1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/TypeValidator.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Symbol/ClangASTContext.h" 29 #include "lldb/Symbol/CompileUnit.h" 30 #include "lldb/Symbol/CompilerType.h" 31 #include "lldb/Symbol/Declaration.h" 32 #include "lldb/Symbol/SymbolContext.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/ObjCLanguageRuntime.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/StackFrame.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Target/Thread.h" 42 #include "lldb/Target/ThreadList.h" 43 #include "lldb/Utility/DataBuffer.h" 44 #include "lldb/Utility/DataBufferHeap.h" 45 #include "lldb/Utility/Flags.h" 46 #include "lldb/Utility/Log.h" 47 #include "lldb/Utility/Logging.h" 48 #include "lldb/Utility/Scalar.h" 49 #include "lldb/Utility/SharingPtr.h" 50 #include "lldb/Utility/Stream.h" 51 #include "lldb/Utility/StreamString.h" 52 #include "lldb/lldb-private-types.h" 53 54 #include "llvm/Support/Compiler.h" 55 56 #include <algorithm> 57 #include <cstdint> 58 #include <cstdlib> 59 #include <memory> 60 #include <tuple> 61 62 #include <assert.h> 63 #include <inttypes.h> 64 #include <stdio.h> 65 #include <string.h> 66 67 namespace lldb_private { 68 class ExecutionContextScope; 69 } 70 namespace lldb_private { 71 class SymbolContextScope; 72 } 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace lldb_utility; 77 78 static user_id_t g_value_obj_uid = 0; 79 80 //---------------------------------------------------------------------- 81 // ValueObject constructor 82 //---------------------------------------------------------------------- 83 ValueObject::ValueObject(ValueObject &parent) 84 : UserID(++g_value_obj_uid), // Unique identifier for every value object 85 m_parent(&parent), m_root(NULL), m_update_point(parent.GetUpdatePoint()), 86 m_name(), m_data(), m_value(), m_error(), m_value_str(), 87 m_old_value_str(), m_location_str(), m_summary_str(), m_object_desc_str(), 88 m_validation_result(), m_manager(parent.GetManager()), m_children(), 89 m_synthetic_children(), m_dynamic_value(NULL), m_synthetic_value(NULL), 90 m_deref_valobj(NULL), m_format(eFormatDefault), 91 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 92 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 93 m_type_validator_sp(), m_user_id_of_forced_summary(), 94 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 95 m_value_checksum(), 96 m_preferred_display_language(lldb::eLanguageTypeUnknown), 97 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 98 m_children_count_valid(false), m_old_value_valid(false), 99 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 100 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 101 m_is_getting_summary(false), 102 m_did_calculate_complete_objc_class_type(false), 103 m_is_synthetic_children_generated( 104 parent.m_is_synthetic_children_generated) { 105 m_manager->ManageObject(this); 106 } 107 108 //---------------------------------------------------------------------- 109 // ValueObject constructor 110 //---------------------------------------------------------------------- 111 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 112 AddressType child_ptr_or_ref_addr_type) 113 : UserID(++g_value_obj_uid), // Unique identifier for every value object 114 m_parent(NULL), m_root(NULL), m_update_point(exe_scope), m_name(), 115 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 116 m_location_str(), m_summary_str(), m_object_desc_str(), 117 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 118 m_dynamic_value(NULL), m_synthetic_value(NULL), m_deref_valobj(NULL), 119 m_format(eFormatDefault), m_last_format(eFormatDefault), 120 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 121 m_synthetic_children_sp(), m_type_validator_sp(), 122 m_user_id_of_forced_summary(), 123 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 124 m_value_checksum(), 125 m_preferred_display_language(lldb::eLanguageTypeUnknown), 126 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 127 m_children_count_valid(false), m_old_value_valid(false), 128 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 129 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 130 m_is_getting_summary(false), 131 m_did_calculate_complete_objc_class_type(false), 132 m_is_synthetic_children_generated(false) { 133 m_manager = new ValueObjectManager(); 134 m_manager->ManageObject(this); 135 } 136 137 //---------------------------------------------------------------------- 138 // Destructor 139 //---------------------------------------------------------------------- 140 ValueObject::~ValueObject() {} 141 142 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 143 144 bool did_change_formats = false; 145 146 if (update_format) 147 did_change_formats = UpdateFormatsIfNeeded(); 148 149 // If this is a constant value, then our success is predicated on whether we 150 // have an error or not 151 if (GetIsConstant()) { 152 // if you are constant, things might still have changed behind your back 153 // (e.g. you are a frozen object and things have changed deeper than you 154 // cared to freeze-dry yourself) in this case, your value has not changed, 155 // but "computed" entries might have, so you might now have a different 156 // summary, or a different object description. clear these so we will 157 // recompute them 158 if (update_format && !did_change_formats) 159 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 160 eClearUserVisibleDataItemsDescription); 161 return m_error.Success(); 162 } 163 164 bool first_update = IsChecksumEmpty(); 165 166 if (NeedsUpdating()) { 167 m_update_point.SetUpdated(); 168 169 // Save the old value using swap to avoid a string copy which also will 170 // clear our m_value_str 171 if (m_value_str.empty()) { 172 m_old_value_valid = false; 173 } else { 174 m_old_value_valid = true; 175 m_old_value_str.swap(m_value_str); 176 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 177 } 178 179 ClearUserVisibleData(); 180 181 if (IsInScope()) { 182 const bool value_was_valid = GetValueIsValid(); 183 SetValueDidChange(false); 184 185 m_error.Clear(); 186 187 // Call the pure virtual function to update the value 188 189 bool need_compare_checksums = false; 190 llvm::SmallVector<uint8_t, 16> old_checksum; 191 192 if (!first_update && CanProvideValue()) { 193 need_compare_checksums = true; 194 old_checksum.resize(m_value_checksum.size()); 195 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 196 old_checksum.begin()); 197 } 198 199 bool success = UpdateValue(); 200 201 SetValueIsValid(success); 202 203 if (success) { 204 const uint64_t max_checksum_size = 128; 205 m_data.Checksum(m_value_checksum, max_checksum_size); 206 } else { 207 need_compare_checksums = false; 208 m_value_checksum.clear(); 209 } 210 211 assert(!need_compare_checksums || 212 (!old_checksum.empty() && !m_value_checksum.empty())); 213 214 if (first_update) 215 SetValueDidChange(false); 216 else if (!m_value_did_change && !success) { 217 // The value wasn't gotten successfully, so we mark this as changed if 218 // the value used to be valid and now isn't 219 SetValueDidChange(value_was_valid); 220 } else if (need_compare_checksums) { 221 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 222 m_value_checksum.size())); 223 } 224 225 } else { 226 m_error.SetErrorString("out of scope"); 227 } 228 } 229 return m_error.Success(); 230 } 231 232 bool ValueObject::UpdateFormatsIfNeeded() { 233 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 234 if (log) 235 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject " 236 "rev: %d - Global rev: %d", 237 GetName().GetCString(), static_cast<void *>(this), 238 m_last_format_mgr_revision, 239 DataVisualization::GetCurrentRevision()); 240 241 bool any_change = false; 242 243 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 244 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 245 any_change = true; 246 247 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 248 SetSummaryFormat( 249 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 250 #ifndef LLDB_DISABLE_PYTHON 251 SetSyntheticChildren( 252 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 253 #endif 254 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 255 } 256 257 return any_change; 258 } 259 260 void ValueObject::SetNeedsUpdate() { 261 m_update_point.SetNeedsUpdate(); 262 // We have to clear the value string here so ConstResult children will notice 263 // if their values are changed by hand (i.e. with SetValueAsCString). 