointer(&data_offset); 1547 } break; 1548 } 1549 1550 if (address_type) 1551 *address_type = GetAddressTypeOfChildren(); 1552 1553 return address; 1554 } 1555 1556 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1557 error.Clear(); 1558 // Make sure our value is up to date first so that our location and location 1559 // type is valid. 1560 if (!UpdateValueIfNeeded(false)) { 1561 error.SetErrorString("unable to read value"); 1562 return false; 1563 } 1564 1565 uint64_t count = 0; 1566 const Encoding encoding = GetCompilerType().GetEncoding(count); 1567 1568 const size_t byte_size = GetByteSize(); 1569 1570 Value::ValueType value_type = m_value.GetValueType(); 1571 1572 if (value_type == Value::eValueTypeScalar) { 1573 // If the value is already a scalar, then let the scalar change itself: 1574 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1575 } else if (byte_size <= 16) { 1576 // If the value fits in a scalar, then make a new scalar and again let the 1577 // scalar code do the conversion, then figure out where to put the new 1578 // value. 1579 Scalar new_scalar; 1580 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1581 if (error.Success()) { 1582 switch (value_type) { 1583 case Value::eValueTypeLoadAddress: { 1584 // If it is a load address, then the scalar value is the storage 1585 // location of the data, and we have to shove this value down to that 1586 // load location. 1587 ExecutionContext exe_ctx(GetExecutionContextRef()); 1588 Process *process = exe_ctx.GetProcessPtr(); 1589 if (process) { 1590 addr_t target_addr = 1591 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1592 size_t bytes_written = process->WriteScalarToMemory( 1593 target_addr, new_scalar, byte_size, error); 1594 if (!error.Success()) 1595 return false; 1596 if (bytes_written != byte_size) { 1597 error.SetErrorString("unable to write value to memory"); 1598 return false; 1599 } 1600 } 1601 } break; 1602 case Value::eValueTypeHostAddress: { 1603 // If it is a host address, then we stuff the scalar as a DataBuffer 1604 // into the Value's data. 1605 DataExtractor new_data; 1606 new_data.SetByteOrder(m_data.GetByteOrder()); 1607 1608 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1609 m_data.SetData(buffer_sp, 0); 1610 bool success = new_scalar.GetData(new_data); 1611 if (success) { 1612 new_data.CopyByteOrderedData( 1613 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1614 byte_size, m_data.GetByteOrder()); 1615 } 1616 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1617 1618 } break; 1619 case Value::eValueTypeFileAddress: 1620 case Value::eValueTypeScalar: 1621 case Value::eValueTypeVector: 1622 break; 1623 } 1624 } else { 1625 return false; 1626 } 1627 } else { 1628 // We don't support setting things bigger than a scalar at present. 1629 error.SetErrorString("unable to write aggregate data type"); 1630 return false; 1631 } 1632 1633 // If we have reached this point, then we have successfully changed the 1634 // value. 1635 SetNeedsUpdate(); 1636 return true; 1637 } 1638 1639 bool ValueObject::GetDeclaration(Declaration &decl) { 1640 decl.Clear(); 1641 return false; 1642 } 1643 1644 ConstString ValueObject::GetTypeName() { 1645 return GetCompilerType().GetConstTypeName(); 1646 } 1647 1648 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1649 1650 ConstString ValueObject::GetQualifiedTypeName() { 1651 return GetCompilerType().GetConstQualifiedTypeName(); 1652 } 1653 1654 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1655 return GetCompilerType().GetMinimumLanguage(); 1656 } 1657 1658 void ValueObject::AddSyntheticChild(const ConstString &key, 1659 ValueObject *valobj) { 1660 m_synthetic_children[key] = valobj; 1661 } 1662 1663 ValueObjectSP ValueObject::GetSyntheticChild(const ConstString &key) const { 1664 ValueObjectSP synthetic_child_sp; 1665 std::map<ConstString, ValueObject *>::const_iterator pos = 1666 m_synthetic_children.find(key); 1667 if (pos != m_synthetic_children.end()) 1668 synthetic_child_sp = pos->second->GetSP(); 1669 return synthetic_child_sp; 1670 } 1671 1672 uint32_t 1673 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1674 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1675 } 1676 1677 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1678 1679 bool ValueObject::IsArrayType() { 1680 return GetCompilerType().IsArrayType(NULL, NULL, NULL); 1681 } 1682 1683 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1684 1685 bool ValueObject::IsIntegerType(bool &is_signed) { 1686 return GetCompilerType().IsIntegerType(is_signed); 1687 } 1688 1689 bool ValueObject::IsPointerOrReferenceType() { 1690 return GetCompilerType().IsPointerOrReferenceType(); 1691 } 1692 1693 bool ValueObject::IsPossibleDynamicType() { 1694 ExecutionContext exe_ctx(GetExecutionContextRef()); 1695 Process *process = exe_ctx.GetProcessPtr(); 1696 if (process) 1697 return process->IsPossibleDynamicValue(*this); 1698 else 1699 return GetCompilerType().IsPossibleDynamicType(NULL, true, true); 1700 } 1701 1702 bool ValueObject::IsRuntimeSupportValue() { 1703 Process *process(GetProcessSP().get()); 1704 if (process) { 1705 LanguageRuntime *runtime = 1706 process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 1707 if (!runtime) 1708 runtime = process->GetObjCLanguageRuntime(); 1709 if (runtime) 1710 return runtime->IsRuntimeSupportValue(*this); 1711 } 1712 return false; 1713 } 1714 1715 bool ValueObject::IsNilReference() { 1716 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1717 return language->IsNilReference(*this); 1718 } 1719 return false; 1720 } 1721 1722 bool ValueObject::IsUninitializedReference() { 1723 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1724 return language->IsUninitializedReference(*this); 1725 } 1726 return false; 1727 } 1728 1729 // This allows you to create an array member using and index that doesn't not 1730 // fall in the normal bounds of the array. Many times structure can be defined 1731 // as: struct Collection { 1732 // uint32_t item_count; 1733 // Item item_array[0]; 1734 // }; 1735 // The size of the "item_array" is 1, but many times in practice there are more 1736 // items in "item_array". 1737 1738 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1739 bool can_create) { 1740 ValueObjectSP synthetic_child_sp; 1741 if (IsPointerType() || IsArrayType()) { 1742 char index_str[64]; 1743 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1744 ConstString index_const_str(index_str); 1745 // Check if we have already created a synthetic array member in this valid 1746 // object. If we have we will re-use it. 1747 synthetic_child_sp = GetSyntheticChild(index_const_str); 1748 if (!synthetic_child_sp) { 1749 ValueObject *synthetic_child; 1750 // We haven't made a synthetic array member for INDEX yet, so lets make 1751 // one and cache it for any future reference. 1752 synthetic_child = CreateChildAtIndex(0, true, index); 1753 1754 // Cache the value if we got one back... 1755 if (synthetic_child) { 1756 AddSyntheticChild(index_const_str, synthetic_child); 1757 synthetic_child_sp = synthetic_child->GetSP(); 1758 synthetic_child_sp->SetName(ConstString(index_str)); 1759 synthetic_child_sp->m_is_array_item_for_pointer = true; 1760 } 1761 } 1762 } 1763 return synthetic_child_sp; 1764 } 1765 1766 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1767 bool can_create) { 1768 ValueObjectSP synthetic_child_sp; 1769 if (IsScalarType()) { 1770 char index_str[64]; 1771 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1772 ConstString index_const_str(index_str); 1773 // Check if we have already created a synthetic array member in this valid 1774 // object. If we have we will re-use it. 1775 synthetic_child_sp = GetSyntheticChild(index_const_str); 1776 if (!synthetic_child_sp) { 1777 uint32_t bit_field_size = to - from + 1; 1778 uint32_t bit_field_offset = from; 1779 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1780 bit_field_offset = 1781 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1782 // We haven't made a synthetic array member for INDEX yet, so lets make 1783 // one and cache it for any future reference. 