1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "lldb/Core/ValueObject.h" 13 14 // C Includes 15 #include <stdlib.h> 16 17 // C++ Includes 18 // Other libraries and framework includes 19 #include "llvm/Support/raw_ostream.h" 20 #include "clang/AST/Type.h" 21 22 // Project includes 23 #include "lldb/Core/DataBufferHeap.h" 24 #include "lldb/Core/Debugger.h" 25 #include "lldb/Core/Log.h" 26 #include "lldb/Core/Module.h" 27 #include "lldb/Core/StreamString.h" 28 #include "lldb/Core/ValueObjectCast.h" 29 #include "lldb/Core/ValueObjectChild.h" 30 #include "lldb/Core/ValueObjectConstResult.h" 31 #include "lldb/Core/ValueObjectDynamicValue.h" 32 #include "lldb/Core/ValueObjectList.h" 33 #include "lldb/Core/ValueObjectMemory.h" 34 #include "lldb/Core/ValueObjectSyntheticFilter.h" 35 36 #include "lldb/DataFormatters/DataVisualization.h" 37 #include "lldb/DataFormatters/StringPrinter.h" 38 #include "lldb/DataFormatters/ValueObjectPrinter.h" 39 40 #include "lldb/Expression/ClangExpressionVariable.h" 41 #include "lldb/Expression/ClangPersistentVariables.h" 42 43 #include "lldb/Host/Endian.h" 44 45 #include "lldb/Interpreter/CommandInterpreter.h" 46 #include "lldb/Interpreter/ScriptInterpreterPython.h" 47 48 #include "lldb/Symbol/ClangASTType.h" 49 #include "lldb/Symbol/ClangASTContext.h" 50 #include "lldb/Symbol/CompileUnit.h" 51 #include "lldb/Symbol/Type.h" 52 53 #include "lldb/Target/ExecutionContext.h" 54 #include "lldb/Target/LanguageRuntime.h" 55 #include "lldb/Target/ObjCLanguageRuntime.h" 56 #include "lldb/Target/Process.h" 57 #include "lldb/Target/RegisterContext.h" 58 #include "lldb/Target/SectionLoadList.h" 59 #include "lldb/Target/Target.h" 60 #include "lldb/Target/Thread.h" 61 62 using namespace lldb; 63 using namespace lldb_private; 64 using namespace lldb_utility; 65 66 static user_id_t g_value_obj_uid = 0; 67 68 //---------------------------------------------------------------------- 69 // ValueObject constructor 70 //---------------------------------------------------------------------- 71 ValueObject::ValueObject (ValueObject &parent) : 72 UserID (++g_value_obj_uid), // Unique identifier for every value object 73 m_parent (&parent), 74 m_root (NULL), 75 m_update_point (parent.GetUpdatePoint ()), 76 m_name (), 77 m_data (), 78 m_value (), 79 m_error (), 80 m_value_str (), 81 m_old_value_str (), 82 m_location_str (), 83 m_summary_str (), 84 m_object_desc_str (), 85 m_validation_result(), 86 m_manager(parent.GetManager()), 87 m_children (), 88 m_synthetic_children (), 89 m_dynamic_value (NULL), 90 m_synthetic_value(NULL), 91 m_deref_valobj(NULL), 92 m_format (eFormatDefault), 93 m_last_format (eFormatDefault), 94 m_last_format_mgr_revision(0), 95 m_type_summary_sp(), 96 m_type_format_sp(), 97 m_synthetic_children_sp(), 98 m_type_validator_sp(), 99 m_user_id_of_forced_summary(), 100 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 101 m_value_checksum(), 102 m_preferred_display_language(lldb::eLanguageTypeUnknown), 103 m_value_is_valid (false), 104 m_value_did_change (false), 105 m_children_count_valid (false), 106 m_old_value_valid (false), 107 m_is_deref_of_parent (false), 108 m_is_array_item_for_pointer(false), 109 m_is_bitfield_for_scalar(false), 110 m_is_child_at_offset(false), 111 m_is_getting_summary(false), 112 m_did_calculate_complete_objc_class_type(false), 113 m_is_synthetic_children_generated(parent.m_is_synthetic_children_generated) 114 { 115 m_manager->ManageObject(this); 116 } 117 118 //---------------------------------------------------------------------- 119 // ValueObject constructor 120 //---------------------------------------------------------------------- 121 ValueObject::ValueObject (ExecutionContextScope *exe_scope, 122 AddressType child_ptr_or_ref_addr_type) : 123 UserID (++g_value_obj_uid), // Unique identifier for every value object 124 m_parent (NULL), 125 m_root (NULL), 126 m_update_point (exe_scope), 127 m_name (), 128 m_data (), 129 m_value (), 130 m_error (), 131 m_value_str (), 132 m_old_value_str (), 133 m_location_str (), 134 m_summary_str (), 135 m_object_desc_str (), 136 m_validation_result(), 137 m_manager(), 138 m_children (), 139 m_synthetic_children (), 140 m_dynamic_value (NULL), 141 m_synthetic_value(NULL), 142 m_deref_valobj(NULL), 143 m_format (eFormatDefault), 144 m_last_format (eFormatDefault), 145 m_last_format_mgr_revision(0), 146 m_type_summary_sp(), 147 m_type_format_sp(), 148 m_synthetic_children_sp(), 149 m_type_validator_sp(), 150 m_user_id_of_forced_summary(), 151 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 152 m_value_checksum(), 153 m_preferred_display_language(lldb::eLanguageTypeUnknown), 154 m_value_is_valid (false), 155 m_value_did_change (false), 156 m_children_count_valid (false), 157 m_old_value_valid (false), 158 m_is_deref_of_parent (false), 159 m_is_array_item_for_pointer(false), 160 m_is_bitfield_for_scalar(false), 161 m_is_child_at_offset(false), 162 m_is_getting_summary(false), 163 m_did_calculate_complete_objc_class_type(false), 164 m_is_synthetic_children_generated(false) 165 { 166 m_manager = new ValueObjectManager(); 167 m_manager->ManageObject (this); 168 } 169 170 //---------------------------------------------------------------------- 171 // Destructor 172 //---------------------------------------------------------------------- 173 ValueObject::~ValueObject () 174 { 175 } 176 177 bool 178 ValueObject::UpdateValueIfNeeded (bool update_format) 179 { 180 181 bool did_change_formats = false; 182 183 if (update_format) 184 did_change_formats = UpdateFormatsIfNeeded(); 185 186 // If this is a constant value, then our success is predicated on whether 187 // we have an error or not 188 if (GetIsConstant()) 189 { 190 // if you are constant, things might still have changed behind your back 191 // (e.g. you are a frozen object and things have changed deeper than you cared to freeze-dry yourself) 192 // in this case, your value has not changed, but "computed" entries might have, so you might now have 193 // a different summary, or a different object description. clear these so we will recompute them 194 if (update_format && !did_change_formats) 195 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | eClearUserVisibleDataItemsDescription); 196 return m_error.Success(); 197 } 198 199 bool first_update = IsChecksumEmpty(); 200 201 if (NeedsUpdating()) 202 { 203 m_update_point.SetUpdated(); 204 205 // Save the old value using swap to avoid a string copy which 206 // also will clear our m_value_str 207 if (m_value_str.empty()) 208 { 209 m_old_value_valid = false; 210 } 211 else 212 { 213 m_old_value_valid = true; 214 m_old_value_str.swap (m_value_str); 215 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 216 } 217 218 ClearUserVisibleData(); 219 220 if (IsInScope()) 221 { 222 const bool value_was_valid = GetValueIsValid(); 223 SetValueDidChange (false); 224 225 m_error.Clear(); 226 227 // Call the pure virtual function to update the value 228 229 bool need_compare_checksums = false; 230 llvm::SmallVector<uint8_t, 16> old_checksum; 231 232 if (!first_update && CanProvideValue()) 233 { 234 need_compare_checksums = true; 235 old_checksum.resize(m_value_checksum.size()); 236 std::copy(m_value_checksum.begin(), m_value_checksum.end(), old_checksum.begin()); 237 } 238 239 bool success = UpdateValue (); 240 241 SetValueIsValid (success); 242 243 if (success) 244 { 245 const uint64_t max_checksum_size = 128; 246 m_data.Checksum(m_value_checksum, 247 max_checksum_size); 248 } 249 else 250 { 251 need_compare_checksums = false; 252 m_value_checksum.clear(); 253 } 254 255 assert (!need_compare_checksums || (!old_checksum.empty() && !m_value_checksum.empty())); 256 257 if (first_update) 258 SetValueDidChange (false); 259 else if (!m_value_did_change && success == false) 260 { 261 // The value wasn't gotten successfully, so we mark this 262 // as changed if the value used to be valid and now isn't 263 SetValueDidChange (value_was_valid); 264 } 265 else if (need_compare_checksums) 266 { 267 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], m_value_checksum.size())); 268 } 269 270 } 271 else 272 { 273 m_error.SetErrorString("out of scope"); 274 } 275 } 276 return m_error.Success(); 277 } 278 279 bool 280 ValueObject::UpdateFormatsIfNeeded() 281 { 282 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_TYPES)); 283 if (log) 284 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject rev: %d - Global rev: %d", 285 GetName().GetCString(), static_cast<void*>(this), 286 m_last_format_mgr_revision, 287 DataVisualization::GetCurrentRevision()); 288 289 bool any_change = false; 290 291 if ( (m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) 292 { 293 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 294 any_change = true; 295 296 SetValueFormat(DataVisualization::GetFormat (*this, eNoDynamicValues)); 297 SetSummaryFormat(DataVisualization::GetSummaryFormat (*this, GetDynamicValueType())); 298 #ifndef LLDB_DISABLE_PYTHON 299 SetSyntheticChildren(DataVisualization::GetSyntheticChildren (*this, GetDynamicValueType())); 300 #endif 301 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 302 } 303 304 return any_change; 305 } 306 307 void 308 ValueObject::SetNeedsUpdate () 309 { 310 m_update_point.SetNeedsUpdate(); 311 // We have to clear the value string here so ConstResult children will notice if their values are 312 // changed by hand (i.e. with SetValueAsCString). 313 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 314 } 315 316 void 317 ValueObject::ClearDynamicTypeInformation () 318 { 319 m_children_count_valid = false; 320 m_did_calculate_complete_objc_class_type = false; 321 m_last_format_mgr_revision = 0; 322 m_override_type = ClangASTType(); 323 SetValueFormat(lldb::TypeFormatImplSP()); 324 SetSummaryFormat(lldb::TypeSummaryImplSP()); 325 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 326 } 327 328 ClangASTType 329 ValueObject::MaybeCalculateCompleteType () 330 { 331 ClangASTType clang_type(GetClangTypeImpl()); 332 333 if (m_did_calculate_complete_objc_class_type) 334 { 335 if (m_override_type.IsValid()) 336 return m_override_type; 337 else 338 return clang_type; 339 } 340 341 ClangASTType class_type; 342 bool is_pointer_type = false; 343 344 if (clang_type.IsObjCObjectPointerType(&class_type)) 345 { 346 is_pointer_type = true; 347 } 348 else if (clang_type.IsObjCObjectOrInterfaceType()) 349 { 350 class_type = clang_type; 351 } 352 else 353 { 354 return clang_type; 355 } 356 357 m_did_calculate_complete_objc_class_type = true; 358 359 if (class_type) 360 { 361 ConstString class_name (class_type.GetConstTypeName()); 362 363 if (class_name) 364 { 365 ProcessSP process_sp(GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 366 367 if (process_sp) 368 { 369 ObjCLanguageRuntime *objc_language_runtime(process_sp->GetObjCLanguageRuntime()); 370 371 if (objc_language_runtime) 372 { 373 TypeSP complete_objc_class_type_sp = objc_language_runtime->LookupInCompleteClassCache(class_name); 374 375 if (complete_objc_class_type_sp) 376 { 377 ClangASTType complete_class(complete_objc_class_type_sp->GetClangFullType()); 378 379 if (complete_class.GetCompleteType()) 380 { 381 if (is_pointer_type) 382 { 383 m_override_type = complete_class.GetPointerType(); 384 } 385 else 386 { 387 m_override_type = complete_class; 388 } 389 390 if (m_override_type.IsValid()) 391 return m_override_type; 392 } 393 } 394 } 395 } 396 } 397 } 398 return clang_type; 399 } 400 401 ClangASTType 402 ValueObject::GetClangType () 403 { 404 return MaybeCalculateCompleteType(); 405 } 406 407 TypeImpl 408 ValueObject::GetTypeImpl () 409 { 410 return TypeImpl(GetClangType()); 411 } 412 413 DataExtractor & 414 ValueObject::GetDataExtractor () 415 { 416 UpdateValueIfNeeded(false); 417 return m_data; 418 } 419 420 const Error & 421 ValueObject::GetError() 422 { 423 UpdateValueIfNeeded(false); 424 return m_error; 425 } 426 427 const ConstString & 428 ValueObject::GetName() const 429 { 430 return m_name; 431 } 432 433 const char * 434 ValueObject::GetLocationAsCString () 435 { 436 return GetLocationAsCStringImpl(m_value, 437 m_data); 438 } 439 440 const char * 441 ValueObject::GetLocationAsCStringImpl (const Value& value, 442 const DataExtractor& data) 443 { 444 if (UpdateValueIfNeeded(false)) 445 { 446 if (m_location_str.empty()) 447 { 448 StreamString sstr; 449 450 Value::ValueType value_type = value.GetValueType(); 451 452 switch (value_type) 453 { 454 case Value::eValueTypeScalar: 455 case Value::eValueTypeVector: 456 if (value.GetContextType() == Value::eContextTypeRegisterInfo) 457 { 458 RegisterInfo *reg_info = value.GetRegisterInfo(); 459 if (reg_info) 460 { 461 if (reg_info->name) 462 m_location_str = reg_info->name; 463 else if (reg_info->alt_name) 464 m_location_str = reg_info->alt_name; 465 if (m_location_str.empty()) 466 m_location_str = (reg_info->encoding == lldb::eEncodingVector) ? "vector" : "scalar"; 467 } 468 } 469 if (m_location_str.empty()) 470 m_location_str = (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 471 break; 472 473 case Value::eValueTypeLoadAddress: 474 case Value::eValueTypeFileAddress: 475 case Value::eValueTypeHostAddress: 476 { 477 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 478 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 479 m_location_str.swap(sstr.GetString()); 480 } 481 break; 482 } 483 } 484 } 485 return m_location_str.c_str(); 486 } 487 488 Value & 489 ValueObject::GetValue() 490 { 491 return m_value; 492 } 493 494 const Value & 495 ValueObject::GetValue() const 496 { 497 return m_value; 498 } 499 500 bool 501 ValueObject::ResolveValue (Scalar &scalar) 502 { 503 if (UpdateValueIfNeeded(false)) // make sure that you are up to date before returning anything 504 { 505 ExecutionContext exe_ctx (GetExecutionContextRef()); 506 Value tmp_value(m_value); 507 scalar = tmp_value.ResolveValue(&exe_ctx); 508 if (scalar.IsValid()) 509 { 510 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 511 if (bitfield_bit_size) 512 return scalar.ExtractBitfield (bitfield_bit_size, GetBitfieldBitOffset()); 513 return true; 514 } 515 } 516 return false; 517 } 518 519 bool 520 ValueObject::GetValueIsValid () const 521 { 522 return m_value_is_valid; 523 } 524 525 526 void 527 ValueObject::SetValueIsValid (bool b) 528 { 529 m_value_is_valid = b; 530 } 531 532 bool 533 ValueObject::GetValueDidChange () 534 { 535 return m_value_did_change; 536 } 537 538 void 539 ValueObject::SetValueDidChange (bool value_changed) 540 { 541 m_value_did_change = value_changed; 542 } 543 544 ValueObjectSP 545 ValueObject::GetChildAtIndex (size_t idx, bool can_create) 546 { 547 ValueObjectSP child_sp; 548 // We may need to update our value if we are dynamic 549 if (IsPossibleDynamicType ()) 550 UpdateValueIfNeeded(false); 551 if (idx < GetNumChildren()) 552 { 553 // Check if we have already made the child value object? 554 if (can_create && !m_children.HasChildAtIndex(idx)) 555 { 556 // No we haven't created the child at this index, so lets have our 557 // subclass do it and cache the result for quick future access. 