1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/TypeValidator.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Host/Config.h" 29 #include "lldb/Symbol/ClangASTContext.h" 30 #include "lldb/Symbol/CompileUnit.h" 31 #include "lldb/Symbol/CompilerType.h" 32 #include "lldb/Symbol/Declaration.h" 33 #include "lldb/Symbol/SymbolContext.h" 34 #include "lldb/Symbol/Type.h" 35 #include "lldb/Symbol/Variable.h" 36 #include "lldb/Target/ExecutionContext.h" 37 #include "lldb/Target/Language.h" 38 #include "lldb/Target/LanguageRuntime.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/StackFrame.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Target/ThreadList.h" 44 #include "lldb/Utility/DataBuffer.h" 45 #include "lldb/Utility/DataBufferHeap.h" 46 #include "lldb/Utility/Flags.h" 47 #include "lldb/Utility/Log.h" 48 #include "lldb/Utility/Logging.h" 49 #include "lldb/Utility/Scalar.h" 50 #include "lldb/Utility/SharingPtr.h" 51 #include "lldb/Utility/Stream.h" 52 #include "lldb/Utility/StreamString.h" 53 #include "lldb/lldb-private-types.h" 54 55 #include "llvm/Support/Compiler.h" 56 57 #include <algorithm> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <memory> 61 #include <tuple> 62 63 #include <assert.h> 64 #include <inttypes.h> 65 #include <stdio.h> 66 #include <string.h> 67 68 namespace lldb_private { 69 class ExecutionContextScope; 70 } 71 namespace lldb_private { 72 class SymbolContextScope; 73 } 74 75 using namespace lldb; 76 using namespace lldb_private; 77 78 static user_id_t g_value_obj_uid = 0; 79 80 // ValueObject constructor 81 ValueObject::ValueObject(ValueObject &parent) 82 : UserID(++g_value_obj_uid), // Unique identifier for every value object 83 m_parent(&parent), m_root(nullptr), 84 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 85 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 86 m_summary_str(), m_object_desc_str(), m_validation_result(), 87 m_manager(parent.GetManager()), m_children(), m_synthetic_children(), 88 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 89 m_deref_valobj(nullptr), m_format(eFormatDefault), 90 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 91 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 92 m_type_validator_sp(), m_user_id_of_forced_summary(), 93 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 94 m_value_checksum(), 95 m_preferred_display_language(lldb::eLanguageTypeUnknown), 96 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 97 m_children_count_valid(false), m_old_value_valid(false), 98 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 99 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 100 m_is_getting_summary(false), 101 m_did_calculate_complete_objc_class_type(false), 102 m_is_synthetic_children_generated( 103 parent.m_is_synthetic_children_generated) { 104 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 105 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 106 m_manager->ManageObject(this); 107 } 108 109 // ValueObject constructor 110 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 111 AddressType child_ptr_or_ref_addr_type) 112 : UserID(++g_value_obj_uid), // Unique identifier for every value object 113 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 114 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 115 m_location_str(), m_summary_str(), m_object_desc_str(), 116 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 117 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 118 m_deref_valobj(nullptr), m_format(eFormatDefault), 119 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 120 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 121 m_type_validator_sp(), m_user_id_of_forced_summary(), 122 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 123 m_value_checksum(), 124 m_preferred_display_language(lldb::eLanguageTypeUnknown), 125 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 126 m_children_count_valid(false), m_old_value_valid(false), 127 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 128 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 129 m_is_getting_summary(false), 130 m_did_calculate_complete_objc_class_type(false), 131 m_is_synthetic_children_generated(false) { 132 if (exe_scope) { 133 TargetSP target_sp(exe_scope->CalculateTarget()); 134 if (target_sp) { 135 const ArchSpec &arch = target_sp->GetArchitecture(); 136 m_data.SetByteOrder(arch.GetByteOrder()); 137 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 138 } 139 } 140 m_manager = new ValueObjectManager(); 141 m_manager->ManageObject(this); 142 } 143 144 // Destructor 145 ValueObject::~ValueObject() {} 146 147 void ValueObject::UpdateChildrenAddressType() { 148 Value::ValueType value_type = m_value.GetValueType(); 149 ExecutionContext exe_ctx(GetExecutionContextRef()); 150 Process *process = exe_ctx.GetProcessPtr(); 151 const bool process_is_alive = process && process->IsAlive(); 152 const uint32_t type_info = GetCompilerType().GetTypeInfo(); 153 const bool is_pointer_or_ref = 154 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 155 156 switch (value_type) { 157 case Value::eValueTypeFileAddress: 158 // If this type is a pointer, then its children will be considered load 159 // addresses if the pointer or reference is dereferenced, but only if 160 // the process is alive. 161 // 162 // There could be global variables like in the following code: 163 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 164 // Foo g_foo1; 165 // Foo g_foo2; 166 // LinkedListNode g_second_node = { &g_foo2, NULL }; 167 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 168 // 169 // When we aren't running, we should be able to look at these variables 170 // using the "target variable" command. Children of the "g_first_node" 171 // always will be of the same address type as the parent. But children 172 // of the "next" member of LinkedListNode will become load addresses if 173 // we have a live process, or remain a file address if it was a file 174 // address. 175 if (process_is_alive && is_pointer_or_ref) 176 SetAddressTypeOfChildren(eAddressTypeLoad); 177 else 178 SetAddressTypeOfChildren(eAddressTypeFile); 179 break; 180 case Value::eValueTypeHostAddress: 181 // Same as above for load addresses, except children of pointer or refs 182 // are always load addresses. Host addresses are used to store freeze 183 // dried variables. If this type is a struct, the entire struct 184 // contents will be copied into the heap of the 185 // LLDB process, but we do not currently follow any pointers. 186 if (is_pointer_or_ref) 187 SetAddressTypeOfChildren(eAddressTypeLoad); 188 else 189 SetAddressTypeOfChildren(eAddressTypeHost); 190 break; 191 case Value::eValueTypeLoadAddress: 192 case Value::eValueTypeScalar: 193 case Value::eValueTypeVector: 194 SetAddressTypeOfChildren(eAddressTypeLoad); 195 break; 196 } 197 } 198 199 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 200 201 bool did_change_formats = false; 202 203 if (update_format) 204 did_change_formats = UpdateFormatsIfNeeded(); 205 206 // If this is a constant value, then our success is predicated on whether we 207 // have an error or not 208 if (GetIsConstant()) { 209 // if you are constant, things might still have changed behind your back 210 // (e.g. you are a frozen object and things have changed deeper than you 211 // cared to freeze-dry yourself) in this case, your value has not changed, 212 // but "computed" entries might have, so you might now have a different 213 // summary, or a different object description. clear these so we will 214 // recompute them 215 if (update_format && !did_change_formats) 216 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 217 eClearUserVisibleDataItemsDescription); 218 return m_error.Success(); 219 } 220 221 bool first_update = IsChecksumEmpty(); 222 223 if (NeedsUpdating()) { 224 m_update_point.SetUpdated(); 225 226 // Save the old value using swap to avoid a string copy which also will 227 // clear our m_value_str 228 if (m_value_str.empty()) { 229 m_old_value_valid = false; 230 } else { 231 m_old_value_valid = true; 232 m_old_value_str.swap(m_value_str); 233 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 234 } 235 236 ClearUserVisibleData(); 237 238 if (IsInScope()) { 239 const bool value_was_valid = GetValueIsValid(); 240 SetValueDidChange(false); 241 242 m_error.Clear(); 243 244 // Call the pure virtual function to update the value 245 246 bool need_compare_checksums = false; 247 llvm::SmallVector<uint8_t, 16> old_checksum; 248 249 if (!first_update && CanProvideValue()) { 250 need_compare_checksums = true; 251 old_checksum.resize(m_value_checksum.size()); 252 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 253 old_checksum.begin()); 254 } 255 256 bool success = UpdateValue(); 257 258 SetValueIsValid(success); 259 260 if (success) { 261 UpdateChildrenAddressType(); 262 const uint64_t max_checksum_size = 128; 263 m_data.Checksum(m_value_checksum, max_checksum_size); 264 } else { 265 need_compare_checksums = false; 266 m_value_checksum.clear(); 267 } 268 269 assert(!need_compare_checksums || 270 (!old_checksum.empty() && !m_value_checksum.empty())); 271 272 if (first_update) 273 SetValueDidChange(false); 274 else if (!m_value_did_change && !success) { 275 // The value wasn't gotten successfully, so we mark this as changed if 276 // the value used to be valid and now isn't 277 SetValueDidChange(value_was_valid); 278 } else if (need_compare_checksums) { 279 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 280 m_value_checksum.size())); 281 } 282 283 } else { 284 m_error.SetErrorString("out of scope"); 285 } 286 } 287 return m_error.Success(); 288 } 289 290 bool ValueObject::UpdateFormatsIfNeeded() { 291 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 292 LLDB_LOGF(log, 293 "[%s %p] checking for FormatManager revisions. ValueObject " 294 "rev: %d - Global rev: %d", 295 GetName().GetCString(), static_cast<void *>(this), 296 m_last_format_mgr_revision, 297 DataVisualization::GetCurrentRevision()); 298 299 bool any_change = false; 300 301 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 302 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 303 any_change = true; 304 305 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 306 SetSummaryFormat( 307 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 308 #ifndef LLDB_DISABLE_PYTHON 309 SetSyntheticChildren( 310 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 311 #endif 312 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 313 } 314 315 return any_change; 316 } 317 318 void ValueObject::SetNeedsUpdate() { 319 m_update_point.SetNeedsUpdate(); 320 // We have to clear the value string here so ConstResult children will notice 321 // if their values are changed by hand (i.e. with SetValueAsCString). 322 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 323 } 324 325 void ValueObject::ClearDynamicTypeInformation() { 326 m_children_count_valid = false; 327 m_did_calculate_complete_objc_class_type = false; 328 m_last_format_mgr_revision = 0; 329 m_override_type = CompilerType(); 330 SetValueFormat(lldb::TypeFormatImplSP()); 331 SetSummaryFormat(lldb::TypeSummaryImplSP()); 332 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 333 } 334 335 CompilerType ValueObject::MaybeCalculateCompleteType() { 336 CompilerType compiler_type(GetCompilerTypeImpl()); 337 338 if (m_did_calculate_complete_objc_class_type) { 339 if (m_override_type.IsValid()) 340 return m_override_type; 341 else 342 return compiler_type; 343 } 344 345 m_did_calculate_complete_objc_class_type = true; 346 347 ProcessSP process_sp( 348 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 349 350 if (!process_sp) 351 return compiler_type; 352 353 if (auto *runtime = 354 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 355 if (llvm::Optional<CompilerType> complete_type = 356 runtime->GetRuntimeType(compiler_type)) { 357 m_override_type = complete_type.getValue(); 358 if (m_override_type.IsValid()) 359 return m_override_type; 360 } 361 } 362 return compiler_type; 363 } 364 365 CompilerType ValueObject::GetCompilerType() { 366 return MaybeCalculateCompleteType(); 367 } 368 369 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 370 371 DataExtractor &ValueObject::GetDataExtractor() { 372 UpdateValueIfNeeded(false); 373 return m_data; 374 } 375 376 const Status &ValueObject::GetError() { 377 UpdateValueIfNeeded(false); 378 return m_error; 379 } 380 381 ConstString ValueObject::GetName() const { return m_name; } 382 383 const char *ValueObject::GetLocationAsCString() { 384 return GetLocationAsCStringImpl(m_value, m_data); 385 } 386 387 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 388 const DataExtractor &data) { 389 if (UpdateValueIfNeeded(false)) { 390 if (m_location_str.empty()) { 391 StreamString sstr; 392 393 Value::ValueType value_type = value.GetValueType(); 394 395 switch (value_type) { 396 case Value::eValueTypeScalar: 397 case Value::eValueTypeVector: 398 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 399 RegisterInfo *reg_info = value.GetRegisterInfo(); 400 if (reg_info) { 401 if (reg_info->name) 402 m_location_str = reg_info->name; 403 else if (reg_info->alt_name) 404 m_location_str = reg_info->alt_name; 405 if (m_location_str.empty()) 406 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 407 ? "vector" 408 : "scalar"; 409 } 410 } 411 if (m_location_str.empty()) 412 m_location_str = 413 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 414 break; 415 416 case Value::eValueTypeLoadAddress: 417 case Value::eValueTypeFileAddress: 418 case Value::eValueTypeHostAddress: { 419 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 420 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 421 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 422 m_location_str = sstr.GetString(); 423 } break; 424 } 425 } 426 } 427 return m_location_str.c_str(); 428 } 429 430 Value &ValueObject::GetValue() { return m_value; } 431 432 const Value &ValueObject::GetValue() const { return m_value; } 433 434 bool ValueObject::ResolveValue(Scalar &scalar) { 435 if (UpdateValueIfNeeded( 436 false)) // make sure that you are up to date before returning anything 437 { 438 ExecutionContext exe_ctx(GetExecutionContextRef()); 439 Value tmp_value(m_value); 440 scalar = tmp_value.ResolveValue(&exe_ctx); 441 if (scalar.IsValid()) { 442 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 443 if (bitfield_bit_size) 444 return scalar.ExtractBitfield(bitfield_bit_size, 445 GetBitfieldBitOffset()); 446 return true; 447 } 448 } 449 return false; 450 } 451 452 bool ValueObject::IsLogicalTrue(Status &error) { 453 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 454 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 455 switch (is_logical_true) { 456 case eLazyBoolYes: 457 case eLazyBoolNo: 458 return (is_logical_true == true); 459 case eLazyBoolCalculate: 460 break; 461 } 462 } 463 464 Scalar scalar_value; 465 466 if (!ResolveValue(scalar_value)) { 467 error.SetErrorString("failed to get a scalar result"); 468 return false; 469 } 470 471 bool ret; 472 ret = scalar_value.ULongLong(1) != 0; 473 error.Clear(); 474 return ret; 475 } 476 477 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 478 479 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 480 481 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 482 483 void ValueObject::SetValueDidChange(bool value_changed) { 484 m_value_did_change = value_changed; 485 } 486 487 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 488 ValueObjectSP child_sp; 489 // We may need to update our value if we are dynamic 490 if (IsPossibleDynamicType()) 491 UpdateValueIfNeeded(false); 492 if (idx < GetNumChildren()) { 493 // Check if we have already made the child value object? 