1784 ValueObjectChild *synthetic_child = new ValueObjectChild( 1785 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1786 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1787 0); 1788 1789 // Cache the value if we got one back... 1790 if (synthetic_child) { 1791 AddSyntheticChild(index_const_str, synthetic_child); 1792 synthetic_child_sp = synthetic_child->GetSP(); 1793 synthetic_child_sp->SetName(ConstString(index_str)); 1794 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1795 } 1796 } 1797 } 1798 return synthetic_child_sp; 1799 } 1800 1801 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1802 uint32_t offset, const CompilerType &type, bool can_create, 1803 ConstString name_const_str) { 1804 1805 ValueObjectSP synthetic_child_sp; 1806 1807 if (name_const_str.IsEmpty()) { 1808 char name_str[64]; 1809 snprintf(name_str, sizeof(name_str), "@%i", offset); 1810 name_const_str.SetCString(name_str); 1811 } 1812 1813 // Check if we have already created a synthetic array member in this valid 1814 // object. If we have we will re-use it. 1815 synthetic_child_sp = GetSyntheticChild(name_const_str); 1816 1817 if (synthetic_child_sp.get()) 1818 return synthetic_child_sp; 1819 1820 if (!can_create) 1821 return ValueObjectSP(); 1822 1823 ExecutionContext exe_ctx(GetExecutionContextRef()); 1824 1825 ValueObjectChild *synthetic_child = new ValueObjectChild( 1826 *this, type, name_const_str, 1827 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), offset, 0, 0, 1828 false, false, eAddressTypeInvalid, 0); 1829 if (synthetic_child) { 1830 AddSyntheticChild(name_const_str, synthetic_child); 1831 synthetic_child_sp = synthetic_child->GetSP(); 1832 synthetic_child_sp->SetName(name_const_str); 1833 synthetic_child_sp->m_is_child_at_offset = true; 1834 } 1835 return synthetic_child_sp; 1836 } 1837 1838 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1839 const CompilerType &type, 1840 bool can_create, 1841 ConstString name_const_str) { 1842 ValueObjectSP synthetic_child_sp; 1843 1844 if (name_const_str.IsEmpty()) { 1845 char name_str[128]; 1846 snprintf(name_str, sizeof(name_str), "base%s@%i", 1847 type.GetTypeName().AsCString("<unknown>"), offset); 1848 name_const_str.SetCString(name_str); 1849 } 1850 1851 // Check if we have already created a synthetic array member in this valid 1852 // object. If we have we will re-use it. 1853 synthetic_child_sp = GetSyntheticChild(name_const_str); 1854 1855 if (synthetic_child_sp.get()) 1856 return synthetic_child_sp; 1857 1858 if (!can_create) 1859 return ValueObjectSP(); 1860 1861 const bool is_base_class = true; 1862 1863 ExecutionContext exe_ctx(GetExecutionContextRef()); 1864 1865 ValueObjectChild *synthetic_child = new ValueObjectChild( 1866 *this, type, name_const_str, 1867 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), offset, 0, 0, 1868 is_base_class, false, eAddressTypeInvalid, 0); 1869 if (synthetic_child) { 1870 AddSyntheticChild(name_const_str, synthetic_child); 1871 synthetic_child_sp = synthetic_child->GetSP(); 1872 synthetic_child_sp->SetName(name_const_str); 1873 } 1874 return synthetic_child_sp; 1875 } 1876 1877 // your expression path needs to have a leading . or -> (unless it somehow 1878 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1879 // is meaningful and should be shown to the user, . and -> are just parser 1880 // design, but by no means added information for the user.. strip them off 1881 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1882 if (!expression || !expression[0]) 1883 return expression; 1884 if (expression[0] == '.') 1885 return expression + 1; 1886 if (expression[0] == '-' && expression[1] == '>') 1887 return expression + 2; 1888 return expression; 1889 } 1890 1891 ValueObjectSP 1892 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1893 bool can_create) { 1894 ValueObjectSP synthetic_child_sp; 1895 ConstString name_const_string(expression); 1896 // Check if we have already created a synthetic array member in this valid 1897 // object. If we have we will re-use it. 1898 synthetic_child_sp = GetSyntheticChild(name_const_string); 1899 if (!synthetic_child_sp) { 1900 // We haven't made a synthetic array member for expression yet, so lets 1901 // make one and cache it for any future reference. 1902 synthetic_child_sp = GetValueForExpressionPath( 1903 expression, NULL, NULL, 1904 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1905 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1906 None)); 1907 1908 // Cache the value if we got one back... 1909 if (synthetic_child_sp.get()) { 1910 // FIXME: this causes a "real" child to end up with its name changed to 1911 // the contents of expression 1912 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1913 synthetic_child_sp->SetName( 1914 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1915 } 1916 } 1917 return synthetic_child_sp; 1918 } 1919 1920 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1921 if (!use_synthetic) 1922 return; 1923 1924 TargetSP target_sp(GetTargetSP()); 1925 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1926 m_synthetic_value = NULL; 1927 return; 1928 } 1929 1930 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1931 1932 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1933 return; 1934 1935 if (m_synthetic_children_sp.get() == NULL) 1936 return; 1937 1938 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1939 return; 1940 1941 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1942 } 1943 1944 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1945 if (use_dynamic == eNoDynamicValues) 1946 return; 1947 1948 if (!m_dynamic_value && !IsDynamic()) { 1949 ExecutionContext exe_ctx(GetExecutionContextRef()); 1950 Process *process = exe_ctx.GetProcessPtr(); 1951 if (process && process->IsPossibleDynamicValue(*this)) { 1952 ClearDynamicTypeInformation(); 1953 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1954 } 1955 } 1956 } 1957 1958 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1959 if (use_dynamic == eNoDynamicValues) 1960 return ValueObjectSP(); 1961 1962 if (!IsDynamic() && m_dynamic_value == NULL) { 1963 CalculateDynamicValue(use_dynamic); 1964 } 1965 if (m_dynamic_value) 1966 return m_dynamic_value->GetSP(); 1967 else 1968 return ValueObjectSP(); 1969 } 1970 1971 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1972 1973 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1974 1975 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1976 if (!use_synthetic) 1977 return ValueObjectSP(); 1978 1979 CalculateSyntheticValue(use_synthetic); 1980 1981 if (m_synthetic_value) 1982 return m_synthetic_value->GetSP(); 1983 else 1984 return ValueObjectSP(); 1985 } 1986 1987 bool ValueObject::HasSyntheticValue() { 1988 UpdateFormatsIfNeeded(); 1989 1990 if (m_synthetic_children_sp.get() == NULL) 1991 return false; 1992 1993 CalculateSyntheticValue(true); 1994 1995 return m_synthetic_value != nullptr; 1996 } 1997 1998 bool ValueObject::GetBaseClassPath(Stream &s) { 1999 if (IsBaseClass()) { 2000 bool parent_had_base_class = 2001 GetParent() && GetParent()->GetBaseClassPath(s); 2002 CompilerType compiler_type = GetCompilerType(); 2003 std::string cxx_class_name; 2004 bool this_had_base_class = 2005 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 2006 if (this_had_base_class) { 2007 if (parent_had_base_class) 2008 s.PutCString("::"); 2009 s.PutCString(cxx_class_name); 2010 } 2011 return parent_had_base_class || this_had_base_class; 2012 } 2013 return false; 2014 } 2015 2016 ValueObject *ValueObject::GetNonBaseClassParent() { 2017 if (GetParent()) { 2018 if (GetParent()->IsBaseClass()) 2019 return GetParent()->GetNonBaseClassParent(); 2020 else 2021 return GetParent(); 2022 } 2023 return NULL; 2024 } 2025 2026 bool ValueObject::IsBaseClass(uint32_t &depth) { 2027 if (!IsBaseClass()) { 2028 depth = 0; 2029 return false; 2030 } 2031 if (GetParent()) { 2032 GetParent()->IsBaseClass(depth); 2033 depth = depth + 1; 2034 return true; 2035 } 2036 // TODO: a base of no parent? weird.. 