558 m_children.SetChildAtIndex(idx,CreateChildAtIndex (idx, false, 0)); 559 } 560 561 ValueObject* child = m_children.GetChildAtIndex(idx); 562 if (child != NULL) 563 return child->GetSP(); 564 } 565 return child_sp; 566 } 567 568 ValueObjectSP 569 ValueObject::GetChildAtIndexPath (const std::initializer_list<size_t>& idxs, 570 size_t* index_of_error) 571 { 572 if (idxs.size() == 0) 573 return GetSP(); 574 ValueObjectSP root(GetSP()); 575 for (size_t idx : idxs) 576 { 577 root = root->GetChildAtIndex(idx, true); 578 if (!root) 579 { 580 if (index_of_error) 581 *index_of_error = idx; 582 return root; 583 } 584 } 585 return root; 586 } 587 588 ValueObjectSP 589 ValueObject::GetChildAtIndexPath (const std::initializer_list< std::pair<size_t, bool> >& idxs, 590 size_t* index_of_error) 591 { 592 if (idxs.size() == 0) 593 return GetSP(); 594 ValueObjectSP root(GetSP()); 595 for (std::pair<size_t, bool> idx : idxs) 596 { 597 root = root->GetChildAtIndex(idx.first, idx.second); 598 if (!root) 599 { 600 if (index_of_error) 601 *index_of_error = idx.first; 602 return root; 603 } 604 } 605 return root; 606 } 607 608 lldb::ValueObjectSP 609 ValueObject::GetChildAtIndexPath (const std::vector<size_t> &idxs, 610 size_t* index_of_error) 611 { 612 if (idxs.size() == 0) 613 return GetSP(); 614 ValueObjectSP root(GetSP()); 615 for (size_t idx : idxs) 616 { 617 root = root->GetChildAtIndex(idx, true); 618 if (!root) 619 { 620 if (index_of_error) 621 *index_of_error = idx; 622 return root; 623 } 624 } 625 return root; 626 } 627 628 lldb::ValueObjectSP 629 ValueObject::GetChildAtIndexPath (const std::vector< std::pair<size_t, bool> > &idxs, 630 size_t* index_of_error) 631 { 632 if (idxs.size() == 0) 633 return GetSP(); 634 ValueObjectSP root(GetSP()); 635 for (std::pair<size_t, bool> idx : idxs) 636 { 637 root = root->GetChildAtIndex(idx.first, idx.second); 638 if (!root) 639 { 640 if (index_of_error) 641 *index_of_error = idx.first; 642 return root; 643 } 644 } 645 return root; 646 } 647 648 lldb::ValueObjectSP 649 ValueObject::GetChildAtNamePath (const std::initializer_list<ConstString> &names, 650 ConstString* name_of_error) 651 { 652 if (names.size() == 0) 653 return GetSP(); 654 ValueObjectSP root(GetSP()); 655 for (ConstString name : names) 656 { 657 root = root->GetChildMemberWithName(name, true); 658 if (!root) 659 { 660 if (name_of_error) 661 *name_of_error = name; 662 return root; 663 } 664 } 665 return root; 666 } 667 668 lldb::ValueObjectSP 669 ValueObject::GetChildAtNamePath (const std::vector<ConstString> &names, 670 ConstString* name_of_error) 671 { 672 if (names.size() == 0) 673 return GetSP(); 674 ValueObjectSP root(GetSP()); 675 for (ConstString name : names) 676 { 677 root = root->GetChildMemberWithName(name, true); 678 if (!root) 679 { 680 if (name_of_error) 681 *name_of_error = name; 682 return root; 683 } 684 } 685 return root; 686 } 687 688 lldb::ValueObjectSP 689 ValueObject::GetChildAtNamePath (const std::initializer_list< std::pair<ConstString, bool> > &names, 690 ConstString* name_of_error) 691 { 692 if (names.size() == 0) 693 return GetSP(); 694 ValueObjectSP root(GetSP()); 695 for (std::pair<ConstString, bool> name : names) 696 { 697 root = root->GetChildMemberWithName(name.first, name.second); 698 if (!root) 699 { 700 if (name_of_error) 701 *name_of_error = name.first; 702 return root; 703 } 704 } 705 return root; 706 } 707 708 lldb::ValueObjectSP 709 ValueObject::GetChildAtNamePath (const std::vector< std::pair<ConstString, bool> > &names, 710 ConstString* name_of_error) 711 { 712 if (names.size() == 0) 713 return GetSP(); 714 ValueObjectSP root(GetSP()); 715 for (std::pair<ConstString, bool> name : names) 716 { 717 root = root->GetChildMemberWithName(name.first, name.second); 718 if (!root) 719 { 720 if (name_of_error) 721 *name_of_error = name.first; 722 return root; 723 } 724 } 725 return root; 726 } 727 728 size_t 729 ValueObject::GetIndexOfChildWithName (const ConstString &name) 730 { 731 bool omit_empty_base_classes = true; 732 return GetClangType().GetIndexOfChildWithName (name.GetCString(), omit_empty_base_classes); 733 } 734 735 ValueObjectSP 736 ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create) 737 { 738 // when getting a child by name, it could be buried inside some base 739 // classes (which really aren't part of the expression path), so we 740 // need a vector of indexes that can get us down to the correct child 741 ValueObjectSP child_sp; 742 743 // We may need to update our value if we are dynamic 744 if (IsPossibleDynamicType ()) 745 UpdateValueIfNeeded(false); 746 747 std::vector<uint32_t> child_indexes; 748 bool omit_empty_base_classes = true; 749 const size_t num_child_indexes = GetClangType().GetIndexOfChildMemberWithName (name.GetCString(), 750 omit_empty_base_classes, 751 child_indexes); 752 if (num_child_indexes > 0) 753 { 754 std::vector<uint32_t>::const_iterator pos = child_indexes.begin (); 755 std::vector<uint32_t>::const_iterator end = child_indexes.end (); 756 757 child_sp = GetChildAtIndex(*pos, can_create); 758 for (++pos; pos != end; ++pos) 759 { 760 if (child_sp) 761 { 762 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create)); 763 child_sp = new_child_sp; 764 } 765 else 766 { 767 child_sp.reset(); 768 } 769 770 } 771 } 772 return child_sp; 773 } 774 775 776 size_t 777 ValueObject::GetNumChildren () 778 { 779 UpdateValueIfNeeded(); 780 if (!m_children_count_valid) 781 { 782 SetNumChildren (CalculateNumChildren()); 783 } 784 return m_children.GetChildrenCount(); 785 } 786 787 bool 788 ValueObject::MightHaveChildren() 789 { 790 bool has_children = false; 791 const uint32_t type_info = GetTypeInfo(); 792 if (type_info) 793 { 794 if (type_info & (eTypeHasChildren | 795 eTypeIsPointer | 796 eTypeIsReference)) 797 has_children = true; 798 } 799 else 800 { 801 has_children = GetNumChildren () > 0; 802 } 803 return has_children; 804 } 805 806 // Should only be called by ValueObject::GetNumChildren() 807 void 808 ValueObject::SetNumChildren (size_t num_children) 809 { 810 m_children_count_valid = true; 811 m_children.SetChildrenCount(num_children); 812 } 813 814 void 815 ValueObject::SetName (const ConstString &name) 816 { 817 m_name = name; 818 } 819 820 ValueObject * 821 ValueObject::CreateChildAtIndex (size_t idx, bool synthetic_array_member, int32_t synthetic_index) 822 { 823 ValueObject *valobj = NULL; 824 825 bool omit_empty_base_classes = true; 826 bool ignore_array_bounds = synthetic_array_member; 827 std::string child_name_str; 828 uint32_t child_byte_size = 0; 829 int32_t child_byte_offset = 0; 830 uint32_t child_bitfield_bit_size = 0; 831 uint32_t child_bitfield_bit_offset = 0; 832 bool child_is_base_class = false; 833 bool child_is_deref_of_parent = false; 834 835 const bool transparent_pointers = synthetic_array_member == false; 836 ClangASTType child_clang_type; 837 838 ExecutionContext exe_ctx (GetExecutionContextRef()); 839 840 child_clang_type = GetClangType().GetChildClangTypeAtIndex (&exe_ctx, 841 idx, 842 transparent_pointers, 843 omit_empty_base_classes, 844 ignore_array_bounds, 845 child_name_str, 846 child_byte_size, 847 child_byte_offset, 848 child_bitfield_bit_size, 849 child_bitfield_bit_offset, 850 child_is_base_class, 851 child_is_deref_of_parent, 852 this); 853 if (child_clang_type) 854 { 855 if (synthetic_index) 856 child_byte_offset += child_byte_size * synthetic_index; 857 858 ConstString child_name; 859 if (!child_name_str.empty()) 860 child_name.SetCString (child_name_str.c_str()); 861 862 valobj = new ValueObjectChild (*this, 863 child_clang_type, 864 child_name, 865 child_byte_size, 866 child_byte_offset, 867 child_bitfield_bit_size, 868 child_bitfield_bit_offset, 869 child_is_base_class, 870 child_is_deref_of_parent, 871 eAddressTypeInvalid); 872 //if (valobj) 873 // valobj->SetAddressTypeOfChildren(eAddressTypeInvalid); 874 } 875 876 return valobj; 877 } 878 879 bool 880 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 881 std::string& destination) 882 { 883 return GetSummaryAsCString(summary_ptr, destination, TypeSummaryOptions()); 884 } 885 886 bool 887 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 888 std::string& destination, 889 const TypeSummaryOptions& options) 890 { 891 destination.clear(); 892 893 // ideally we would like to bail out if passing NULL, but if we do so 894 // we end up not providing the summary for function pointers anymore 895 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 896 return false; 897 898 m_is_getting_summary = true; 899 900 // this is a hot path in code and we prefer to avoid setting this string all too often also clearing out other 901 // information that we might care to see in a crash log. might be useful in very specific situations though. 902 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. Summary provider's description is %s", 903 GetTypeName().GetCString(), 904 GetName().GetCString(), 905 summary_ptr->GetDescription().c_str());*/ 906 907 if (UpdateValueIfNeeded (false) && summary_ptr) 908 { 909 if (HasSyntheticValue()) 910 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on the synthetic children being up-to-date (e.g. ${svar%#}) 911 summary_ptr->FormatObject(this, destination, options); 912 } 913 m_is_getting_summary = false; 914 return !destination.empty(); 915 } 916 917 const char * 918 ValueObject::GetSummaryAsCString () 919 { 920 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) 921 { 922 GetSummaryAsCString(GetSummaryFormat().get(), 923 m_summary_str, 924 TypeSummaryOptions()); 925 } 926 if (m_summary_str.empty()) 927 return NULL; 928 return m_summary_str.c_str(); 929 } 930 931 bool 932 ValueObject::GetSummaryAsCString (std::string& destination, 933 const TypeSummaryOptions& options) 934 { 935 return GetSummaryAsCString(GetSummaryFormat().get(), 936 destination, 937 options); 938 } 939 940 bool 941 ValueObject::IsCStringContainer(bool check_pointer) 942 { 943 ClangASTType pointee_or_element_clang_type; 944 const Flags type_flags (GetTypeInfo (&pointee_or_element_clang_type)); 945 bool is_char_arr_ptr (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 946 pointee_or_element_clang_type.IsCharType ()); 947 if (!is_char_arr_ptr) 948 return false; 949 if (!check_pointer) 950 return true; 951 if (type_flags.Test(eTypeIsArray)) 952 return true; 953 addr_t cstr_address = LLDB_INVALID_ADDRESS; 954 AddressType cstr_address_type = eAddressTypeInvalid; 955 cstr_address = GetAddressOf (true, &cstr_address_type); 956 return (cstr_address != LLDB_INVALID_ADDRESS); 957 } 958 959 size_t 960 ValueObject::GetPointeeData (DataExtractor& data, 961 uint32_t item_idx, 962 uint32_t item_count) 963 { 964 ClangASTType pointee_or_element_clang_type; 965 const uint32_t type_info = GetTypeInfo (&pointee_or_element_clang_type); 966 const bool is_pointer_type = type_info & eTypeIsPointer; 967 const bool is_array_type = type_info & eTypeIsArray; 968 if (!(is_pointer_type || is_array_type)) 969 return 0; 970 971 if (item_count == 0) 972 return 0; 973 974 ExecutionContext exe_ctx (GetExecutionContextRef()); 975 976 const uint64_t item_type_size = pointee_or_element_clang_type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 977 const uint64_t bytes = item_count * item_type_size; 978 const uint64_t offset = item_idx * item_type_size; 979 980 if (item_idx == 0 && item_count == 1) // simply a deref 981 { 982 if (is_pointer_type) 983 { 984 Error error; 985 ValueObjectSP pointee_sp = Dereference(error); 986 if (error.Fail() || pointee_sp.get() == NULL) 987 return 0; 988 return pointee_sp->GetData(data, error); 989 } 990 else 991 { 992 ValueObjectSP child_sp = GetChildAtIndex(0, true); 993 if (child_sp.get() == NULL) 994 return 0; 995 Error error; 996 return child_sp->GetData(data, error); 997 } 998 return true; 999 } 1000 else /* (items > 1) */ 1001 { 1002 Error error; 1003 lldb_private::DataBufferHeap* heap_buf_ptr = NULL; 1004 lldb::DataBufferSP data_sp(heap_buf_ptr = new lldb_private::DataBufferHeap()); 1005 1006 AddressType addr_type; 1007 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) : GetAddressOf(true, &addr_type); 1008 1009 switch (addr_type) 1010 { 1011 case eAddressTypeFile: 1012 { 1013 ModuleSP module_sp (GetModule()); 1014 if (module_sp) 1015 { 1016 addr = addr + offset; 1017 Address so_addr; 1018 module_sp->ResolveFileAddress(addr, so_addr); 1019 ExecutionContext exe_ctx (GetExecutionContextRef()); 1020 Target* target = exe_ctx.GetTargetPtr(); 1021 if (target) 1022 { 1023 heap_buf_ptr->SetByteSize(bytes); 1024 size_t bytes_read = target->ReadMemory(so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 1025 if (error.Success()) 1026 { 1027 data.SetData(data_sp); 1028 return bytes_read; 1029 } 1030 } 1031 } 1032 } 1033 break; 1034 case eAddressTypeLoad: 1035 { 1036 ExecutionContext exe_ctx (GetExecutionContextRef()); 1037 Process *process = exe_ctx.GetProcessPtr(); 1038 if (process) 1039 { 1040 heap_buf_ptr->SetByteSize(bytes); 1041 size_t bytes_read = process->ReadMemory(addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 1042 if (error.Success() || bytes_read > 0) 1043 { 1044 data.SetData(data_sp); 1045 return bytes_read; 1046 } 1047 } 1048 } 1049 break; 1050 case eAddressTypeHost: 1051 { 1052 const uint64_t max_bytes = GetClangType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1053 if (max_bytes > offset) 1054 { 1055 size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes); 1056 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1057 if (addr == LLDB_INVALID_ADDRESS) 1058 break; 1059 heap_buf_ptr->CopyData((uint8_t*)(addr + offset), bytes_read); 1060 data.SetData(data_sp); 1061 return bytes_read; 1062 } 1063 } 1064 break; 1065 case eAddressTypeInvalid: 1066 break; 1067 } 1068 } 1069 return 0; 1070 } 1071 1072 uint64_t 1073 ValueObject::GetData (DataExtractor& data, Error &error) 1074 { 1075 UpdateValueIfNeeded(false); 1076 ExecutionContext exe_ctx (GetExecutionContextRef()); 1077 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 1078 if (error.Fail()) 1079 { 1080 if (m_data.GetByteSize()) 1081 { 1082 data = m_data; 1083 return data.GetByteSize(); 1084 } 1085 else 1086 { 1087 return 0; 1088 } 1089 } 1090 data.SetAddressByteSize(m_data.GetAddressByteSize()); 1091 data.SetByteOrder(m_data.GetByteOrder()); 1092 return data.GetByteSize(); 1093 } 1094 1095 bool 1096 ValueObject::SetData (DataExtractor &data, Error &error) 1097 { 1098 error.Clear(); 1099 // Make sure our value is up to date first so that our location and location 1100 // type is valid. 1101 if (!UpdateValueIfNeeded(false)) 1102 { 1103 error.SetErrorString("unable to read value"); 1104 return false; 1105 } 1106 1107 uint64_t count = 0; 1108 const Encoding encoding = GetClangType().GetEncoding(count); 1109 1110 const size_t byte_size = GetByteSize(); 1111 1112 Value::ValueType value_type = m_value.GetValueType(); 1113 1114 switch (value_type) 1115 { 1116 case Value::eValueTypeScalar: 1117 { 1118 Error set_error = m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 1119 1120 if (!set_error.Success()) 1121 { 1122 error.SetErrorStringWithFormat("unable to set scalar value: %s", set_error.AsCString()); 1123 return false; 1124 } 1125 } 1126 break; 1127 case Value::eValueTypeLoadAddress: 1128 { 1129 // If it is a load address, then the scalar value is the storage location 1130 // of the data, and we have to shove this value down to that load location. 