264 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 265 } 266 267 void ValueObject::ClearDynamicTypeInformation() { 268 m_children_count_valid = false; 269 m_did_calculate_complete_objc_class_type = false; 270 m_last_format_mgr_revision = 0; 271 m_override_type = CompilerType(); 272 SetValueFormat(lldb::TypeFormatImplSP()); 273 SetSummaryFormat(lldb::TypeSummaryImplSP()); 274 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 275 } 276 277 CompilerType ValueObject::MaybeCalculateCompleteType() { 278 CompilerType compiler_type(GetCompilerTypeImpl()); 279 280 if (m_did_calculate_complete_objc_class_type) { 281 if (m_override_type.IsValid()) 282 return m_override_type; 283 else 284 return compiler_type; 285 } 286 287 CompilerType class_type; 288 bool is_pointer_type = false; 289 290 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) { 291 is_pointer_type = true; 292 } else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) { 293 class_type = compiler_type; 294 } else { 295 return compiler_type; 296 } 297 298 m_did_calculate_complete_objc_class_type = true; 299 300 if (class_type) { 301 ConstString class_name(class_type.GetConstTypeName()); 302 303 if (class_name) { 304 ProcessSP process_sp( 305 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 306 307 if (process_sp) { 308 ObjCLanguageRuntime *objc_language_runtime( 309 process_sp->GetObjCLanguageRuntime()); 310 311 if (objc_language_runtime) { 312 TypeSP complete_objc_class_type_sp = 313 objc_language_runtime->LookupInCompleteClassCache(class_name); 314 315 if (complete_objc_class_type_sp) { 316 CompilerType complete_class( 317 complete_objc_class_type_sp->GetFullCompilerType()); 318 319 if (complete_class.GetCompleteType()) { 320 if (is_pointer_type) { 321 m_override_type = complete_class.GetPointerType(); 322 } else { 323 m_override_type = complete_class; 324 } 325 326 if (m_override_type.IsValid()) 327 return m_override_type; 328 } 329 } 330 } 331 } 332 } 333 } 334 return compiler_type; 335 } 336 337 CompilerType ValueObject::GetCompilerType() { 338 return MaybeCalculateCompleteType(); 339 } 340 341 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 342 343 DataExtractor &ValueObject::GetDataExtractor() { 344 UpdateValueIfNeeded(false); 345 return m_data; 346 } 347 348 const Status &ValueObject::GetError() { 349 UpdateValueIfNeeded(false); 350 return m_error; 351 } 352 353 ConstString ValueObject::GetName() const { return m_name; } 354 355 const char *ValueObject::GetLocationAsCString() { 356 return GetLocationAsCStringImpl(m_value, m_data); 357 } 358 359 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 360 const DataExtractor &data) { 361 if (UpdateValueIfNeeded(false)) { 362 if (m_location_str.empty()) { 363 StreamString sstr; 364 365 Value::ValueType value_type = value.GetValueType(); 366 367 switch (value_type) { 368 case Value::eValueTypeScalar: 369 case Value::eValueTypeVector: 370 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 371 RegisterInfo *reg_info = value.GetRegisterInfo(); 372 if (reg_info) { 373 if (reg_info->name) 374 m_location_str = reg_info->name; 375 else if (reg_info->alt_name) 376 m_location_str = reg_info->alt_name; 377 if (m_location_str.empty()) 378 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 379 ? "vector" 380 : "scalar"; 381 } 382 } 383 if (m_location_str.empty()) 384 m_location_str = 385 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 386 break; 387 388 case Value::eValueTypeLoadAddress: 389 case Value::eValueTypeFileAddress: 390 case Value::eValueTypeHostAddress: { 391 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 392 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 393 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 394 m_location_str = sstr.GetString(); 395 } break; 396 } 397 } 398 } 399 return m_location_str.c_str(); 400 } 401 402 Value &ValueObject::GetValue() { return m_value; } 403 404 const Value &ValueObject::GetValue() const { return m_value; } 405 406 bool ValueObject::ResolveValue(Scalar &scalar) { 407 if (UpdateValueIfNeeded( 408 false)) // make sure that you are up to date before returning anything 409 { 410 ExecutionContext exe_ctx(GetExecutionContextRef()); 411 Value tmp_value(m_value); 412 scalar = tmp_value.ResolveValue(&exe_ctx); 413 if (scalar.IsValid()) { 414 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 415 if (bitfield_bit_size) 416 return scalar.ExtractBitfield(bitfield_bit_size, 417 GetBitfieldBitOffset()); 418 return true; 419 } 420 } 421 return false; 422 } 423 424 bool ValueObject::IsLogicalTrue(Status &error) { 425 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 426 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 427 switch (is_logical_true) { 428 case eLazyBoolYes: 429 case eLazyBoolNo: 430 return (is_logical_true == true); 431 case eLazyBoolCalculate: 432 break; 433 } 434 } 435 436 Scalar scalar_value; 437 438 if (!ResolveValue(scalar_value)) { 439 error.SetErrorString("failed to get a scalar result"); 440 return false; 441 } 442 443 bool ret; 444 ret = scalar_value.ULongLong(1) != 0; 445 error.Clear(); 446 return ret; 447 } 448 449 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 450 451 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 452 453 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 454 455 void ValueObject::SetValueDidChange(bool value_changed) { 456 m_value_did_change = value_changed; 457 } 458 459 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 460 ValueObjectSP child_sp; 461 // We may need to update our value if we are dynamic 462 if (IsPossibleDynamicType()) 463 UpdateValueIfNeeded(false); 464 if (idx < GetNumChildren()) { 465 // Check if we have already made the child value object? 466 if (can_create && !m_children.HasChildAtIndex(idx)) { 467 // No we haven't created the child at this index, so lets have our 468 // subclass do it and cache the result for quick future access. 469 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 470 } 471 472 ValueObject *child = m_children.GetChildAtIndex(idx); 473 if (child != NULL) 474 return child->GetSP(); 475 } 476 return child_sp; 477 } 478 479 lldb::ValueObjectSP 480 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 481 size_t *index_of_error) { 482 if (idxs.size() == 0) 483 return GetSP(); 484 ValueObjectSP root(GetSP()); 485 for (size_t idx : idxs) { 486 root = root->GetChildAtIndex(idx, true); 487 if (!root) { 488 if (index_of_error) 489 *index_of_error = idx; 490 return root; 491 } 492 } 493 return root; 494 } 495 496 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 497 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 498 if (idxs.size() == 0) 499 return GetSP(); 500 ValueObjectSP root(GetSP()); 501 for (std::pair<size_t, bool> idx : idxs) { 502 root = root->GetChildAtIndex(idx.first, idx.second); 503 if (!root) { 504 if (index_of_error) 505 *index_of_error = idx.first; 506 return root; 507 } 508 } 509 return root; 510 } 511 512 lldb::ValueObjectSP 513 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 514 ConstString *name_of_error) { 515 if (names.size() == 0) 516 return GetSP(); 517 ValueObjectSP root(GetSP()); 518 for (ConstString name : names) { 519 root = root->GetChildMemberWithName(name, true); 520 if (!root) { 521 if (name_of_error) 522 *name_of_error = name; 523 return root; 524 } 525 } 526 return root; 527 } 528 529 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 530 llvm::ArrayRef<std::pair<ConstString, bool>> names, 531 ConstString *name_of_error) { 532 if (names.size() == 0) 533 return GetSP(); 534 ValueObjectSP root(GetSP()); 535 for (std::pair<ConstString, bool> name : names) { 536 root = root->GetChildMemberWithName(name.first, name.second); 537 if (!root) { 538 if (name_of_error) 539 *name_of_error = name.first; 540 return root; 541 } 542 } 543 return root; 544 } 545 546 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 547 bool omit_empty_base_classes = true; 548 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 549 omit_empty_base_classes); 550 } 551 552 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 553 bool can_create) { 554 // when getting a child by name, it could be buried inside some base classes 555 // (which really aren't part of the expression path), so we need a vector of 556 // indexes that can get us down to the correct child 557 ValueObjectSP child_sp; 558 559 // We may need to update our value if we are dynamic 560 if (IsPossibleDynamicType()) 561 UpdateValueIfNeeded(false); 562 563 std::vector<uint32_t> child_indexes; 564 bool omit_empty_base_classes = true; 565 const size_t num_child_indexes = 566 GetCompilerType().GetIndexOfChildMemberWithName( 567 name.GetCString(), omit_empty_base_classes, child_indexes); 568 if (num_child_indexes > 0) { 569 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 570 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 571 572 child_sp = GetChildAtIndex(*pos, can_create); 573 for (++pos; pos != end; ++pos) { 574 if (child_sp) { 575 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 576 child_sp = new_child_sp; 577 } else { 578 child_sp.reset(); 579 } 580 } 581 } 582 return child_sp; 583 } 584 585 size_t ValueObject::GetNumChildren(uint32_t max) { 586 UpdateValueIfNeeded(); 587 588 if (max < UINT32_MAX) { 589 if (m_children_count_valid) { 590 size_t children_count = m_children.GetChildrenCount(); 591 return children_count <= max ? children_count : max; 592 } else 593 return CalculateNumChildren(max); 594 } 595 596 if (!m_children_count_valid) { 597 SetNumChildren(CalculateNumChildren()); 598 } 599 return m_children.GetChildrenCount(); 600 } 601 602 bool ValueObject::MightHaveChildren() { 603 bool has_children = false; 604 const uint32_t type_info = GetTypeInfo(); 605 if (type_info) { 606 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 607 has_children = true; 608 } else { 609 has_children = GetNumChildren() > 0; 610 } 611 return has_children; 612 } 613 614 // Should only be called by ValueObject::GetNumChildren() 615 void ValueObject::SetNumChildren(size_t num_children) { 616 m_children_count_valid = true; 617 m_children.SetChildrenCount(num_children); 618 } 619 620 void ValueObject::SetName(ConstString name) { m_name = name; } 621 622 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 623 bool synthetic_array_member, 624 int32_t synthetic_index) { 625 ValueObject *valobj = NULL; 626 627 bool omit_empty_base_classes = true; 628 bool ignore_array_bounds = synthetic_array_member; 629 std::string child_name_str; 630 uint32_t child_byte_size = 0; 631 int32_t child_byte_offset = 0; 632 uint32_t child_bitfield_bit_size = 0; 633 uint32_t child_bitfield_bit_offset = 0; 634 bool child_is_base_class = false; 635 bool child_is_deref_of_parent = false; 636 uint64_t language_flags = 0; 637 638 const bool transparent_pointers = !synthetic_array_member; 639 CompilerType child_compiler_type; 640 641 ExecutionContext exe_ctx(GetExecutionContextRef()); 642 643 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 644 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 645 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 646 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 647 child_is_deref_of_parent, this, language_flags); 648 if (child_compiler_type) { 649 if (synthetic_index) 650 child_byte_offset += child_byte_size * synthetic_index; 651 652 ConstString child_name; 653 if (!child_name_str.empty()) 654 child_name.SetCString(child_name_str.c_str()); 655 656 valobj = new ValueObjectChild( 657 *this, child_compiler_type, child_name, child_byte_size, 658 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 659 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 660 language_flags); 661 } 662 663 return valobj; 664 } 665 666 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 667 std::string &destination, 668 lldb::LanguageType lang) { 669 return GetSummaryAsCString(summary_ptr, destination, 670 TypeSummaryOptions().SetLanguage(lang)); 671 } 672 673 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 674 std::string &destination, 675 const TypeSummaryOptions &options) { 676 destination.clear(); 677 678 // ideally we would like to bail out if passing NULL, but if we do so we end 679 // up not providing the summary for function pointers anymore 680 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 681 return false; 682 683 m_is_getting_summary = true; 684 685 TypeSummaryOptions actual_options(options); 686 687 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 688 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 689 690 // this is a hot path in code and we prefer to avoid setting this string all 691 // too often also clearing out other information that we might care to see in 692 // a crash log. might be useful in very specific situations though. 693 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 694 Summary provider's description is %s", 695 GetTypeName().GetCString(), 696 GetName().GetCString(), 697 summary_ptr->GetDescription().c_str());*/ 698 699 if (UpdateValueIfNeeded(false) && summary_ptr) { 700 if (HasSyntheticValue()) 701 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 702 // the synthetic children being 703 // up-to-date (e.g. ${svar%#}) 704 summary_ptr->FormatObject(this, destination, actual_options); 705 } 706 m_is_getting_summary = false; 707 return !destination.empty(); 708 } 709 710 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 711 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 712 TypeSummaryOptions summary_options; 713 summary_options.SetLanguage(lang); 714 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 715 summary_options); 716 } 717 if (m_summary_str.empty()) 718 return NULL; 719 return m_summary_str.c_str(); 720 } 721 722 bool ValueObject::GetSummaryAsCString(std::string &destination, 723 const TypeSummaryOptions &options) { 724 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 725 } 726 727 bool ValueObject::IsCStringContainer(bool check_pointer) { 728 CompilerType pointee_or_element_compiler_type; 729 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 730 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 731 pointee_or_element_compiler_type.IsCharType()); 732 if (!is_char_arr_ptr) 733 return false; 734 if (!check_pointer) 735 return true; 736 if (type_flags.Test(eTypeIsArray)) 737 return true; 738 addr_t cstr_address = LLDB_INVALID_ADDRESS; 739 AddressType cstr_address_type = eAddressTypeInvalid; 740 cstr_address = GetAddressOf(true, &cstr_address_type); 741 return (cstr_address != LLDB_INVALID_ADDRESS); 742 } 743 744 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 745 uint32_t item_count) { 746 CompilerType pointee_or_element_compiler_type; 747 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 748 const bool is_pointer_type = type_info & eTypeIsPointer; 749 const bool is_array_type = type_info & eTypeIsArray; 750 if (!(is_pointer_type || is_array_type)) 751 return 0; 752 753 if (item_count == 0) 754 return 0; 755 756 ExecutionContext exe_ctx(GetExecutionContextRef()); 757 758 llvm::Optional<uint64_t> item_type_size = 759 pointee_or_element_compiler_type.GetByteSize( 760 exe_ctx.GetBestExecutionContextScope()); 761 if (!item_type_size) 762 return 0; 763 const uint64_t bytes = item_count * *item_type_size; 764 const uint64_t offset = item_idx * *item_type_size; 765 766 if (item_idx == 0 && item_count == 1) // simply a deref 767 { 768 if (is_pointer_type) { 769 Status error; 770 ValueObjectSP pointee_sp = Dereference(error); 771 if (error.Fail() || pointee_sp.get() == NULL) 772 return 0; 773 return pointee_sp->GetData(data, error); 774 } else { 775 ValueObjectSP child_sp = GetChildAtIndex(0, true); 776 if (child_sp.get() == NULL) 777 return 0; 778 Status error; 779 return child_sp->GetData(data, error); 780 } 781 return true; 782 } else /* (items > 1) */ 783 { 784 Status error; 785 lldb_private::DataBufferHeap *heap_buf_ptr = NULL; 786 lldb::DataBufferSP data_sp(heap_buf_ptr = 787 new lldb_private::DataBufferHeap()); 788 789 AddressType addr_type; 790 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 791 : GetAddressOf(true, &addr_type); 792 793 switch (addr_type) { 794 case eAddressTypeFile: { 795 ModuleSP module_sp(GetModule()); 796 if (module_sp) { 797 addr = addr + offset; 798 Address so_addr; 799 module_sp->ResolveFileAddress(addr, so_addr); 800 ExecutionContext exe_ctx(GetExecutionContextRef()); 801 Target *target = exe_ctx.GetTargetPtr(); 802 if (target) { 803 heap_buf_ptr->SetByteSize(bytes); 804 size_t bytes_read = target->ReadMemory( 805 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 806 if (error.Success()) { 807 data.SetData(data_sp); 808 return bytes_read; 809 } 810 } 811 } 812 } break; 813 case eAddressTypeLoad: { 814 ExecutionContext exe_ctx(GetExecutionContextRef()); 815 Process *process = exe_ctx.GetProcessPtr(); 816 if (process) { 817 heap_buf_ptr->SetByteSize(bytes); 818 size_t bytes_read = process->ReadMemory( 819 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 820 if (error.Success() || bytes_read > 0) { 821 data.SetData(data_sp); 822 return bytes_read; 823 } 824 } 825 } break; 826 case eAddressTypeHost: { 827 auto max_bytes = 828 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 829 if (max_bytes && *max_bytes > offset) { 830 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 831 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 832 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 833 break; 834 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 835 data.SetData(data_sp); 836 return bytes_read; 837 } 838 } break; 839 case eAddressTypeInvalid: 840 break; 841 } 842 } 843 return 0; 844 } 845 846 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 847 UpdateValueIfNeeded(false); 848 ExecutionContext exe_ctx(GetExecutionContextRef()); 849 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 850 if (error.Fail()) { 851 if (m_data.GetByteSize()) { 852 data = m_data; 853 error.Clear(); 854 return data.GetByteSize(); 855 } else { 856 return 0; 857 } 858 } 859 data.SetAddressByteSize(m_data.GetAddressByteSize()); 860 data.SetByteOrder(m_data.GetByteOrder()); 861 return data.GetByteSize(); 862 } 863 864 bool ValueObject::SetData(DataExtractor &data, Status &error) { 865 error.Clear(); 866 // Make sure our value is up to date first so that our location and location 867 // type is valid. 868 if (!UpdateValueIfNeeded(false)) { 869 error.SetErrorString("unable to read value"); 870 return false; 871 } 872 873 uint64_t count = 0; 874 const Encoding encoding = GetCompilerType().GetEncoding(count); 875 876 const size_t byte_size = GetByteSize(); 877 878 Value::ValueType value_type = m_value.GetValueType(); 879 880 switch (value_type) { 881 case Value::eValueTypeScalar: { 882 Status set_error = 883 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 884 885 if (!set_error.Success()) { 886 error.SetErrorStringWithFormat("unable to set scalar value: %s", 887 set_error.AsCString()); 888 return false; 889 } 890 } break; 891 case Value::eValueTypeLoadAddress: { 892 // If it is a load address, then the scalar value is the storage location 893 // of the data, and we have to shove this value down to that load location. 894 ExecutionContext exe_ctx(GetExecutionContextRef()); 895 Process *process = exe_ctx.GetProcessPtr(); 896 if (process) { 897 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 898 size_t bytes_written = process->WriteMemory( 899 target_addr, data.GetDataStart(), byte_size, error); 900 if (!error.Success()) 901 return false; 902 if (bytes_written != byte_size) { 903 error.SetErrorString("unable to write value to memory"); 904 return false; 905 } 906 } 907 } break; 908 case Value::eValueTypeHostAddress: { 909 // If it is a host address, then we stuff the scalar as a DataBuffer into 910 // the Value's data. 911 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 912 m_data.SetData(buffer_sp, 0); 913 data.CopyByteOrderedData(0, byte_size, 914 const_cast<uint8_t *>(m_data.GetDataStart()), 915 byte_size, m_data.GetByteOrder()); 916 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 917 } break; 918 case Value::eValueTypeFileAddress: 919 case Value::eValueTypeVector: 920 break; 921 } 922 923 // If we have reached this point, then we have successfully changed the 924 // value. 