494 if (can_create && !m_children.HasChildAtIndex(idx)) { 495 // No we haven't created the child at this index, so lets have our 496 // subclass do it and cache the result for quick future access. 497 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 498 } 499 500 ValueObject *child = m_children.GetChildAtIndex(idx); 501 if (child != nullptr) 502 return child->GetSP(); 503 } 504 return child_sp; 505 } 506 507 lldb::ValueObjectSP 508 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 509 size_t *index_of_error) { 510 if (idxs.size() == 0) 511 return GetSP(); 512 ValueObjectSP root(GetSP()); 513 for (size_t idx : idxs) { 514 root = root->GetChildAtIndex(idx, true); 515 if (!root) { 516 if (index_of_error) 517 *index_of_error = idx; 518 return root; 519 } 520 } 521 return root; 522 } 523 524 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 525 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 526 if (idxs.size() == 0) 527 return GetSP(); 528 ValueObjectSP root(GetSP()); 529 for (std::pair<size_t, bool> idx : idxs) { 530 root = root->GetChildAtIndex(idx.first, idx.second); 531 if (!root) { 532 if (index_of_error) 533 *index_of_error = idx.first; 534 return root; 535 } 536 } 537 return root; 538 } 539 540 lldb::ValueObjectSP 541 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 542 ConstString *name_of_error) { 543 if (names.size() == 0) 544 return GetSP(); 545 ValueObjectSP root(GetSP()); 546 for (ConstString name : names) { 547 root = root->GetChildMemberWithName(name, true); 548 if (!root) { 549 if (name_of_error) 550 *name_of_error = name; 551 return root; 552 } 553 } 554 return root; 555 } 556 557 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 558 llvm::ArrayRef<std::pair<ConstString, bool>> names, 559 ConstString *name_of_error) { 560 if (names.size() == 0) 561 return GetSP(); 562 ValueObjectSP root(GetSP()); 563 for (std::pair<ConstString, bool> name : names) { 564 root = root->GetChildMemberWithName(name.first, name.second); 565 if (!root) { 566 if (name_of_error) 567 *name_of_error = name.first; 568 return root; 569 } 570 } 571 return root; 572 } 573 574 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 575 bool omit_empty_base_classes = true; 576 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 577 omit_empty_base_classes); 578 } 579 580 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 581 bool can_create) { 582 // when getting a child by name, it could be buried inside some base classes 583 // (which really aren't part of the expression path), so we need a vector of 584 // indexes that can get us down to the correct child 585 ValueObjectSP child_sp; 586 587 // We may need to update our value if we are dynamic 588 if (IsPossibleDynamicType()) 589 UpdateValueIfNeeded(false); 590 591 std::vector<uint32_t> child_indexes; 592 bool omit_empty_base_classes = true; 593 594 if (!GetCompilerType().IsValid()) 595 return ValueObjectSP(); 596 597 const size_t num_child_indexes = 598 GetCompilerType().GetIndexOfChildMemberWithName( 599 name.GetCString(), omit_empty_base_classes, child_indexes); 600 if (num_child_indexes > 0) { 601 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 602 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 603 604 child_sp = GetChildAtIndex(*pos, can_create); 605 for (++pos; pos != end; ++pos) { 606 if (child_sp) { 607 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 608 child_sp = new_child_sp; 609 } else { 610 child_sp.reset(); 611 } 612 } 613 } 614 return child_sp; 615 } 616 617 size_t ValueObject::GetNumChildren(uint32_t max) { 618 UpdateValueIfNeeded(); 619 620 if (max < UINT32_MAX) { 621 if (m_children_count_valid) { 622 size_t children_count = m_children.GetChildrenCount(); 623 return children_count <= max ? children_count : max; 624 } else 625 return CalculateNumChildren(max); 626 } 627 628 if (!m_children_count_valid) { 629 SetNumChildren(CalculateNumChildren()); 630 } 631 return m_children.GetChildrenCount(); 632 } 633 634 bool ValueObject::MightHaveChildren() { 635 bool has_children = false; 636 const uint32_t type_info = GetTypeInfo(); 637 if (type_info) { 638 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 639 has_children = true; 640 } else { 641 has_children = GetNumChildren() > 0; 642 } 643 return has_children; 644 } 645 646 // Should only be called by ValueObject::GetNumChildren() 647 void ValueObject::SetNumChildren(size_t num_children) { 648 m_children_count_valid = true; 649 m_children.SetChildrenCount(num_children); 650 } 651 652 void ValueObject::SetName(ConstString name) { m_name = name; } 653 654 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 655 bool synthetic_array_member, 656 int32_t synthetic_index) { 657 ValueObject *valobj = nullptr; 658 659 bool omit_empty_base_classes = true; 660 bool ignore_array_bounds = synthetic_array_member; 661 std::string child_name_str; 662 uint32_t child_byte_size = 0; 663 int32_t child_byte_offset = 0; 664 uint32_t child_bitfield_bit_size = 0; 665 uint32_t child_bitfield_bit_offset = 0; 666 bool child_is_base_class = false; 667 bool child_is_deref_of_parent = false; 668 uint64_t language_flags = 0; 669 670 const bool transparent_pointers = !synthetic_array_member; 671 CompilerType child_compiler_type; 672 673 ExecutionContext exe_ctx(GetExecutionContextRef()); 674 675 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 676 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 677 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 678 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 679 child_is_deref_of_parent, this, language_flags); 680 if (child_compiler_type) { 681 if (synthetic_index) 682 child_byte_offset += child_byte_size * synthetic_index; 683 684 ConstString child_name; 685 if (!child_name_str.empty()) 686 child_name.SetCString(child_name_str.c_str()); 687 688 valobj = new ValueObjectChild( 689 *this, child_compiler_type, child_name, child_byte_size, 690 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 691 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 692 language_flags); 693 } 694 695 return valobj; 696 } 697 698 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 699 std::string &destination, 700 lldb::LanguageType lang) { 701 return GetSummaryAsCString(summary_ptr, destination, 702 TypeSummaryOptions().SetLanguage(lang)); 703 } 704 705 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 706 std::string &destination, 707 const TypeSummaryOptions &options) { 708 destination.clear(); 709 710 // ideally we would like to bail out if passing NULL, but if we do so we end 711 // up not providing the summary for function pointers anymore 712 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 713 return false; 714 715 m_is_getting_summary = true; 716 717 TypeSummaryOptions actual_options(options); 718 719 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 720 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 721 722 // this is a hot path in code and we prefer to avoid setting this string all 723 // too often also clearing out other information that we might care to see in 724 // a crash log. might be useful in very specific situations though. 725 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 726 Summary provider's description is %s", 727 GetTypeName().GetCString(), 728 GetName().GetCString(), 729 summary_ptr->GetDescription().c_str());*/ 730 731 if (UpdateValueIfNeeded(false) && summary_ptr) { 732 if (HasSyntheticValue()) 733 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 734 // the synthetic children being 735 // up-to-date (e.g. ${svar%#}) 736 summary_ptr->FormatObject(this, destination, actual_options); 737 } 738 m_is_getting_summary = false; 739 return !destination.empty(); 740 } 741 742 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 743 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 744 TypeSummaryOptions summary_options; 745 summary_options.SetLanguage(lang); 746 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 747 summary_options); 748 } 749 if (m_summary_str.empty()) 750 return nullptr; 751 return m_summary_str.c_str(); 752 } 753 754 bool ValueObject::GetSummaryAsCString(std::string &destination, 755 const TypeSummaryOptions &options) { 756 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 757 } 758 759 bool ValueObject::IsCStringContainer(bool check_pointer) { 760 CompilerType pointee_or_element_compiler_type; 761 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 762 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 763 pointee_or_element_compiler_type.IsCharType()); 764 if (!is_char_arr_ptr) 765 return false; 766 if (!check_pointer) 767 return true; 768 if (type_flags.Test(eTypeIsArray)) 769 return true; 770 addr_t cstr_address = LLDB_INVALID_ADDRESS; 771 AddressType cstr_address_type = eAddressTypeInvalid; 772 cstr_address = GetAddressOf(true, &cstr_address_type); 773 return (cstr_address != LLDB_INVALID_ADDRESS); 774 } 775 776 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 777 uint32_t item_count) { 778 CompilerType pointee_or_element_compiler_type; 779 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 780 const bool is_pointer_type = type_info & eTypeIsPointer; 781 const bool is_array_type = type_info & eTypeIsArray; 782 if (!(is_pointer_type || is_array_type)) 783 return 0; 784 785 if (item_count == 0) 786 return 0; 787 788 ExecutionContext exe_ctx(GetExecutionContextRef()); 789 790 llvm::Optional<uint64_t> item_type_size = 791 pointee_or_element_compiler_type.GetByteSize( 792 exe_ctx.GetBestExecutionContextScope()); 793 if (!item_type_size) 794 return 0; 795 const uint64_t bytes = item_count * *item_type_size; 796 const uint64_t offset = item_idx * *item_type_size; 797 798 if (item_idx == 0 && item_count == 1) // simply a deref 799 { 800 if (is_pointer_type) { 801 Status error; 802 ValueObjectSP pointee_sp = Dereference(error); 803 if (error.Fail() || pointee_sp.get() == nullptr) 804 return 0; 805 return pointee_sp->GetData(data, error); 806 } else { 807 ValueObjectSP child_sp = GetChildAtIndex(0, true); 808 if (child_sp.get() == nullptr) 809 return 0; 810 Status error; 811 return child_sp->GetData(data, error); 812 } 813 return true; 814 } else /* (items > 1) */ 815 { 816 Status error; 817 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 818 lldb::DataBufferSP data_sp(heap_buf_ptr = 819 new lldb_private::DataBufferHeap()); 820 821 AddressType addr_type; 822 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 823 : GetAddressOf(true, &addr_type); 824 825 switch (addr_type) { 826 case eAddressTypeFile: { 827 ModuleSP module_sp(GetModule()); 828 if (module_sp) { 829 addr = addr + offset; 830 Address so_addr; 831 module_sp->ResolveFileAddress(addr, so_addr); 832 ExecutionContext exe_ctx(GetExecutionContextRef()); 833 Target *target = exe_ctx.GetTargetPtr(); 834 if (target) { 835 heap_buf_ptr->SetByteSize(bytes); 836 size_t bytes_read = target->ReadMemory( 837 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 838 if (error.Success()) { 839 data.SetData(data_sp); 840 return bytes_read; 841 } 842 } 843 } 844 } break; 845 case eAddressTypeLoad: { 846 ExecutionContext exe_ctx(GetExecutionContextRef()); 847 Process *process = exe_ctx.GetProcessPtr(); 848 if (process) { 849 heap_buf_ptr->SetByteSize(bytes); 850 size_t bytes_read = process->ReadMemory( 851 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 852 if (error.Success() || bytes_read > 0) { 853 data.SetData(data_sp); 854 return bytes_read; 855 } 856 } 857 } break; 858 case eAddressTypeHost: { 859 auto max_bytes = 860 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 861 if (max_bytes && *max_bytes > offset) { 862 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 863 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 864 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 865 break; 866 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 867 data.SetData(data_sp); 868 return bytes_read; 869 } 870 } break; 871 case eAddressTypeInvalid: 872 break; 873 } 874 } 875 return 0; 876 } 877 878 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 879 UpdateValueIfNeeded(false); 880 ExecutionContext exe_ctx(GetExecutionContextRef()); 881 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 882 if (error.Fail()) { 883 if (m_data.GetByteSize()) { 884 data = m_data; 885 error.Clear(); 886 return data.GetByteSize(); 887 } else { 888 return 0; 889 } 890 } 891 data.SetAddressByteSize(m_data.GetAddressByteSize()); 892 data.SetByteOrder(m_data.GetByteOrder()); 893 return data.GetByteSize(); 894 } 895 896 bool ValueObject::SetData(DataExtractor &data, Status &error) { 897 error.Clear(); 898 // Make sure our value is up to date first so that our location and location 899 // type is valid. 