1131 ExecutionContext exe_ctx (GetExecutionContextRef()); 1132 Process *process = exe_ctx.GetProcessPtr(); 1133 if (process) 1134 { 1135 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1136 size_t bytes_written = process->WriteMemory(target_addr, 1137 data.GetDataStart(), 1138 byte_size, 1139 error); 1140 if (!error.Success()) 1141 return false; 1142 if (bytes_written != byte_size) 1143 { 1144 error.SetErrorString("unable to write value to memory"); 1145 return false; 1146 } 1147 } 1148 } 1149 break; 1150 case Value::eValueTypeHostAddress: 1151 { 1152 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1153 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1154 m_data.SetData(buffer_sp, 0); 1155 data.CopyByteOrderedData (0, 1156 byte_size, 1157 const_cast<uint8_t *>(m_data.GetDataStart()), 1158 byte_size, 1159 m_data.GetByteOrder()); 1160 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1161 } 1162 break; 1163 case Value::eValueTypeFileAddress: 1164 case Value::eValueTypeVector: 1165 break; 1166 } 1167 1168 // If we have reached this point, then we have successfully changed the value. 1169 SetNeedsUpdate(); 1170 return true; 1171 } 1172 1173 // will compute strlen(str), but without consuming more than 1174 // maxlen bytes out of str (this serves the purpose of reading 1175 // chunks of a string without having to worry about 1176 // missing NULL terminators in the chunk) 1177 // of course, if strlen(str) > maxlen, the function will return 1178 // maxlen_value (which should be != maxlen, because that allows you 1179 // to know whether strlen(str) == maxlen or strlen(str) > maxlen) 1180 static uint32_t 1181 strlen_or_inf (const char* str, 1182 uint32_t maxlen, 1183 uint32_t maxlen_value) 1184 { 1185 uint32_t len = 0; 1186 if (str) 1187 { 1188 while(*str) 1189 { 1190 len++;str++; 1191 if (len >= maxlen) 1192 return maxlen_value; 1193 } 1194 } 1195 return len; 1196 } 1197 1198 static bool 1199 CopyStringDataToBufferSP(const StreamString& source, 1200 lldb::DataBufferSP& destination) 1201 { 1202 destination.reset(new DataBufferHeap(source.GetSize()+1,0)); 1203 memcpy(destination->GetBytes(), source.GetString().c_str(), source.GetSize()); 1204 return true; 1205 } 1206 1207 size_t 1208 ValueObject::ReadPointedString (lldb::DataBufferSP& buffer_sp, 1209 Error& error, 1210 uint32_t max_length, 1211 bool honor_array, 1212 Format item_format) 1213 { 1214 StreamString s; 1215 ExecutionContext exe_ctx (GetExecutionContextRef()); 1216 Target* target = exe_ctx.GetTargetPtr(); 1217 1218 if (!target) 1219 { 1220 s << "<no target to read from>"; 1221 error.SetErrorString("no target to read from"); 1222 CopyStringDataToBufferSP(s, buffer_sp); 1223 return 0; 1224 } 1225 1226 if (max_length == 0) 1227 max_length = target->GetMaximumSizeOfStringSummary(); 1228 1229 size_t bytes_read = 0; 1230 size_t total_bytes_read = 0; 1231 1232 ClangASTType clang_type = GetClangType(); 1233 ClangASTType elem_or_pointee_clang_type; 1234 const Flags type_flags (GetTypeInfo (&elem_or_pointee_clang_type)); 1235 if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 1236 elem_or_pointee_clang_type.IsCharType ()) 1237 { 1238 addr_t cstr_address = LLDB_INVALID_ADDRESS; 1239 AddressType cstr_address_type = eAddressTypeInvalid; 1240 1241 size_t cstr_len = 0; 1242 bool capped_data = false; 1243 if (type_flags.Test (eTypeIsArray)) 1244 { 1245 // We have an array 1246 uint64_t array_size = 0; 1247 if (clang_type.IsArrayType(NULL, &array_size, NULL)) 1248 { 1249 cstr_len = array_size; 1250 if (cstr_len > max_length) 1251 { 1252 capped_data = true; 1253 cstr_len = max_length; 1254 } 1255 } 1256 cstr_address = GetAddressOf (true, &cstr_address_type); 1257 } 1258 else 1259 { 1260 // We have a pointer 1261 cstr_address = GetPointerValue (&cstr_address_type); 1262 } 1263 1264 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) 1265 { 1266 s << "<invalid address>"; 1267 error.SetErrorString("invalid address"); 1268 CopyStringDataToBufferSP(s, buffer_sp); 1269 return 0; 1270 } 1271 1272 Address cstr_so_addr (cstr_address); 1273 DataExtractor data; 1274 if (cstr_len > 0 && honor_array) 1275 { 1276 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1277 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1278 GetPointeeData(data, 0, cstr_len); 1279 1280 if ((bytes_read = data.GetByteSize()) > 0) 1281 { 1282 total_bytes_read = bytes_read; 1283 for (size_t offset = 0; offset < bytes_read; offset++) 1284 s.Printf("%c", *data.PeekData(offset, 1)); 1285 if (capped_data) 1286 s << "..."; 1287 } 1288 } 1289 else 1290 { 1291 cstr_len = max_length; 1292 const size_t k_max_buf_size = 64; 1293 1294 size_t offset = 0; 1295 1296 int cstr_len_displayed = -1; 1297 bool capped_cstr = false; 1298 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1299 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1300 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) 1301 { 1302 total_bytes_read += bytes_read; 1303 const char *cstr = data.PeekCStr(0); 1304 size_t len = strlen_or_inf (cstr, k_max_buf_size, k_max_buf_size+1); 1305 if (len > k_max_buf_size) 1306 len = k_max_buf_size; 1307 1308 if (cstr_len_displayed < 0) 1309 cstr_len_displayed = len; 1310 1311 if (len == 0) 1312 break; 1313 cstr_len_displayed += len; 1314 if (len > bytes_read) 1315 len = bytes_read; 1316 if (len > cstr_len) 1317 len = cstr_len; 1318 1319 for (size_t offset = 0; offset < bytes_read; offset++) 1320 s.Printf("%c", *data.PeekData(offset, 1)); 1321 1322 if (len < k_max_buf_size) 1323 break; 1324 1325 if (len >= cstr_len) 1326 { 1327 capped_cstr = true; 1328 break; 1329 } 1330 1331 cstr_len -= len; 1332 offset += len; 1333 } 1334 1335 if (cstr_len_displayed >= 0) 1336 { 1337 if (capped_cstr) 1338 s << "..."; 1339 } 1340 } 1341 } 1342 else 1343 { 1344 error.SetErrorString("not a string object"); 1345 s << "<not a string object>"; 1346 } 1347 CopyStringDataToBufferSP(s, buffer_sp); 1348 return total_bytes_read; 1349 } 1350 1351 std::pair<TypeValidatorResult, std::string> 1352 ValueObject::GetValidationStatus () 1353 { 1354 if (!UpdateValueIfNeeded(true)) 1355 return {TypeValidatorResult::Success,""}; // not the validator's job to discuss update problems 1356 1357 if (m_validation_result.hasValue()) 1358 return m_validation_result.getValue(); 1359 1360 if (!m_type_validator_sp) 1361 return {TypeValidatorResult::Success,""}; // no validator no failure 1362 1363 auto outcome = m_type_validator_sp->FormatObject(this); 1364 1365 return (m_validation_result = {outcome.m_result,outcome.m_message}).getValue(); 1366 } 1367 1368 const char * 1369 ValueObject::GetObjectDescription () 1370 { 1371 1372 if (!UpdateValueIfNeeded (true)) 1373 return NULL; 1374 1375 if (!m_object_desc_str.empty()) 1376 return m_object_desc_str.c_str(); 1377 1378 ExecutionContext exe_ctx (GetExecutionContextRef()); 1379 Process *process = exe_ctx.GetProcessPtr(); 1380 if (process == NULL) 1381 return NULL; 1382 1383 StreamString s; 1384 1385 LanguageType language = GetObjectRuntimeLanguage(); 1386 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1387 1388 if (runtime == NULL) 1389 { 1390 // Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway... 1391 ClangASTType clang_type = GetClangType(); 1392 if (clang_type) 1393 { 1394 bool is_signed; 1395 if (clang_type.IsIntegerType (is_signed) || clang_type.IsPointerType ()) 1396 { 1397 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1398 } 1399 } 1400 } 1401 1402 if (runtime && runtime->GetObjectDescription(s, *this)) 1403 { 1404 m_object_desc_str.append (s.GetData()); 1405 } 1406 1407 if (m_object_desc_str.empty()) 1408 return NULL; 1409 else 1410 return m_object_desc_str.c_str(); 1411 } 1412 1413 bool 1414 ValueObject::GetValueAsCString (const lldb_private::TypeFormatImpl& format, 1415 std::string& destination) 1416 { 1417 if (UpdateValueIfNeeded(false)) 1418 return format.FormatObject(this,destination); 1419 else 1420 return false; 1421 } 1422 1423 bool 1424 ValueObject::GetValueAsCString (lldb::Format format, 1425 std::string& destination) 1426 { 1427 return GetValueAsCString(TypeFormatImpl_Format(format),destination); 1428 } 1429 1430 const char * 1431 ValueObject::GetValueAsCString () 1432 { 1433 if (UpdateValueIfNeeded(true)) 1434 { 1435 lldb::TypeFormatImplSP format_sp; 1436 lldb::Format my_format = GetFormat(); 1437 if (my_format == lldb::eFormatDefault) 1438 { 1439 if (m_type_format_sp) 1440 format_sp = m_type_format_sp; 1441 else 1442 { 1443 if (m_is_bitfield_for_scalar) 1444 my_format = eFormatUnsigned; 1445 else 1446 { 1447 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) 1448 { 1449 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1450 if (reg_info) 1451 my_format = reg_info->format; 1452 } 1453 else 1454 { 1455 my_format = GetValue().GetClangType().GetFormat(); 1456 } 1457 } 1458 } 1459 } 1460 if (my_format != m_last_format || m_value_str.empty()) 1461 { 1462 m_last_format = my_format; 1463 if (!format_sp) 1464 format_sp.reset(new TypeFormatImpl_Format(my_format)); 1465 if (GetValueAsCString(*format_sp.get(), m_value_str)) 1466 { 1467 if (!m_value_did_change && m_old_value_valid) 1468 { 1469 // The value was gotten successfully, so we consider the 1470 // value as changed if the value string differs 1471 SetValueDidChange (m_old_value_str != m_value_str); 1472 } 1473 } 1474 } 1475 } 1476 if (m_value_str.empty()) 1477 return NULL; 1478 return m_value_str.c_str(); 1479 } 1480 1481 // if > 8bytes, 0 is returned. this method should mostly be used 1482 // to read address values out of pointers 1483 uint64_t 1484 ValueObject::GetValueAsUnsigned (uint64_t fail_value, bool *success) 1485 { 1486 // If our byte size is zero this is an aggregate type that has children 1487 if (CanProvideValue()) 1488 { 1489 Scalar scalar; 1490 if (ResolveValue (scalar)) 1491 { 1492 if (success) 1493 *success = true; 1494 return scalar.ULongLong(fail_value); 1495 } 1496 // fallthrough, otherwise... 1497 } 1498 1499 if (success) 1500 *success = false; 1501 return fail_value; 1502 } 1503 1504 int64_t 1505 ValueObject::GetValueAsSigned (int64_t fail_value, bool *success) 1506 { 1507 // If our byte size is zero this is an aggregate type that has children 1508 if (CanProvideValue()) 1509 { 1510 Scalar scalar; 1511 if (ResolveValue (scalar)) 1512 { 1513 if (success) 1514 *success = true; 1515 return scalar.SLongLong(fail_value); 1516 } 1517 // fallthrough, otherwise... 1518 } 1519 1520 if (success) 1521 *success = false; 1522 return fail_value; 1523 } 1524 1525 // if any more "special cases" are added to ValueObject::DumpPrintableRepresentation() please keep 1526 // this call up to date by returning true for your new special cases. We will eventually move 1527 // to checking this call result before trying to display special cases 1528 bool 1529 ValueObject::HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display, 1530 Format custom_format) 1531 { 1532 Flags flags(GetTypeInfo()); 1533 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1534 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1535 { 1536 if (IsCStringContainer(true) && 1537 (custom_format == eFormatCString || 1538 custom_format == eFormatCharArray || 1539 custom_format == eFormatChar || 1540 custom_format == eFormatVectorOfChar)) 1541 return true; 1542 1543 if (flags.Test(eTypeIsArray)) 1544 { 1545 if ((custom_format == eFormatBytes) || 1546 (custom_format == eFormatBytesWithASCII)) 1547 return true; 1548 1549 if ((custom_format == eFormatVectorOfChar) || 1550 (custom_format == eFormatVectorOfFloat32) || 1551 (custom_format == eFormatVectorOfFloat64) || 1552 (custom_format == eFormatVectorOfSInt16) || 1553 (custom_format == eFormatVectorOfSInt32) || 1554 (custom_format == eFormatVectorOfSInt64) || 1555 (custom_format == eFormatVectorOfSInt8) || 1556 (custom_format == eFormatVectorOfUInt128) || 1557 (custom_format == eFormatVectorOfUInt16) || 1558 (custom_format == eFormatVectorOfUInt32) || 1559 (custom_format == eFormatVectorOfUInt64) || 1560 (custom_format == eFormatVectorOfUInt8)) 1561 return true; 1562 } 1563 } 1564 return false; 1565 } 1566 1567 bool 1568 ValueObject::DumpPrintableRepresentation(Stream& s, 1569 ValueObjectRepresentationStyle val_obj_display, 1570 Format custom_format, 1571 PrintableRepresentationSpecialCases special, 1572 bool do_dump_error) 1573 { 1574 1575 Flags flags(GetTypeInfo()); 1576 1577 bool allow_special = ((special & ePrintableRepresentationSpecialCasesAllow) == ePrintableRepresentationSpecialCasesAllow); 1578 bool only_special = ((special & ePrintableRepresentationSpecialCasesOnly) == ePrintableRepresentationSpecialCasesOnly); 1579 1580 if (allow_special) 1581 { 1582 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1583 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1584 { 1585 // when being asked to get a printable display an array or pointer type directly, 1586 // try to "do the right thing" 1587 1588 if (IsCStringContainer(true) && 1589 (custom_format == eFormatCString || 1590 custom_format == eFormatCharArray || 1591 custom_format == eFormatChar || 1592 custom_format == eFormatVectorOfChar)) // print char[] & char* directly 1593 { 1594 Error error; 1595 lldb::DataBufferSP buffer_sp; 1596 ReadPointedString(buffer_sp, 1597 error, 1598 0, 1599 (custom_format == eFormatVectorOfChar) || 1600 (custom_format == eFormatCharArray)); 1601 lldb_private::formatters::ReadBufferAndDumpToStreamOptions options(*this); 1602 options.SetData(DataExtractor(buffer_sp, lldb::eByteOrderInvalid, 8)); // none of this matters for a string - pass some defaults 1603 options.SetStream(&s); 1604 options.SetPrefixToken(0); 1605 options.SetQuote('"'); 1606 options.SetSourceSize(buffer_sp->GetByteSize()); 1607 lldb_private::formatters::ReadBufferAndDumpToStream<lldb_private::formatters::StringElementType::ASCII>(options); 1608 return !error.Fail(); 1609 } 1610 1611 if (custom_format == eFormatEnum) 1612 return false; 1613 1614 // this only works for arrays, because I have no way to know when 1615 // the pointed memory ends, and no special \0 end of data marker 1616 if (flags.Test(eTypeIsArray)) 1617 { 1618 if ((custom_format == eFormatBytes) || 1619 (custom_format == eFormatBytesWithASCII)) 1620 { 1621 const size_t count = GetNumChildren(); 1622 1623 s << '['; 1624 for (size_t low = 0; low < count; low++) 1625 { 1626 1627 if (low) 1628 s << ','; 1629 1630 ValueObjectSP child = GetChildAtIndex(low,true); 1631 if (!child.get()) 1632 { 1633 s << "<invalid child>"; 1634 continue; 1635 } 1636 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, custom_format); 1637 } 1638 1639 s << ']'; 1640 1641 return true; 1642 } 1643 1644 if ((custom_format == eFormatVectorOfChar) || 1645 (custom_format == eFormatVectorOfFloat32) || 1646 (custom_format == eFormatVectorOfFloat64) || 1647 (custom_format == eFormatVectorOfSInt16) || 1648 (custom_format == eFormatVectorOfSInt32) || 1649 (custom_format == eFormatVectorOfSInt64) || 1650 (custom_format == eFormatVectorOfSInt8) || 1651 (custom_format == eFormatVectorOfUInt128) || 1652 (custom_format == eFormatVectorOfUInt16) || 1653 (custom_format == eFormatVectorOfUInt32) || 1654 (custom_format == eFormatVectorOfUInt64) || 1655 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes with ASCII or any vector format should be printed directly 1656 { 1657 const size_t count = GetNumChildren(); 1658 1659 Format format = FormatManager::GetSingleItemFormat(custom_format); 1660 1661 s << '['; 1662 for (size_t low = 0; low < count; low++) 1663 { 1664 1665 if (low) 1666 s << ','; 1667 1668 ValueObjectSP child = GetChildAtIndex(low,true); 1669 if (!child.get()) 1670 { 1671 s << "<invalid child>"; 1672 continue; 1673 } 1674 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, format); 1675 } 1676 1677 s << ']'; 1678 1679 return true; 1680 } 1681 } 1682 1683 if ((custom_format == eFormatBoolean) || 1684 (custom_format == eFormatBinary) || 1685 (custom_format == eFormatChar) || 1686 (custom_format == eFormatCharPrintable) || 