2037 depth = 1; 2038 return true; 2039 } 2040 2041 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2042 GetExpressionPathFormat epformat) { 2043 // synthetic children do not actually "exist" as part of the hierarchy, and 2044 // sometimes they are consed up in ways that don't make sense from an 2045 // underlying language/API standpoint. So, use a special code path here to 2046 // return something that can hopefully be used in expression 2047 if (m_is_synthetic_children_generated) { 2048 UpdateValueIfNeeded(); 2049 2050 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2051 if (IsPointerOrReferenceType()) { 2052 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2053 GetValueAsUnsigned(0)); 2054 return; 2055 } else { 2056 uint64_t load_addr = 2057 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2058 if (load_addr != LLDB_INVALID_ADDRESS) { 2059 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2060 load_addr); 2061 return; 2062 } 2063 } 2064 } 2065 2066 if (CanProvideValue()) { 2067 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2068 GetValueAsCString()); 2069 return; 2070 } 2071 2072 return; 2073 } 2074 2075 const bool is_deref_of_parent = IsDereferenceOfParent(); 2076 2077 if (is_deref_of_parent && 2078 epformat == eGetExpressionPathFormatDereferencePointers) { 2079 // this is the original format of GetExpressionPath() producing code like 2080 // *(a_ptr).memberName, which is entirely fine, until you put this into 2081 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2082 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2083 // in this latter format 2084 s.PutCString("*("); 2085 } 2086 2087 ValueObject *parent = GetParent(); 2088 2089 if (parent) 2090 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2091 2092 // if we are a deref_of_parent just because we are synthetic array members 2093 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2094 // name ([%d]) to the expression path 2095 if (m_is_array_item_for_pointer && 2096 epformat == eGetExpressionPathFormatHonorPointers) 2097 s.PutCString(m_name.AsCString()); 2098 2099 if (!IsBaseClass()) { 2100 if (!is_deref_of_parent) { 2101 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2102 if (non_base_class_parent && 2103 !non_base_class_parent->GetName().IsEmpty()) { 2104 CompilerType non_base_class_parent_compiler_type = 2105 non_base_class_parent->GetCompilerType(); 2106 if (non_base_class_parent_compiler_type) { 2107 if (parent && parent->IsDereferenceOfParent() && 2108 epformat == eGetExpressionPathFormatHonorPointers) { 2109 s.PutCString("->"); 2110 } else { 2111 const uint32_t non_base_class_parent_type_info = 2112 non_base_class_parent_compiler_type.GetTypeInfo(); 2113 2114 if (non_base_class_parent_type_info & eTypeIsPointer) { 2115 s.PutCString("->"); 2116 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2117 !(non_base_class_parent_type_info & eTypeIsArray)) { 2118 s.PutChar('.'); 2119 } 2120 } 2121 } 2122 } 2123 2124 const char *name = GetName().GetCString(); 2125 if (name) { 2126 if (qualify_cxx_base_classes) { 2127 if (GetBaseClassPath(s)) 2128 s.PutCString("::"); 2129 } 2130 s.PutCString(name); 2131 } 2132 } 2133 } 2134 2135 if (is_deref_of_parent && 2136 epformat == eGetExpressionPathFormatDereferencePointers) { 2137 s.PutChar(')'); 2138 } 2139 } 2140 2141 ValueObjectSP ValueObject::GetValueForExpressionPath( 2142 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2143 ExpressionPathEndResultType *final_value_type, 2144 const GetValueForExpressionPathOptions &options, 2145 ExpressionPathAftermath *final_task_on_target) { 2146 2147 ExpressionPathScanEndReason dummy_reason_to_stop = 2148 ValueObject::eExpressionPathScanEndReasonUnknown; 2149 ExpressionPathEndResultType dummy_final_value_type = 2150 ValueObject::eExpressionPathEndResultTypeInvalid; 2151 ExpressionPathAftermath dummy_final_task_on_target = 2152 ValueObject::eExpressionPathAftermathNothing; 2153 2154 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2155 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2156 final_value_type ? final_value_type : &dummy_final_value_type, options, 2157 final_task_on_target ? final_task_on_target 2158 : &dummy_final_task_on_target); 2159 2160 if (!final_task_on_target || 2161 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2162 return ret_val; 2163 2164 if (ret_val.get() && 2165 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2166 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2167 // of plain objects 2168 { 2169 if ((final_task_on_target ? *final_task_on_target 2170 : dummy_final_task_on_target) == 2171 ValueObject::eExpressionPathAftermathDereference) { 2172 Status error; 2173 ValueObjectSP final_value = ret_val->Dereference(error); 2174 if (error.Fail() || !final_value.get()) { 2175 if (reason_to_stop) 2176 *reason_to_stop = 2177 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2178 if (final_value_type) 2179 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2180 return ValueObjectSP(); 2181 } else { 2182 if (final_task_on_target) 2183 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2184 return final_value; 2185 } 2186 } 2187 if (*final_task_on_target == 2188 ValueObject::eExpressionPathAftermathTakeAddress) { 2189 Status error; 2190 ValueObjectSP final_value = ret_val->AddressOf(error); 2191 if (error.Fail() || !final_value.get()) { 2192 if (reason_to_stop) 2193 *reason_to_stop = 2194 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2195 if (final_value_type) 2196 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2197 return ValueObjectSP(); 2198 } else { 2199 if (final_task_on_target) 2200 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2201 return final_value; 2202 } 2203 } 2204 } 2205 return ret_val; // final_task_on_target will still have its original value, so 2206 // you know I did not do it 2207 } 2208 2209 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2210 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2211 ExpressionPathEndResultType *final_result, 2212 const GetValueForExpressionPathOptions &options, 2213 ExpressionPathAftermath *what_next) { 2214 ValueObjectSP root = GetSP(); 2215 2216 if (!root) 2217 return nullptr; 2218 2219 llvm::StringRef remainder = expression; 2220 2221 while (true) { 2222 llvm::StringRef temp_expression = remainder; 2223 2224 CompilerType root_compiler_type = root->GetCompilerType(); 2225 CompilerType pointee_compiler_type; 2226 Flags pointee_compiler_type_info; 2227 2228 Flags root_compiler_type_info( 2229 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2230 if (pointee_compiler_type) 2231 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2232 2233 if (temp_expression.empty()) { 2234 