925 SetNeedsUpdate(); 926 return true; 927 } 928 929 static bool CopyStringDataToBufferSP(const StreamString &source, 930 lldb::DataBufferSP &destination) { 931 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 932 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 933 return true; 934 } 935 936 std::pair<size_t, bool> 937 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 938 uint32_t max_length, bool honor_array, 939 Format item_format) { 940 bool was_capped = false; 941 StreamString s; 942 ExecutionContext exe_ctx(GetExecutionContextRef()); 943 Target *target = exe_ctx.GetTargetPtr(); 944 945 if (!target) { 946 s << "<no target to read from>"; 947 error.SetErrorString("no target to read from"); 948 CopyStringDataToBufferSP(s, buffer_sp); 949 return {0, was_capped}; 950 } 951 952 if (max_length == 0) 953 max_length = target->GetMaximumSizeOfStringSummary(); 954 955 size_t bytes_read = 0; 956 size_t total_bytes_read = 0; 957 958 CompilerType compiler_type = GetCompilerType(); 959 CompilerType elem_or_pointee_compiler_type; 960 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 961 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 962 elem_or_pointee_compiler_type.IsCharType()) { 963 addr_t cstr_address = LLDB_INVALID_ADDRESS; 964 AddressType cstr_address_type = eAddressTypeInvalid; 965 966 size_t cstr_len = 0; 967 bool capped_data = false; 968 const bool is_array = type_flags.Test(eTypeIsArray); 969 if (is_array) { 970 // We have an array 971 uint64_t array_size = 0; 972 if (compiler_type.IsArrayType(NULL, &array_size, NULL)) { 973 cstr_len = array_size; 974 if (cstr_len > max_length) { 975 capped_data = true; 976 cstr_len = max_length; 977 } 978 } 979 cstr_address = GetAddressOf(true, &cstr_address_type); 980 } else { 981 // We have a pointer 982 cstr_address = GetPointerValue(&cstr_address_type); 983 } 984 985 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 986 if (cstr_address_type == eAddressTypeHost && is_array) { 987 const char *cstr = GetDataExtractor().PeekCStr(0); 988 if (cstr == nullptr) { 989 s << "<invalid address>"; 990 error.SetErrorString("invalid address"); 991 CopyStringDataToBufferSP(s, buffer_sp); 992 return {0, was_capped}; 993 } 994 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 995 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 996 return {cstr_len, was_capped}; 997 } else { 998 s << "<invalid address>"; 999 error.SetErrorString("invalid address"); 1000 CopyStringDataToBufferSP(s, buffer_sp); 1001 return {0, was_capped}; 1002 } 1003 } 1004 1005 Address cstr_so_addr(cstr_address); 1006 DataExtractor data; 1007 if (cstr_len > 0 && honor_array) { 1008 // I am using GetPointeeData() here to abstract the fact that some 1009 // ValueObjects are actually frozen pointers in the host but the pointed- 1010 // to data lives in the debuggee, and GetPointeeData() automatically 1011 // takes care of this 1012 GetPointeeData(data, 0, cstr_len); 1013 1014 if ((bytes_read = data.GetByteSize()) > 0) { 1015 total_bytes_read = bytes_read; 1016 for (size_t offset = 0; offset < bytes_read; offset++) 1017 s.Printf("%c", *data.PeekData(offset, 1)); 1018 if (capped_data) 1019 was_capped = true; 1020 } 1021 } else { 1022 cstr_len = max_length; 1023 const size_t k_max_buf_size = 64; 1024 1025 size_t offset = 0; 1026 1027 int cstr_len_displayed = -1; 1028 bool capped_cstr = false; 1029 // I am using GetPointeeData() here to abstract the fact that some 1030 // ValueObjects are actually frozen pointers in the host but the pointed- 1031 // to data lives in the debuggee, and GetPointeeData() automatically 1032 // takes care of this 1033 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1034 total_bytes_read += bytes_read; 1035 const char *cstr = data.PeekCStr(0); 1036 size_t len = strnlen(cstr, k_max_buf_size); 1037 if (cstr_len_displayed < 0) 1038 cstr_len_displayed = len; 1039 1040 if (len == 0) 1041 break; 1042 cstr_len_displayed += len; 1043 if (len > bytes_read) 1044 len = bytes_read; 1045 if (len > cstr_len) 1046 len = cstr_len; 1047 1048 for (size_t offset = 0; offset < bytes_read; offset++) 1049 s.Printf("%c", *data.PeekData(offset, 1)); 1050 1051 if (len < k_max_buf_size) 1052 break; 1053 1054 if (len >= cstr_len) { 1055 capped_cstr = true; 1056 break; 1057 } 1058 1059 cstr_len -= len; 1060 offset += len; 1061 } 1062 1063 if (cstr_len_displayed >= 0) { 1064 if (capped_cstr) 1065 was_capped = true; 1066 } 1067 } 1068 } else { 1069 error.SetErrorString("not a string object"); 1070 s << "<not a string object>"; 1071 } 1072 CopyStringDataToBufferSP(s, buffer_sp); 1073 return {total_bytes_read, was_capped}; 1074 } 1075 1076 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1077 if (!UpdateValueIfNeeded(true)) 1078 return {TypeValidatorResult::Success, 1079 ""}; // not the validator's job to discuss update problems 1080 1081 if (m_validation_result.hasValue()) 1082 return m_validation_result.getValue(); 1083 1084 if (!m_type_validator_sp) 1085 return {TypeValidatorResult::Success, ""}; // no validator no failure 1086 1087 auto outcome = m_type_validator_sp->FormatObject(this); 1088 1089 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1090 .getValue(); 1091 } 1092 1093 const char *ValueObject::GetObjectDescription() { 1094 1095 if (!UpdateValueIfNeeded(true)) 1096 return NULL; 1097 1098 if (!m_object_desc_str.empty()) 1099 return m_object_desc_str.c_str(); 1100 1101 ExecutionContext exe_ctx(GetExecutionContextRef()); 1102 Process *process = exe_ctx.GetProcessPtr(); 1103 if (process == NULL) 1104 return NULL; 1105 1106 StreamString s; 1107 1108 LanguageType language = GetObjectRuntimeLanguage(); 1109 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1110 1111 if (runtime == NULL) { 1112 // Aw, hell, if the things a pointer, or even just an integer, let's try 1113 // ObjC anyway... 1114 CompilerType compiler_type = GetCompilerType(); 1115 if (compiler_type) { 1116 bool is_signed; 1117 if (compiler_type.IsIntegerType(is_signed) || 1118 compiler_type.IsPointerType()) { 1119 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1120 } 1121 } 1122 } 1123 1124 if (runtime && runtime->GetObjectDescription(s, *this)) { 1125 m_object_desc_str.append(s.GetString()); 1126 } 1127 1128 if (m_object_desc_str.empty()) 1129 return NULL; 1130 else 1131 return m_object_desc_str.c_str(); 1132 } 1133 1134 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1135 std::string &destination) { 1136 if (UpdateValueIfNeeded(false)) 1137 return format.FormatObject(this, destination); 1138 else 1139 return false; 1140 } 1141 1142 bool ValueObject::GetValueAsCString(lldb::Format format, 1143 std::string &destination) { 1144 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1145 } 1146 1147 const char *ValueObject::GetValueAsCString() { 1148 if (UpdateValueIfNeeded(true)) { 1149 lldb::TypeFormatImplSP format_sp; 1150 lldb::Format my_format = GetFormat(); 1151 if (my_format == lldb::eFormatDefault) { 1152 if (m_type_format_sp) 1153 format_sp = m_type_format_sp; 1154 else { 1155 if (m_is_bitfield_for_scalar) 1156 my_format = eFormatUnsigned; 1157 else { 1158 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1159 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1160 if (reg_info) 1161 my_format = reg_info->format; 1162 } else { 1163 my_format = GetValue().GetCompilerType().GetFormat(); 1164 } 1165 } 1166 } 1167 } 1168 if (my_format != m_last_format || m_value_str.empty()) { 1169 m_last_format = my_format; 1170 if (!format_sp) 1171 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1172 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1173 if (!m_value_did_change && m_old_value_valid) { 1174 // The value was gotten successfully, so we consider the value as 1175 // changed if the value string differs 1176 SetValueDidChange(m_old_value_str != m_value_str); 1177 } 1178 } 1179 } 1180 } 1181 if (m_value_str.empty()) 1182 return NULL; 1183 return m_value_str.c_str(); 1184 } 1185 1186 // if > 8bytes, 0 is returned. this method should mostly be used to read 1187 // address values out of pointers 1188 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1189 // If our byte size is zero this is an aggregate type that has children 1190 if (CanProvideValue()) { 1191 Scalar scalar; 1192 if (ResolveValue(scalar)) { 1193 if (success) 1194 *success = true; 1195 return scalar.ULongLong(fail_value); 1196 } 1197 // fallthrough, otherwise... 1198 } 1199 1200 if (success) 1201 *success = false; 1202 return fail_value; 1203 } 1204 1205 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1206 // If our byte size is zero this is an aggregate type that has children 1207 if (CanProvideValue()) { 1208 Scalar scalar; 1209 if (ResolveValue(scalar)) { 1210 if (success) 1211 *success = true; 1212 return scalar.SLongLong(fail_value); 1213 } 1214 // fallthrough, otherwise... 