1687 (custom_format == eFormatComplexFloat) || 1688 (custom_format == eFormatDecimal) || 1689 (custom_format == eFormatHex) || 1690 (custom_format == eFormatHexUppercase) || 1691 (custom_format == eFormatFloat) || 1692 (custom_format == eFormatOctal) || 1693 (custom_format == eFormatOSType) || 1694 (custom_format == eFormatUnicode16) || 1695 (custom_format == eFormatUnicode32) || 1696 (custom_format == eFormatUnsigned) || 1697 (custom_format == eFormatPointer) || 1698 (custom_format == eFormatComplexInteger) || 1699 (custom_format == eFormatComplex) || 1700 (custom_format == eFormatDefault)) // use the [] operator 1701 return false; 1702 } 1703 } 1704 1705 if (only_special) 1706 return false; 1707 1708 bool var_success = false; 1709 1710 { 1711 const char *cstr = NULL; 1712 1713 // this is a local stream that we are using to ensure that the data pointed to by cstr survives 1714 // long enough for us to copy it to its destination - it is necessary to have this temporary storage 1715 // area for cases where our desired output is not backed by some other longer-term storage 1716 StreamString strm; 1717 1718 if (custom_format != eFormatInvalid) 1719 SetFormat(custom_format); 1720 1721 switch(val_obj_display) 1722 { 1723 case eValueObjectRepresentationStyleValue: 1724 cstr = GetValueAsCString(); 1725 break; 1726 1727 case eValueObjectRepresentationStyleSummary: 1728 cstr = GetSummaryAsCString(); 1729 break; 1730 1731 case eValueObjectRepresentationStyleLanguageSpecific: 1732 cstr = GetObjectDescription(); 1733 break; 1734 1735 case eValueObjectRepresentationStyleLocation: 1736 cstr = GetLocationAsCString(); 1737 break; 1738 1739 case eValueObjectRepresentationStyleChildrenCount: 1740 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1741 cstr = strm.GetString().c_str(); 1742 break; 1743 1744 case eValueObjectRepresentationStyleType: 1745 cstr = GetTypeName().AsCString(); 1746 break; 1747 1748 case eValueObjectRepresentationStyleName: 1749 cstr = GetName().AsCString(); 1750 break; 1751 1752 case eValueObjectRepresentationStyleExpressionPath: 1753 GetExpressionPath(strm, false); 1754 cstr = strm.GetString().c_str(); 1755 break; 1756 } 1757 1758 if (!cstr) 1759 { 1760 if (val_obj_display == eValueObjectRepresentationStyleValue) 1761 cstr = GetSummaryAsCString(); 1762 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1763 { 1764 if (!CanProvideValue()) 1765 { 1766 strm.Printf("%s @ %s", GetTypeName().AsCString(), GetLocationAsCString()); 1767 cstr = strm.GetString().c_str(); 1768 } 1769 else 1770 cstr = GetValueAsCString(); 1771 } 1772 } 1773 1774 if (cstr) 1775 s.PutCString(cstr); 1776 else 1777 { 1778 if (m_error.Fail()) 1779 { 1780 if (do_dump_error) 1781 s.Printf("<%s>", m_error.AsCString()); 1782 else 1783 return false; 1784 } 1785 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1786 s.PutCString("<no summary available>"); 1787 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1788 s.PutCString("<no value available>"); 1789 else if (val_obj_display == eValueObjectRepresentationStyleLanguageSpecific) 1790 s.PutCString("<not a valid Objective-C object>"); // edit this if we have other runtimes that support a description 1791 else 1792 s.PutCString("<no printable representation>"); 1793 } 1794 1795 // we should only return false here if we could not do *anything* 1796 // even if we have an error message as output, that's a success 1797 // from our callers' perspective, so return true 1798 var_success = true; 1799 1800 if (custom_format != eFormatInvalid) 1801 SetFormat(eFormatDefault); 1802 } 1803 1804 return var_success; 1805 } 1806 1807 addr_t 1808 ValueObject::GetAddressOf (bool scalar_is_load_address, AddressType *address_type) 1809 { 1810 if (!UpdateValueIfNeeded(false)) 1811 return LLDB_INVALID_ADDRESS; 1812 1813 switch (m_value.GetValueType()) 1814 { 1815 case Value::eValueTypeScalar: 1816 case Value::eValueTypeVector: 1817 if (scalar_is_load_address) 1818 { 1819 if(address_type) 1820 *address_type = eAddressTypeLoad; 1821 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1822 } 1823 break; 1824 1825 case Value::eValueTypeLoadAddress: 1826 case Value::eValueTypeFileAddress: 1827 { 1828 if(address_type) 1829 *address_type = m_value.GetValueAddressType (); 1830 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1831 } 1832 break; 1833 case Value::eValueTypeHostAddress: 1834 { 1835 if(address_type) 1836 *address_type = m_value.GetValueAddressType (); 1837 return LLDB_INVALID_ADDRESS; 1838 } 1839 break; 1840 } 1841 if (address_type) 1842 *address_type = eAddressTypeInvalid; 1843 return LLDB_INVALID_ADDRESS; 1844 } 1845 1846 addr_t 1847 ValueObject::GetPointerValue (AddressType *address_type) 1848 { 1849 addr_t address = LLDB_INVALID_ADDRESS; 1850 if(address_type) 1851 *address_type = eAddressTypeInvalid; 1852 1853 if (!UpdateValueIfNeeded(false)) 1854 return address; 1855 1856 switch (m_value.GetValueType()) 1857 { 1858 case Value::eValueTypeScalar: 1859 case Value::eValueTypeVector: 1860 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1861 break; 1862 1863 case Value::eValueTypeHostAddress: 1864 case Value::eValueTypeLoadAddress: 1865 case Value::eValueTypeFileAddress: 1866 { 1867 lldb::offset_t data_offset = 0; 1868 address = m_data.GetPointer(&data_offset); 1869 } 1870 break; 1871 } 1872 1873 if (address_type) 1874 *address_type = GetAddressTypeOfChildren(); 1875 1876 return address; 1877 } 1878 1879 bool 1880 ValueObject::SetValueFromCString (const char *value_str, Error& error) 1881 { 1882 error.Clear(); 1883 // Make sure our value is up to date first so that our location and location 1884 // type is valid. 1885 if (!UpdateValueIfNeeded(false)) 1886 { 1887 error.SetErrorString("unable to read value"); 1888 return false; 1889 } 1890 1891 uint64_t count = 0; 1892 const Encoding encoding = GetClangType().GetEncoding (count); 1893 1894 const size_t byte_size = GetByteSize(); 1895 1896 Value::ValueType value_type = m_value.GetValueType(); 1897 1898 if (value_type == Value::eValueTypeScalar) 1899 { 1900 // If the value is already a scalar, then let the scalar change itself: 1901 m_value.GetScalar().SetValueFromCString (value_str, encoding, byte_size); 1902 } 1903 else if (byte_size <= Scalar::GetMaxByteSize()) 1904 { 1905 // If the value fits in a scalar, then make a new scalar and again let the 1906 // scalar code do the conversion, then figure out where to put the new value. 1907 Scalar new_scalar; 1908 error = new_scalar.SetValueFromCString (value_str, encoding, byte_size); 1909 if (error.Success()) 1910 { 1911 switch (value_type) 1912 { 1913 case Value::eValueTypeLoadAddress: 1914 { 1915 // If it is a load address, then the scalar value is the storage location 1916 // of the data, and we have to shove this value down to that load location. 1917 ExecutionContext exe_ctx (GetExecutionContextRef()); 1918 Process *process = exe_ctx.GetProcessPtr(); 1919 if (process) 1920 { 1921 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1922 size_t bytes_written = process->WriteScalarToMemory (target_addr, 1923 new_scalar, 1924 byte_size, 1925 error); 1926 if (!error.Success()) 1927 return false; 1928 if (bytes_written != byte_size) 1929 { 1930 error.SetErrorString("unable to write value to memory"); 1931 return false; 1932 } 1933 } 1934 } 1935 break; 1936 case Value::eValueTypeHostAddress: 1937 { 1938 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1939 DataExtractor new_data; 1940 new_data.SetByteOrder (m_data.GetByteOrder()); 1941 1942 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1943 m_data.SetData(buffer_sp, 0); 1944 bool success = new_scalar.GetData(new_data); 1945 if (success) 1946 { 1947 new_data.CopyByteOrderedData (0, 1948 byte_size, 1949 const_cast<uint8_t *>(m_data.GetDataStart()), 1950 byte_size, 1951 m_data.GetByteOrder()); 1952 } 1953 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1954 1955 } 1956 break; 1957 case Value::eValueTypeFileAddress: 1958 case Value::eValueTypeScalar: 1959 case Value::eValueTypeVector: 1960 break; 1961 } 1962 } 1963 else 1964 { 1965 return false; 1966 } 1967 } 1968 else 1969 { 1970 // We don't support setting things bigger than a scalar at present. 1971 error.SetErrorString("unable to write aggregate data type"); 1972 return false; 1973 } 1974 1975 // If we have reached this point, then we have successfully changed the value. 1976 SetNeedsUpdate(); 1977 return true; 1978 } 1979 1980 bool 1981 ValueObject::GetDeclaration (Declaration &decl) 1982 { 1983 decl.Clear(); 1984 return false; 1985 } 1986 1987 ConstString 1988 ValueObject::GetTypeName() 1989 { 1990 return GetClangType().GetConstTypeName(); 1991 } 1992 1993 ConstString 1994 ValueObject::GetDisplayTypeName() 1995 { 1996 return GetTypeName(); 1997 } 1998 1999 ConstString 2000 ValueObject::GetQualifiedTypeName() 2001 { 2002 return GetClangType().GetConstQualifiedTypeName(); 2003 } 2004 2005 2006 LanguageType 2007 ValueObject::GetObjectRuntimeLanguage () 2008 { 2009 return GetClangType().GetMinimumLanguage (); 2010 } 2011 2012 void 2013 ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj) 2014 { 2015 m_synthetic_children[key] = valobj; 2016 } 2017 2018 ValueObjectSP 2019 ValueObject::GetSyntheticChild (const ConstString &key) const 2020 { 2021 ValueObjectSP synthetic_child_sp; 2022 std::map<ConstString, ValueObject *>::const_iterator pos = m_synthetic_children.find (key); 2023 if (pos != m_synthetic_children.end()) 2024 synthetic_child_sp = pos->second->GetSP(); 2025 return synthetic_child_sp; 2026 } 2027 2028 uint32_t 2029 ValueObject::GetTypeInfo (ClangASTType *pointee_or_element_clang_type) 2030 { 2031 return GetClangType().GetTypeInfo (pointee_or_element_clang_type); 2032 } 2033 2034 bool 2035 ValueObject::IsPointerType () 2036 { 2037 return GetClangType().IsPointerType(); 2038 } 2039 2040 bool 2041 ValueObject::IsArrayType () 2042 { 2043 return GetClangType().IsArrayType (NULL, NULL, NULL); 2044 } 2045 2046 bool 2047 ValueObject::IsScalarType () 2048 { 2049 return GetClangType().IsScalarType (); 2050 } 2051 2052 bool 2053 ValueObject::IsIntegerType (bool &is_signed) 2054 { 2055 return GetClangType().IsIntegerType (is_signed); 2056 } 2057 2058 bool 2059 ValueObject::IsPointerOrReferenceType () 2060 { 2061 return GetClangType().IsPointerOrReferenceType (); 2062 } 2063 2064 bool 2065 ValueObject::IsPossibleDynamicType () 2066 { 2067 ExecutionContext exe_ctx (GetExecutionContextRef()); 2068 Process *process = exe_ctx.GetProcessPtr(); 2069 if (process) 2070 return process->IsPossibleDynamicValue(*this); 2071 else 2072 return GetClangType().IsPossibleDynamicType (NULL, true, true); 2073 } 2074 2075 bool 2076 ValueObject::IsRuntimeSupportValue () 2077 { 2078 Process *process(GetProcessSP().get()); 2079 if (process) 2080 { 2081 LanguageRuntime *runtime = process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 2082 if (!runtime) 2083 runtime = process->GetObjCLanguageRuntime(); 2084 if (runtime) 2085 return runtime->IsRuntimeSupportValue(*this); 2086 } 2087 return false; 2088 } 2089 2090 bool 2091 ValueObject::IsObjCNil () 2092 { 2093 const uint32_t mask = eTypeIsObjC | eTypeIsPointer; 2094 bool isObjCpointer = (((GetClangType().GetTypeInfo(NULL)) & mask) == mask); 2095 if (!isObjCpointer) 2096 return false; 2097 bool canReadValue = true; 2098 bool isZero = GetValueAsUnsigned(0,&canReadValue) == 0; 2099 return canReadValue && isZero; 2100 } 2101 2102 // This allows you to create an array member using and index 2103 // that doesn't not fall in the normal bounds of the array. 2104 // Many times structure can be defined as: 2105 // struct Collection 2106 // { 2107 // uint32_t item_count; 2108 // Item item_array[0]; 2109 // }; 2110 // The size of the "item_array" is 1, but many times in practice 2111 // there are more items in "item_array". 2112 2113 ValueObjectSP 2114 ValueObject::GetSyntheticArrayMember (size_t index, bool can_create) 2115 { 2116 ValueObjectSP synthetic_child_sp; 2117 if (IsPointerType () || IsArrayType()) 2118 { 2119 char index_str[64]; 2120 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 2121 ConstString index_const_str(index_str); 2122 // Check if we have already created a synthetic array member in this 2123 // valid object. If we have we will re-use it. 2124 synthetic_child_sp = GetSyntheticChild (index_const_str); 2125 if (!synthetic_child_sp) 2126 { 2127 ValueObject *synthetic_child; 2128 // We haven't made a synthetic array member for INDEX yet, so 2129 // lets make one and cache it for any future reference. 2130 synthetic_child = CreateChildAtIndex(0, true, index); 2131 2132 // Cache the value if we got one back... 2133 if (synthetic_child) 2134 { 2135 AddSyntheticChild(index_const_str, synthetic_child); 2136 synthetic_child_sp = synthetic_child->GetSP(); 2137 synthetic_child_sp->SetName(ConstString(index_str)); 2138 synthetic_child_sp->m_is_array_item_for_pointer = true; 2139 } 2140 } 2141 } 2142 return synthetic_child_sp; 2143 } 2144 2145 ValueObjectSP 2146 ValueObject::GetSyntheticBitFieldChild (uint32_t from, uint32_t to, bool can_create) 2147 { 2148 ValueObjectSP synthetic_child_sp; 2149 if (IsScalarType ()) 2150 { 2151 char index_str[64]; 2152 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 2153 ConstString index_const_str(index_str); 2154 // Check if we have already created a synthetic array member in this 2155 // valid object. If we have we will re-use it. 2156 synthetic_child_sp = GetSyntheticChild (index_const_str); 2157 if (!synthetic_child_sp) 2158 { 2159 // We haven't made a synthetic array member for INDEX yet, so 2160 // lets make one and cache it for any future reference. 2161 ValueObjectChild *synthetic_child = new ValueObjectChild (*this, 2162 GetClangType(), 2163 index_const_str, 2164 GetByteSize(), 2165 0, 2166 to-from+1, 2167 from, 2168 false, 2169 false, 2170 eAddressTypeInvalid); 2171 2172 // Cache the value if we got one back... 2173 if (synthetic_child) 2174 { 2175 AddSyntheticChild(index_const_str, synthetic_child); 2176 synthetic_child_sp = synthetic_child->GetSP(); 2177 synthetic_child_sp->SetName(ConstString(index_str)); 2178 synthetic_child_sp->m_is_bitfield_for_scalar = true; 2179 } 2180 } 2181 } 2182 return synthetic_child_sp; 2183 } 2184 2185 ValueObjectSP 2186 ValueObject::GetSyntheticChildAtOffset(uint32_t offset, const ClangASTType& type, bool can_create) 2187 { 2188 2189 ValueObjectSP synthetic_child_sp; 2190 2191 char name_str[64]; 2192 snprintf(name_str, sizeof(name_str), "@%i", offset); 2193 ConstString name_const_str(name_str); 2194 2195 // Check if we have already created a synthetic array member in this 2196 // valid object. If we have we will re-use it. 2197 synthetic_child_sp = GetSyntheticChild (name_const_str); 2198 2199 if (synthetic_child_sp.get()) 2200 return synthetic_child_sp; 2201 2202 if (!can_create) 2203 return ValueObjectSP(); 2204 2205 ExecutionContext exe_ctx (GetExecutionContextRef()); 2206 2207 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2208 type, 2209 name_const_str, 2210 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), 2211 offset, 2212 0, 2213 0, 2214 false, 2215 false, 2216 eAddressTypeInvalid); 2217 if (synthetic_child) 2218 { 2219 AddSyntheticChild(name_const_str, synthetic_child); 2220 synthetic_child_sp = synthetic_child->GetSP(); 2221 synthetic_child_sp->SetName(name_const_str); 2222 synthetic_child_sp->m_is_child_at_offset = true; 2223 } 2224 return synthetic_child_sp; 2225 } 2226 2227 ValueObjectSP 2228 ValueObject::GetSyntheticBase (uint32_t offset, const ClangASTType& type, bool can_create) 2229 { 2230 ValueObjectSP synthetic_child_sp; 2231 2232 char name_str[64]; 2233 snprintf(name_str, sizeof(name_str), "%s", type.GetTypeName().AsCString("<unknown>")); 2234 ConstString name_const_str(name_str); 2235 2236 // Check if we have already created a synthetic array member in this 2237 // valid object. If we have we will re-use it. 2238 synthetic_child_sp = GetSyntheticChild (name_const_str); 2239 2240 if (synthetic_child_sp.get()) 2241 return synthetic_child_sp; 2242 2243 if (!can_create) 2244 return ValueObjectSP(); 2245 2246 const bool is_base_class = true; 2247 2248 ExecutionContext exe_ctx (GetExecutionContextRef()); 2249 2250 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2251 type, 2252 name_const_str, 2253 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), 2254 offset, 2255 0, 2256 0, 2257 is_base_class, 2258 false, 2259 eAddressTypeInvalid); 2260 if (synthetic_child) 2261 { 2262 AddSyntheticChild(name_const_str, synthetic_child); 2263 synthetic_child_sp = synthetic_child->GetSP(); 2264 synthetic_child_sp->SetName(name_const_str); 2265 } 2266 return synthetic_child_sp; 2267 } 2268 2269 2270 // your expression path needs to have a leading . or -> 2271 // (unless it somehow "looks like" an array, in which case it has 2272 // a leading [ symbol). while the [ is meaningful and should be shown 2273 // to the user, . and -> are just parser design, but by no means 2274 // added information for the user.. strip them off 2275 static const char* 2276 SkipLeadingExpressionPathSeparators(const char* expression) 2277 { 2278 if (!expression || !expression[0]) 2279 return expression; 2280 if (expression[0] == '.') 