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2235 return root; 2236 } 2237 2238 switch (temp_expression.front()) { 2239 case '-': { 2240 temp_expression = temp_expression.drop_front(); 2241 if (options.m_check_dot_vs_arrow_syntax && 2242 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2243 // use -> on a 2244 // non-pointer and I 2245 // must catch the error 2246 { 2247 *reason_to_stop = 2248 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2249 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2250 return ValueObjectSP(); 2251 } 2252 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2253 // extract an ObjC IVar 2254 // when this is forbidden 2255 root_compiler_type_info.Test(eTypeIsPointer) && 2256 options.m_no_fragile_ivar) { 2257 *reason_to_stop = 2258 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2259 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2260 return ValueObjectSP(); 2261 } 2262 if (!temp_expression.startswith(">")) { 2263 *reason_to_stop = 2264 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2265 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2266 return ValueObjectSP(); 2267 } 2268 } 2269 LLVM_FALLTHROUGH; 2270 case '.': // or fallthrough from -> 2271 { 2272 if (options.m_check_dot_vs_arrow_syntax && 2273 temp_expression.front() == '.' && 2274 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2275 // use . on a pointer 2276 // and I must catch the 2277 // error 2278 { 2279 *reason_to_stop = 2280 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2281 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2282 return nullptr; 2283 } 2284 temp_expression = temp_expression.drop_front(); // skip . or > 2285 2286 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2287 ConstString child_name; 2288 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2289 // expand this last layer 2290 { 2291 child_name.SetString(temp_expression); 2292 ValueObjectSP child_valobj_sp = 2293 root->GetChildMemberWithName(child_name, true); 2294 2295 if (child_valobj_sp.get()) // we know we are done, so just return 2296 { 2297 *reason_to_stop = 2298 ValueObject::eExpressionPathScanEndReasonEndOfString; 2299 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2300 return child_valobj_sp; 2301 } else { 2302 switch (options.m_synthetic_children_traversal) { 2303 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2304 None: 2305 break; 2306 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2307 FromSynthetic: 2308 if (root->IsSynthetic()) { 2309 child_valobj_sp = root->GetNonSyntheticValue(); 2310 if (child_valobj_sp.get()) 2311 child_valobj_sp = 2312 child_valobj_sp->GetChildMemberWithName(child_name, true); 2313 } 2314 break; 2315 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2316 ToSynthetic: 2317 if (!root->IsSynthetic()) { 2318 child_valobj_sp = root->GetSyntheticValue(); 2319 if (child_valobj_sp.get()) 2320 child_valobj_sp = 2321 child_valobj_sp->GetChildMemberWithName(child_name, true); 2322 } 2323 break; 2324 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2325 Both: 2326 if (root->IsSynthetic()) { 2327 child_valobj_sp = root->GetNonSyntheticValue(); 2328 if (child_valobj_sp.get()) 2329 child_valobj_sp = 2330 child_valobj_sp->GetChildMemberWithName(child_name, true); 2331 } else { 2332 child_valobj_sp = root->GetSyntheticValue(); 2333 if (child_valobj_sp.get()) 2334 child_valobj_sp = 2335 child_valobj_sp->GetChildMemberWithName(child_name, true); 2336 } 2337 break; 2338 } 2339 } 2340 2341 // if we are here and options.m_no_synthetic_children is true, 2342 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2343 // branch, and return an error 2344 if (child_valobj_sp.get()) // if it worked, just return 2345 { 2346 *reason_to_stop = 2347 ValueObject::eExpressionPathScanEndReasonEndOfString; 2348 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2349 return child_valobj_sp; 2350 } else { 2351 *reason_to_stop = 2352 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2353 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2354 return nullptr; 2355 } 2356 } else // other layers do expand 2357 { 2358 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2359 2360 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2361 2362 ValueObjectSP child_valobj_sp = 2363 root->GetChildMemberWithName(child_name, true); 2364 if (child_valobj_sp.get()) // store the new root and move on 2365 { 2366 root = child_valobj_sp; 2367 remainder = next_separator; 2368 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2369 continue; 2370 } else { 2371 switch (options.m_synthetic_children_traversal) { 2372 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2373 None: 2374 break; 2375 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2376 FromSynthetic: 2377 if (root->IsSynthetic()) { 2378 child_valobj_sp = root->GetNonSyntheticValue(); 2379 if (child_valobj_sp.get()) 2380 child_valobj_sp = 2381 child_valobj_sp->GetChildMemberWithName(child_name, true); 2382 } 2383 break; 2384 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2385 ToSynthetic: 2386 if (!root->IsSynthetic()) { 2387 child_valobj_sp = root->GetSyntheticValue(); 2388 if (child_valobj_sp.get()) 2389 child_valobj_sp = 2390 child_valobj_sp->GetChildMemberWithName(child_name, true); 2391 } 2392 break; 2393 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2394 Both: 2395 if (root->IsSynthetic()) { 2396 child_valobj_sp = root->GetNonSyntheticValue(); 2397 if (child_valobj_sp.get()) 2398 child_valobj_sp = 2399 child_valobj_sp->GetChildMemberWithName(child_name, true); 2400 } else { 2401 child_valobj_sp = root->GetSyntheticValue(); 2402 if (child_valobj_sp.get()) 2403 child_valobj_sp = 2404 child_valobj_sp->GetChildMemberWithName(child_name, true); 2405 } 2406 break; 2407 } 2408 } 2409 2410 // if we are here and options.m_no_synthetic_children is true, 2411 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2412 // branch, and return an error 2413 if (child_valobj_sp.get()) // if it worked, move on 2414 { 2415 root = child_valobj_sp; 2416 remainder = next_separator; 2417 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2418 continue; 2419 } else { 2420 *reason_to_stop = 2421 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2422 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2423 return nullptr; 2424 } 2425 } 2426 break; 2427 } 2428 case '[': { 2429 if (!root_compiler_type_info.Test(eTypeIsArray) && 2430 !root_compiler_type_info.Test(eTypeIsPointer) && 2431 !root_compiler_type_info.Test( 2432 eTypeIsVector)) // if this is not a T[] nor a T* 2433 { 2434 if (!root_compiler_type_info.Test( 2435 eTypeIsScalar)) // if this is not even a scalar... 2436 { 2437 if (options.m_synthetic_children_traversal == 2438 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2439 None) // ...only chance left is synthetic 2440 { 2441 *reason_to_stop = 2442 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2443 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2444 return ValueObjectSP(); 2445 } 2446 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2447 // check that we can 2448 // expand bitfields 2449 { 2450 *reason_to_stop = 2451 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2452 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2453 return ValueObjectSP(); 2454 } 2455 } 2456 if (temp_expression[1] == 2457 ']') // if this is an unbounded range it only works for arrays 2458 { 2459 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2460 *reason_to_stop = 2461 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2462 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2463 return nullptr; 2464 } else // even if something follows, we cannot expand unbounded ranges, 2465 // just let the caller do it 2466 { 2467 *reason_to_stop = 2468 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2469 *final_result = 2470 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2471 return root; 2472 } 2473 } 2474 2475 size_t close_bracket_position = temp_expression.find(']', 1); 2476 if (close_bracket_position == 2477 llvm::StringRef::npos) // if there is no ], this is a syntax error 2478 { 2479 *reason_to_stop = 2480 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2481 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2482 return nullptr; 2483 } 2484 2485 llvm::StringRef bracket_expr = 2486 temp_expression.slice(1, close_bracket_position); 2487 2488 // If this was an empty expression it would have been caught by the if 2489 // above. 