900 if (!UpdateValueIfNeeded(false)) { 901 error.SetErrorString("unable to read value"); 902 return false; 903 } 904 905 uint64_t count = 0; 906 const Encoding encoding = GetCompilerType().GetEncoding(count); 907 908 const size_t byte_size = GetByteSize(); 909 910 Value::ValueType value_type = m_value.GetValueType(); 911 912 switch (value_type) { 913 case Value::eValueTypeScalar: { 914 Status set_error = 915 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 916 917 if (!set_error.Success()) { 918 error.SetErrorStringWithFormat("unable to set scalar value: %s", 919 set_error.AsCString()); 920 return false; 921 } 922 } break; 923 case Value::eValueTypeLoadAddress: { 924 // If it is a load address, then the scalar value is the storage location 925 // of the data, and we have to shove this value down to that load location. 926 ExecutionContext exe_ctx(GetExecutionContextRef()); 927 Process *process = exe_ctx.GetProcessPtr(); 928 if (process) { 929 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 930 size_t bytes_written = process->WriteMemory( 931 target_addr, data.GetDataStart(), byte_size, error); 932 if (!error.Success()) 933 return false; 934 if (bytes_written != byte_size) { 935 error.SetErrorString("unable to write value to memory"); 936 return false; 937 } 938 } 939 } break; 940 case Value::eValueTypeHostAddress: { 941 // If it is a host address, then we stuff the scalar as a DataBuffer into 942 // the Value's data. 943 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 944 m_data.SetData(buffer_sp, 0); 945 data.CopyByteOrderedData(0, byte_size, 946 const_cast<uint8_t *>(m_data.GetDataStart()), 947 byte_size, m_data.GetByteOrder()); 948 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 949 } break; 950 case Value::eValueTypeFileAddress: 951 case Value::eValueTypeVector: 952 break; 953 } 954 955 // If we have reached this point, then we have successfully changed the 956 // value. 957 SetNeedsUpdate(); 958 return true; 959 } 960 961 static bool CopyStringDataToBufferSP(const StreamString &source, 962 lldb::DataBufferSP &destination) { 963 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 964 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 965 return true; 966 } 967 968 std::pair<size_t, bool> 969 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 970 uint32_t max_length, bool honor_array, 971 Format item_format) { 972 bool was_capped = false; 973 StreamString s; 974 ExecutionContext exe_ctx(GetExecutionContextRef()); 975 Target *target = exe_ctx.GetTargetPtr(); 976 977 if (!target) { 978 s << "<no target to read from>"; 979 error.SetErrorString("no target to read from"); 980 CopyStringDataToBufferSP(s, buffer_sp); 981 return {0, was_capped}; 982 } 983 984 if (max_length == 0) 985 max_length = target->GetMaximumSizeOfStringSummary(); 986 987 size_t bytes_read = 0; 988 size_t total_bytes_read = 0; 989 990 CompilerType compiler_type = GetCompilerType(); 991 CompilerType elem_or_pointee_compiler_type; 992 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 993 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 994 elem_or_pointee_compiler_type.IsCharType()) { 995 addr_t cstr_address = LLDB_INVALID_ADDRESS; 996 AddressType cstr_address_type = eAddressTypeInvalid; 997 998 size_t cstr_len = 0; 999 bool capped_data = false; 1000 const bool is_array = type_flags.Test(eTypeIsArray); 1001 if (is_array) { 1002 // We have an array 1003 uint64_t array_size = 0; 1004 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 1005 cstr_len = array_size; 1006 if (cstr_len > max_length) { 1007 capped_data = true; 1008 cstr_len = max_length; 1009 } 1010 } 1011 cstr_address = GetAddressOf(true, &cstr_address_type); 1012 } else { 1013 // We have a pointer 1014 cstr_address = GetPointerValue(&cstr_address_type); 1015 } 1016 1017 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 1018 if (cstr_address_type == eAddressTypeHost && is_array) { 1019 const char *cstr = GetDataExtractor().PeekCStr(0); 1020 if (cstr == nullptr) { 1021 s << "<invalid address>"; 1022 error.SetErrorString("invalid address"); 1023 CopyStringDataToBufferSP(s, buffer_sp); 1024 return {0, was_capped}; 1025 } 1026 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 1027 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 1028 return {cstr_len, was_capped}; 1029 } else { 1030 s << "<invalid address>"; 1031 error.SetErrorString("invalid address"); 1032 CopyStringDataToBufferSP(s, buffer_sp); 1033 return {0, was_capped}; 1034 } 1035 } 1036 1037 Address cstr_so_addr(cstr_address); 1038 DataExtractor data; 1039 if (cstr_len > 0 && honor_array) { 1040 // I am using GetPointeeData() here to abstract the fact that some 1041 // ValueObjects are actually frozen pointers in the host but the pointed- 1042 // to data lives in the debuggee, and GetPointeeData() automatically 1043 // takes care of this 1044 GetPointeeData(data, 0, cstr_len); 1045 1046 if ((bytes_read = data.GetByteSize()) > 0) { 1047 total_bytes_read = bytes_read; 1048 for (size_t offset = 0; offset < bytes_read; offset++) 1049 s.Printf("%c", *data.PeekData(offset, 1)); 1050 if (capped_data) 1051 was_capped = true; 1052 } 1053 } else { 1054 cstr_len = max_length; 1055 const size_t k_max_buf_size = 64; 1056 1057 size_t offset = 0; 1058 1059 int cstr_len_displayed = -1; 1060 bool capped_cstr = false; 1061 // I am using GetPointeeData() here to abstract the fact that some 1062 // ValueObjects are actually frozen pointers in the host but the pointed- 1063 // to data lives in the debuggee, and GetPointeeData() automatically 1064 // takes care of this 1065 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1066 total_bytes_read += bytes_read; 1067 const char *cstr = data.PeekCStr(0); 1068 size_t len = strnlen(cstr, k_max_buf_size); 1069 if (cstr_len_displayed < 0) 1070 cstr_len_displayed = len; 1071 1072 if (len == 0) 1073 break; 1074 cstr_len_displayed += len; 1075 if (len > bytes_read) 1076 len = bytes_read; 1077 if (len > cstr_len) 1078 len = cstr_len; 1079 1080 for (size_t offset = 0; offset < bytes_read; offset++) 1081 s.Printf("%c", *data.PeekData(offset, 1)); 1082 1083 if (len < k_max_buf_size) 1084 break; 1085 1086 if (len >= cstr_len) { 1087 capped_cstr = true; 1088 break; 1089 } 1090 1091 cstr_len -= len; 1092 offset += len; 1093 } 1094 1095 if (cstr_len_displayed >= 0) { 1096 if (capped_cstr) 1097 was_capped = true; 1098 } 1099 } 1100 } else { 1101 error.SetErrorString("not a string object"); 1102 s << "<not a string object>"; 1103 } 1104 CopyStringDataToBufferSP(s, buffer_sp); 1105 return {total_bytes_read, was_capped}; 1106 } 1107 1108 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1109 if (!UpdateValueIfNeeded(true)) 1110 return {TypeValidatorResult::Success, 1111 ""}; // not the validator's job to discuss update problems 1112 1113 if (m_validation_result.hasValue()) 1114 return m_validation_result.getValue(); 1115 1116 if (!m_type_validator_sp) 1117 return {TypeValidatorResult::Success, ""}; // no validator no failure 1118 1119 auto outcome = m_type_validator_sp->FormatObject(this); 1120 1121 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1122 .getValue(); 1123 } 1124 1125 const char *ValueObject::GetObjectDescription() { 1126 if (!UpdateValueIfNeeded(true)) 1127 return nullptr; 1128 1129 // Return cached value. 1130 if (!m_object_desc_str.empty()) 1131 return m_object_desc_str.c_str(); 1132 1133 ExecutionContext exe_ctx(GetExecutionContextRef()); 1134 Process *process = exe_ctx.GetProcessPtr(); 1135 if (!process) 1136 return nullptr; 1137 1138 // Returns the object description produced by one language runtime. 1139 auto get_object_description = [&](LanguageType language) -> const char * { 1140 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1141 StreamString s; 1142 if (runtime->GetObjectDescription(s, *this)) { 1143 m_object_desc_str.append(s.GetString()); 1144 return m_object_desc_str.c_str(); 1145 } 1146 } 1147 return nullptr; 1148 }; 1149 1150 // Try the native language runtime first. 1151 LanguageType native_language = GetObjectRuntimeLanguage(); 1152 if (const char *desc = get_object_description(native_language)) 1153 return desc; 1154 1155 // Try the Objective-C language runtime. This fallback is necessary 1156 // for Objective-C++ and mixed Objective-C / C++ programs. 1157 if (Language::LanguageIsCFamily(native_language)) 1158 return get_object_description(eLanguageTypeObjC); 1159 return nullptr; 1160 } 1161 1162 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1163 std::string &destination) { 1164 if (UpdateValueIfNeeded(false)) 1165 return format.FormatObject(this, destination); 1166 else 1167 return false; 1168 } 1169 1170 bool ValueObject::GetValueAsCString(lldb::Format format, 1171 std::string &destination) { 1172 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1173 } 1174 1175 const char *ValueObject::GetValueAsCString() { 1176 if (UpdateValueIfNeeded(true)) { 1177 lldb::TypeFormatImplSP format_sp; 1178 lldb::Format my_format = GetFormat(); 1179 if (my_format == lldb::eFormatDefault) { 1180 if (m_type_format_sp) 1181 format_sp = m_type_format_sp; 1182 else { 1183 if (m_is_bitfield_for_scalar) 1184 my_format = eFormatUnsigned; 1185 else { 1186 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1187 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1188 if (reg_info) 1189 my_format = reg_info->format; 1190 } else { 1191 my_format = GetValue().GetCompilerType().GetFormat(); 1192 } 1193 } 1194 } 1195 } 1196 if (my_format != m_last_format || m_value_str.empty()) { 1197 m_last_format = my_format; 1198 if (!format_sp) 1199 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1200 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1201 if (!m_value_did_change && m_old_value_valid) { 1202 // The value was gotten successfully, so we consider the value as 1203 // changed if the value string differs 1204 SetValueDidChange(m_old_value_str != m_value_str); 1205 } 1206 } 1207 } 1208 } 1209 if (m_value_str.empty()) 1210 return nullptr; 1211 return m_value_str.c_str(); 1212 } 1213 1214 // if > 8bytes, 0 is returned. this method should mostly be used to read 1215 // address values out of pointers 1216 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1217 // If our byte size is zero this is an aggregate type that has children 1218 if (CanProvideValue()) { 1219 Scalar scalar; 1220 if (ResolveValue(scalar)) { 1221 if (success) 1222 *success = true; 1223 return scalar.ULongLong(fail_value); 1224 } 1225 // fallthrough, otherwise... 1226 } 1227 1228 if (success) 1229 *success = false; 1230 return fail_value; 1231 } 1232 1233 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1234 // If our byte size is zero this is an aggregate type that has children 1235 if (CanProvideValue()) { 1236 Scalar scalar; 1237 if (ResolveValue(scalar)) { 1238 if (success) 1239 *success = true; 1240 return scalar.SLongLong(fail_value); 1241 } 1242 // fallthrough, otherwise... 1243 } 1244 1245 if (success) 1246 *success = false; 1247 return fail_value; 1248 } 1249 1250 // if any more "special cases" are added to 1251 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1252 // by returning true for your new special cases. We will eventually move to 1253 // checking this call result before trying to display special cases 1254 bool ValueObject::HasSpecialPrintableRepresentation( 1255 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1256 Flags flags(GetTypeInfo()); 1257 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1258 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1259 if (IsCStringContainer(true) && 1260 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1261 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1262 return true; 1263 1264 if (flags.Test(eTypeIsArray)) { 1265 if ((custom_format == eFormatBytes) || 1266 (custom_format == eFormatBytesWithASCII)) 1267 return true; 1268 1269 if ((custom_format == eFormatVectorOfChar) || 1270 (custom_format == eFormatVectorOfFloat32) || 1271 (custom_format == eFormatVectorOfFloat64) || 1272 (custom_format == eFormatVectorOfSInt16) || 1273 (custom_format == eFormatVectorOfSInt32) || 1274 (custom_format == eFormatVectorOfSInt64) || 1275 (custom_format == eFormatVectorOfSInt8) || 1276 (custom_format == eFormatVectorOfUInt128) || 1277 (custom_format == eFormatVectorOfUInt16) || 1278 (custom_format == eFormatVectorOfUInt32) || 1279 (custom_format == eFormatVectorOfUInt64) || 1280 (custom_format == eFormatVectorOfUInt8)) 1281 return true; 1282 } 1283 } 1284 return false; 1285 } 1286 1287 bool ValueObject::DumpPrintableRepresentation( 1288 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1289 Format custom_format, PrintableRepresentationSpecialCases special, 1290 bool do_dump_error) { 1291 1292 Flags flags(GetTypeInfo()); 1293 1294 bool allow_special = 1295 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1296 const bool only_special = false; 1297 1298 if (allow_special) { 1299 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1300 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1301 // when being asked to get a printable display an array or pointer type 1302 // directly, try to "do the right thing" 1303 1304 if (IsCStringContainer(true) && 1305 (custom_format == eFormatCString || 1306 custom_format == eFormatCharArray || custom_format == eFormatChar || 1307 custom_format == 1308 eFormatVectorOfChar)) // print char[] & char* directly 1309 { 1310 Status error; 1311 lldb::DataBufferSP buffer_sp; 1312 std::pair<size_t, bool> read_string = ReadPointedString( 1313 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1314 (custom_format == eFormatCharArray)); 1315 lldb_private::formatters::StringPrinter:: 1316 ReadBufferAndDumpToStreamOptions options(*this); 1317 options.SetData(DataExtractor( 1318 buffer_sp, lldb::eByteOrderInvalid, 1319 8)); // none of this matters for a string - pass some defaults 1320 options.SetStream(&s); 1321 options.SetPrefixToken(nullptr); 1322 options.SetQuote('"'); 1323 options.SetSourceSize(buffer_sp->GetByteSize()); 1324 options.SetIsTruncated(read_string.second); 1325 formatters::StringPrinter::ReadBufferAndDumpToStream< 1326 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1327 options); 1328 return !error.Fail(); 1329 } 1330 1331 if (custom_format == eFormatEnum) 1332 return false; 1333 1334 // this only works for arrays, because I have no way to know when the 1335 // pointed memory ends, and no special \0 end of data marker 1336 if (flags.Test(eTypeIsArray)) { 1337 if ((custom_format == eFormatBytes) || 1338 (custom_format == eFormatBytesWithASCII)) { 1339 const size_t count = GetNumChildren(); 1340 1341 s << '['; 1342 for (size_t low = 0; low < count; low++) { 1343 1344 if (low) 1345 s << ','; 1346 1347 ValueObjectSP child = GetChildAtIndex(low, true); 1348 if (!child.get()) { 1349 s << "<invalid child>"; 1350 continue; 1351 } 1352 child->DumpPrintableRepresentation( 1353 s, ValueObject::eValueObjectRepresentationStyleValue, 1354 custom_format); 1355 } 1356 1357 s << ']'; 1358 1359 return true; 1360 } 1361 1362 if ((custom_format == eFormatVectorOfChar) || 1363 (custom_format == eFormatVectorOfFloat32) || 1364 (custom_format == eFormatVectorOfFloat64) || 1365 (custom_format == eFormatVectorOfSInt16) || 1366 (custom_format == eFormatVectorOfSInt32) || 1367 (custom_format == eFormatVectorOfSInt64) || 1368 (custom_format == eFormatVectorOfSInt8) || 1369 (custom_format == eFormatVectorOfUInt128) || 1370 (custom_format == eFormatVectorOfUInt16) || 1371 (custom_format == eFormatVectorOfUInt32) || 1372 (custom_format == eFormatVectorOfUInt64) || 1373 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1374 // with ASCII or any vector 1375 // format should be printed 1376 // directly 1377 { 1378 const size_t count = GetNumChildren(); 1379 1380 Format format = FormatManager::GetSingleItemFormat(custom_format); 1381 1382 s << '['; 1383 for (size_t low = 0; low < count; low++) { 1384 1385 if (low) 1386 s << ','; 1387 1388 ValueObjectSP child = GetChildAtIndex(low, true); 1389 if (!child.get()) { 1390 s << "<invalid child>"; 1391 continue; 1392 } 1393 child->DumpPrintableRepresentation( 1394 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1395 } 1396 1397 s << ']'; 1398 1399 return true; 1400 } 1401 } 1402 1403 if ((custom_format == eFormatBoolean) || 1404 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1405 (custom_format == eFormatCharPrintable) || 1406 (custom_format == eFormatComplexFloat) || 1407 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1408 (custom_format == eFormatHexUppercase) || 1409 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1410 (custom_format == eFormatOSType) || 1411 (custom_format == eFormatUnicode16) || 1412 (custom_format == eFormatUnicode32) || 1413 (custom_format == eFormatUnsigned) || 1414 (custom_format == eFormatPointer) || 1415 (custom_format == eFormatComplexInteger) || 1416 (custom_format == eFormatComplex) || 1417 (custom_format == eFormatDefault)) // use the [] operator 1418 return false; 1419 } 1420 } 1421 1422 if (only_special) 1423 return false; 1424 1425 bool var_success = false; 1426 1427 { 1428 llvm::StringRef str; 1429 1430 // this is a local stream that we are using to ensure that the data pointed 1431 // to by cstr survives long enough for us to copy it to its destination - 1432 // it is necessary to have this temporary storage area for cases where our 1433 // desired output is not backed by some other longer-term storage 1434 StreamString strm; 1435 1436 if (custom_format != eFormatInvalid) 1437 SetFormat(custom_format); 1438 1439 switch (val_obj_display) { 1440 case eValueObjectRepresentationStyleValue: 1441 str = GetValueAsCString(); 1442 break; 1443 1444 case eValueObjectRepresentationStyleSummary: 1445 str = GetSummaryAsCString(); 1446 break; 1447 1448 case eValueObjectRepresentationStyleLanguageSpecific: 1449 str = GetObjectDescription(); 1450 break; 1451 1452 case eValueObjectRepresentationStyleLocation: 1453 str = GetLocationAsCString(); 1454 break; 1455 1456 case eValueObjectRepresentationStyleChildrenCount: 1457 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1458 str = strm.GetString(); 1459 break; 1460 1461 case eValueObjectRepresentationStyleType: 1462 str = GetTypeName().GetStringRef(); 1463 break; 1464 1465 case eValueObjectRepresentationStyleName: 1466 str = GetName().GetStringRef(); 1467 break; 1468 1469 case eValueObjectRepresentationStyleExpressionPath: 1470 GetExpressionPath(strm, false); 1471 str = strm.GetString(); 1472 break; 1473 } 1474 1475 if (str.empty()) { 1476 if (val_obj_display == eValueObjectRepresentationStyleValue) 1477 str = GetSummaryAsCString(); 1478 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1479 if (!CanProvideValue()) { 1480 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1481 GetLocationAsCString()); 1482 str = strm.GetString(); 1483 } else 1484 str = GetValueAsCString(); 1485 } 1486 } 1487 1488 if (!str.empty()) 1489 s << str; 1490 else { 1491 if (m_error.Fail()) { 1492 if (do_dump_error) 1493 s.Printf("<%s>", m_error.AsCString()); 1494 else 1495 return false; 1496 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1497 s.PutCString("<no summary available>"); 1498 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1499 s.PutCString("<no value available>"); 1500 else if (val_obj_display == 1501 eValueObjectRepresentationStyleLanguageSpecific) 1502 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1503 // have other runtimes 1504 // that support a 1505 // description 1506 else 1507 s.PutCString("<no printable representation>"); 1508 } 1509 1510 // we should only return false here if we could not do *anything* even if 1511 // we have an error message as output, that's a success from our callers' 1512 // perspective, so return true 1513 var_success = true; 1514 1515 if (custom_format != eFormatInvalid) 1516 SetFormat(eFormatDefault); 1517 } 1518 1519 return var_success; 1520 } 1521 1522 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1523 AddressType *address_type) { 1524 // Can't take address of a bitfield 1525 if (IsBitfield()) 1526 return LLDB_INVALID_ADDRESS; 1527 1528 if (!UpdateValueIfNeeded(false)) 1529 return LLDB_INVALID_ADDRESS; 1530 1531 switch (m_value.GetValueType()) { 1532 case Value::eValueTypeScalar: 1533 case Value::eValueTypeVector: 1534 if (scalar_is_load_address) { 1535 if (address_type) 1536 *address_type = eAddressTypeLoad; 1537 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1538 } 1539 break; 1540 1541 case Value::eValueTypeLoadAddress: 1542 case Value::eValueTypeFileAddress: { 1543 if (address_type) 1544 *address_type = m_value.GetValueAddressType(); 1545 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1546 } break; 1547 case Value::eValueTypeHostAddress: { 1548 if (address_type) 1549 *address_type = m_value.GetValueAddressType(); 1550 return LLDB_INVALID_ADDRESS; 1551 } break; 1552 } 1553 if (address_type) 1554 *address_type = eAddressTypeInvalid; 1555 return LLDB_INVALID_ADDRESS; 1556 } 1557 1558 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1559 addr_t address = LLDB_INVALID_ADDRESS; 1560 if (address_type) 1561 *address_type = eAddressTypeInvalid; 1562 1563 if (!UpdateValueIfNeeded(false)) 1564 return address; 1565 1566 switch (m_value.GetValueType()) { 1567 case Value::eValueTypeScalar: 1568 case Value::eValueTypeVector: 1569 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1570 break; 1571 1572 case Value::eValueTypeHostAddress: 1573 case Value::eValueTypeLoadAddress: 1574 case Value::eValueTypeFileAddress: { 1575 lldb::offset_t data_offset = 0; 1576 address = m_data.GetPointer(&data_offset); 1577 } break; 1578 } 1579 1580 if (address_type) 1581 *address_type = GetAddressTypeOfChildren(); 1582 1583 return address; 1584 } 1585 1586 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1587 error.Clear(); 1588 // Make sure our value is up to date first so that our location and location 1589 // type is valid. 1590 if (!UpdateValueIfNeeded(false)) { 1591 error.SetErrorString("unable to read value"); 1592 return false; 1593 } 1594 1595 uint64_t count = 0; 1596 const Encoding encoding = GetCompilerType().GetEncoding(count); 1597 1598 const size_t byte_size = GetByteSize(); 1599 1600 Value::ValueType value_type = m_value.GetValueType(); 1601 1602 if (value_type == Value::eValueTypeScalar) { 1603 // If the value is already a scalar, then let the scalar change itself: 1604 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1605 } else if (byte_size <= 16) { 1606 // If the value fits in a scalar, then make a new scalar and again let the 1607 // scalar code do the conversion, then figure out where to put the new 1608 // value. 1609 Scalar new_scalar; 1610 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1611 if (error.Success()) { 1612 switch (value_type) { 1613 case Value::eValueTypeLoadAddress: { 1614 // If it is a load address, then the scalar value is the storage 1615 // location of the data, and we have to shove this value down to that 1616 // load location. 1617 ExecutionContext exe_ctx(GetExecutionContextRef()); 1618 Process *process = exe_ctx.GetProcessPtr(); 1619 if (process) { 1620 addr_t target_addr = 1621 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1622 size_t bytes_written = process->WriteScalarToMemory( 1623 target_addr, new_scalar, byte_size, error); 1624 if (!error.Success()) 1625 return false; 1626 if (bytes_written != byte_size) { 1627 error.SetErrorString("unable to write value to memory"); 1628 return false; 1629 } 1630 } 1631 } break; 1632 case Value::eValueTypeHostAddress: { 1633 // If it is a host address, then we stuff the scalar as a DataBuffer 1634 // into the Value's data. 1635 DataExtractor new_data; 1636 new_data.SetByteOrder(m_data.GetByteOrder()); 1637 1638 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1639 m_data.SetData(buffer_sp, 0); 1640 bool success = new_scalar.GetData(new_data); 1641 if (success) { 1642 new_data.CopyByteOrderedData( 1643 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1644 byte_size, m_data.GetByteOrder()); 1645 } 1646 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1647 1648 } break; 1649 case Value::eValueTypeFileAddress: 1650 case Value::eValueTypeScalar: 1651 case Value::eValueTypeVector: 1652 break; 1653 } 1654 } else { 1655 return false; 1656 } 1657 } else { 1658 // We don't support setting things bigger than a scalar at present. 1659 error.SetErrorString("unable to write aggregate data type"); 1660 return false; 1661 } 1662 1663 // If we have reached this point, then we have successfully changed the 1664 // value. 1665 SetNeedsUpdate(); 1666 return true; 1667 } 1668 1669 bool ValueObject::GetDeclaration(Declaration &decl) { 1670 decl.Clear(); 1671 return false; 1672 } 1673 1674 ConstString ValueObject::GetTypeName() { 1675 return GetCompilerType().GetConstTypeName(); 1676 } 1677 1678 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1679 1680 ConstString ValueObject::GetQualifiedTypeName() { 1681 return GetCompilerType().GetConstQualifiedTypeName(); 1682 } 1683 1684 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1685 return GetCompilerType().GetMinimumLanguage(); 1686 } 1687 1688 void ValueObject::AddSyntheticChild(ConstString key, 1689 ValueObject *valobj) { 1690 m_synthetic_children[key] = valobj; 1691 } 1692 1693 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1694 ValueObjectSP synthetic_child_sp; 1695 std::map<ConstString, ValueObject *>::const_iterator pos = 1696 m_synthetic_children.find(key); 1697 if (pos != m_synthetic_children.end()) 1698 synthetic_child_sp = pos->second->GetSP(); 1699 return synthetic_child_sp; 1700 } 1701 1702 uint32_t 1703 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1704 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1705 } 1706 1707 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1708 1709 bool ValueObject::IsArrayType() { 1710 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1711 } 1712 1713 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1714 1715 bool ValueObject::IsIntegerType(bool &is_signed) { 1716 return GetCompilerType().IsIntegerType(is_signed); 1717 } 1718 1719 bool ValueObject::IsPointerOrReferenceType() { 1720 return GetCompilerType().IsPointerOrReferenceType(); 1721 } 1722 1723 bool ValueObject::IsPossibleDynamicType() { 1724 ExecutionContext exe_ctx(GetExecutionContextRef()); 1725 Process *process = exe_ctx.GetProcessPtr(); 1726 if (process) 1727 return process->IsPossibleDynamicValue(*this); 1728 else 1729 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1730 } 1731 1732 bool ValueObject::IsRuntimeSupportValue() { 1733 Process *process(GetProcessSP().get()); 1734 if (!process) 1735 return false; 1736 1737 // We trust the the compiler did the right thing and marked runtime support 1738 // values as artificial. 