2281 return expression+1; 2282 if (expression[0] == '-' && expression[1] == '>') 2283 return expression+2; 2284 return expression; 2285 } 2286 2287 ValueObjectSP 2288 ValueObject::GetSyntheticExpressionPathChild(const char* expression, bool can_create) 2289 { 2290 ValueObjectSP synthetic_child_sp; 2291 ConstString name_const_string(expression); 2292 // Check if we have already created a synthetic array member in this 2293 // valid object. If we have we will re-use it. 2294 synthetic_child_sp = GetSyntheticChild (name_const_string); 2295 if (!synthetic_child_sp) 2296 { 2297 // We haven't made a synthetic array member for expression yet, so 2298 // lets make one and cache it for any future reference. 2299 synthetic_child_sp = GetValueForExpressionPath(expression, 2300 NULL, NULL, NULL, 2301 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None)); 2302 2303 // Cache the value if we got one back... 2304 if (synthetic_child_sp.get()) 2305 { 2306 // FIXME: this causes a "real" child to end up with its name changed to the contents of expression 2307 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 2308 synthetic_child_sp->SetName(ConstString(SkipLeadingExpressionPathSeparators(expression))); 2309 } 2310 } 2311 return synthetic_child_sp; 2312 } 2313 2314 void 2315 ValueObject::CalculateSyntheticValue (bool use_synthetic) 2316 { 2317 if (use_synthetic == false) 2318 return; 2319 2320 TargetSP target_sp(GetTargetSP()); 2321 if (target_sp && target_sp->GetEnableSyntheticValue() == false) 2322 { 2323 m_synthetic_value = NULL; 2324 return; 2325 } 2326 2327 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 2328 2329 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 2330 return; 2331 2332 if (m_synthetic_children_sp.get() == NULL) 2333 return; 2334 2335 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 2336 return; 2337 2338 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 2339 } 2340 2341 void 2342 ValueObject::CalculateDynamicValue (DynamicValueType use_dynamic) 2343 { 2344 if (use_dynamic == eNoDynamicValues) 2345 return; 2346 2347 if (!m_dynamic_value && !IsDynamic()) 2348 { 2349 ExecutionContext exe_ctx (GetExecutionContextRef()); 2350 Process *process = exe_ctx.GetProcessPtr(); 2351 if (process && process->IsPossibleDynamicValue(*this)) 2352 { 2353 ClearDynamicTypeInformation (); 2354 m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic); 2355 } 2356 } 2357 } 2358 2359 ValueObjectSP 2360 ValueObject::GetDynamicValue (DynamicValueType use_dynamic) 2361 { 2362 if (use_dynamic == eNoDynamicValues) 2363 return ValueObjectSP(); 2364 2365 if (!IsDynamic() && m_dynamic_value == NULL) 2366 { 2367 CalculateDynamicValue(use_dynamic); 2368 } 2369 if (m_dynamic_value) 2370 return m_dynamic_value->GetSP(); 2371 else 2372 return ValueObjectSP(); 2373 } 2374 2375 ValueObjectSP 2376 ValueObject::GetStaticValue() 2377 { 2378 return GetSP(); 2379 } 2380 2381 lldb::ValueObjectSP 2382 ValueObject::GetNonSyntheticValue () 2383 { 2384 return GetSP(); 2385 } 2386 2387 ValueObjectSP 2388 ValueObject::GetSyntheticValue (bool use_synthetic) 2389 { 2390 if (use_synthetic == false) 2391 return ValueObjectSP(); 2392 2393 CalculateSyntheticValue(use_synthetic); 2394 2395 if (m_synthetic_value) 2396 return m_synthetic_value->GetSP(); 2397 else 2398 return ValueObjectSP(); 2399 } 2400 2401 bool 2402 ValueObject::HasSyntheticValue() 2403 { 2404 UpdateFormatsIfNeeded(); 2405 2406 if (m_synthetic_children_sp.get() == NULL) 2407 return false; 2408 2409 CalculateSyntheticValue(true); 2410 2411 if (m_synthetic_value) 2412 return true; 2413 else 2414 return false; 2415 } 2416 2417 bool 2418 ValueObject::GetBaseClassPath (Stream &s) 2419 { 2420 if (IsBaseClass()) 2421 { 2422 bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s); 2423 ClangASTType clang_type = GetClangType(); 2424 std::string cxx_class_name; 2425 bool this_had_base_class = clang_type.GetCXXClassName (cxx_class_name); 2426 if (this_had_base_class) 2427 { 2428 if (parent_had_base_class) 2429 s.PutCString("::"); 2430 s.PutCString(cxx_class_name.c_str()); 2431 } 2432 return parent_had_base_class || this_had_base_class; 2433 } 2434 return false; 2435 } 2436 2437 2438 ValueObject * 2439 ValueObject::GetNonBaseClassParent() 2440 { 2441 if (GetParent()) 2442 { 2443 if (GetParent()->IsBaseClass()) 2444 return GetParent()->GetNonBaseClassParent(); 2445 else 2446 return GetParent(); 2447 } 2448 return NULL; 2449 } 2450 2451 2452 bool 2453 ValueObject::IsBaseClass (uint32_t& depth) 2454 { 2455 if (!IsBaseClass()) 2456 { 2457 depth = 0; 2458 return false; 2459 } 2460 if (GetParent()) 2461 { 2462 GetParent()->IsBaseClass(depth); 2463 depth = depth + 1; 2464 return true; 2465 } 2466 // TODO: a base of no parent? weird.. 2467 depth = 1; 2468 return true; 2469 } 2470 2471 void 2472 ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes, GetExpressionPathFormat epformat) 2473 { 2474 // synthetic children do not actually "exist" as part of the hierarchy, and sometimes they are consed up in ways 2475 // that don't make sense from an underlying language/API standpoint. So, use a special code path here to return 2476 // something that can hopefully be used in expression 2477 if (m_is_synthetic_children_generated) 2478 { 2479 UpdateValueIfNeeded(); 2480 2481 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) 2482 { 2483 if (IsPointerOrReferenceType()) 2484 { 2485 s.Printf("((%s)0x%" PRIx64 ")", 2486 GetTypeName().AsCString("void"), 2487 GetValueAsUnsigned(0)); 2488 return; 2489 } 2490 else 2491 { 2492 uint64_t load_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2493 if (load_addr != LLDB_INVALID_ADDRESS) 2494 { 2495 s.Printf("(*( (%s *)0x%" PRIx64 "))", 2496 GetTypeName().AsCString("void"), 2497 load_addr); 2498 return; 2499 } 2500 } 2501 } 2502 2503 if (CanProvideValue()) 2504 { 2505 s.Printf("((%s)%s)", 2506 GetTypeName().AsCString("void"), 2507 GetValueAsCString()); 2508 return; 2509 } 2510 2511 return; 2512 } 2513 2514 const bool is_deref_of_parent = IsDereferenceOfParent (); 2515 2516 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2517 { 2518 // this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely 2519 // fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName. 2520 // the eHonorPointers mode is meant to produce strings in this latter format 2521 s.PutCString("*("); 2522 } 2523 2524 ValueObject* parent = GetParent(); 2525 2526 if (parent) 2527 parent->GetExpressionPath (s, qualify_cxx_base_classes, epformat); 2528 2529 // if we are a deref_of_parent just because we are synthetic array 2530 // members made up to allow ptr[%d] syntax to work in variable 2531 // printing, then add our name ([%d]) to the expression path 2532 if (m_is_array_item_for_pointer && epformat == eGetExpressionPathFormatHonorPointers) 2533 s.PutCString(m_name.AsCString()); 2534 2535 if (!IsBaseClass()) 2536 { 2537 if (!is_deref_of_parent) 2538 { 2539 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2540 if (non_base_class_parent) 2541 { 2542 ClangASTType non_base_class_parent_clang_type = non_base_class_parent->GetClangType(); 2543 if (non_base_class_parent_clang_type) 2544 { 2545 if (parent && parent->IsDereferenceOfParent() && epformat == eGetExpressionPathFormatHonorPointers) 2546 { 2547 s.PutCString("->"); 2548 } 2549 else 2550 { 2551 const uint32_t non_base_class_parent_type_info = non_base_class_parent_clang_type.GetTypeInfo(); 2552 2553 if (non_base_class_parent_type_info & eTypeIsPointer) 2554 { 2555 s.PutCString("->"); 2556 } 2557 else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2558 !(non_base_class_parent_type_info & eTypeIsArray)) 2559 { 2560 s.PutChar('.'); 2561 } 2562 } 2563 } 2564 } 2565 2566 const char *name = GetName().GetCString(); 2567 if (name) 2568 { 2569 if (qualify_cxx_base_classes) 2570 { 2571 if (GetBaseClassPath (s)) 2572 s.PutCString("::"); 2573 } 2574 s.PutCString(name); 2575 } 2576 } 2577 } 2578 2579 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2580 { 2581 s.PutChar(')'); 2582 } 2583 } 2584 2585 ValueObjectSP 2586 ValueObject::GetValueForExpressionPath(const char* expression, 2587 const char** first_unparsed, 2588 ExpressionPathScanEndReason* reason_to_stop, 2589 ExpressionPathEndResultType* final_value_type, 2590 const GetValueForExpressionPathOptions& options, 2591 ExpressionPathAftermath* final_task_on_target) 2592 { 2593 2594 const char* dummy_first_unparsed; 2595 ExpressionPathScanEndReason dummy_reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnknown; 2596 ExpressionPathEndResultType dummy_final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2597 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2598 2599 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2600 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2601 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2602 final_value_type ? final_value_type : &dummy_final_value_type, 2603 options, 2604 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2605 2606 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2607 return ret_val; 2608 2609 if (ret_val.get() && ((final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress of plain objects 2610 { 2611 if ( (final_task_on_target ? *final_task_on_target : dummy_final_task_on_target) == ValueObject::eExpressionPathAftermathDereference) 2612 { 2613 Error error; 2614 ValueObjectSP final_value = ret_val->Dereference(error); 2615 if (error.Fail() || !final_value.get()) 2616 { 2617 if (reason_to_stop) 2618 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2619 if (final_value_type) 2620 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2621 return ValueObjectSP(); 2622 } 2623 else 2624 { 2625 if (final_task_on_target) 2626 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2627 return final_value; 2628 } 2629 } 2630 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2631 { 2632 Error error; 2633 ValueObjectSP final_value = ret_val->AddressOf(error); 2634 if (error.Fail() || !final_value.get()) 2635 { 2636 if (reason_to_stop) 2637 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2638 if (final_value_type) 2639 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2640 return ValueObjectSP(); 2641 } 2642 else 2643 { 2644 if (final_task_on_target) 2645 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2646 return final_value; 2647 } 2648 } 2649 } 2650 return ret_val; // final_task_on_target will still have its original value, so you know I did not do it 2651 } 2652 2653 int 2654 ValueObject::GetValuesForExpressionPath(const char* expression, 2655 ValueObjectListSP& list, 2656 const char** first_unparsed, 2657 ExpressionPathScanEndReason* reason_to_stop, 2658 ExpressionPathEndResultType* final_value_type, 2659 const GetValueForExpressionPathOptions& options, 2660 ExpressionPathAftermath* final_task_on_target) 2661 { 2662 const char* dummy_first_unparsed; 2663 ExpressionPathScanEndReason dummy_reason_to_stop; 2664 ExpressionPathEndResultType dummy_final_value_type; 2665 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2666 2667 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2668 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2669 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2670 final_value_type ? final_value_type : &dummy_final_value_type, 2671 options, 2672 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2673 2674 if (!ret_val.get()) // if there are errors, I add nothing to the list 2675 return 0; 2676 2677 if ( (reason_to_stop ? *reason_to_stop : dummy_reason_to_stop) != eExpressionPathScanEndReasonArrayRangeOperatorMet) 2678 { 2679 // I need not expand a range, just post-process the final value and return 2680 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2681 { 2682 list->Append(ret_val); 2683 return 1; 2684 } 2685 if (ret_val.get() && (final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain) // I can only deref and takeaddress of plain objects 2686 { 2687 if (*final_task_on_target == ValueObject::eExpressionPathAftermathDereference) 2688 { 2689 Error error; 2690 ValueObjectSP final_value = ret_val->Dereference(error); 2691 if (error.Fail() || !final_value.get()) 2692 { 2693 if (reason_to_stop) 2694 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2695 if (final_value_type) 2696 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2697 return 0; 2698 } 2699 else 2700 { 2701 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2702 list->Append(final_value); 2703 return 1; 2704 } 2705 } 2706 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2707 { 2708 Error error; 2709 ValueObjectSP final_value = ret_val->AddressOf(error); 2710 if (error.Fail() || !final_value.get()) 2711 { 2712 if (reason_to_stop) 2713 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2714 if (final_value_type) 2715 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2716 return 0; 2717 } 2718 else 2719 { 2720 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2721 list->Append(final_value); 2722 return 1; 2723 } 2724 } 2725 } 2726 } 2727 else 2728 { 2729 return ExpandArraySliceExpression(first_unparsed ? *first_unparsed : dummy_first_unparsed, 2730 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2731 ret_val, 2732 list, 2733 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2734 final_value_type ? final_value_type : &dummy_final_value_type, 2735 options, 2736 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2737 } 2738 // in any non-covered case, just do the obviously right thing 2739 list->Append(ret_val); 2740 return 1; 2741 } 2742 2743 ValueObjectSP 2744 ValueObject::GetValueForExpressionPath_Impl(const char* expression_cstr, 2745 const char** first_unparsed, 2746 ExpressionPathScanEndReason* reason_to_stop, 2747 