2490 assert(!bracket_expr.empty()); 2491 2492 if (!bracket_expr.contains('-')) { 2493 // if no separator, this is of the form [N]. Note that this cannot be 2494 // an unbounded range of the form [], because that case was handled 2495 // above with an unconditional return. 2496 unsigned long index = 0; 2497 if (bracket_expr.getAsInteger(0, index)) { 2498 *reason_to_stop = 2499 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2500 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2501 return nullptr; 2502 } 2503 2504 // from here on we do have a valid index 2505 if (root_compiler_type_info.Test(eTypeIsArray)) { 2506 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2507 if (!child_valobj_sp) 2508 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2509 if (!child_valobj_sp) 2510 if (root->HasSyntheticValue() && 2511 root->GetSyntheticValue()->GetNumChildren() > index) 2512 child_valobj_sp = 2513 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2514 if (child_valobj_sp) { 2515 root = child_valobj_sp; 2516 remainder = 2517 temp_expression.substr(close_bracket_position + 1); // skip ] 2518 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2519 continue; 2520 } else { 2521 *reason_to_stop = 2522 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2523 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2524 return nullptr; 2525 } 2526 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2527 if (*what_next == 2528 ValueObject:: 2529 eExpressionPathAftermathDereference && // if this is a 2530 // ptr-to-scalar, I 2531 // am accessing it 2532 // by index and I 2533 // would have 2534 // deref'ed anyway, 2535 // then do it now 2536 // and use this as 2537 // a bitfield 2538 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2539 Status error; 2540 root = root->Dereference(error); 2541 if (error.Fail() || !root) { 2542 *reason_to_stop = 2543 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2544 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2545 return nullptr; 2546 } else { 2547 *what_next = eExpressionPathAftermathNothing; 2548 continue; 2549 } 2550 } else { 2551 if (root->GetCompilerType().GetMinimumLanguage() == 2552 eLanguageTypeObjC && 2553 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2554 root->HasSyntheticValue() && 2555 (options.m_synthetic_children_traversal == 2556 GetValueForExpressionPathOptions:: 2557 SyntheticChildrenTraversal::ToSynthetic || 2558 options.m_synthetic_children_traversal == 2559 GetValueForExpressionPathOptions:: 2560 SyntheticChildrenTraversal::Both)) { 2561 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2562 } else 2563 root = root->GetSyntheticArrayMember(index, true); 2564 if (!root) { 2565 *reason_to_stop = 2566 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2567 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2568 return nullptr; 2569 } else { 2570 remainder = 2571 temp_expression.substr(close_bracket_position + 1); // skip ] 2572 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2573 continue; 2574 } 2575 } 2576 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2577 root = root->GetSyntheticBitFieldChild(index, index, true); 2578 if (!root) { 2579 *reason_to_stop = 2580 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2581 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2582 return nullptr; 2583 } else // we do not know how to expand members of bitfields, so we 2584 // just return and let the caller do any further processing 2585 { 2586 *reason_to_stop = ValueObject:: 2587 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2588 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2589 return root; 2590 } 2591 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2592 root = root->GetChildAtIndex(index, true); 2593 if (!root) { 2594 *reason_to_stop = 2595 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2596 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2597 return ValueObjectSP(); 2598 } else { 2599 remainder = 2600 temp_expression.substr(close_bracket_position + 1); // skip ] 2601 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2602 continue; 2603 } 2604 } else if (options.m_synthetic_children_traversal == 2605 GetValueForExpressionPathOptions:: 2606 SyntheticChildrenTraversal::ToSynthetic || 2607 options.m_synthetic_children_traversal == 2608 GetValueForExpressionPathOptions:: 2609 SyntheticChildrenTraversal::Both) { 2610 if (root->HasSyntheticValue()) 2611 root = root->GetSyntheticValue(); 2612 else if (!root->IsSynthetic()) { 2613 *reason_to_stop = 2614 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2615 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2616 return nullptr; 2617 } 2618 // if we are here, then root itself is a synthetic VO.. should be 2619 // good to go 2620 2621 if (!root) { 2622 *reason_to_stop = 2623 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2624 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2625 return nullptr; 2626 } 2627 root = root->GetChildAtIndex(index, true); 2628 if (!root) { 2629 *reason_to_stop = 2630 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2631 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2632 return nullptr; 2633 } else { 2634 remainder = 2635 temp_expression.substr(close_bracket_position + 1); // skip ] 2636 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2637 continue; 2638 } 2639 } else { 2640 *reason_to_stop = 2641 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2642 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2643 return nullptr; 2644 } 2645 } else { 2646 // we have a low and a high index 2647 llvm::StringRef sleft, sright; 2648 unsigned long low_index, high_index; 2649 std::tie(sleft, sright) = bracket_expr.split('-'); 2650 if (sleft.getAsInteger(0, low_index) || 2651 sright.getAsInteger(0, high_index)) { 2652 *reason_to_stop = 2653 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2654 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2655 return nullptr; 2656 } 2657 2658 if (low_index > high_index) // swap indices if required 2659 std::swap(low_index, high_index); 2660 2661 if (root_compiler_type_info.Test( 2662 eTypeIsScalar)) // expansion only works for scalars 2663 { 2664 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2665 if (!root) { 2666 *reason_to_stop = 2667 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2668 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2669 return nullptr; 2670 } else { 2671 *reason_to_stop = ValueObject:: 2672 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2673 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2674 return root; 2675 } 2676 } else if (root_compiler_type_info.Test( 2677 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2678 // accessing it by index and I would 2679 // have