1215 } 1216 1217 if (success) 1218 *success = false; 1219 return fail_value; 1220 } 1221 1222 // if any more "special cases" are added to 1223 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1224 // by returning true for your new special cases. We will eventually move to 1225 // checking this call result before trying to display special cases 1226 bool ValueObject::HasSpecialPrintableRepresentation( 1227 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1228 Flags flags(GetTypeInfo()); 1229 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1230 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1231 if (IsCStringContainer(true) && 1232 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1233 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1234 return true; 1235 1236 if (flags.Test(eTypeIsArray)) { 1237 if ((custom_format == eFormatBytes) || 1238 (custom_format == eFormatBytesWithASCII)) 1239 return true; 1240 1241 if ((custom_format == eFormatVectorOfChar) || 1242 (custom_format == eFormatVectorOfFloat32) || 1243 (custom_format == eFormatVectorOfFloat64) || 1244 (custom_format == eFormatVectorOfSInt16) || 1245 (custom_format == eFormatVectorOfSInt32) || 1246 (custom_format == eFormatVectorOfSInt64) || 1247 (custom_format == eFormatVectorOfSInt8) || 1248 (custom_format == eFormatVectorOfUInt128) || 1249 (custom_format == eFormatVectorOfUInt16) || 1250 (custom_format == eFormatVectorOfUInt32) || 1251 (custom_format == eFormatVectorOfUInt64) || 1252 (custom_format == eFormatVectorOfUInt8)) 1253 return true; 1254 } 1255 } 1256 return false; 1257 } 1258 1259 bool ValueObject::DumpPrintableRepresentation( 1260 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1261 Format custom_format, PrintableRepresentationSpecialCases special, 1262 bool do_dump_error) { 1263 1264 Flags flags(GetTypeInfo()); 1265 1266 bool allow_special = 1267 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1268 const bool only_special = false; 1269 1270 if (allow_special) { 1271 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1272 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1273 // when being asked to get a printable display an array or pointer type 1274 // directly, try to "do the right thing" 1275 1276 if (IsCStringContainer(true) && 1277 (custom_format == eFormatCString || 1278 custom_format == eFormatCharArray || custom_format == eFormatChar || 1279 custom_format == 1280 eFormatVectorOfChar)) // print char[] & char* directly 1281 { 1282 Status error; 1283 lldb::DataBufferSP buffer_sp; 1284 std::pair<size_t, bool> read_string = ReadPointedString( 1285 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1286 (custom_format == eFormatCharArray)); 1287 lldb_private::formatters::StringPrinter:: 1288 ReadBufferAndDumpToStreamOptions options(*this); 1289 options.SetData(DataExtractor( 1290 buffer_sp, lldb::eByteOrderInvalid, 1291 8)); // none of this matters for a string - pass some defaults 1292 options.SetStream(&s); 1293 options.SetPrefixToken(0); 1294 options.SetQuote('"'); 1295 options.SetSourceSize(buffer_sp->GetByteSize()); 1296 options.SetIsTruncated(read_string.second); 1297 formatters::StringPrinter::ReadBufferAndDumpToStream< 1298 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1299 options); 1300 return !error.Fail(); 1301 } 1302 1303 if (custom_format == eFormatEnum) 1304 return false; 1305 1306 // this only works for arrays, because I have no way to know when the 1307 // pointed memory ends, and no special \0 end of data marker 1308 if (flags.Test(eTypeIsArray)) { 1309 if ((custom_format == eFormatBytes) || 1310 (custom_format == eFormatBytesWithASCII)) { 1311 const size_t count = GetNumChildren(); 1312 1313 s << '['; 1314 for (size_t low = 0; low < count; low++) { 1315 1316 if (low) 1317 s << ','; 1318 1319 ValueObjectSP child = GetChildAtIndex(low, true); 1320 if (!child.get()) { 1321 s << "<invalid child>"; 1322 continue; 1323 } 1324 child->DumpPrintableRepresentation( 1325 s, ValueObject::eValueObjectRepresentationStyleValue, 1326 custom_format); 1327 } 1328 1329 s << ']'; 1330 1331 return true; 1332 } 1333 1334 if ((custom_format == eFormatVectorOfChar) || 1335 (custom_format == eFormatVectorOfFloat32) || 1336 (custom_format == eFormatVectorOfFloat64) || 1337 (custom_format == eFormatVectorOfSInt16) || 1338 (custom_format == eFormatVectorOfSInt32) || 1339 (custom_format == eFormatVectorOfSInt64) || 1340 (custom_format == eFormatVectorOfSInt8) || 1341 (custom_format == eFormatVectorOfUInt128) || 1342 (custom_format == eFormatVectorOfUInt16) || 1343 (custom_format == eFormatVectorOfUInt32) || 1344 (custom_format == eFormatVectorOfUInt64) || 1345 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1346 // with ASCII or any vector 1347 // format should be printed 1348 // directly 1349 { 1350 const size_t count = GetNumChildren(); 1351 1352 Format format = FormatManager::GetSingleItemFormat(custom_format); 1353 1354 s << '['; 1355 for (size_t low = 0; low < count; low++) { 1356 1357 if (low) 1358 s << ','; 1359 1360 ValueObjectSP child = GetChildAtIndex(low, true); 1361 if (!child.get()) { 1362 s << "<invalid child>"; 1363 continue; 1364 } 1365 child->DumpPrintableRepresentation( 1366 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1367 } 1368 1369 s << ']'; 1370 1371 return true; 1372 } 1373 } 1374 1375 if ((custom_format == eFormatBoolean) || 1376 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1377 (custom_format == eFormatCharPrintable) || 1378 (custom_format == eFormatComplexFloat) || 1379 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1380 (custom_format == eFormatHexUppercase) || 1381 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1382 (custom_format == eFormatOSType) || 1383 (custom_format == eFormatUnicode16) || 1384 (custom_format == eFormatUnicode32) || 1385 (custom_format == eFormatUnsigned) || 1386 (custom_format == eFormatPointer) || 1387 (custom_format == eFormatComplexInteger) || 1388 (custom_format == eFormatComplex) || 1389 (custom_format == eFormatDefault)) // use the [] operator 1390 return false; 1391 } 1392 } 1393 1394 if (only_special) 1395 return false; 1396 1397 bool var_success = false; 1398 1399 { 1400 llvm::StringRef str; 1401 1402 // this is a local stream that we are using to ensure that the data pointed 1403 // to by cstr survives long enough for us to copy it to its destination - 1404 // it is necessary to have this temporary storage area for cases where our 1405 // desired output is not backed by some other longer-term storage 1406 StreamString strm; 1407 1408 if (custom_format != eFormatInvalid) 1409 SetFormat(custom_format); 1410 1411 switch (val_obj_display) { 1412 case eValueObjectRepresentationStyleValue: 1413 str = GetValueAsCString(); 1414 break; 1415 1416 case eValueObjectRepresentationStyleSummary: 1417 str = GetSummaryAsCString(); 1418 break; 1419 1420 case eValueObjectRepresentationStyleLanguageSpecific: 1421 str = GetObjectDescription(); 1422 break; 1423 1424 case eValueObjectRepresentationStyleLocation: 1425 str = GetLocationAsCString(); 1426 break; 1427 1428 case eValueObjectRepresentationStyleChildrenCount: 1429 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1430 str = strm.GetString(); 1431 break; 1432 1433 case eValueObjectRepresentationStyleType: 1434 str = GetTypeName().GetStringRef(); 1435 break; 1436 1437 case eValueObjectRepresentationStyleName: 1438 str = GetName().GetStringRef(); 1439 break; 1440 1441 case eValueObjectRepresentationStyleExpressionPath: 1442 GetExpressionPath(strm, false); 1443 str = strm.GetString(); 1444 break; 1445 } 1446 1447 if (str.empty()) { 1448 if (val_obj_display == eValueObjectRepresentationStyleValue) 1449 str = GetSummaryAsCString(); 1450 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1451 if (!CanProvideValue()) { 1452 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1453 GetLocationAsCString()); 1454 str = strm.GetString(); 1455 } else 1456 str = GetValueAsCString(); 1457 } 1458 } 1459 1460 if (!str.empty()) 1461 s << str; 1462 else { 1463 if (m_error.Fail()) { 1464 if (do_dump_error) 1465 s.Printf("<%s>", m_error.AsCString()); 1466 else 1467 return false; 1468 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1469 s.PutCString("<no summary available>"); 1470 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1471 s.PutCString("<no value available>"); 1472 else if (val_obj_display == 1473 eValueObjectRepresentationStyleLanguageSpecific) 1474 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1475 // have other runtimes 1476 // that support a 1477 // description 1478 else 1479 s.PutCString("<no printable representation>"); 1480 } 1481 1482 // we should only return false here if we could not do *anything* even if 1483 // we have an error message as output, that's a success from our callers' 1484 // perspective, so return true 1485 var_success = true; 1486 1487 if (custom_format != eFormatInvalid) 1488 SetFormat(eFormatDefault); 1489 } 1490 1491 return var_success; 1492 } 1493 1494 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1495 AddressType *address_type) { 1496 // Can't take address of a bitfield 1497 if (IsBitfield()) 1498 return LLDB_INVALID_ADDRESS; 1499 1500 if (!UpdateValueIfNeeded(false)) 1501 return LLDB_INVALID_ADDRESS; 1502 1503 switch (m_value.GetValueType()) { 1504 case Value::eValueTypeScalar: 1505 case Value::eValueTypeVector: 1506 if (scalar_is_load_address) { 1507 if (address_type) 1508 *address_type = eAddressTypeLoad; 1509 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1510 } 1511 break; 1512 1513 case Value::eValueTypeLoadAddress: 1514 case Value::eValueTypeFileAddress: { 1515 if (address_type) 1516 *address_type = m_value.GetValueAddressType(); 1517 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1518 } break; 1519 case Value::eValueTypeHostAddress: { 1520 if (address_type) 1521 *address_type = m_value.GetValueAddressType(); 1522 return LLDB_INVALID_ADDRESS; 1523 } break; 1524 } 1525 if (address_type) 1526 *address_type = eAddressTypeInvalid; 1527 return LLDB_INVALID_ADDRESS; 1528 } 1529 1530 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1531 addr_t address = LLDB_INVALID_ADDRESS; 1532 if (address_type) 1533 *address_type = eAddressTypeInvalid; 1534 1535 if (!UpdateValueIfNeeded(false)) 1536 return address; 1537 1538 switch (m_value.GetValueType()) { 1539 case Value::eValueTypeScalar: 1540 case Value::eValueTypeVector: 1541 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1542 break; 1543 1544 case Value::eValueTypeHostAddress: 1545 case Value::eValueTypeLoadAddress: 1546 case Value::eValueTypeFileAddress: { 1547 lldb::offset_t data_offset = 0; 1548 address = m_data.GetPointer(&data_offset); 1549 } break; 1550 } 1551 1552 if (address_type) 1553 *address_type = GetAddressTypeOfChildren(); 1554 1555 return address; 1556 } 1557 1558 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1559 error.Clear(); 1560 // Make sure our value is up to date first so that our location and location 1561 // type is valid. 