ExpressionPathEndResultType* final_result, 2748 const GetValueForExpressionPathOptions& options, 2749 ExpressionPathAftermath* what_next) 2750 { 2751 ValueObjectSP root = GetSP(); 2752 2753 if (!root.get()) 2754 return ValueObjectSP(); 2755 2756 *first_unparsed = expression_cstr; 2757 2758 while (true) 2759 { 2760 2761 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 2762 2763 ClangASTType root_clang_type = root->GetClangType(); 2764 ClangASTType pointee_clang_type; 2765 Flags pointee_clang_type_info; 2766 2767 Flags root_clang_type_info(root_clang_type.GetTypeInfo(&pointee_clang_type)); 2768 if (pointee_clang_type) 2769 pointee_clang_type_info.Reset(pointee_clang_type.GetTypeInfo()); 2770 2771 if (!expression_cstr || *expression_cstr == '\0') 2772 { 2773 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2774 return root; 2775 } 2776 2777 switch (*expression_cstr) 2778 { 2779 case '-': 2780 { 2781 if (options.m_check_dot_vs_arrow_syntax && 2782 root_clang_type_info.Test(eTypeIsPointer) ) // if you are trying to use -> on a non-pointer and I must catch the error 2783 { 2784 *first_unparsed = expression_cstr; 2785 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2786 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2787 return ValueObjectSP(); 2788 } 2789 if (root_clang_type_info.Test(eTypeIsObjC) && // if yo are trying to extract an ObjC IVar when this is forbidden 2790 root_clang_type_info.Test(eTypeIsPointer) && 2791 options.m_no_fragile_ivar) 2792 { 2793 *first_unparsed = expression_cstr; 2794 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2795 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2796 return ValueObjectSP(); 2797 } 2798 if (expression_cstr[1] != '>') 2799 { 2800 *first_unparsed = expression_cstr; 2801 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2802 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2803 return ValueObjectSP(); 2804 } 2805 expression_cstr++; // skip the - 2806 } 2807 case '.': // or fallthrough from -> 2808 { 2809 if (options.m_check_dot_vs_arrow_syntax && *expression_cstr == '.' && 2810 root_clang_type_info.Test(eTypeIsPointer)) // if you are trying to use . on a pointer and I must catch the error 2811 { 2812 *first_unparsed = expression_cstr; 2813 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2814 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2815 return ValueObjectSP(); 2816 } 2817 expression_cstr++; // skip . 2818 const char *next_separator = strpbrk(expression_cstr+1,"-.["); 2819 ConstString child_name; 2820 if (!next_separator) // if no other separator just expand this last layer 2821 { 2822 child_name.SetCString (expression_cstr); 2823 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2824 2825 if (child_valobj_sp.get()) // we know we are done, so just return 2826 { 2827 *first_unparsed = ""; 2828 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2829 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2830 return child_valobj_sp; 2831 } 2832 else 2833 { 2834 switch (options.m_synthetic_children_traversal) 2835 { 2836 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None: 2837 break; 2838 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic: 2839 if (root->IsSynthetic()) 2840 { 2841 child_valobj_sp = root->GetNonSyntheticValue(); 2842 if (child_valobj_sp.get()) 2843 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2844 } 2845 break; 2846 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic: 2847 if (!root->IsSynthetic()) 2848 { 2849 child_valobj_sp = root->GetSyntheticValue(); 2850 if (child_valobj_sp.get()) 2851 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2852 } 2853 break; 2854 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both: 2855 if (root->IsSynthetic()) 2856 { 2857 child_valobj_sp = root->GetNonSyntheticValue(); 2858 if (child_valobj_sp.get()) 2859 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2860 } 2861 else 2862 { 2863 child_valobj_sp = root->GetSyntheticValue(); 2864 if (child_valobj_sp.get()) 2865 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2866 } 2867 break; 2868 } 2869 } 2870 2871 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2872 // so we hit the "else" branch, and return an error 2873 if(child_valobj_sp.get()) // if it worked, just return 2874 { 2875 *first_unparsed = ""; 2876 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2877 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2878 return child_valobj_sp; 2879 } 2880 else 2881 { 2882 *first_unparsed = expression_cstr; 2883 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2884 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2885 return ValueObjectSP(); 2886 } 2887 } 2888 else // other layers do expand 2889 { 2890 child_name.SetCStringWithLength(expression_cstr, next_separator - expression_cstr); 2891 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2892 if (child_valobj_sp.get()) // store the new root and move on 2893 { 2894 root = child_valobj_sp; 2895 *first_unparsed = next_separator; 2896 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2897 continue; 2898 } 2899 else 2900 { 2901 switch (options.m_synthetic_children_traversal) 2902 { 2903 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None: 2904 break; 2905 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic: 2906 if (root->IsSynthetic()) 2907 { 2908 child_valobj_sp = root->GetNonSyntheticValue(); 2909 if (child_valobj_sp.get()) 2910 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2911 } 2912 break; 2913 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic: 2914 if (!root->IsSynthetic()) 2915 { 2916 child_valobj_sp = root->GetSyntheticValue(); 2917 if (child_valobj_sp.get()) 2918 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2919 } 2920 break; 2921 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both: 2922 if (root->IsSynthetic()) 2923 { 2924 child_valobj_sp = root->GetNonSyntheticValue(); 2925 if (child_valobj_sp.get()) 2926 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2927 } 2928 else 2929 { 2930 child_valobj_sp = root->GetSyntheticValue(); 2931 if (child_valobj_sp.get()) 2932 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2933 } 2934 break; 2935 } 2936 } 2937 2938 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2939 // so we hit the "else" branch, and return an error 2940 if(child_valobj_sp.get()) // if it worked, move on 2941 { 2942 root = child_valobj_sp; 2943 *first_unparsed = next_separator; 2944 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2945 continue; 2946 } 2947 else 2948 { 2949 *first_unparsed = expression_cstr; 2950 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2951 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2952 return ValueObjectSP(); 2953 } 2954 } 2955 break; 2956 } 2957 case '[': 2958 { 2959 if (!root_clang_type_info.Test(eTypeIsArray) && !root_clang_type_info.Test(eTypeIsPointer) && !root_clang_type_info.Test(eTypeIsVector)) // if this is not a T[] nor a T* 2960 { 2961 if (!root_clang_type_info.Test(eTypeIsScalar)) // if this is not even a scalar... 2962 { 2963 if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None) // ...only chance left is synthetic 2964 { 2965 *first_unparsed = expression_cstr; 2966 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2967 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2968 return ValueObjectSP(); 2969 } 2970 } 2971 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 2972 { 2973 *first_unparsed = expression_cstr; 2974 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2975 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2976 return ValueObjectSP(); 2977 } 2978 } 2979 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 2980 { 2981 if (!root_clang_type_info.Test(eTypeIsArray)) 2982 { 2983 *first_unparsed = expression_cstr; 2984 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2985 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2986 return ValueObjectSP(); 2987 } 2988 else // even if something follows, we cannot expand unbounded ranges, just let the caller do it 2989 { 2990 *first_unparsed = expression_cstr+2; 2991 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2992 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2993 return root; 2994 } 2995 } 2996 const char *separator_position = ::strchr(expression_cstr+1,'-'); 2997 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 2998 if (!close_bracket_position) // if there is no ], this is a syntax error 2999 { 3000 *first_unparsed = expression_cstr; 3001 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3002 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3003 return ValueObjectSP(); 3004 } 3005 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3006 { 3007 char *end = NULL; 3008 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3009 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3010 { 3011 *first_unparsed = expression_cstr; 3012 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3013 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3014 return ValueObjectSP(); 3015 } 3016 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3017 { 3018 if (root_clang_type_info.Test(eTypeIsArray)) 3019 { 3020 *first_unparsed = expression_cstr+2; 3021 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3022 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 3023 return root; 3024 } 3025 else 3026 { 3027 *first_unparsed = expression_cstr; 3028 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3029 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3030 return ValueObjectSP(); 3031 } 3032 } 3033 // from here on we do have a valid index 3034 if (root_clang_type_info.Test(eTypeIsArray)) 3035 { 3036 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 3037 if (!child_valobj_sp) 3038 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 3039 if (!child_valobj_sp) 3040 if (root->HasSyntheticValue() && root->GetSyntheticValue()->GetNumChildren() > index) 3041 child_valobj_sp = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3042 if (child_valobj_sp) 3043 { 3044 root = child_valobj_sp; 3045 *first_unparsed = end+1; // skip ] 3046 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3047 continue; 3048 } 3049 else 3050 { 3051 *first_unparsed = expression_cstr; 3052 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3053 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3054 return ValueObjectSP(); 3055 } 3056 } 3057 else if (root_clang_type_info.Test(eTypeIsPointer)) 3058 { 3059 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3060 pointee_clang_type_info.Test(eTypeIsScalar)) 3061 { 3062 Error error; 3063 root = root->Dereference(error); 3064 if (error.Fail() || !root.get()) 3065 { 3066 *first_unparsed = expression_cstr; 3067 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3068 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3069 return ValueObjectSP(); 3070 } 3071 else 3072 { 3073 *what_next = eExpressionPathAftermathNothing; 3074 continue; 3075 } 3076 } 3077 else 3078 { 3079 if (root->GetClangType().GetMinimumLanguage() == eLanguageTypeObjC 3080 && pointee_clang_type_info.AllClear(eTypeIsPointer) 3081 && root->HasSyntheticValue() 3082 && (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic || 3083 options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both)) 3084 { 3085 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3086 } 3087 else 3088 root = root->GetSyntheticArrayMember(index, true); 3089 if (!root.get()) 3090 { 3091 *first_unparsed = expression_cstr; 3092 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3093 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3094 return ValueObjectSP(); 3095 } 3096 else 3097 { 3098 *first_unparsed = end+1; // skip ] 3099 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3100 continue; 3101 } 3102 } 3103 } 3104 else if (root_clang_type_info.Test(eTypeIsScalar)) 3105 { 3106 root = root->GetSyntheticBitFieldChild(index, index, true); 3107 if (!root.get()) 3108 { 3109 *first_unparsed = expression_cstr; 3110 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3111 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3112 return ValueObjectSP(); 3113 } 3114 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3115 { 3116 *first_unparsed = end+1; // skip ] 3117 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3118 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3119 return root; 3120 } 3121 } 3122 else if (root_clang_type_info.Test(eTypeIsVector)) 3123 { 3124 root = root->GetChildAtIndex(index, true); 3125 if (!root.get()) 3126 { 3127 *first_unparsed = expression_cstr; 3128 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3129 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3130 return ValueObjectSP(); 3131 } 3132 else 3133 { 3134 *first_unparsed = end+1; // skip ] 3135 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3136 continue; 3137 } 3138 } 3139 else if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic || 3140 options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both) 3141 { 3142 if (root->HasSyntheticValue()) 3143 root = root->GetSyntheticValue(); 3144 else if (!root->IsSynthetic()) 3145 { 3146 *first_unparsed = expression_cstr; 3147 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3148 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3149 return ValueObjectSP(); 3150 } 3151 // if we are here, then root itself is a synthetic VO.. should be good to go 3152 3153 if (!root.get()) 3154 { 3155 *first_unparsed = expression_cstr; 3156 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3157 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3158 return ValueObjectSP(); 3159 } 3160 root = root->GetChildAtIndex(index, true); 3161 if (!root.get()) 3162 { 3163 *first_unparsed = expression_cstr; 3164 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3165 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3166 return ValueObjectSP(); 3167 } 3168 else 3169 { 3170 *first_unparsed = end+1; // skip ] 3171 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3172 continue; 3173 } 3174 } 3175 else 3176 { 3177 *first_unparsed = expression_cstr; 3178 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3179 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3180 return ValueObjectSP(); 3181 } 3182 } 3183 else // we have a low and a high index 3184 { 3185 char *end = NULL; 3186 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3187 if (!end || end != separator_position) // if something weird is in our way return an error 3188 { 3189 *first_unparsed = expression_cstr; 3190 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3191 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3192 return ValueObjectSP(); 3193 } 3194 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3195 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3196 { 3197 *first_unparsed = expression_cstr; 3198 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3199 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3200 return ValueObjectSP(); 3201 } 3202 if (index_lower > index_higher) // swap indices if required 3203 { 3204 unsigned long temp = index_lower; 3205 index_lower = index_higher; 3206 index_higher = temp; 3207 } 3208 if (root_clang_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3209 { 3210 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3211 if (!root.get()) 3212 { 3213 *first_unparsed = expression_cstr; 3214 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3215 