1739 if (!GetVariable() || !GetVariable()->IsArtificial()) 1740 return false; 1741 1742 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1743 if (runtime->IsWhitelistedRuntimeValue(GetName())) 1744 return false; 1745 1746 return true; 1747 } 1748 1749 bool ValueObject::IsNilReference() { 1750 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1751 return language->IsNilReference(*this); 1752 } 1753 return false; 1754 } 1755 1756 bool ValueObject::IsUninitializedReference() { 1757 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1758 return language->IsUninitializedReference(*this); 1759 } 1760 return false; 1761 } 1762 1763 // This allows you to create an array member using and index that doesn't not 1764 // fall in the normal bounds of the array. Many times structure can be defined 1765 // as: struct Collection { 1766 // uint32_t item_count; 1767 // Item item_array[0]; 1768 // }; 1769 // The size of the "item_array" is 1, but many times in practice there are more 1770 // items in "item_array". 1771 1772 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1773 bool can_create) { 1774 ValueObjectSP synthetic_child_sp; 1775 if (IsPointerType() || IsArrayType()) { 1776 char index_str[64]; 1777 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1778 ConstString index_const_str(index_str); 1779 // Check if we have already created a synthetic array member in this valid 1780 // object. If we have we will re-use it. 1781 synthetic_child_sp = GetSyntheticChild(index_const_str); 1782 if (!synthetic_child_sp) { 1783 ValueObject *synthetic_child; 1784 // We haven't made a synthetic array member for INDEX yet, so lets make 1785 // one and cache it for any future reference. 1786 synthetic_child = CreateChildAtIndex(0, true, index); 1787 1788 // Cache the value if we got one back... 1789 if (synthetic_child) { 1790 AddSyntheticChild(index_const_str, synthetic_child); 1791 synthetic_child_sp = synthetic_child->GetSP(); 1792 synthetic_child_sp->SetName(ConstString(index_str)); 1793 synthetic_child_sp->m_is_array_item_for_pointer = true; 1794 } 1795 } 1796 } 1797 return synthetic_child_sp; 1798 } 1799 1800 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1801 bool can_create) { 1802 ValueObjectSP synthetic_child_sp; 1803 if (IsScalarType()) { 1804 char index_str[64]; 1805 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1806 ConstString index_const_str(index_str); 1807 // Check if we have already created a synthetic array member in this valid 1808 // object. If we have we will re-use it. 1809 synthetic_child_sp = GetSyntheticChild(index_const_str); 1810 if (!synthetic_child_sp) { 1811 uint32_t bit_field_size = to - from + 1; 1812 uint32_t bit_field_offset = from; 1813 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1814 bit_field_offset = 1815 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1816 // We haven't made a synthetic array member for INDEX yet, so lets make 1817 // one and cache it for any future reference. 1818 ValueObjectChild *synthetic_child = new ValueObjectChild( 1819 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1820 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1821 0); 1822 1823 // Cache the value if we got one back... 1824 if (synthetic_child) { 1825 AddSyntheticChild(index_const_str, synthetic_child); 1826 synthetic_child_sp = synthetic_child->GetSP(); 1827 synthetic_child_sp->SetName(ConstString(index_str)); 1828 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1829 } 1830 } 1831 } 1832 return synthetic_child_sp; 1833 } 1834 1835 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1836 uint32_t offset, const CompilerType &type, bool can_create, 1837 ConstString name_const_str) { 1838 1839 ValueObjectSP synthetic_child_sp; 1840 1841 if (name_const_str.IsEmpty()) { 1842 char name_str[64]; 1843 snprintf(name_str, sizeof(name_str), "@%i", offset); 1844 name_const_str.SetCString(name_str); 1845 } 1846 1847 // Check if we have already created a synthetic array member in this valid 1848 // object. If we have we will re-use it. 1849 synthetic_child_sp = GetSyntheticChild(name_const_str); 1850 1851 if (synthetic_child_sp.get()) 1852 return synthetic_child_sp; 1853 1854 if (!can_create) 1855 return {}; 1856 1857 ExecutionContext exe_ctx(GetExecutionContextRef()); 1858 llvm::Optional<uint64_t> size = 1859 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1860 if (!size) 1861 return {}; 1862 ValueObjectChild *synthetic_child = 1863 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1864 false, false, eAddressTypeInvalid, 0); 1865 if (synthetic_child) { 1866 AddSyntheticChild(name_const_str, synthetic_child); 1867 synthetic_child_sp = synthetic_child->GetSP(); 1868 synthetic_child_sp->SetName(name_const_str); 1869 synthetic_child_sp->m_is_child_at_offset = true; 1870 } 1871 return synthetic_child_sp; 1872 } 1873 1874 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1875 const CompilerType &type, 1876 bool can_create, 1877 ConstString name_const_str) { 1878 ValueObjectSP synthetic_child_sp; 1879 1880 if (name_const_str.IsEmpty()) { 1881 char name_str[128]; 1882 snprintf(name_str, sizeof(name_str), "base%s@%i", 1883 type.GetTypeName().AsCString("<unknown>"), offset); 1884 name_const_str.SetCString(name_str); 1885 } 1886 1887 // Check if we have already created a synthetic array member in this valid 1888 // object. If we have we will re-use it. 1889 synthetic_child_sp = GetSyntheticChild(name_const_str); 1890 1891 if (synthetic_child_sp.get()) 1892 return synthetic_child_sp; 1893 1894 if (!can_create) 1895 return {}; 1896 1897 const bool is_base_class = true; 1898 1899 ExecutionContext exe_ctx(GetExecutionContextRef()); 1900 llvm::Optional<uint64_t> size = 1901 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1902 if (!size) 1903 return {}; 1904 ValueObjectChild *synthetic_child = 1905 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1906 is_base_class, false, eAddressTypeInvalid, 0); 1907 if (synthetic_child) { 1908 AddSyntheticChild(name_const_str, synthetic_child); 1909 synthetic_child_sp = synthetic_child->GetSP(); 1910 synthetic_child_sp->SetName(name_const_str); 1911 } 1912 return synthetic_child_sp; 1913 } 1914 1915 // your expression path needs to have a leading . or -> (unless it somehow 1916 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1917 // is meaningful and should be shown to the user, . and -> are just parser 1918 // design, but by no means added information for the user.. strip them off 1919 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1920 if (!expression || !expression[0]) 1921 return expression; 1922 if (expression[0] == '.') 1923 return expression + 1; 1924 if (expression[0] == '-' && expression[1] == '>') 1925 return expression + 2; 1926 return expression; 1927 } 1928 1929 ValueObjectSP 1930 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1931 bool can_create) { 1932 ValueObjectSP synthetic_child_sp; 1933 ConstString name_const_string(expression); 1934 // Check if we have already created a synthetic array member in this valid 1935 // object. If we have we will re-use it. 1936 synthetic_child_sp = GetSyntheticChild(name_const_string); 1937 if (!synthetic_child_sp) { 1938 // We haven't made a synthetic array member for expression yet, so lets 1939 // make one and cache it for any future reference. 1940 synthetic_child_sp = GetValueForExpressionPath( 1941 expression, nullptr, nullptr, 1942 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1943 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1944 None)); 1945 1946 // Cache the value if we got one back... 1947 if (synthetic_child_sp.get()) { 1948 // FIXME: this causes a "real" child to end up with its name changed to 1949 // the contents of expression 1950 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1951 synthetic_child_sp->SetName( 1952 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1953 } 1954 } 1955 return synthetic_child_sp; 1956 } 1957 1958 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1959 if (!use_synthetic) 1960 return; 1961 1962 TargetSP target_sp(GetTargetSP()); 1963 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1964 m_synthetic_value = nullptr; 1965 return; 1966 } 1967 1968 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1969 1970 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1971 return; 1972 1973 if (m_synthetic_children_sp.get() == nullptr) 1974 return; 1975 1976 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1977 return; 1978 1979 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1980 } 1981 1982 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1983 if (use_dynamic == eNoDynamicValues) 1984 return; 1985 1986 if (!m_dynamic_value && !IsDynamic()) { 1987 ExecutionContext exe_ctx(GetExecutionContextRef()); 1988 Process *process = exe_ctx.GetProcessPtr(); 1989 if (process && process->IsPossibleDynamicValue(*this)) { 1990 ClearDynamicTypeInformation(); 1991 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1992 } 1993 } 1994 } 1995 1996 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1997 if (use_dynamic == eNoDynamicValues) 1998 return ValueObjectSP(); 1999 2000 if (!IsDynamic() && m_dynamic_value == nullptr) { 2001 CalculateDynamicValue(use_dynamic); 2002 } 2003 if (m_dynamic_value) 2004 return m_dynamic_value->GetSP(); 2005 else 2006 return ValueObjectSP(); 2007 } 2008 2009 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 2010 2011 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 2012 2013 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 2014 if (!use_synthetic) 2015 return ValueObjectSP(); 2016 2017 CalculateSyntheticValue(use_synthetic); 2018 2019 if (m_synthetic_value) 2020 return m_synthetic_value->GetSP(); 2021 else 2022 return ValueObjectSP(); 2023 } 2024 2025 bool ValueObject::HasSyntheticValue() { 2026 UpdateFormatsIfNeeded(); 2027 2028 if (m_synthetic_children_sp.get() == nullptr) 2029 return false; 2030 2031 CalculateSyntheticValue(true); 2032 2033 return m_synthetic_value != nullptr; 2034 } 2035 2036 bool ValueObject::GetBaseClassPath(Stream &s) { 2037 if (IsBaseClass()) { 2038 bool parent_had_base_class = 2039 GetParent() && GetParent()->GetBaseClassPath(s); 2040 CompilerType compiler_type = GetCompilerType(); 2041 llvm::Optional<std::string> cxx_class_name = 2042 ClangASTContext::GetCXXClassName(compiler_type); 2043 if (cxx_class_name) { 2044 if (parent_had_base_class) 2045 s.PutCString("::"); 2046 s.PutCString(cxx_class_name.getValue()); 2047 } 2048 return parent_had_base_class || cxx_class_name; 2049 } 2050 return false; 2051 } 2052 2053 ValueObject *ValueObject::GetNonBaseClassParent() { 2054 if (GetParent()) { 2055 if (GetParent()->IsBaseClass()) 2056 return GetParent()->GetNonBaseClassParent(); 2057 else 2058 return GetParent(); 2059 } 2060 return nullptr; 2061 } 2062 2063 bool ValueObject::IsBaseClass(uint32_t &depth) { 2064 if (!IsBaseClass()) { 2065 depth = 0; 2066 return false; 2067 } 2068 if (GetParent()) { 2069 GetParent()->IsBaseClass(depth); 2070 depth = depth + 1; 2071 return true; 2072 } 2073 // TODO: a base of no parent? weird.. 2074 depth = 1; 2075 return true; 2076 } 2077 2078 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2079 GetExpressionPathFormat epformat) { 2080 // synthetic children do not actually "exist" as part of the hierarchy, and 2081 // sometimes they are consed up in ways that don't make sense from an 2082 // underlying language/API standpoint. So, use a special code path here to 2083 // return something that can hopefully be used in expression 2084 if (m_is_synthetic_children_generated) { 2085 UpdateValueIfNeeded(); 2086 2087 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2088 if (IsPointerOrReferenceType()) { 2089 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2090 GetValueAsUnsigned(0)); 2091 return; 2092 } else { 2093 uint64_t load_addr = 2094 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2095 if (load_addr != LLDB_INVALID_ADDRESS) { 2096 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2097 load_addr); 2098 return; 2099 } 2100 } 2101 } 2102 2103 if (CanProvideValue()) { 2104 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2105 GetValueAsCString()); 2106 return; 2107 } 2108 2109 return; 2110 } 2111 2112 const bool is_deref_of_parent = IsDereferenceOfParent(); 2113 2114 if (is_deref_of_parent && 2115 epformat == eGetExpressionPathFormatDereferencePointers) { 2116 // this is the original format of GetExpressionPath() producing code like 2117 // *(a_ptr).memberName, which is entirely fine, until you put this into 2118 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2119 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2120 // in this latter format 2121 s.PutCString("*("); 2122 } 2123 2124 ValueObject *parent = GetParent(); 2125 2126 if (parent) 2127 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2128 2129 // if we are a deref_of_parent just because we are synthetic array members 2130 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2131 // name ([%d]) to the expression path 2132 if (m_is_array_item_for_pointer && 2133 epformat == eGetExpressionPathFormatHonorPointers) 2134 s.PutCString(m_name.AsCString()); 2135 2136 if (!IsBaseClass()) { 2137 if (!is_deref_of_parent) { 2138 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2139 if (non_base_class_parent && 2140 !non_base_class_parent->GetName().IsEmpty()) { 2141 CompilerType non_base_class_parent_compiler_type = 2142 non_base_class_parent->GetCompilerType(); 2143 if (non_base_class_parent_compiler_type) { 2144 if (parent && parent->IsDereferenceOfParent() && 2145 epformat == eGetExpressionPathFormatHonorPointers) { 2146 s.PutCString("->"); 2147 } else { 2148 const uint32_t non_base_class_parent_type_info = 2149 non_base_class_parent_compiler_type.GetTypeInfo(); 2150 2151 if (non_base_class_parent_type_info & eTypeIsPointer) { 2152 s.PutCString("->"); 2153 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2154 !