1562 if (!UpdateValueIfNeeded(false)) { 1563 error.SetErrorString("unable to read value"); 1564 return false; 1565 } 1566 1567 uint64_t count = 0; 1568 const Encoding encoding = GetCompilerType().GetEncoding(count); 1569 1570 const size_t byte_size = GetByteSize(); 1571 1572 Value::ValueType value_type = m_value.GetValueType(); 1573 1574 if (value_type == Value::eValueTypeScalar) { 1575 // If the value is already a scalar, then let the scalar change itself: 1576 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1577 } else if (byte_size <= 16) { 1578 // If the value fits in a scalar, then make a new scalar and again let the 1579 // scalar code do the conversion, then figure out where to put the new 1580 // value. 1581 Scalar new_scalar; 1582 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1583 if (error.Success()) { 1584 switch (value_type) { 1585 case Value::eValueTypeLoadAddress: { 1586 // If it is a load address, then the scalar value is the storage 1587 // location of the data, and we have to shove this value down to that 1588 // load location. 1589 ExecutionContext exe_ctx(GetExecutionContextRef()); 1590 Process *process = exe_ctx.GetProcessPtr(); 1591 if (process) { 1592 addr_t target_addr = 1593 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1594 size_t bytes_written = process->WriteScalarToMemory( 1595 target_addr, new_scalar, byte_size, error); 1596 if (!error.Success()) 1597 return false; 1598 if (bytes_written != byte_size) { 1599 error.SetErrorString("unable to write value to memory"); 1600 return false; 1601 } 1602 } 1603 } break; 1604 case Value::eValueTypeHostAddress: { 1605 // If it is a host address, then we stuff the scalar as a DataBuffer 1606 // into the Value's data. 1607 DataExtractor new_data; 1608 new_data.SetByteOrder(m_data.GetByteOrder()); 1609 1610 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1611 m_data.SetData(buffer_sp, 0); 1612 bool success = new_scalar.GetData(new_data); 1613 if (success) { 1614 new_data.CopyByteOrderedData( 1615 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1616 byte_size, m_data.GetByteOrder()); 1617 } 1618 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1619 1620 } break; 1621 case Value::eValueTypeFileAddress: 1622 case Value::eValueTypeScalar: 1623 case Value::eValueTypeVector: 1624 break; 1625 } 1626 } else { 1627 return false; 1628 } 1629 } else { 1630 // We don't support setting things bigger than a scalar at present. 1631 error.SetErrorString("unable to write aggregate data type"); 1632 return false; 1633 } 1634 1635 // If we have reached this point, then we have successfully changed the 1636 // value. 1637 SetNeedsUpdate(); 1638 return true; 1639 } 1640 1641 bool ValueObject::GetDeclaration(Declaration &decl) { 1642 decl.Clear(); 1643 return false; 1644 } 1645 1646 ConstString ValueObject::GetTypeName() { 1647 return GetCompilerType().GetConstTypeName(); 1648 } 1649 1650 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1651 1652 ConstString ValueObject::GetQualifiedTypeName() { 1653 return GetCompilerType().GetConstQualifiedTypeName(); 1654 } 1655 1656 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1657 return GetCompilerType().GetMinimumLanguage(); 1658 } 1659 1660 void ValueObject::AddSyntheticChild(ConstString key, 1661 ValueObject *valobj) { 1662 m_synthetic_children[key] = valobj; 1663 } 1664 1665 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1666 ValueObjectSP synthetic_child_sp; 1667 std::map<ConstString, ValueObject *>::const_iterator pos = 1668 m_synthetic_children.find(key); 1669 if (pos != m_synthetic_children.end()) 1670 synthetic_child_sp = pos->second->GetSP(); 1671 return synthetic_child_sp; 1672 } 1673 1674 uint32_t 1675 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1676 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1677 } 1678 1679 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1680 1681 bool ValueObject::IsArrayType() { 1682 return GetCompilerType().IsArrayType(NULL, NULL, NULL); 1683 } 1684 1685 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1686 1687 bool ValueObject::IsIntegerType(bool &is_signed) { 1688 return GetCompilerType().IsIntegerType(is_signed); 1689 } 1690 1691 bool ValueObject::IsPointerOrReferenceType() { 1692 return GetCompilerType().IsPointerOrReferenceType(); 1693 } 1694 1695 bool ValueObject::IsPossibleDynamicType() { 1696 ExecutionContext exe_ctx(GetExecutionContextRef()); 1697 Process *process = exe_ctx.GetProcessPtr(); 1698 if (process) 1699 return process->IsPossibleDynamicValue(*this); 1700 else 1701 return GetCompilerType().IsPossibleDynamicType(NULL, true, true); 1702 } 1703 1704 bool ValueObject::IsRuntimeSupportValue() { 1705 Process *process(GetProcessSP().get()); 1706 if (process) { 1707 LanguageRuntime *runtime = 1708 process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 1709 if (!runtime) 1710 runtime = process->GetObjCLanguageRuntime(); 1711 if (runtime) 1712 return runtime->IsRuntimeSupportValue(*this); 1713 } 1714 return false; 1715 } 1716 1717 bool ValueObject::IsNilReference() { 1718 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1719 return language->IsNilReference(*this); 1720 } 1721 return false; 1722 } 1723 1724 bool ValueObject::IsUninitializedReference() { 1725 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1726 return language->IsUninitializedReference(*this); 1727 } 1728 return false; 1729 } 1730 1731 // This allows you to create an array member using and index that doesn't not 1732 // fall in the normal bounds of the array. Many times structure can be defined 1733 // as: struct Collection { 1734 // uint32_t item_count; 1735 // Item item_array[0]; 1736 // }; 1737 // The size of the "item_array" is 1, but many times in practice there are more 1738 // items in "item_array". 1739 1740 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1741 bool can_create) { 1742 ValueObjectSP synthetic_child_sp; 1743 if (IsPointerType() || IsArrayType()) { 1744 char index_str[64]; 1745 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1746 ConstString index_const_str(index_str); 1747 // Check if we have already created a synthetic array member in this valid 1748 // object. If we have we will re-use it. 1749 synthetic_child_sp = GetSyntheticChild(index_const_str); 1750 if (!synthetic_child_sp) { 1751 ValueObject *synthetic_child; 1752 // We haven't made a synthetic array member for INDEX yet, so lets make 1753 // one and cache it for any future reference. 1754 synthetic_child = CreateChildAtIndex(0, true, index); 1755 1756 // Cache the value if we got one back... 1757 if (synthetic_child) { 1758 AddSyntheticChild(index_const_str, synthetic_child); 1759 synthetic_child_sp = synthetic_child->GetSP(); 1760 synthetic_child_sp->SetName(ConstString(index_str)); 1761 synthetic_child_sp->m_is_array_item_for_pointer = true; 1762 } 1763 } 1764 } 1765 return synthetic_child_sp; 1766 } 1767 1768 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1769 bool can_create) { 1770 ValueObjectSP synthetic_child_sp; 1771 if (IsScalarType()) { 1772 char index_str[64]; 1773 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1774 ConstString index_const_str(index_str); 1775 // Check if we have already created a synthetic array member in this valid 1776 // object. If we have we will re-use it. 1777 synthetic_child_sp = GetSyntheticChild(index_const_str); 1778 if (!synthetic_child_sp) { 1779 uint32_t bit_field_size = to - from + 1; 1780 uint32_t bit_field_offset = from; 1781 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1782 bit_field_offset = 1783 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1784 // We haven't made a synthetic array member for INDEX yet, so lets make 1785 // one and cache it for any future reference. 