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3216 return ValueObjectSP(); 3217 } 3218 else 3219 { 3220 *first_unparsed = end+1; // skip ] 3221 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3222 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3223 return root; 3224 } 3225 } 3226 else if (root_clang_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3227 *what_next == ValueObject::eExpressionPathAftermathDereference && 3228 pointee_clang_type_info.Test(eTypeIsScalar)) 3229 { 3230 Error error; 3231 root = root->Dereference(error); 3232 if (error.Fail() || !root.get()) 3233 { 3234 *first_unparsed = expression_cstr; 3235 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3236 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3237 return ValueObjectSP(); 3238 } 3239 else 3240 { 3241 *what_next = ValueObject::eExpressionPathAftermathNothing; 3242 continue; 3243 } 3244 } 3245 else 3246 { 3247 *first_unparsed = expression_cstr; 3248 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3249 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 3250 return root; 3251 } 3252 } 3253 break; 3254 } 3255 default: // some non-separator is in the way 3256 { 3257 *first_unparsed = expression_cstr; 3258 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3259 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3260 return ValueObjectSP(); 3261 break; 3262 } 3263 } 3264 } 3265 } 3266 3267 int 3268 ValueObject::ExpandArraySliceExpression(const char* expression_cstr, 3269 const char** first_unparsed, 3270 ValueObjectSP root, 3271 ValueObjectListSP& list, 3272 ExpressionPathScanEndReason* reason_to_stop, 3273 ExpressionPathEndResultType* final_result, 3274 const GetValueForExpressionPathOptions& options, 3275 ExpressionPathAftermath* what_next) 3276 { 3277 if (!root.get()) 3278 return 0; 3279 3280 *first_unparsed = expression_cstr; 3281 3282 while (true) 3283 { 3284 3285 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 3286 3287 ClangASTType root_clang_type = root->GetClangType(); 3288 ClangASTType pointee_clang_type; 3289 Flags pointee_clang_type_info; 3290 Flags root_clang_type_info(root_clang_type.GetTypeInfo(&pointee_clang_type)); 3291 if (pointee_clang_type) 3292 pointee_clang_type_info.Reset(pointee_clang_type.GetTypeInfo()); 3293 3294 if (!expression_cstr || *expression_cstr == '\0') 3295 { 3296 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 3297 list->Append(root); 3298 return 1; 3299 } 3300 3301 switch (*expression_cstr) 3302 { 3303 case '[': 3304 { 3305 if (!root_clang_type_info.Test(eTypeIsArray) && !root_clang_type_info.Test(eTypeIsPointer)) // if this is not a T[] nor a T* 3306 { 3307 if (!root_clang_type_info.Test(eTypeIsScalar)) // if this is not even a scalar, this syntax is just plain wrong! 3308 { 3309 *first_unparsed = expression_cstr; 3310 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 3311 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3312 return 0; 3313 } 3314 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 3315 { 3316 *first_unparsed = expression_cstr; 3317 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 3318 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3319 return 0; 3320 } 3321 } 3322 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 3323 { 3324 if (!root_clang_type_info.Test(eTypeIsArray)) 3325 { 3326 *first_unparsed = expression_cstr; 3327 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3328 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3329 return 0; 3330 } 3331 else // expand this into list 3332 { 3333 const size_t max_index = root->GetNumChildren() - 1; 3334 for (size_t index = 0; index < max_index; index++) 3335 { 3336 ValueObjectSP child = 3337 root->GetChildAtIndex(index, true); 3338 list->Append(child); 3339 } 3340 *first_unparsed = expression_cstr+2; 3341 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3342 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3343 return max_index; // tell me number of items I added to the VOList 3344 } 3345 } 3346 const char *separator_position = ::strchr(expression_cstr+1,'-'); 3347 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 3348 if (!close_bracket_position) // if there is no ], this is a syntax error 3349 { 3350 *first_unparsed = expression_cstr; 3351 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3352 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3353 return 0; 3354 } 3355 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3356 { 3357 char *end = NULL; 3358 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3359 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3360 { 3361 *first_unparsed = expression_cstr; 3362 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3363 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3364 return 0; 3365 } 3366 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3367 { 3368 if (root_clang_type_info.Test(eTypeIsArray)) 3369 { 3370 const size_t max_index = root->GetNumChildren() - 1; 3371 for (size_t index = 0; index < max_index; index++) 3372 { 3373 ValueObjectSP child = 3374 root->GetChildAtIndex(index, true); 3375 list->Append(child); 3376 } 3377 *first_unparsed = expression_cstr+2; 3378 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3379 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3380 return max_index; // tell me number of items I added to the VOList 3381 } 3382 else 3383 { 3384 *first_unparsed = expression_cstr; 3385 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3386 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3387 return 0; 3388 } 3389 } 3390 // from here on we do have a valid index 3391 if (root_clang_type_info.Test(eTypeIsArray)) 3392 { 3393 root = root->GetChildAtIndex(index, true); 3394 if (!root.get()) 3395 { 3396 *first_unparsed = expression_cstr; 3397 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3398 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3399 return 0; 3400 } 3401 else 3402 { 3403 list->Append(root); 3404 *first_unparsed = end+1; // skip ] 3405 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3406 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3407 return 1; 3408 } 3409 } 3410 else if (root_clang_type_info.Test(eTypeIsPointer)) 3411 { 3412 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3413 pointee_clang_type_info.Test(eTypeIsScalar)) 3414 { 3415 Error error; 3416 root = root->Dereference(error); 3417 if (error.Fail() || !root.get()) 3418 { 3419 *first_unparsed = expression_cstr; 3420 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3421 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3422 return 0; 3423 } 3424 else 3425 { 3426 *what_next = eExpressionPathAftermathNothing; 3427 continue; 3428 } 3429 } 3430 else 3431 { 3432 root = root->GetSyntheticArrayMember(index, true); 3433 if (!root.get()) 3434 { 3435 *first_unparsed = expression_cstr; 3436 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3437 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3438 return 0; 3439 } 3440 else 3441 { 3442 list->Append(root); 3443 *first_unparsed = end+1; // skip ] 3444 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3445 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3446 return 1; 3447 } 3448 } 3449 } 3450 else /*if (ClangASTContext::IsScalarType(root_clang_type))*/ 3451 { 3452 root = root->GetSyntheticBitFieldChild(index, index, true); 3453 if (!root.get()) 3454 { 3455 *first_unparsed = expression_cstr; 3456 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3457 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3458 return 0; 3459 } 3460 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3461 { 3462 list->Append(root); 3463 *first_unparsed = end+1; // skip ] 3464 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3465 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3466 return 1; 3467 } 3468 } 3469 } 3470 else // we have a low and a high index 3471 { 3472 char *end = NULL; 3473 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3474 if (!end || end != separator_position) // if something weird is in our way return an error 3475 { 3476 *first_unparsed = expression_cstr; 3477 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3478 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3479 return 0; 3480 } 3481 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3482 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3483 { 3484 *first_unparsed = expression_cstr; 3485 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3486 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3487 return 0; 3488 } 3489 if (index_lower > index_higher) // swap indices if required 3490 { 3491 unsigned long temp = index_lower; 3492 index_lower = index_higher; 3493 index_higher = temp; 3494 } 3495 if (root_clang_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3496 { 3497 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3498 if (!root.get()) 3499 { 3500 *first_unparsed = expression_cstr; 3501 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3502 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3503 return 0; 3504 } 3505 else 3506 { 3507 list->Append(root); 3508 *first_unparsed = end+1; // skip ] 3509 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3510 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3511 return 1; 3512 } 3513 } 3514 else if (root_clang_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3515 *what_next == ValueObject::eExpressionPathAftermathDereference && 3516 pointee_clang_type_info.Test(eTypeIsScalar)) 3517 { 3518 Error error; 3519 root = root->Dereference(error); 3520 if (error.Fail() || !root.get()) 3521 { 3522 *first_unparsed = expression_cstr; 3523 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3524 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3525 return 0; 3526 } 3527 else 3528 { 3529 *what_next = ValueObject::eExpressionPathAftermathNothing; 3530 continue; 3531 } 3532 } 3533 else 3534 { 3535 for (unsigned long index = index_lower; 3536 index <= index_higher; index++) 3537 { 3538 ValueObjectSP child = 3539 root->GetChildAtIndex(index, true); 3540 list->Append(child); 3541 } 3542 *first_unparsed = end+1; 3543 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3544 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3545 return index_higher-index_lower+1; // tell me number of items I added to the VOList 3546 } 3547 } 3548 break; 3549 } 3550 default: // some non-[ separator, or something entirely wrong, is in the way 3551 { 3552 *first_unparsed = expression_cstr; 3553 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3554 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3555 return 0; 3556 break; 3557 } 3558 } 3559 } 3560 } 3561 3562 void 3563 ValueObject::LogValueObject (Log *log) 3564 { 3565 if (log) 3566 return LogValueObject (log, DumpValueObjectOptions::DefaultOptions()); 3567 } 3568 3569 void 3570 ValueObject::LogValueObject (Log *log, const DumpValueObjectOptions& options) 3571 { 3572 if (log) 3573 { 3574 StreamString s; 3575 Dump (s, options); 3576 if (s.GetSize()) 3577 log->PutCString(s.GetData()); 3578 } 3579 } 3580 3581 void 3582 ValueObject::Dump (Stream &s) 3583 { 3584 Dump (s, DumpValueObjectOptions::DefaultOptions()); 3585 } 3586 3587 void 3588 ValueObject::Dump (Stream &s, 3589 const DumpValueObjectOptions& options) 3590 { 3591 ValueObjectPrinter printer(this,&s,options); 3592 printer.PrintValueObject(); 3593 } 3594 3595 ValueObjectSP 3596 ValueObject::CreateConstantValue (const ConstString &name) 3597 { 3598 ValueObjectSP valobj_sp; 3599 3600 if (UpdateValueIfNeeded(false) && m_error.Success()) 3601 { 3602 ExecutionContext exe_ctx (GetExecutionContextRef()); 3603 3604 DataExtractor data; 3605 data.SetByteOrder (m_data.GetByteOrder()); 3606 data.SetAddressByteSize(m_data.GetAddressByteSize()); 3607 3608 if (IsBitfield()) 3609 { 3610 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 3611 m_error = v.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3612 } 3613 else 3614 m_error = m_value.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3615 3616 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3617 GetClangType(), 3618 name, 3619 data, 3620 GetAddressOf()); 3621 } 3622 3623 if (!valobj_sp) 3624 { 3625 ExecutionContext exe_ctx (GetExecutionContextRef()); 3626 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), m_error); 3627 } 3628 return valobj_sp; 3629 } 3630 3631 ValueObjectSP 3632 ValueObject::GetQualifiedRepresentationIfAvailable (lldb::DynamicValueType dynValue, 3633 bool synthValue) 3634 { 3635 ValueObjectSP result_sp(GetSP()); 3636 3637 switch (dynValue) 3638 { 3639 case lldb::eDynamicCanRunTarget: 3640 case lldb::eDynamicDontRunTarget: 3641 { 3642 if (!result_sp->IsDynamic()) 3643 { 3644 if (result_sp->GetDynamicValue(dynValue)) 3645 result_sp = result_sp->GetDynamicValue(dynValue); 3646 } 3647 } 3648 break; 3649 case lldb::eNoDynamicValues: 3650 { 3651 if (result_sp->IsDynamic()) 3652 { 3653 if (result_sp->GetStaticValue()) 3654 result_sp = result_sp->GetStaticValue(); 3655 } 3656 } 3657 break; 3658 } 3659 3660 if (synthValue) 3661 { 3662 if (!result_sp->IsSynthetic()) 3663 { 3664 if (result_sp->GetSyntheticValue()) 3665 result_sp = result_sp->GetSyntheticValue(); 3666 } 3667 } 3668 else 3669 { 3670 if (result_sp->IsSynthetic()) 3671 { 3672 if (result_sp->GetNonSyntheticValue()) 3673 result_sp = result_sp->GetNonSyntheticValue(); 3674 } 3675 } 3676 3677 return result_sp; 3678 } 3679 3680 lldb::addr_t 3681 ValueObject::GetCPPVTableAddress (AddressType &address_type) 3682 { 3683 ClangASTType pointee_type; 3684 ClangASTType this_type(GetClangType()); 3685 uint32_t type_info = this_type.GetTypeInfo(&pointee_type); 3686 if (type_info) 3687 { 3688 bool ptr_or_ref = false; 3689 if (type_info & (eTypeIsPointer | eTypeIsReference)) 3690 { 3691 ptr_or_ref = true; 3692 type_info = pointee_type.GetTypeInfo(); 3693 } 3694 3695 const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus; 3696 if ((type_info & cpp_class) == cpp_class) 3697 { 3698 if (ptr_or_ref) 3699 { 3700 address_type = GetAddressTypeOfChildren(); 3701 return GetValueAsUnsigned(LLDB_INVALID_ADDRESS); 3702 } 3703 else 3704 return GetAddressOf (false, &address_type); 3705 } 3706 } 3707 3708 address_type = eAddressTypeInvalid; 3709 return LLDB_INVALID_ADDRESS; 3710 } 3711 3712 ValueObjectSP 3713 ValueObject::Dereference (Error &error) 3714 { 3715 if (m_deref_valobj) 3716 return m_deref_valobj->GetSP(); 3717 3718 const bool is_pointer_type = IsPointerType(); 3719 if (is_pointer_type) 3720 { 3721 bool omit_empty_base_classes = true; 3722 bool ignore_array_bounds = false; 3723 3724 std::string child_name_str; 3725 uint32_t child_byte_size = 0; 3726 int32_t child_byte_offset = 0; 3727 uint32_t child_bitfield_bit_size = 0; 3728 uint32_t child_bitfield_bit_offset = 0; 3729 bool child_is_base_class = false; 3730 bool child_is_deref_of_parent = false; 3731 const bool transparent_pointers = false; 3732 ClangASTType clang_type = GetClangType(); 3733 ClangASTType child_clang_type; 3734 3735 ExecutionContext exe_ctx (GetExecutionContextRef()); 3736 3737 child_clang_type = clang_type.GetChildClangTypeAtIndex (&exe_ctx, 3738 0, 3739 transparent_pointers, 3740 omit_empty_base_classes, 3741 ignore_array_bounds, 3742 child_name_str, 3743 child_byte_size, 3744 child_byte_offset, 3745 child_bitfield_bit_size, 3746 child_bitfield_bit_offset, 3747 child_is_base_class, 3748 child_is_deref_of_parent, 3749 this); 3750 