(non_base_class_parent_type_info & eTypeIsArray)) { 2155 s.PutChar('.'); 2156 } 2157 } 2158 } 2159 } 2160 2161 const char *name = GetName().GetCString(); 2162 if (name) { 2163 if (qualify_cxx_base_classes) { 2164 if (GetBaseClassPath(s)) 2165 s.PutCString("::"); 2166 } 2167 s.PutCString(name); 2168 } 2169 } 2170 } 2171 2172 if (is_deref_of_parent && 2173 epformat == eGetExpressionPathFormatDereferencePointers) { 2174 s.PutChar(')'); 2175 } 2176 } 2177 2178 ValueObjectSP ValueObject::GetValueForExpressionPath( 2179 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2180 ExpressionPathEndResultType *final_value_type, 2181 const GetValueForExpressionPathOptions &options, 2182 ExpressionPathAftermath *final_task_on_target) { 2183 2184 ExpressionPathScanEndReason dummy_reason_to_stop = 2185 ValueObject::eExpressionPathScanEndReasonUnknown; 2186 ExpressionPathEndResultType dummy_final_value_type = 2187 ValueObject::eExpressionPathEndResultTypeInvalid; 2188 ExpressionPathAftermath dummy_final_task_on_target = 2189 ValueObject::eExpressionPathAftermathNothing; 2190 2191 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2192 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2193 final_value_type ? final_value_type : &dummy_final_value_type, options, 2194 final_task_on_target ? final_task_on_target 2195 : &dummy_final_task_on_target); 2196 2197 if (!final_task_on_target || 2198 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2199 return ret_val; 2200 2201 if (ret_val.get() && 2202 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2203 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2204 // of plain objects 2205 { 2206 if ((final_task_on_target ? *final_task_on_target 2207 : dummy_final_task_on_target) == 2208 ValueObject::eExpressionPathAftermathDereference) { 2209 Status error; 2210 ValueObjectSP final_value = ret_val->Dereference(error); 2211 if (error.Fail() || !final_value.get()) { 2212 if (reason_to_stop) 2213 *reason_to_stop = 2214 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2215 if (final_value_type) 2216 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2217 return ValueObjectSP(); 2218 } else { 2219 if (final_task_on_target) 2220 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2221 return final_value; 2222 } 2223 } 2224 if (*final_task_on_target == 2225 ValueObject::eExpressionPathAftermathTakeAddress) { 2226 Status error; 2227 ValueObjectSP final_value = ret_val->AddressOf(error); 2228 if (error.Fail() || !final_value.get()) { 2229 if (reason_to_stop) 2230 *reason_to_stop = 2231 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2232 if (final_value_type) 2233 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2234 return ValueObjectSP(); 2235 } else { 2236 if (final_task_on_target) 2237 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2238 return final_value; 2239 } 2240 } 2241 } 2242 return ret_val; // final_task_on_target will still have its original value, so 2243 // you know I did not do it 2244 } 2245 2246 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2247 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2248 ExpressionPathEndResultType *final_result, 2249 const GetValueForExpressionPathOptions &options, 2250 ExpressionPathAftermath *what_next) { 2251 ValueObjectSP root = GetSP(); 2252 2253 if (!root) 2254 return nullptr; 2255 2256 llvm::StringRef remainder = expression; 2257 2258 while (true) { 2259 llvm::StringRef temp_expression = remainder; 2260 2261 CompilerType root_compiler_type = root->GetCompilerType(); 2262 CompilerType pointee_compiler_type; 2263 Flags pointee_compiler_type_info; 2264 2265 Flags root_compiler_type_info( 2266 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2267 if (pointee_compiler_type) 2268 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2269 2270 if (temp_expression.empty()) { 2271 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2272 return root; 2273 } 2274 2275 switch (temp_expression.front()) { 2276 case '-': { 2277 temp_expression = temp_expression.drop_front(); 2278 if (options.m_check_dot_vs_arrow_syntax && 2279 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2280 // use -> on a 2281 // non-pointer and I 2282 // must catch the error 2283 { 2284 *reason_to_stop = 2285 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2286 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2287 return ValueObjectSP(); 2288 } 2289 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2290 // extract an ObjC IVar 2291 // when this is forbidden 2292 root_compiler_type_info.Test(eTypeIsPointer) && 2293 options.m_no_fragile_ivar) { 2294 *reason_to_stop = 2295 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2296 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2297 return ValueObjectSP(); 2298 } 2299 if (!temp_expression.startswith(">")) { 2300 *reason_to_stop = 2301 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2302 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2303 return ValueObjectSP(); 2304 } 2305 } 2306 LLVM_FALLTHROUGH; 2307 case '.': // or fallthrough from -> 2308 { 2309 if (options.m_check_dot_vs_arrow_syntax && 2310 temp_expression.front() == '.' && 2311 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2312 // use . on a pointer 2313 // and I must catch the 2314 // error 2315 { 2316 *reason_to_stop = 2317 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2318 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2319 return nullptr; 2320 } 2321 temp_expression = temp_expression.drop_front(); // skip . or > 2322 2323 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2324 ConstString child_name; 2325 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2326 // expand this last layer 2327 { 2328 child_name.SetString(temp_expression); 2329 ValueObjectSP child_valobj_sp = 2330 root->GetChildMemberWithName(child_name, true); 2331 2332 if (child_valobj_sp.get()) // we know we are done, so just return 2333 { 2334 *reason_to_stop = 2335 ValueObject::eExpressionPathScanEndReasonEndOfString; 2336 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2337 return child_valobj_sp; 2338 } else { 2339 switch (options.m_synthetic_children_traversal) { 2340 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2341 None: 2342 break; 2343 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2344 FromSynthetic: 2345 if (root->IsSynthetic()) { 2346 child_valobj_sp = root->GetNonSyntheticValue(); 2347 if (child_valobj_sp.get()) 2348 child_valobj_sp = 2349 child_valobj_sp->GetChildMemberWithName(child_name, true); 2350 } 2351 break; 2352 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2353 ToSynthetic: 2354 if (!root->IsSynthetic()) { 2355 child_valobj_sp = root->GetSyntheticValue(); 2356 if (child_valobj_sp.get()) 2357 child_valobj_sp = 2358 child_valobj_sp->GetChildMemberWithName(child_name, true); 2359 } 2360 break; 2361 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2362 Both: 2363 if (root->IsSynthetic()) { 2364 child_valobj_sp = root->GetNonSyntheticValue(); 2365 if (child_valobj_sp.get()) 2366 child_valobj_sp = 2367 child_valobj_sp->GetChildMemberWithName(child_name, true); 2368 } else { 2369 child_valobj_sp = root->GetSyntheticValue(); 2370 if (child_valobj_sp.get()) 2371 child_valobj_sp = 2372 child_valobj_sp->GetChildMemberWithName(child_name, true); 2373 } 2374 break; 2375 } 2376 } 2377 2378 // if we are here and options.m_no_synthetic_children is true, 2379 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2380 // branch, and return an error 2381 if (child_valobj_sp.get()) // if it worked, just return 2382 { 2383 *reason_to_stop = 2384 ValueObject::eExpressionPathScanEndReasonEndOfString; 2385 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2386 return child_valobj_sp; 2387 } else { 2388 *reason_to_stop = 2389 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2390 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2391 return nullptr; 2392 } 2393 } else // other layers do expand 2394 { 2395 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2396 2397 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2398 2399 ValueObjectSP child_valobj_sp = 2400 root->GetChildMemberWithName(child_name, true); 2401 if (child_valobj_sp.get()) // store the new root and move on 2402 { 2403 root = child_valobj_sp; 2404 remainder = next_separator; 2405 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2406 continue; 2407 } else { 2408 switch (options.m_synthetic_children_traversal) { 2409 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2410 None: 2411 break; 2412 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2413 FromSynthetic: 2414 if (root->IsSynthetic()) { 2415 child_valobj_sp = root->GetNonSyntheticValue(); 2416 if (child_valobj_sp.get()) 2417 child_valobj_sp = 2418 child_valobj_sp->GetChildMemberWithName(child_name, true); 2419 } 2420 break; 2421 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2422 ToSynthetic: 2423 if (!root->IsSynthetic()) { 2424 child_valobj_sp = root->GetSyntheticValue(); 2425 if (child_valobj_sp.get()) 2426 child_valobj_sp = 2427 child_valobj_sp->GetChildMemberWithName(child_name, true); 2428 } 2429 break; 2430 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2431 Both: 2432 if (root->IsSynthetic()) { 2433 child_valobj_sp = root->GetNonSyntheticValue(); 2434 if (child_valobj_sp.get()) 2435 child_valobj_sp = 2436 child_valobj_sp->GetChildMemberWithName(child_name, true); 2437 } else { 2438 child_valobj_sp = root->GetSyntheticValue(); 2439 if (child_valobj_sp.get()) 2440 child_valobj_sp = 2441 child_valobj_sp->GetChildMemberWithName(child_name, true); 2442 } 2443 break; 2444 } 2445 } 2446 2447 // if we are here and options.m_no_synthetic_children is true, 2448 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2449 // branch, and return an error 2450 if (child_valobj_sp.get()) // if it worked, move on 2451 { 2452 root = child_valobj_sp; 2453 remainder = next_separator; 2454 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2455 continue; 2456 } else { 2457 *reason_to_stop = 2458 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2459 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2460 return nullptr; 2461 } 2462 } 2463 break; 2464 } 2465 case '[': { 2466 if (!root_compiler_type_info.Test(eTypeIsArray) && 2467 !root_compiler_type_info.Test(eTypeIsPointer) && 2468 !root_compiler_type_info.Test( 2469 eTypeIsVector)) // if this is not a T[] nor a T* 2470 { 2471 if (!root_compiler_type_info.Test( 2472 eTypeIsScalar)) // if this is not even a scalar... 2473 { 2474 if (options.m_synthetic_children_traversal == 2475 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2476 None) // ...only chance left is synthetic 2477 { 2478 *reason_to_stop = 2479 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2480 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2481 return ValueObjectSP(); 2482 } 2483 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2484 // check that we can 2485 // expand bitfields 2486 { 2487 *reason_to_stop = 2488 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2489 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2490 return ValueObjectSP(); 2491 } 2492 } 2493 if (temp_expression[1] == 2494 ']') // if this is an unbounded range it only works for arrays 2495 { 2496 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2497 *reason_to_stop = 2498 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2499 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2500 return nullptr; 2501 } else // even if something follows, we cannot expand unbounded ranges, 2502 // just let the caller do it 2503 { 2504 *reason_to_stop = 2505 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2506 *final_result = 2507 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2508 return root; 2509 } 2510 } 2511 2512 size_t close_bracket_position = temp_expression.find(']', 1); 2513 if (close_bracket_position == 2514 llvm::StringRef::npos) // if there is no ], this is a syntax error 2515 { 2516 *reason_to_stop = 2517 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2518 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2519 return nullptr; 2520 } 2521 2522 llvm::StringRef bracket_expr = 2523 temp_expression.slice(1, close_bracket_position); 2524 2525 // If this was an empty expression it would have been caught by the if 2526 // above. 2527 assert(!bracket_expr.empty()); 2528 2529 if (!bracket_expr.contains('-')) { 2530 // if no separator, this is of the form [N]. Note that this cannot be 2531 // an unbounded range of the form [], because that case was handled 2532 // above with an unconditional return. 