deref'ed anyway, then do it 2680 // now and use this as a bitfield 2681 *what_next == 2682 ValueObject::eExpressionPathAftermathDereference && 2683 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2684 Status error; 2685 root = root->Dereference(error); 2686 if (error.Fail() || !root) { 2687 *reason_to_stop = 2688 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2689 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2690 return nullptr; 2691 } else { 2692 *what_next = ValueObject::eExpressionPathAftermathNothing; 2693 continue; 2694 } 2695 } else { 2696 *reason_to_stop = 2697 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2698 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2699 return root; 2700 } 2701 } 2702 break; 2703 } 2704 default: // some non-separator is in the way 2705 { 2706 *reason_to_stop = 2707 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2708 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2709 return nullptr; 2710 } 2711 } 2712 } 2713 } 2714 2715 void ValueObject::LogValueObject(Log *log) { 2716 if (log) 2717 return LogValueObject(log, DumpValueObjectOptions(*this)); 2718 } 2719 2720 void ValueObject::LogValueObject(Log *log, 2721 const DumpValueObjectOptions &options) { 2722 if (log) { 2723 StreamString s; 2724 Dump(s, options); 2725 if (s.GetSize()) 2726 log->PutCString(s.GetData()); 2727 } 2728 } 2729 2730 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2731 2732 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2733 ValueObjectPrinter printer(this, &s, options); 2734 printer.PrintValueObject(); 2735 } 2736 2737 ValueObjectSP ValueObject::CreateConstantValue(const ConstString &name) { 2738 ValueObjectSP valobj_sp; 2739 2740 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2741 ExecutionContext exe_ctx(GetExecutionContextRef()); 2742 2743 DataExtractor data; 2744 data.SetByteOrder(m_data.GetByteOrder()); 2745 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2746 2747 if (IsBitfield()) { 2748 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2749 m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2750 } else 2751 m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2752 2753 valobj_sp = ValueObjectConstResult::Create( 2754 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2755 GetAddressOf()); 2756 } 2757 2758 if (!valobj_sp) { 2759 ExecutionContext exe_ctx(GetExecutionContextRef()); 2760 valobj_sp = ValueObjectConstResult::Create( 2761 exe_ctx.GetBestExecutionContextScope(), m_error); 2762 } 2763 return valobj_sp; 2764 } 2765 2766 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2767 lldb::DynamicValueType dynValue, bool synthValue) { 2768 ValueObjectSP result_sp(GetSP()); 2769 2770 switch (dynValue) { 2771 case lldb::eDynamicCanRunTarget: 2772 case lldb::eDynamicDontRunTarget: { 2773 if (!result_sp->IsDynamic()) { 2774 if (result_sp->GetDynamicValue(dynValue)) 2775 result_sp = result_sp->GetDynamicValue(dynValue); 2776 } 2777 } break; 2778 case lldb::eNoDynamicValues: { 2779 if (result_sp->IsDynamic()) { 2780 if (result_sp->GetStaticValue()) 2781 result_sp = result_sp->GetStaticValue(); 2782 } 2783 } break; 2784 } 2785 2786 if (synthValue) { 2787 if (!result_sp->IsSynthetic()) { 2788 if (result_sp->GetSyntheticValue()) 2789 result_sp = result_sp->GetSyntheticValue(); 2790 } 2791 } else { 2792 if (result_sp->IsSynthetic()) { 2793 if (result_sp->GetNonSyntheticValue()) 2794 result_sp = result_sp->GetNonSyntheticValue(); 2795 } 2796 } 2797 2798 return result_sp; 2799 } 2800 2801 ValueObjectSP ValueObject::Dereference(Status &error) { 2802 if (m_deref_valobj) 2803 return m_deref_valobj->GetSP(); 2804 2805 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2806 if (is_pointer_or_reference_type) { 2807 bool omit_empty_base_classes = true; 2808 bool ignore_array_bounds = false; 2809 2810 std::string child_name_str; 2811 uint32_t child_byte_size = 0; 2812 int32_t child_byte_offset = 0; 2813 uint32_t child_bitfield_bit_size = 0; 2814 uint32_t child_bitfield_bit_offset = 0; 2815 bool child_is_base_class = false; 2816 bool child_is_deref_of_parent = false; 2817 const bool transparent_pointers = false; 2818 CompilerType compiler_type = GetCompilerType(); 2819 CompilerType child_compiler_type; 2820 uint64_t language_flags; 2821 2822 ExecutionContext exe_ctx(GetExecutionContextRef()); 2823 2824 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2825 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2826 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2827 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2828 child_is_deref_of_parent, this, language_flags); 2829 if (child_compiler_type && child_byte_size) { 2830 ConstString child_name; 2831 if (!child_name_str.empty()) 2832 child_name.SetCString(child_name_str.c_str()); 2833 2834 m_deref_valobj = new ValueObjectChild( 2835 *this, child_compiler_type, child_name, child_byte_size, 2836 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2837 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2838 language_flags); 2839 } 2840 } else if (HasSyntheticValue()) { 2841 m_deref_valobj = 2842 GetSyntheticValue() 2843 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2844 .get(); 2845 } 2846 2847 if (m_deref_valobj) { 2848 error.Clear(); 2849 return m_deref_valobj->GetSP(); 2850 } else { 2851 StreamString strm; 2852 GetExpressionPath(strm, true); 2853 2854 if (is_pointer_or_reference_type) 2855 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2856 GetTypeName().AsCString("<invalid type>"), 2857 strm.GetData()); 2858 else 2859 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2860 GetTypeName().AsCString("<invalid type>"), 2861 strm.GetData()); 2862 return ValueObjectSP(); 2863 } 2864 } 2865 2866 ValueObjectSP ValueObject::AddressOf(Status &error) { 2867 if (m_addr_of_valobj_sp) 2868 return m_addr_of_valobj_sp; 2869 2870 AddressType address_type = eAddressTypeInvalid; 2871 const bool scalar_is_load_address = false; 2872 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2873 error.Clear(); 2874 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2875 switch (address_type) { 2876 case eAddressTypeInvalid: { 2877 StreamString expr_path_strm; 2878 GetExpressionPath(expr_path_strm, true); 2879 error.SetErrorStringWithFormat("'%s' is not in memory", 2880 expr_path_strm.GetData()); 2881 } break; 2882 2883 case eAddressTypeFile: 2884 case eAddressTypeLoad: { 2885 CompilerType compiler_type = GetCompilerType(); 2886 if (compiler_type) { 2887 std::string name(1, '&'); 2888 name.append(m_name.AsCString("")); 2889 ExecutionContext exe_ctx(GetExecutionContextRef()); 2890 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2891 exe_ctx.GetBestExecutionContextScope(), 2892 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2893 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2894 } 2895 } break; 2896 default: 2897 break; 2898 } 2899 } else { 2900 StreamString expr_path_strm; 2901 GetExpressionPath(expr_path_strm, true); 2902 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2903 expr_path_strm.GetData()); 2904 } 2905 2906 return m_addr_of_valobj_sp; 2907 } 2908 2909 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2910 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2911 } 2912 2913 lldb::ValueObjectSP ValueObject::Clone(const ConstString &new_name) { 2914 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2915 } 2916 2917 ValueObjectSP ValueObject::CastPointerType(const char *name, 2918 CompilerType &compiler_type) { 2919 ValueObjectSP valobj_sp; 2920 AddressType address_type; 2921 addr_t ptr_value = GetPointerValue(&address_type); 2922 2923 if (ptr_value != LLDB_INVALID_ADDRESS) { 2924 Address ptr_addr(ptr_value); 2925 ExecutionContext exe_ctx(GetExecutionContextRef()); 2926 valobj_sp = ValueObjectMemory::Create( 2927 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2928 } 2929 return valobj_sp; 2930 } 2931 2932 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2933 ValueObjectSP valobj_sp; 2934 AddressType address_type; 2935 addr_t ptr_value = GetPointerValue(&address_type); 2936 2937 if (ptr_value != LLDB_INVALID_ADDRESS) { 2938 Address ptr_addr(ptr_value); 2939 ExecutionContext exe_ctx(GetExecutionContextRef()); 2940 valobj_sp = ValueObjectMemory::Create( 2941 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2942 } 2943 return valobj_sp; 2944 } 2945 2946 ValueObject::EvaluationPoint::EvaluationPoint() 2947 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2948 2949 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2950 bool use_selected) 2951 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2952 ExecutionContext exe_ctx(exe_scope); 2953 TargetSP target_sp(exe_ctx.GetTargetSP()); 2954 if (target_sp) { 2955 m_exe_ctx_ref.SetTargetSP(target_sp); 2956 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2957 if (!process_sp) 2958 process_sp = target_sp->GetProcessSP(); 2959 2960 if (process_sp) { 2961 m_mod_id = process_sp->GetModID(); 2962 m_exe_ctx_ref.SetProcessSP(process_sp); 2963 2964 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2965 2966 if (!thread_sp) { 2967 if (use_selected) 2968 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2969 } 2970 2971 if (thread_sp) { 2972 m_exe_ctx_ref.SetThreadSP(thread_sp); 2973 2974 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2975 if (!frame_sp) { 2976 if (use_selected) 2977 frame_sp = thread_sp->GetSelectedFrame(); 2978 } 2979 if (frame_sp) 2980 m_exe_ctx_ref.SetFrameSP(frame_sp); 2981 } 2982 } 2983 } 2984 } 2985 2986 ValueObject::EvaluationPoint::EvaluationPoint( 2987 const ValueObject::EvaluationPoint &rhs) 2988 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2989 2990 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2991 2992 // This function checks the EvaluationPoint against the current process state. 2993 // If the current state matches the evaluation point, or the evaluation point 2994 // is already invalid, then we return false, meaning "no change". If the 2995 // current state is different, we update our state, and return true meaning 2996 // "yes, change". If we did see a change, we also set m_needs_update to true, 2997 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2998 // the current execution context scope. 2999 3000 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3001 bool accept_invalid_exe_ctx) { 3002 // Start with the target, if it is NULL, then we're obviously not going to 3003 // get any further: 3004 const bool thread_and_frame_only_if_stopped = true; 3005 ExecutionContext exe_ctx( 3006 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3007 3008 if (exe_ctx.GetTargetPtr() == NULL) 3009 return false; 3010 3011 // If we don't have a process nothing can change. 3012 Process *process = exe_ctx.GetProcessPtr(); 3013 if (process == NULL) 3014 return false; 3015 3016 // If our stop id is the current stop ID, nothing has changed: 3017 ProcessModID current_mod_id = process->GetModID(); 3018 3019 // If the current stop id is 0, either we haven't run yet, or the process 3020 // state has been cleared. In either case, we aren't going to be able to sync 3021 // with the process state. 3022 if (current_mod_id.GetStopID() == 0) 3023 return false; 3024 3025 bool changed = false; 3026 const bool was_valid = m_mod_id.IsValid(); 3027 if (was_valid) { 3028 if (m_mod_id == current_mod_id) { 3029 // Everything is already up to date in this object, no need to update the 3030 // execution context scope. 3031 changed = false; 3032 } else { 3033 m_mod_id = current_mod_id; 3034 m_needs_update = true; 3035 changed = true; 3036 } 3037 } 3038 3039 // Now re-look up the thread and frame in case the underlying objects have 3040 // gone away & been recreated. That way we'll be sure to return a valid 3041 // exe_scope. If we used to have a thread or a frame but can't find it 3042 // anymore, then mark ourselves as invalid. 3043 3044 if (!accept_invalid_exe_ctx) { 3045 if (m_exe_ctx_ref.HasThreadRef()) { 3046 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3047 if (thread_sp) { 3048 if (m_exe_ctx_ref.HasFrameRef()) { 3049 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3050 if (!frame_sp) { 3051 // We used to have a frame, but now it is gone 3052 SetInvalid(); 3053 changed = was_valid; 3054 } 3055 } 3056 } else { 3057 // We used to have a thread, but now it is gone 3058 SetInvalid(); 3059 changed = was_valid; 3060 } 3061 } 3062 } 3063 3064 return changed; 3065 } 3066 3067 void ValueObject::EvaluationPoint::SetUpdated() { 3068 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3069 if (process_sp) 3070 m_mod_id = process_sp->GetModID(); 3071 m_needs_update = false; 3072 } 3073 3074 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3075 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3076 eClearUserVisibleDataItemsValue) 3077 m_value_str.clear(); 3078 3079 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3080 eClearUserVisibleDataItemsLocation) 3081 m_location_str.clear(); 3082 3083 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3084 eClearUserVisibleDataItemsSummary) 3085 m_summary_str.clear(); 3086 3087 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3088 eClearUserVisibleDataItemsDescription) 3089 m_object_desc_str.clear(); 3090 3091 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3092 eClearUserVisibleDataItemsSyntheticChildren) { 3093 if (m_synthetic_value) 3094 m_synthetic_value = NULL; 3095 } 3096 3097 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3098 eClearUserVisibleDataItemsValidator) 3099 m_validation_result.reset(); 3100 } 3101 3102 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3103 if (m_parent) { 3104 if (!m_parent->IsPointerOrReferenceType()) 3105 return m_parent->GetSymbolContextScope(); 3106 } 3107 return NULL; 3108 } 3109 3110 lldb::ValueObjectSP 3111 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3112 llvm::StringRef expression, 3113 const ExecutionContext &exe_ctx) { 3114 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3115 EvaluateExpressionOptions()); 3116 } 3117 3118 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3119 llvm::StringRef name, llvm::StringRef expression, 3120 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3121 lldb::ValueObjectSP retval_sp; 3122 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3123 if (!target_sp) 3124 return retval_sp; 3125 if (expression.empty()) 3126 return retval_sp; 3127 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3128 retval_sp, options); 3129 if (retval_sp && !name.empty()) 3130 retval_sp->SetName(ConstString(name)); 3131 return retval_sp; 3132 } 3133 3134 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3135 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3136 CompilerType type) { 3137 if (type) { 3138 CompilerType pointer_type(type.GetPointerType()); 3139 if (pointer_type) { 3140 lldb::DataBufferSP buffer( 3141 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3142 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3143 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3144 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3145 exe_ctx.GetAddressByteSize())); 3146 if (ptr_result_valobj_sp) { 3147 ptr_result_valobj_sp->GetValue().SetValueType( 3148 Value::eValueTypeLoadAddress); 3149 