if (child_clang_type && child_byte_size) 3751 { 3752 ConstString child_name; 3753 if (!child_name_str.empty()) 3754 child_name.SetCString (child_name_str.c_str()); 3755 3756 m_deref_valobj = new ValueObjectChild (*this, 3757 child_clang_type, 3758 child_name, 3759 child_byte_size, 3760 child_byte_offset, 3761 child_bitfield_bit_size, 3762 child_bitfield_bit_offset, 3763 child_is_base_class, 3764 child_is_deref_of_parent, 3765 eAddressTypeInvalid); 3766 } 3767 } 3768 3769 if (m_deref_valobj) 3770 { 3771 error.Clear(); 3772 return m_deref_valobj->GetSP(); 3773 } 3774 else 3775 { 3776 StreamString strm; 3777 GetExpressionPath(strm, true); 3778 3779 if (is_pointer_type) 3780 error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3781 else 3782 error.SetErrorStringWithFormat("not a pointer type: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3783 return ValueObjectSP(); 3784 } 3785 } 3786 3787 ValueObjectSP 3788 ValueObject::AddressOf (Error &error) 3789 { 3790 if (m_addr_of_valobj_sp) 3791 return m_addr_of_valobj_sp; 3792 3793 AddressType address_type = eAddressTypeInvalid; 3794 const bool scalar_is_load_address = false; 3795 addr_t addr = GetAddressOf (scalar_is_load_address, &address_type); 3796 error.Clear(); 3797 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) 3798 { 3799 switch (address_type) 3800 { 3801 case eAddressTypeInvalid: 3802 { 3803 StreamString expr_path_strm; 3804 GetExpressionPath(expr_path_strm, true); 3805 error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str()); 3806 } 3807 break; 3808 3809 case eAddressTypeFile: 3810 case eAddressTypeLoad: 3811 { 3812 ClangASTType clang_type = GetClangType(); 3813 if (clang_type) 3814 { 3815 std::string name (1, '&'); 3816 name.append (m_name.AsCString("")); 3817 ExecutionContext exe_ctx (GetExecutionContextRef()); 3818 m_addr_of_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3819 clang_type.GetPointerType(), 3820 ConstString (name.c_str()), 3821 addr, 3822 eAddressTypeInvalid, 3823 m_data.GetAddressByteSize()); 3824 } 3825 } 3826 break; 3827 default: 3828 break; 3829 } 3830 } 3831 else 3832 { 3833 StreamString expr_path_strm; 3834 GetExpressionPath(expr_path_strm, true); 3835 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", expr_path_strm.GetString().c_str()); 3836 } 3837 3838 return m_addr_of_valobj_sp; 3839 } 3840 3841 ValueObjectSP 3842 ValueObject::Cast (const ClangASTType &clang_ast_type) 3843 { 3844 return ValueObjectCast::Create (*this, GetName(), clang_ast_type); 3845 } 3846 3847 ValueObjectSP 3848 ValueObject::CastPointerType (const char *name, ClangASTType &clang_ast_type) 3849 { 3850 ValueObjectSP valobj_sp; 3851 AddressType address_type; 3852 addr_t ptr_value = GetPointerValue (&address_type); 3853 3854 if (ptr_value != LLDB_INVALID_ADDRESS) 3855 { 3856 Address ptr_addr (ptr_value); 3857 ExecutionContext exe_ctx (GetExecutionContextRef()); 3858 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3859 name, 3860 ptr_addr, 3861 clang_ast_type); 3862 } 3863 return valobj_sp; 3864 } 3865 3866 ValueObjectSP 3867 ValueObject::CastPointerType (const char *name, TypeSP &type_sp) 3868 { 3869 ValueObjectSP valobj_sp; 3870 AddressType address_type; 3871 addr_t ptr_value = GetPointerValue (&address_type); 3872 3873 if (ptr_value != LLDB_INVALID_ADDRESS) 3874 { 3875 Address ptr_addr (ptr_value); 3876 ExecutionContext exe_ctx (GetExecutionContextRef()); 3877 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3878 name, 3879 ptr_addr, 3880 type_sp); 3881 } 3882 return valobj_sp; 3883 } 3884 3885 ValueObject::EvaluationPoint::EvaluationPoint () : 3886 m_mod_id(), 3887 m_exe_ctx_ref(), 3888 m_needs_update (true) 3889 { 3890 } 3891 3892 ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected): 3893 m_mod_id(), 3894 m_exe_ctx_ref(), 3895 m_needs_update (true) 3896 { 3897 ExecutionContext exe_ctx(exe_scope); 3898 TargetSP target_sp (exe_ctx.GetTargetSP()); 3899 if (target_sp) 3900 { 3901 m_exe_ctx_ref.SetTargetSP (target_sp); 3902 ProcessSP process_sp (exe_ctx.GetProcessSP()); 3903 if (!process_sp) 3904 process_sp = target_sp->GetProcessSP(); 3905 3906 if (process_sp) 3907 { 3908 m_mod_id = process_sp->GetModID(); 3909 m_exe_ctx_ref.SetProcessSP (process_sp); 3910 3911 ThreadSP thread_sp (exe_ctx.GetThreadSP()); 3912 3913 if (!thread_sp) 3914 { 3915 if (use_selected) 3916 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 3917 } 3918 3919 if (thread_sp) 3920 { 3921 m_exe_ctx_ref.SetThreadSP(thread_sp); 3922 3923 StackFrameSP frame_sp (exe_ctx.GetFrameSP()); 3924 if (!frame_sp) 3925 { 3926 if (use_selected) 3927 frame_sp = thread_sp->GetSelectedFrame(); 3928 } 3929 if (frame_sp) 3930 m_exe_ctx_ref.SetFrameSP(frame_sp); 3931 } 3932 } 3933 } 3934 } 3935 3936 ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) : 3937 m_mod_id(), 3938 m_exe_ctx_ref(rhs.m_exe_ctx_ref), 3939 m_needs_update (true) 3940 { 3941 } 3942 3943 ValueObject::EvaluationPoint::~EvaluationPoint () 3944 { 3945 } 3946 3947 // This function checks the EvaluationPoint against the current process state. If the current 3948 // state matches the evaluation point, or the evaluation point is already invalid, then we return 3949 // false, meaning "no change". If the current state is different, we update our state, and return 3950 // true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so 3951 // future calls to NeedsUpdate will return true. 3952 // exe_scope will be set to the current execution context scope. 3953 3954 bool 3955 ValueObject::EvaluationPoint::SyncWithProcessState(bool accept_invalid_exe_ctx) 3956 { 3957 // Start with the target, if it is NULL, then we're obviously not going to get any further: 3958 const bool thread_and_frame_only_if_stopped = true; 3959 ExecutionContext exe_ctx(m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3960 3961 if (exe_ctx.GetTargetPtr() == NULL) 3962 return false; 3963 3964 // If we don't have a process nothing can change. 3965 Process *process = exe_ctx.GetProcessPtr(); 3966 if (process == NULL) 3967 return false; 3968 3969 // If our stop id is the current stop ID, nothing has changed: 3970 ProcessModID current_mod_id = process->GetModID(); 3971 3972 // If the current stop id is 0, either we haven't run yet, or the process state has been cleared. 3973 // In either case, we aren't going to be able to sync with the process state. 3974 if (current_mod_id.GetStopID() == 0) 3975 return false; 3976 3977 bool changed = false; 3978 const bool was_valid = m_mod_id.IsValid(); 3979 if (was_valid) 3980 { 3981 if (m_mod_id == current_mod_id) 3982 { 3983 // Everything is already up to date in this object, no need to 3984 // update the execution context scope. 3985 changed = false; 3986 } 3987 else 3988 { 3989 m_mod_id = current_mod_id; 3990 m_needs_update = true; 3991 changed = true; 3992 } 3993 } 3994 3995 // Now re-look up the thread and frame in case the underlying objects have gone away & been recreated. 3996 // That way we'll be sure to return a valid exe_scope. 3997 // If we used to have a thread or a frame but can't find it anymore, then mark ourselves as invalid. 3998 3999 if (!accept_invalid_exe_ctx) 4000 { 4001 if (m_exe_ctx_ref.HasThreadRef()) 4002 { 4003 ThreadSP thread_sp (m_exe_ctx_ref.GetThreadSP()); 4004 if (thread_sp) 4005 { 4006 if (m_exe_ctx_ref.HasFrameRef()) 4007 { 4008 StackFrameSP frame_sp (m_exe_ctx_ref.GetFrameSP()); 4009 if (!frame_sp) 4010 { 4011 // We used to have a frame, but now it is gone 4012 SetInvalid(); 4013 changed = was_valid; 4014 } 4015 } 4016 } 4017 else 4018 { 4019 // We used to have a thread, but now it is gone 4020 SetInvalid(); 4021 changed = was_valid; 4022 } 4023 } 4024 } 4025 4026 return changed; 4027 } 4028 4029 void 4030 ValueObject::EvaluationPoint::SetUpdated () 4031 { 4032 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 4033 if (process_sp) 4034 m_mod_id = process_sp->GetModID(); 4035 m_needs_update = false; 4036 } 4037 4038 4039 4040 void 4041 ValueObject::ClearUserVisibleData(uint32_t clear_mask) 4042 { 4043 if ((clear_mask & eClearUserVisibleDataItemsValue) == eClearUserVisibleDataItemsValue) 4044 m_value_str.clear(); 4045 4046 if ((clear_mask & eClearUserVisibleDataItemsLocation) == eClearUserVisibleDataItemsLocation) 4047 m_location_str.clear(); 4048 4049 if ((clear_mask & eClearUserVisibleDataItemsSummary) == eClearUserVisibleDataItemsSummary) 4050 m_summary_str.clear(); 4051 4052 if ((clear_mask & eClearUserVisibleDataItemsDescription) == eClearUserVisibleDataItemsDescription) 4053 m_object_desc_str.clear(); 4054 4055 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == eClearUserVisibleDataItemsSyntheticChildren) 4056 { 4057 if (m_synthetic_value) 4058 m_synthetic_value = NULL; 4059 } 4060 4061 if ((clear_mask & eClearUserVisibleDataItemsValidator) == eClearUserVisibleDataItemsValidator) 4062 m_validation_result.reset(); 4063 } 4064 4065 SymbolContextScope * 4066 ValueObject::GetSymbolContextScope() 4067 { 4068 if (m_parent) 4069 { 4070 if (!m_parent->IsPointerOrReferenceType()) 4071 return m_parent->GetSymbolContextScope(); 4072 } 4073 return NULL; 4074 } 4075 4076 lldb::ValueObjectSP 4077 ValueObject::CreateValueObjectFromExpression (const char* name, 4078 const char* expression, 4079 const ExecutionContext& exe_ctx) 4080 { 4081 return CreateValueObjectFromExpression(name, expression, exe_ctx, EvaluateExpressionOptions()); 4082 } 4083 4084 4085 lldb::ValueObjectSP 4086 ValueObject::CreateValueObjectFromExpression (const char* name, 4087 const char* expression, 4088 const ExecutionContext& exe_ctx, 4089 const EvaluateExpressionOptions& options) 4090 { 4091 lldb::ValueObjectSP retval_sp; 4092 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 4093 if (!target_sp) 4094 return retval_sp; 4095 if (!expression || !*expression) 4096 return retval_sp; 4097 target_sp->EvaluateExpression (expression, 4098 exe_ctx.GetFrameSP().get(), 4099 retval_sp, 4100 options); 4101 if (retval_sp && name && *name) 4102 retval_sp->SetName(ConstString(name)); 4103 return retval_sp; 4104 } 4105 4106 lldb::ValueObjectSP 4107 ValueObject::CreateValueObjectFromAddress (const char* name, 4108 uint64_t address, 4109 const ExecutionContext& exe_ctx, 4110 ClangASTType type) 4111 { 4112 if (type) 4113 { 4114 ClangASTType pointer_type(type.GetPointerType()); 4115 if (pointer_type) 4116 { 4117 lldb::DataBufferSP buffer(new lldb_private::DataBufferHeap(&address,sizeof(lldb::addr_t))); 4118 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4119 pointer_type, 4120 ConstString(name), 4121 buffer, 4122 exe_ctx.GetByteOrder(), 4123 exe_ctx.GetAddressByteSize())); 4124 if (ptr_result_valobj_sp) 4125 { 4126 ptr_result_valobj_sp->GetValue().SetValueType(Value::eValueTypeLoadAddress); 4127 Error err; 4128 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 4129 if (ptr_result_valobj_sp && name && *name) 4130 ptr_result_valobj_sp->SetName(ConstString(name)); 4131 } 4132 return ptr_result_valobj_sp; 4133 } 4134 } 4135 return lldb::ValueObjectSP(); 4136 } 4137 4138 lldb::ValueObjectSP 4139 ValueObject::CreateValueObjectFromData (const char* name, 4140 const DataExtractor& data, 4141 const ExecutionContext& exe_ctx, 4142 ClangASTType type) 4143 { 4144 lldb::ValueObjectSP new_value_sp; 4145 new_value_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4146 type, 4147 ConstString(name), 4148 data, 4149 LLDB_INVALID_ADDRESS); 4150 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 4151 if (new_value_sp && name && *name) 4152 new_value_sp->SetName(ConstString(name)); 4153 return new_value_sp; 4154 } 4155 4156 ModuleSP 4157 ValueObject::GetModule () 4158 { 4159 ValueObject* root(GetRoot()); 4160 if (root != this) 4161 return root->GetModule(); 4162 return lldb::ModuleSP(); 4163 } 4164 4165 ValueObject* 4166 ValueObject::GetRoot () 4167 { 4168 if (m_root) 4169 return m_root; 4170 return (m_root = FollowParentChain( [] (ValueObject* vo) -> bool { 4171 return (vo->m_parent != nullptr); 4172 })); 4173 } 4174 4175 ValueObject* 4176 ValueObject::FollowParentChain (std::function<bool(ValueObject*)> f) 4177 { 4178 ValueObject* vo = this; 4179 while (vo) 4180 { 4181 if (f(vo) == false) 4182 break; 4183 vo = vo->m_parent; 4184 } 4185 return vo; 4186 } 4187 4188 AddressType 4189 ValueObject::GetAddressTypeOfChildren() 4190 { 4191 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) 4192 { 4193 ValueObject* root(GetRoot()); 4194 if (root != this) 4195 return root->GetAddressTypeOfChildren(); 4196 } 4197 return m_address_type_of_ptr_or_ref_children; 4198 } 4199 4200 lldb::DynamicValueType 4201 ValueObject::GetDynamicValueType () 4202 { 4203 ValueObject* with_dv_info = this; 4204 while (with_dv_info) 4205 { 4206 if (with_dv_info->HasDynamicValueTypeInfo()) 4207 return with_dv_info->GetDynamicValueTypeImpl(); 4208 with_dv_info = with_dv_info->m_parent; 4209 } 4210 return lldb::eNoDynamicValues; 4211 } 4212 4213 lldb::Format 4214 ValueObject::GetFormat () const 4215 { 4216 const ValueObject* with_fmt_info = this; 4217 while (with_fmt_info) 4218 { 4219 if (with_fmt_info->m_format != lldb::eFormatDefault) 4220 return with_fmt_info->m_format; 4221 with_fmt_info = with_fmt_info->m_parent; 4222 } 4223 return m_format; 4224 } 4225 4226 lldb::LanguageType 4227 ValueObject::GetPreferredDisplayLanguage () 4228 { 4229 lldb::LanguageType type = m_preferred_display_language; 4230 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 4231 { 4232 if (GetRoot()) 4233 { 4234 if (GetRoot() == this) 4235 { 4236 if (StackFrameSP frame_sp = GetFrameSP()) 4237 { 4238 const SymbolContext& sc(frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 4239 if (CompileUnit* cu = sc.comp_unit) 4240 type = cu->GetLanguage(); 4241 } 4242 } 4243 else 4244 { 4245 type = GetRoot()->GetPreferredDisplayLanguage(); 4246 } 4247 } 4248 } 4249 return (m_preferred_display_language = type); // only compute it once 4250 } 4251 4252 void 4253 ValueObject::SetPreferredDisplayLanguage (lldb::LanguageType lt) 4254 { 4255 m_preferred_display_language = lt; 4256 } 4257 4258 bool 4259 ValueObject::CanProvideValue () 4260 { 4261 // we need to support invalid types as providers of values because some bare-board 4262 // debugging scenarios have no notion of types, but still manage to have raw numeric 4263 // values for things like registers. sigh. 4264 const ClangASTType &type(GetClangType()); 4265 return (false == type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 4266 } 4267 4268 bool 4269 ValueObject::IsChecksumEmpty () 4270 { 4271 return m_value_checksum.empty(); 4272 } 4273 4274 ValueObjectSP 4275 ValueObject::Persist () 4276 { 4277 if (!UpdateValueIfNeeded()) 4278 return nullptr; 4279 4280 TargetSP target_sp(GetTargetSP()); 4281 if (!target_sp) 4282 return nullptr; 4283 4284 ConstString name(target_sp->GetPersistentVariables().GetNextPersistentVariableName()); 4285 4286 ClangExpressionVariableSP clang_var_sp(new ClangExpressionVariable(target_sp.get(), GetValue(), name)); 4287 if (clang_var_sp) 4288 { 4289 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 4290 clang_var_sp->m_flags |= ClangExpressionVariable::EVIsProgramReference; 4291 target_sp->GetPersistentVariables().AddVariable(clang_var_sp); 4292 } 4293 4294 return clang_var_sp->GetValueObject(); 4295 } 4296 4297 bool 4298 ValueObject::IsSyntheticChildrenGenerated () 4299 { 4300 return m_is_synthetic_children_generated; 4301 } 4302 4303 void 4304 ValueObject::SetSyntheticChildrenGenerated (bool b) 4305 { 4306 m_is_synthetic_children_generated = b; 4307 } 4308