2533 unsigned long index = 0; 2534 if (bracket_expr.getAsInteger(0, index)) { 2535 *reason_to_stop = 2536 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2537 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2538 return nullptr; 2539 } 2540 2541 // from here on we do have a valid index 2542 if (root_compiler_type_info.Test(eTypeIsArray)) { 2543 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2544 if (!child_valobj_sp) 2545 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2546 if (!child_valobj_sp) 2547 if (root->HasSyntheticValue() && 2548 root->GetSyntheticValue()->GetNumChildren() > index) 2549 child_valobj_sp = 2550 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2551 if (child_valobj_sp) { 2552 root = child_valobj_sp; 2553 remainder = 2554 temp_expression.substr(close_bracket_position + 1); // skip ] 2555 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2556 continue; 2557 } else { 2558 *reason_to_stop = 2559 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2560 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2561 return nullptr; 2562 } 2563 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2564 if (*what_next == 2565 ValueObject:: 2566 eExpressionPathAftermathDereference && // if this is a 2567 // ptr-to-scalar, I 2568 // am accessing it 2569 // by index and I 2570 // would have 2571 // deref'ed anyway, 2572 // then do it now 2573 // and use this as 2574 // a bitfield 2575 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2576 Status error; 2577 root = root->Dereference(error); 2578 if (error.Fail() || !root) { 2579 *reason_to_stop = 2580 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2581 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2582 return nullptr; 2583 } else { 2584 *what_next = eExpressionPathAftermathNothing; 2585 continue; 2586 } 2587 } else { 2588 if (root->GetCompilerType().GetMinimumLanguage() == 2589 eLanguageTypeObjC && 2590 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2591 root->HasSyntheticValue() && 2592 (options.m_synthetic_children_traversal == 2593 GetValueForExpressionPathOptions:: 2594 SyntheticChildrenTraversal::ToSynthetic || 2595 options.m_synthetic_children_traversal == 2596 GetValueForExpressionPathOptions:: 2597 SyntheticChildrenTraversal::Both)) { 2598 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2599 } else 2600 root = root->GetSyntheticArrayMember(index, true); 2601 if (!root) { 2602 *reason_to_stop = 2603 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2604 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2605 return nullptr; 2606 } else { 2607 remainder = 2608 temp_expression.substr(close_bracket_position + 1); // skip ] 2609 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2610 continue; 2611 } 2612 } 2613 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2614 root = root->GetSyntheticBitFieldChild(index, index, true); 2615 if (!root) { 2616 *reason_to_stop = 2617 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2618 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2619 return nullptr; 2620 } else // we do not know how to expand members of bitfields, so we 2621 // just return and let the caller do any further processing 2622 { 2623 *reason_to_stop = ValueObject:: 2624 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2625 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2626 return root; 2627 } 2628 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2629 root = root->GetChildAtIndex(index, true); 2630 if (!root) { 2631 *reason_to_stop = 2632 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2633 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2634 return ValueObjectSP(); 2635 } else { 2636 remainder = 2637 temp_expression.substr(close_bracket_position + 1); // skip ] 2638 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2639 continue; 2640 } 2641 } else if (options.m_synthetic_children_traversal == 2642 GetValueForExpressionPathOptions:: 2643 SyntheticChildrenTraversal::ToSynthetic || 2644 options.m_synthetic_children_traversal == 2645 GetValueForExpressionPathOptions:: 2646 SyntheticChildrenTraversal::Both) { 2647 if (root->HasSyntheticValue()) 2648 root = root->GetSyntheticValue(); 2649 else if (!root->IsSynthetic()) { 2650 *reason_to_stop = 2651 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2652 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2653 return nullptr; 2654 } 2655 // if we are here, then root itself is a synthetic VO.. should be 2656 // good to go 2657 2658 if (!root) { 2659 *reason_to_stop = 2660 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2661 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2662 return nullptr; 2663 } 2664 root = root->GetChildAtIndex(index, true); 2665 if (!root) { 2666 *reason_to_stop = 2667 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2668 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2669 return nullptr; 2670 } else { 2671 remainder = 2672 temp_expression.substr(close_bracket_position + 1); // skip ] 2673 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2674 continue; 2675 } 2676 } else { 2677 *reason_to_stop = 2678 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2679 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2680 return nullptr; 2681 } 2682 } else { 2683 // we have a low and a high index 2684 llvm::StringRef sleft, sright; 2685 unsigned long low_index, high_index; 2686 std::tie(sleft, sright) = bracket_expr.split('-'); 2687 if (sleft.getAsInteger(0, low_index) || 2688 sright.getAsInteger(0, high_index)) { 2689 *reason_to_stop = 2690 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2691 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2692 return nullptr; 2693 } 2694 2695 if (low_index > high_index) // swap indices if required 2696 std::swap(low_index, high_index); 2697 2698 if (root_compiler_type_info.Test( 2699 eTypeIsScalar)) // expansion only works for scalars 2700 { 2701 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2702 if (!root) { 2703 *reason_to_stop = 2704 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2705 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2706 return nullptr; 2707 } else { 2708 *reason_to_stop = ValueObject:: 2709 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2710 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2711 return root; 2712 } 2713 } else if (root_compiler_type_info.Test( 2714 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2715 // accessing it by index and I would 2716 // have deref'ed anyway, then do it 2717 // now and use this as a bitfield 2718 *what_next == 2719 ValueObject::eExpressionPathAftermathDereference && 2720 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2721 Status error; 2722 root = root->Dereference(error); 2723 if (error.Fail() || !root) { 2724 *reason_to_stop = 2725 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2726 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2727 return nullptr; 2728 } else { 2729 *what_next = ValueObject::eExpressionPathAftermathNothing; 2730 continue; 2731 } 2732 } else { 2733 *reason_to_stop = 2734 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2735 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2736 return root; 2737 } 2738 } 2739 break; 2740 } 2741 default: // some non-separator is in the way 2742 { 2743 *reason_to_stop = 2744 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2745 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2746 return nullptr; 2747 } 2748 } 2749 } 2750 } 2751 2752 void ValueObject::LogValueObject(Log *log) { 2753 if (log) 2754 return LogValueObject(log, DumpValueObjectOptions(*this)); 2755 } 2756 2757 void ValueObject::LogValueObject(Log *log, 2758 const DumpValueObjectOptions &options) { 2759 if (log) { 2760 StreamString s; 2761 Dump(s, options); 2762 if (s.GetSize()) 2763 log->PutCString(s.GetData()); 2764 } 2765 } 2766 2767 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2768 2769 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2770 ValueObjectPrinter printer(this, &s, options); 2771 printer.PrintValueObject(); 2772 } 2773 2774 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2775 ValueObjectSP valobj_sp; 2776 2777 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2778 ExecutionContext exe_ctx(GetExecutionContextRef()); 2779 2780 DataExtractor data; 2781 data.SetByteOrder(m_data.GetByteOrder()); 2782 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2783 2784 if (IsBitfield()) { 2785 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2786 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2787 } else 2788 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2789 2790 valobj_sp = ValueObjectConstResult::Create( 2791 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2792 GetAddressOf()); 2793 } 2794 2795 if (!valobj_sp) { 2796 ExecutionContext exe_ctx(GetExecutionContextRef()); 2797 valobj_sp = ValueObjectConstResult::Create( 2798 exe_ctx.GetBestExecutionContextScope(), m_error); 2799 } 2800 return valobj_sp; 2801 } 2802 2803 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2804 lldb::DynamicValueType dynValue, bool synthValue) { 2805 ValueObjectSP result_sp(GetSP()); 2806 2807 switch (dynValue) { 2808 case lldb::eDynamicCanRunTarget: 2809 case lldb::eDynamicDontRunTarget: { 2810 if (!result_sp->IsDynamic()) { 2811 if (result_sp->GetDynamicValue(dynValue)) 2812 result_sp = result_sp->GetDynamicValue(dynValue); 2813 } 2814 } break; 2815 case lldb::eNoDynamicValues: { 2816 if (result_sp->IsDynamic()) { 2817 if (result_sp->GetStaticValue()) 2818 result_sp = result_sp->GetStaticValue(); 2819 } 2820 } break; 2821 } 2822 2823 if (synthValue) { 2824 if (!result_sp->IsSynthetic()) { 2825 if (result_sp->GetSyntheticValue()) 2826 result_sp = result_sp->GetSyntheticValue(); 2827 } 2828 } else { 2829 if (result_sp->IsSynthetic()) { 2830 if (result_sp->GetNonSyntheticValue()) 2831 result_sp = result_sp->GetNonSyntheticValue(); 2832 } 2833 } 2834 2835 return result_sp; 2836 } 2837 2838 ValueObjectSP ValueObject::Dereference(Status &error) { 2839 if (m_deref_valobj) 2840 return m_deref_valobj->GetSP(); 2841 2842 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2843 if (is_pointer_or_reference_type) { 2844 bool omit_empty_base_classes = true; 2845 bool ignore_array_bounds = false; 2846 2847 std::string child_name_str; 2848 uint32_t child_byte_size = 0; 2849 int32_t child_byte_offset = 0; 2850 uint32_t child_bitfield_bit_size = 0; 2851 uint32_t child_bitfield_bit_offset = 0; 2852 bool child_is_base_class = false; 2853 bool child_is_deref_of_parent = false; 2854 const bool transparent_pointers = false; 2855 CompilerType compiler_type = GetCompilerType(); 2856 CompilerType child_compiler_type; 2857 uint64_t language_flags; 2858 2859 ExecutionContext exe_ctx(GetExecutionContextRef()); 2860 2861 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2862 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2863 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2864 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2865 child_is_deref_of_parent, this, language_flags); 2866 if (child_compiler_type && child_byte_size) { 2867 ConstString child_name; 2868 if (!child_name_str.empty()) 2869 child_name.SetCString(child_name_str.c_str()); 2870 2871 m_deref_valobj = new ValueObjectChild( 2872 *this, child_compiler_type, child_name, child_byte_size, 2873 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2874 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2875 language_flags); 2876 } 2877 } else if (HasSyntheticValue()) { 2878 m_deref_valobj = 2879 GetSyntheticValue() 2880 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2881 .get(); 2882 } 2883 2884 if (m_deref_valobj) { 2885 error.Clear(); 2886 return m_deref_valobj->GetSP(); 2887 } else { 2888 StreamString strm; 2889 GetExpressionPath(strm, true); 2890 2891 if (is_pointer_or_reference_type) 2892 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2893 GetTypeName().AsCString("<invalid type>"), 2894 strm.GetData()); 2895 else 2896 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2897 GetTypeName().AsCString("<invalid type>"), 2898 strm.GetData()); 2899 return ValueObjectSP(); 2900 } 2901 } 2902 2903 ValueObjectSP ValueObject::AddressOf(Status &error) { 2904 if (m_addr_of_valobj_sp) 2905 return m_addr_of_valobj_sp; 2906 2907 AddressType address_type = eAddressTypeInvalid; 2908 const bool scalar_is_load_address = false; 2909 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2910 error.Clear(); 2911 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2912 switch (address_type) { 2913 case eAddressTypeInvalid: { 2914 StreamString expr_path_strm; 2915 GetExpressionPath(expr_path_strm, true); 2916 error.SetErrorStringWithFormat("'%s' is not in memory", 2917 expr_path_strm.GetData()); 2918 } break; 2919 2920 case eAddressTypeFile: 2921 case eAddressTypeLoad: { 2922 CompilerType compiler_type = GetCompilerType(); 2923 if (compiler_type) { 2924 std::string name(1, '&'); 2925 name.append(m_name.AsCString("")); 2926 ExecutionContext exe_ctx(GetExecutionContextRef()); 2927 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2928 exe_ctx.GetBestExecutionContextScope(), 2929 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2930 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2931 } 2932 } break; 2933 default: 2934 break; 2935 } 2936 } else { 2937 StreamString expr_path_strm; 2938 GetExpressionPath(expr_path_strm, true); 2939 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2940 expr_path_strm.GetData()); 2941 } 2942 2943 return m_addr_of_valobj_sp; 2944 } 2945 2946 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2947 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2948 } 2949 2950 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2951 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2952 } 2953 2954 ValueObjectSP ValueObject::CastPointerType(const char *name, 2955 CompilerType &compiler_type) { 2956 ValueObjectSP valobj_sp; 2957 AddressType address_type; 2958 addr_t ptr_value = GetPointerValue(&address_type); 2959 2960 if (ptr_value != LLDB_INVALID_ADDRESS) { 2961 Address ptr_addr(ptr_value); 2962 ExecutionContext exe_ctx(GetExecutionContextRef()); 2963 valobj_sp = ValueObjectMemory::Create( 2964 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2965 } 2966 return valobj_sp; 2967 } 2968 2969 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2970 ValueObjectSP valobj_sp; 2971 AddressType address_type; 2972 addr_t ptr_value = GetPointerValue(&address_type); 2973 2974 if (ptr_value != LLDB_INVALID_ADDRESS) { 2975 Address ptr_addr(ptr_value); 2976 ExecutionContext exe_ctx(GetExecutionContextRef()); 2977 valobj_sp = ValueObjectMemory::Create( 2978 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2979 } 2980 return valobj_sp; 2981 } 2982 2983 ValueObject::EvaluationPoint::EvaluationPoint() 2984 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2985 2986 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2987 bool use_selected) 2988 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2989 ExecutionContext exe_ctx(exe_scope); 2990 TargetSP target_sp(exe_ctx.GetTargetSP()); 2991 if (target_sp) { 2992 m_exe_ctx_ref.SetTargetSP(target_sp); 2993 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2994 if (!process_sp) 2995 process_sp = target_sp->GetProcessSP(); 2996 2997 if (process_sp) { 2998 m_mod_id = process_sp->GetModID(); 2999 m_exe_ctx_ref.SetProcessSP(process_sp); 3000 3001 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 3002 3003 if (!thread_sp) { 3004 if (use_selected) 3005 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 3006 } 3007 3008 if (thread_sp) { 3009 m_exe_ctx_ref.SetThreadSP(thread_sp); 3010 3011 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 3012 if (!frame_sp) { 3013 if (use_selected) 3014 frame_sp = thread_sp->GetSelectedFrame(); 3015 } 3016 if (frame_sp) 3017 m_exe_ctx_ref.SetFrameSP(frame_sp); 3018 } 3019 } 3020 } 3021 } 3022 3023 ValueObject::EvaluationPoint::EvaluationPoint( 3024 const ValueObject::EvaluationPoint &rhs) 3025 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 3026 3027 ValueObject::EvaluationPoint::~EvaluationPoint() {} 3028 3029 // This function checks the EvaluationPoint against the current process state. 