1786 ValueObjectChild *synthetic_child = new ValueObjectChild( 1787 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1788 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1789 0); 1790 1791 // Cache the value if we got one back... 1792 if (synthetic_child) { 1793 AddSyntheticChild(index_const_str, synthetic_child); 1794 synthetic_child_sp = synthetic_child->GetSP(); 1795 synthetic_child_sp->SetName(ConstString(index_str)); 1796 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1797 } 1798 } 1799 } 1800 return synthetic_child_sp; 1801 } 1802 1803 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1804 uint32_t offset, const CompilerType &type, bool can_create, 1805 ConstString name_const_str) { 1806 1807 ValueObjectSP synthetic_child_sp; 1808 1809 if (name_const_str.IsEmpty()) { 1810 char name_str[64]; 1811 snprintf(name_str, sizeof(name_str), "@%i", offset); 1812 name_const_str.SetCString(name_str); 1813 } 1814 1815 // Check if we have already created a synthetic array member in this valid 1816 // object. If we have we will re-use it. 1817 synthetic_child_sp = GetSyntheticChild(name_const_str); 1818 1819 if (synthetic_child_sp.get()) 1820 return synthetic_child_sp; 1821 1822 if (!can_create) 1823 return {}; 1824 1825 ExecutionContext exe_ctx(GetExecutionContextRef()); 1826 llvm::Optional<uint64_t> size = 1827 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1828 if (!size) 1829 return {}; 1830 ValueObjectChild *synthetic_child = 1831 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1832 false, false, eAddressTypeInvalid, 0); 1833 if (synthetic_child) { 1834 AddSyntheticChild(name_const_str, synthetic_child); 1835 synthetic_child_sp = synthetic_child->GetSP(); 1836 synthetic_child_sp->SetName(name_const_str); 1837 synthetic_child_sp->m_is_child_at_offset = true; 1838 } 1839 return synthetic_child_sp; 1840 } 1841 1842 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1843 const CompilerType &type, 1844 bool can_create, 1845 ConstString name_const_str) { 1846 ValueObjectSP synthetic_child_sp; 1847 1848 if (name_const_str.IsEmpty()) { 1849 char name_str[128]; 1850 snprintf(name_str, sizeof(name_str), "base%s@%i", 1851 type.GetTypeName().AsCString("<unknown>"), offset); 1852 name_const_str.SetCString(name_str); 1853 } 1854 1855 // Check if we have already created a synthetic array member in this valid 1856 // object. If we have we will re-use it. 1857 synthetic_child_sp = GetSyntheticChild(name_const_str); 1858 1859 if (synthetic_child_sp.get()) 1860 return synthetic_child_sp; 1861 1862 if (!can_create) 1863 return {}; 1864 1865 const bool is_base_class = true; 1866 1867 ExecutionContext exe_ctx(GetExecutionContextRef()); 1868 llvm::Optional<uint64_t> size = 1869 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1870 if (!size) 1871 return {}; 1872 ValueObjectChild *synthetic_child = 1873 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1874 is_base_class, false, eAddressTypeInvalid, 0); 1875 if (synthetic_child) { 1876 AddSyntheticChild(name_const_str, synthetic_child); 1877 synthetic_child_sp = synthetic_child->GetSP(); 1878 synthetic_child_sp->SetName(name_const_str); 1879 } 1880 return synthetic_child_sp; 1881 } 1882 1883 // your expression path needs to have a leading . or -> (unless it somehow 1884 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1885 // is meaningful and should be shown to the user, . and -> are just parser 1886 // design, but by no means added information for the user.. strip them off 1887 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1888 if (!expression || !expression[0]) 1889 return expression; 1890 if (expression[0] == '.') 1891 return expression + 1; 1892 if (expression[0] == '-' && expression[1] == '>') 1893 return expression + 2; 1894 return expression; 1895 } 1896 1897 ValueObjectSP 1898 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1899 bool can_create) { 1900 ValueObjectSP synthetic_child_sp; 1901 ConstString name_const_string(expression); 1902 // Check if we have already created a synthetic array member in this valid 1903 // object. If we have we will re-use it. 1904 synthetic_child_sp = GetSyntheticChild(name_const_string); 1905 if (!synthetic_child_sp) { 1906 // We haven't made a synthetic array member for expression yet, so lets 1907 // make one and cache it for any future reference. 1908 synthetic_child_sp = GetValueForExpressionPath( 1909 expression, NULL, NULL, 1910 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1911 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1912 None)); 1913 1914 // Cache the value if we got one back... 1915 if (synthetic_child_sp.get()) { 1916 // FIXME: this causes a "real" child to end up with its name changed to 1917 // the contents of expression 1918 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1919 synthetic_child_sp->SetName( 1920 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1921 } 1922 } 1923 return synthetic_child_sp; 1924 } 1925 1926 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1927 if (!use_synthetic) 1928 return; 1929 1930 TargetSP target_sp(GetTargetSP()); 1931 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1932 m_synthetic_value = NULL; 1933 return; 1934 } 1935 1936 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1937 1938 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1939 return; 1940 1941 if (m_synthetic_children_sp.get() == NULL) 1942 return; 1943 1944 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1945 return; 1946 1947 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1948 } 1949 1950 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1951 if (use_dynamic == eNoDynamicValues) 1952 return; 1953 1954 if (!m_dynamic_value && !IsDynamic()) { 1955 ExecutionContext exe_ctx(GetExecutionContextRef()); 1956 Process *process = exe_ctx.GetProcessPtr(); 1957 if (process && process->IsPossibleDynamicValue(*this)) { 1958 ClearDynamicTypeInformation(); 1959 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1960 } 1961 } 1962 } 1963 1964 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1965 if (use_dynamic == eNoDynamicValues) 1966 return ValueObjectSP(); 1967 1968 if (!IsDynamic() && m_dynamic_value == NULL) { 1969 CalculateDynamicValue(use_dynamic); 1970 } 1971 if (m_dynamic_value) 1972 return m_dynamic_value->GetSP(); 1973 else 1974 return ValueObjectSP(); 1975 } 1976 1977 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1978 1979 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1980 1981 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1982 if (!use_synthetic) 1983 return ValueObjectSP(); 1984 1985 CalculateSyntheticValue(use_synthetic); 1986 1987 if (m_synthetic_value) 1988 return m_synthetic_value->GetSP(); 1989 else 1990 return ValueObjectSP(); 1991 } 1992 1993 bool ValueObject::HasSyntheticValue() { 1994 UpdateFormatsIfNeeded(); 1995 1996 if (m_synthetic_children_sp.get() == NULL) 1997 return false; 1998 1999 CalculateSyntheticValue(true); 2000 2001 return m_synthetic_value != nullptr; 2002 } 2003 2004 bool ValueObject::GetBaseClassPath(Stream &s) { 2005 if (IsBaseClass()) { 2006 bool parent_had_base_class = 2007 GetParent() && GetParent()->GetBaseClassPath(s); 2008 CompilerType compiler_type = GetCompilerType(); 2009 std::string cxx_class_name; 2010 bool this_had_base_class = 2011 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 2012 if (this_had_base_class) { 2013 if (parent_had_base_class) 2014 s.PutCString("::"); 2015 s.PutCString(cxx_class_name); 2016 } 2017 return parent_had_base_class || this_had_base_class; 2018 } 2019 return false; 2020 } 2021 2022 ValueObject *ValueObject::GetNonBaseClassParent() { 2023 if (GetParent()) { 2024 if (GetParent()->IsBaseClass()) 2025 return GetParent()->GetNonBaseClassParent(); 2026 else 2027 return GetParent(); 2028 } 2029 return NULL; 2030 } 2031 2032 bool ValueObject::IsBaseClass(uint32_t &depth) { 2033 if (!IsBaseClass()) { 2034 depth = 0; 2035 return false; 2036 } 2037 if (GetParent()) { 2038 GetParent()->IsBaseClass(depth); 2039 depth = depth + 1; 2040 return true; 2041 } 2042 // TODO: a base of no parent? weird.. 2043 depth = 1; 2044 return true; 2045 } 2046 2047 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2048 GetExpressionPathFormat epformat) { 2049 // synthetic children do not actually "exist" as part of the hierarchy, and 2050 // sometimes they are consed up in ways that don't make sense from an 2051 // underlying language/API standpoint. So, use a special code path here to 2052 // return something that can hopefully be used in expression 2053 if (m_is_synthetic_children_generated) { 2054 UpdateValueIfNeeded(); 2055 2056 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2057 if (IsPointerOrReferenceType()) { 2058 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2059 GetValueAsUnsigned(0)); 2060 return; 2061 } else { 2062 uint64_t load_addr = 2063 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2064 if (load_addr != LLDB_INVALID_ADDRESS) { 2065 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2066 load_addr); 2067 return; 2068 } 2069 } 2070 } 2071 2072 if (CanProvideValue()) { 2073 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2074 GetValueAsCString()); 2075 return; 2076 } 2077 2078 return; 2079 } 2080 2081 const bool is_deref_of_parent = IsDereferenceOfParent(); 2082 2083 if (is_deref_of_parent && 2084 epformat == eGetExpressionPathFormatDereferencePointers) { 2085 // this is the original format of GetExpressionPath() producing code like 2086 // *(a_ptr).memberName, which is entirely fine, until you put this into 2087 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2088 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2089 // in this latter format 2090 s.PutCString("*("); 2091 } 2092 2093 ValueObject *parent = GetParent(); 2094 2095 if (parent) 2096 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2097 2098 // if we are a deref_of_parent just because we are synthetic array members 2099 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2100 // name ([%d]) to the expression path 2101 if (m_is_array_item_for_pointer && 2102 epformat == eGetExpressionPathFormatHonorPointers) 2103 s.PutCString(m_name.AsCString()); 2104 2105 if (!IsBaseClass()) { 2106 if (!is_deref_of_parent) { 2107 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2108 if (non_base_class_parent && 2109 !non_base_class_parent->GetName().IsEmpty()) { 2110 CompilerType non_base_class_parent_compiler_type = 2111 non_base_class_parent->GetCompilerType(); 2112 if (non_base_class_parent_compiler_type) { 2113 if (parent && parent->IsDereferenceOfParent() && 2114 epformat == eGetExpressionPathFormatHonorPointers) { 2115 s.PutCString("->"); 2116 } else { 2117 const uint32_t non_base_class_parent_type_info = 2118 non_base_class_parent_compiler_type.GetTypeInfo(); 2119 2120 if (non_base_class_parent_type_info & eTypeIsPointer) { 2121 s.PutCString("->"); 2122 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2123 !