Status err; 3150 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3151 if (ptr_result_valobj_sp && !name.empty()) 3152 ptr_result_valobj_sp->SetName(ConstString(name)); 3153 } 3154 return ptr_result_valobj_sp; 3155 } 3156 } 3157 return lldb::ValueObjectSP(); 3158 } 3159 3160 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3161 llvm::StringRef name, const DataExtractor &data, 3162 const ExecutionContext &exe_ctx, CompilerType type) { 3163 lldb::ValueObjectSP new_value_sp; 3164 new_value_sp = ValueObjectConstResult::Create( 3165 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3166 LLDB_INVALID_ADDRESS); 3167 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3168 if (new_value_sp && !name.empty()) 3169 new_value_sp->SetName(ConstString(name)); 3170 return new_value_sp; 3171 } 3172 3173 ModuleSP ValueObject::GetModule() { 3174 ValueObject *root(GetRoot()); 3175 if (root != this) 3176 return root->GetModule(); 3177 return lldb::ModuleSP(); 3178 } 3179 3180 ValueObject *ValueObject::GetRoot() { 3181 if (m_root) 3182 return m_root; 3183 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3184 return (vo->m_parent != nullptr); 3185 })); 3186 } 3187 3188 ValueObject * 3189 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3190 ValueObject *vo = this; 3191 while (vo) { 3192 if (!f(vo)) 3193 break; 3194 vo = vo->m_parent; 3195 } 3196 return vo; 3197 } 3198 3199 AddressType ValueObject::GetAddressTypeOfChildren() { 3200 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3201 ValueObject *root(GetRoot()); 3202 if (root != this) 3203 return root->GetAddressTypeOfChildren(); 3204 } 3205 return m_address_type_of_ptr_or_ref_children; 3206 } 3207 3208 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3209 ValueObject *with_dv_info = this; 3210 while (with_dv_info) { 3211 if (with_dv_info->HasDynamicValueTypeInfo()) 3212 return with_dv_info->GetDynamicValueTypeImpl(); 3213 with_dv_info = with_dv_info->m_parent; 3214 } 3215 return lldb::eNoDynamicValues; 3216 } 3217 3218 lldb::Format ValueObject::GetFormat() const { 3219 const ValueObject *with_fmt_info = this; 3220 while (with_fmt_info) { 3221 if (with_fmt_info->m_format != lldb::eFormatDefault) 3222 return with_fmt_info->m_format; 3223 with_fmt_info = with_fmt_info->m_parent; 3224 } 3225 return m_format; 3226 } 3227 3228 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3229 lldb::LanguageType type = m_preferred_display_language; 3230 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3231 if (GetRoot()) { 3232 if (GetRoot() == this) { 3233 if (StackFrameSP frame_sp = GetFrameSP()) { 3234 const SymbolContext &sc( 3235 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3236 if (CompileUnit *cu = sc.comp_unit) 3237 type = cu->GetLanguage(); 3238 } 3239 } else { 3240 type = GetRoot()->GetPreferredDisplayLanguage(); 3241 } 3242 } 3243 } 3244 return (m_preferred_display_language = type); // only compute it once 3245 } 3246 3247 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3248 m_preferred_display_language = lt; 3249 } 3250 3251 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3252 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3253 SetPreferredDisplayLanguage(lt); 3254 } 3255 3256 bool ValueObject::CanProvideValue() { 3257 // we need to support invalid types as providers of values because some bare- 3258 // board debugging scenarios have no notion of types, but still manage to 3259 // have raw numeric values for things like registers. sigh. 3260 const CompilerType &type(GetCompilerType()); 3261 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3262 } 3263 3264 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3265 3266 ValueObjectSP ValueObject::Persist() { 3267 if (!UpdateValueIfNeeded()) 3268 return nullptr; 3269 3270 TargetSP target_sp(GetTargetSP()); 3271 if (!target_sp) 3272 return nullptr; 3273 3274 PersistentExpressionState *persistent_state = 3275 target_sp->GetPersistentExpressionStateForLanguage( 3276 GetPreferredDisplayLanguage()); 3277 3278 if (!persistent_state) 3279 return nullptr; 3280 3281 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3282 ConstString name = 3283 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3284 3285 ValueObjectSP const_result_sp = 3286 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3287 3288 ExpressionVariableSP clang_var_sp = 3289 persistent_state->CreatePersistentVariable(const_result_sp); 3290 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3291 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3292 3293 return clang_var_sp->GetValueObject(); 3294 } 3295 3296 bool ValueObject::IsSyntheticChildrenGenerated() { 3297 return m_is_synthetic_children_generated; 3298 } 3299 3300 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3301 m_is_synthetic_children_generated = b; 3302 } 3303 3304 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3305 3306 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3307 3308 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3309 lldb::DynamicValueType use_dynamic, 3310 bool use_synthetic) : m_root_valobj_sp(), 3311 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3312 m_use_synthetic(use_synthetic) { 3313 if (!in_valobj_sp) 3314 return; 3315 // If the user passes in a value object that is dynamic or synthetic, then 3316 // water it down to the static type. 3317 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3318 } 3319 3320 bool ValueObjectManager::IsValid() const { 3321 if (!m_root_valobj_sp) 3322 return false; 3323 lldb::TargetSP target_sp = GetTargetSP(); 3324 if (target_sp) 3325 return target_sp->IsValid(); 3326 return false; 3327 } 3328 3329 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3330 lldb::ProcessSP process_sp = GetProcessSP(); 3331 if (!process_sp) 3332 return lldb::ValueObjectSP(); 3333 3334 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3335 if (current_stop_id == m_stop_id) 3336 return m_user_valobj_sp; 3337 3338 m_stop_id = current_stop_id; 3339 3340 if (!m_root_valobj_sp) { 3341 m_user_valobj_sp.reset(); 3342 return m_root_valobj_sp; 3343 } 3344 3345 m_user_valobj_sp = m_root_valobj_sp; 3346 3347 if (m_use_dynamic != lldb::eNoDynamicValues) { 3348 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3349 if (dynamic_sp) 3350 m_user_valobj_sp = dynamic_sp; 3351 } 3352 3353 if (m_use_synthetic) { 3354 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3355 if (synthetic_sp) 3356 m_user_valobj_sp = synthetic_sp; 3357 } 3358 3359 return m_user_valobj_sp; 3360 } 3361 3362 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3363 if (use_dynamic != m_use_dynamic) { 3364 m_use_dynamic = use_dynamic; 3365 m_user_valobj_sp.reset(); 3366 m_stop_id = UINT32_MAX; 3367 } 3368 } 3369 3370 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3371 if (m_use_synthetic != use_synthetic) { 3372 m_use_synthetic = use_synthetic; 3373 m_user_valobj_sp.reset(); 3374 m_stop_id = UINT32_MAX; 3375 } 3376 } 3377 3378 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3379 if (!m_root_valobj_sp) 3380 return m_root_valobj_sp->GetTargetSP(); 3381 return lldb::TargetSP(); 3382 } 3383 3384 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3385 if (m_root_valobj_sp) 3386 return m_root_valobj_sp->GetProcessSP(); 3387 return lldb::ProcessSP(); 3388 } 3389 3390 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3391 if (m_root_valobj_sp) 3392 return m_root_valobj_sp->GetThreadSP(); 3393 return lldb::ThreadSP(); 3394 } 3395 3396 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3397 if (m_root_valobj_sp) 3398 return m_root_valobj_sp->GetFrameSP(); 3399 return lldb::StackFrameSP(); 3400 } 3401 3402