3030 // If the current state matches the evaluation point, or the evaluation point 3031 // is already invalid, then we return false, meaning "no change". If the 3032 // current state is different, we update our state, and return true meaning 3033 // "yes, change". If we did see a change, we also set m_needs_update to true, 3034 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3035 // the current execution context scope. 3036 3037 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3038 bool accept_invalid_exe_ctx) { 3039 // Start with the target, if it is NULL, then we're obviously not going to 3040 // get any further: 3041 const bool thread_and_frame_only_if_stopped = true; 3042 ExecutionContext exe_ctx( 3043 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3044 3045 if (exe_ctx.GetTargetPtr() == nullptr) 3046 return false; 3047 3048 // If we don't have a process nothing can change. 3049 Process *process = exe_ctx.GetProcessPtr(); 3050 if (process == nullptr) 3051 return false; 3052 3053 // If our stop id is the current stop ID, nothing has changed: 3054 ProcessModID current_mod_id = process->GetModID(); 3055 3056 // If the current stop id is 0, either we haven't run yet, or the process 3057 // state has been cleared. In either case, we aren't going to be able to sync 3058 // with the process state. 3059 if (current_mod_id.GetStopID() == 0) 3060 return false; 3061 3062 bool changed = false; 3063 const bool was_valid = m_mod_id.IsValid(); 3064 if (was_valid) { 3065 if (m_mod_id == current_mod_id) { 3066 // Everything is already up to date in this object, no need to update the 3067 // execution context scope. 3068 changed = false; 3069 } else { 3070 m_mod_id = current_mod_id; 3071 m_needs_update = true; 3072 changed = true; 3073 } 3074 } 3075 3076 // Now re-look up the thread and frame in case the underlying objects have 3077 // gone away & been recreated. That way we'll be sure to return a valid 3078 // exe_scope. If we used to have a thread or a frame but can't find it 3079 // anymore, then mark ourselves as invalid. 3080 3081 if (!accept_invalid_exe_ctx) { 3082 if (m_exe_ctx_ref.HasThreadRef()) { 3083 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3084 if (thread_sp) { 3085 if (m_exe_ctx_ref.HasFrameRef()) { 3086 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3087 if (!frame_sp) { 3088 // We used to have a frame, but now it is gone 3089 SetInvalid(); 3090 changed = was_valid; 3091 } 3092 } 3093 } else { 3094 // We used to have a thread, but now it is gone 3095 SetInvalid(); 3096 changed = was_valid; 3097 } 3098 } 3099 } 3100 3101 return changed; 3102 } 3103 3104 void ValueObject::EvaluationPoint::SetUpdated() { 3105 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3106 if (process_sp) 3107 m_mod_id = process_sp->GetModID(); 3108 m_needs_update = false; 3109 } 3110 3111 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3112 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3113 eClearUserVisibleDataItemsValue) 3114 m_value_str.clear(); 3115 3116 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3117 eClearUserVisibleDataItemsLocation) 3118 m_location_str.clear(); 3119 3120 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3121 eClearUserVisibleDataItemsSummary) 3122 m_summary_str.clear(); 3123 3124 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3125 eClearUserVisibleDataItemsDescription) 3126 m_object_desc_str.clear(); 3127 3128 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3129 eClearUserVisibleDataItemsSyntheticChildren) { 3130 if (m_synthetic_value) 3131 m_synthetic_value = nullptr; 3132 } 3133 3134 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3135 eClearUserVisibleDataItemsValidator) 3136 m_validation_result.reset(); 3137 } 3138 3139 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3140 if (m_parent) { 3141 if (!m_parent->IsPointerOrReferenceType()) 3142 return m_parent->GetSymbolContextScope(); 3143 } 3144 return nullptr; 3145 } 3146 3147 lldb::ValueObjectSP 3148 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3149 llvm::StringRef expression, 3150 const ExecutionContext &exe_ctx) { 3151 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3152 EvaluateExpressionOptions()); 3153 } 3154 3155 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3156 llvm::StringRef name, llvm::StringRef expression, 3157 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3158 lldb::ValueObjectSP retval_sp; 3159 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3160 if (!target_sp) 3161 return retval_sp; 3162 if (expression.empty()) 3163 return retval_sp; 3164 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3165 retval_sp, options); 3166 if (retval_sp && !name.empty()) 3167 retval_sp->SetName(ConstString(name)); 3168 return retval_sp; 3169 } 3170 3171 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3172 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3173 CompilerType type) { 3174 if (type) { 3175 CompilerType pointer_type(type.GetPointerType()); 3176 if (pointer_type) { 3177 lldb::DataBufferSP buffer( 3178 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3179 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3180 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3181 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3182 exe_ctx.GetAddressByteSize())); 3183 if (ptr_result_valobj_sp) { 3184 ptr_result_valobj_sp->GetValue().SetValueType( 3185 Value::eValueTypeLoadAddress); 3186 Status err; 3187 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3188 if (ptr_result_valobj_sp && !name.empty()) 3189 ptr_result_valobj_sp->SetName(ConstString(name)); 3190 } 3191 return ptr_result_valobj_sp; 3192 } 3193 } 3194 return lldb::ValueObjectSP(); 3195 } 3196 3197 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3198 llvm::StringRef name, const DataExtractor &data, 3199 const ExecutionContext &exe_ctx, CompilerType type) { 3200 lldb::ValueObjectSP new_value_sp; 3201 new_value_sp = ValueObjectConstResult::Create( 3202 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3203 LLDB_INVALID_ADDRESS); 3204 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3205 if (new_value_sp && !name.empty()) 3206 new_value_sp->SetName(ConstString(name)); 3207 return new_value_sp; 3208 } 3209 3210 ModuleSP ValueObject::GetModule() { 3211 ValueObject *root(GetRoot()); 3212 if (root != this) 3213 return root->GetModule(); 3214 return lldb::ModuleSP(); 3215 } 3216 3217 ValueObject *ValueObject::GetRoot() { 3218 if (m_root) 3219 return m_root; 3220 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3221 return (vo->m_parent != nullptr); 3222 })); 3223 } 3224 3225 ValueObject * 3226 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3227 ValueObject *vo = this; 3228 while (vo) { 3229 if (!f(vo)) 3230 break; 3231 vo = vo->m_parent; 3232 } 3233 return vo; 3234 } 3235 3236 AddressType ValueObject::GetAddressTypeOfChildren() { 3237 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3238 ValueObject *root(GetRoot()); 3239 if (root != this) 3240 return root->GetAddressTypeOfChildren(); 3241 } 3242 return m_address_type_of_ptr_or_ref_children; 3243 } 3244 3245 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3246 ValueObject *with_dv_info = this; 3247 while (with_dv_info) { 3248 if (with_dv_info->HasDynamicValueTypeInfo()) 3249 return with_dv_info->GetDynamicValueTypeImpl(); 3250 with_dv_info = with_dv_info->m_parent; 3251 } 3252 return lldb::eNoDynamicValues; 3253 } 3254 3255 lldb::Format ValueObject::GetFormat() const { 3256 const ValueObject *with_fmt_info = this; 3257 while (with_fmt_info) { 3258 if (with_fmt_info->m_format != lldb::eFormatDefault) 3259 return with_fmt_info->m_format; 3260 with_fmt_info = with_fmt_info->m_parent; 3261 } 3262 return m_format; 3263 } 3264 3265 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3266 lldb::LanguageType type = m_preferred_display_language; 3267 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3268 if (GetRoot()) { 3269 if (GetRoot() == this) { 3270 if (StackFrameSP frame_sp = GetFrameSP()) { 3271 const SymbolContext &sc( 3272 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3273 if (CompileUnit *cu = sc.comp_unit) 3274 type = cu->GetLanguage(); 3275 } 3276 } else { 3277 type = GetRoot()->GetPreferredDisplayLanguage(); 3278 } 3279 } 3280 } 3281 return (m_preferred_display_language = type); // only compute it once 3282 } 3283 3284 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3285 m_preferred_display_language = lt; 3286 } 3287 3288 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3289 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3290 SetPreferredDisplayLanguage(lt); 3291 } 3292 3293 bool ValueObject::CanProvideValue() { 3294 // we need to support invalid types as providers of values because some bare- 3295 // board debugging scenarios have no notion of types, but still manage to 3296 // have raw numeric values for things like registers. sigh. 3297 const CompilerType &type(GetCompilerType()); 3298 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3299 } 3300 3301 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3302 3303 ValueObjectSP ValueObject::Persist() { 3304 if (!UpdateValueIfNeeded()) 3305 return nullptr; 3306 3307 TargetSP target_sp(GetTargetSP()); 3308 if (!target_sp) 3309 return nullptr; 3310 3311 PersistentExpressionState *persistent_state = 3312 target_sp->GetPersistentExpressionStateForLanguage( 3313 GetPreferredDisplayLanguage()); 3314 3315 if (!persistent_state) 3316 return nullptr; 3317 3318 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3319 ConstString name = 3320 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3321 3322 ValueObjectSP const_result_sp = 3323 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3324 3325 ExpressionVariableSP clang_var_sp = 3326 persistent_state->CreatePersistentVariable(const_result_sp); 3327 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3328 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3329 3330 return clang_var_sp->GetValueObject(); 3331 } 3332 3333 bool ValueObject::IsSyntheticChildrenGenerated() { 3334 return m_is_synthetic_children_generated; 3335 } 3336 3337 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3338 m_is_synthetic_children_generated = b; 3339 } 3340 3341 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3342 3343 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3344 3345 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3346 lldb::DynamicValueType use_dynamic, 3347 bool use_synthetic) : m_root_valobj_sp(), 3348 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3349 m_use_synthetic(use_synthetic) { 3350 if (!in_valobj_sp) 3351 return; 3352 // If the user passes in a value object that is dynamic or synthetic, then 3353 // water it down to the static type. 3354 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3355 } 3356 3357 bool ValueObjectManager::IsValid() const { 3358 if (!m_root_valobj_sp) 3359 return false; 3360 lldb::TargetSP target_sp = GetTargetSP(); 3361 if (target_sp) 3362 return target_sp->IsValid(); 3363 return false; 3364 } 3365 3366 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3367 lldb::ProcessSP process_sp = GetProcessSP(); 3368 if (!process_sp) 3369 return lldb::ValueObjectSP(); 3370 3371 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3372 if (current_stop_id == m_stop_id) 3373 return m_user_valobj_sp; 3374 3375 m_stop_id = current_stop_id; 3376 3377 if (!m_root_valobj_sp) { 3378 m_user_valobj_sp.reset(); 3379 return m_root_valobj_sp; 3380 } 3381 3382 m_user_valobj_sp = m_root_valobj_sp; 3383 3384 if (m_use_dynamic != lldb::eNoDynamicValues) { 3385 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3386 if (dynamic_sp) 3387 m_user_valobj_sp = dynamic_sp; 3388 } 3389 3390 if (m_use_synthetic) { 3391 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3392 if (synthetic_sp) 3393 m_user_valobj_sp = synthetic_sp; 3394 } 3395 3396 return m_user_valobj_sp; 3397 } 3398 3399 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3400 if (use_dynamic != m_use_dynamic) { 3401 m_use_dynamic = use_dynamic; 3402 m_user_valobj_sp.reset(); 3403 m_stop_id = UINT32_MAX; 3404 } 3405 } 3406 3407 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3408 if (m_use_synthetic != use_synthetic) { 3409 m_use_synthetic = use_synthetic; 3410 m_user_valobj_sp.reset(); 3411 m_stop_id = UINT32_MAX; 3412 } 3413 } 3414 3415 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3416 if (!m_root_valobj_sp) 3417 return m_root_valobj_sp->GetTargetSP(); 3418 return lldb::TargetSP(); 3419 } 3420 3421 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3422 if (m_root_valobj_sp) 3423 return m_root_valobj_sp->GetProcessSP(); 3424 return lldb::ProcessSP(); 3425 } 3426 3427 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3428 if (m_root_valobj_sp) 3429 return m_root_valobj_sp->GetThreadSP(); 3430 return lldb::ThreadSP(); 3431 } 3432 3433 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3434 if (m_root_valobj_sp) 3435 return m_root_valobj_sp->GetFrameSP(); 3436 return lldb::StackFrameSP(); 3437 } 3438