(non_base_class_parent_type_info & eTypeIsArray)) { 2124 s.PutChar('.'); 2125 } 2126 } 2127 } 2128 } 2129 2130 const char *name = GetName().GetCString(); 2131 if (name) { 2132 if (qualify_cxx_base_classes) { 2133 if (GetBaseClassPath(s)) 2134 s.PutCString("::"); 2135 } 2136 s.PutCString(name); 2137 } 2138 } 2139 } 2140 2141 if (is_deref_of_parent && 2142 epformat == eGetExpressionPathFormatDereferencePointers) { 2143 s.PutChar(')'); 2144 } 2145 } 2146 2147 ValueObjectSP ValueObject::GetValueForExpressionPath( 2148 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2149 ExpressionPathEndResultType *final_value_type, 2150 const GetValueForExpressionPathOptions &options, 2151 ExpressionPathAftermath *final_task_on_target) { 2152 2153 ExpressionPathScanEndReason dummy_reason_to_stop = 2154 ValueObject::eExpressionPathScanEndReasonUnknown; 2155 ExpressionPathEndResultType dummy_final_value_type = 2156 ValueObject::eExpressionPathEndResultTypeInvalid; 2157 ExpressionPathAftermath dummy_final_task_on_target = 2158 ValueObject::eExpressionPathAftermathNothing; 2159 2160 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2161 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2162 final_value_type ? final_value_type : &dummy_final_value_type, options, 2163 final_task_on_target ? final_task_on_target 2164 : &dummy_final_task_on_target); 2165 2166 if (!final_task_on_target || 2167 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2168 return ret_val; 2169 2170 if (ret_val.get() && 2171 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2172 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2173 // of plain objects 2174 { 2175 if ((final_task_on_target ? *final_task_on_target 2176 : dummy_final_task_on_target) == 2177 ValueObject::eExpressionPathAftermathDereference) { 2178 Status error; 2179 ValueObjectSP final_value = ret_val->Dereference(error); 2180 if (error.Fail() || !final_value.get()) { 2181 if (reason_to_stop) 2182 *reason_to_stop = 2183 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2184 if (final_value_type) 2185 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2186 return ValueObjectSP(); 2187 } else { 2188 if (final_task_on_target) 2189 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2190 return final_value; 2191 } 2192 } 2193 if (*final_task_on_target == 2194 ValueObject::eExpressionPathAftermathTakeAddress) { 2195 Status error; 2196 ValueObjectSP final_value = ret_val->AddressOf(error); 2197 if (error.Fail() || !final_value.get()) { 2198 if (reason_to_stop) 2199 *reason_to_stop = 2200 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2201 if (final_value_type) 2202 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2203 return ValueObjectSP(); 2204 } else { 2205 if (final_task_on_target) 2206 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2207 return final_value; 2208 } 2209 } 2210 } 2211 return ret_val; // final_task_on_target will still have its original value, so 2212 // you know I did not do it 2213 } 2214 2215 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2216 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2217 ExpressionPathEndResultType *final_result, 2218 const GetValueForExpressionPathOptions &options, 2219 ExpressionPathAftermath *what_next) { 2220 ValueObjectSP root = GetSP(); 2221 2222 if (!root) 2223 return nullptr; 2224 2225 llvm::StringRef remainder = expression; 2226 2227 while (true) { 2228 llvm::StringRef temp_expression = remainder; 2229 2230 CompilerType root_compiler_type = root->GetCompilerType(); 2231 CompilerType pointee_compiler_type; 2232 Flags pointee_compiler_type_info; 2233 2234 Flags root_compiler_type_info( 2235 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2236 if (pointee_compiler_type) 2237 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2238 2239 if (temp_expression.empty()) { 2240 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2241 return root; 2242 } 2243 2244 switch (temp_expression.front()) { 2245 case '-': { 2246 temp_expression = temp_expression.drop_front(); 2247 if (options.m_check_dot_vs_arrow_syntax && 2248 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2249 // use -> on a 2250 // non-pointer and I 2251 // must catch the error 2252 { 2253 *reason_to_stop = 2254 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2255 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2256 return ValueObjectSP(); 2257 } 2258 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2259 // extract an ObjC IVar 2260 // when this is forbidden 2261 root_compiler_type_info.Test(eTypeIsPointer) && 2262 options.m_no_fragile_ivar) { 2263 *reason_to_stop = 2264 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2265 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2266 return ValueObjectSP(); 2267 } 2268 if (!temp_expression.startswith(">")) { 2269 *reason_to_stop = 2270 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2271 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2272 return ValueObjectSP(); 2273 } 2274 } 2275 LLVM_FALLTHROUGH; 2276 case '.': // or fallthrough from -> 2277 { 2278 if (options.m_check_dot_vs_arrow_syntax && 2279 temp_expression.front() == '.' && 2280 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2281 // use . on a pointer 2282 // and I must catch the 2283 // error 2284 { 2285 *reason_to_stop = 2286 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2287 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2288 return nullptr; 2289 } 2290 temp_expression = temp_expression.drop_front(); // skip . or > 2291 2292 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2293 ConstString child_name; 2294 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2295 // expand this last layer 2296 { 2297 child_name.SetString(temp_expression); 2298 ValueObjectSP child_valobj_sp = 2299 root->GetChildMemberWithName(child_name, true); 2300 2301 if (child_valobj_sp.get()) // we know we are done, so just return 2302 { 2303 *reason_to_stop = 2304 ValueObject::eExpressionPathScanEndReasonEndOfString; 2305 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2306 return child_valobj_sp; 2307 } else { 2308 switch (options.m_synthetic_children_traversal) { 2309 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2310 None: 2311 break; 2312 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2313 FromSynthetic: 2314 if (root->IsSynthetic()) { 2315 child_valobj_sp = root->GetNonSyntheticValue(); 2316 if (child_valobj_sp.get()) 2317 child_valobj_sp = 2318 child_valobj_sp->GetChildMemberWithName(child_name, true); 2319 } 2320 break; 2321 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2322 ToSynthetic: 2323 if (!root->IsSynthetic()) { 2324 child_valobj_sp = root->GetSyntheticValue(); 2325 if (child_valobj_sp.get()) 2326 child_valobj_sp = 2327 child_valobj_sp->GetChildMemberWithName(child_name, true); 2328 } 2329 break; 2330 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2331 Both: 2332 if (root->IsSynthetic()) { 2333 child_valobj_sp = root->GetNonSyntheticValue(); 2334 if (child_valobj_sp.get()) 2335 child_valobj_sp = 2336 child_valobj_sp->GetChildMemberWithName(child_name, true); 2337 } else { 2338 child_valobj_sp = root->GetSyntheticValue(); 2339 if (child_valobj_sp.get()) 2340 child_valobj_sp = 2341 child_valobj_sp->GetChildMemberWithName(child_name, true); 2342 } 2343 break; 2344 } 2345 } 2346 2347 // if we are here and options.m_no_synthetic_children is true, 2348 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2349 // branch, and return an error 2350 if (child_valobj_sp.get()) // if it worked, just return 2351 { 2352 *reason_to_stop = 2353 ValueObject::eExpressionPathScanEndReasonEndOfString; 2354 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2355 return child_valobj_sp; 2356 } else { 2357 *reason_to_stop = 2358 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2359 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2360 return nullptr; 2361 } 2362 } else // other layers do expand 2363 { 2364 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2365 2366 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2367 2368 ValueObjectSP child_valobj_sp = 2369 root->GetChildMemberWithName(child_name, true); 2370 if (child_valobj_sp.get()) // store the new root and move on 2371 { 2372 root = child_valobj_sp; 2373 remainder = next_separator; 2374 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2375 continue; 2376 } else { 2377 switch (options.m_synthetic_children_traversal) { 2378 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2379 None: 2380 break; 2381 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2382 FromSynthetic: 2383 if (root->IsSynthetic()) { 2384 child_valobj_sp = root->GetNonSyntheticValue(); 2385 if (child_valobj_sp.get()) 2386 child_valobj_sp = 2387 child_valobj_sp->GetChildMemberWithName(child_name, true); 2388 } 2389 break; 2390 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2391 ToSynthetic: 2392 if (!root->IsSynthetic()) { 2393 child_valobj_sp = root->GetSyntheticValue(); 2394 if (child_valobj_sp.get()) 2395 child_valobj_sp = 2396 child_valobj_sp->GetChildMemberWithName(child_name, true); 2397 } 2398 break; 2399 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2400 Both: 2401 if (root->IsSynthetic()) { 2402 child_valobj_sp = root->GetNonSyntheticValue(); 2403 if (child_valobj_sp.get()) 2404 child_valobj_sp = 2405 child_valobj_sp->GetChildMemberWithName(child_name, true); 2406 } else { 2407 child_valobj_sp = root->GetSyntheticValue(); 2408 if (child_valobj_sp.get()) 2409 child_valobj_sp = 2410 child_valobj_sp->GetChildMemberWithName(child_name, true); 2411 } 2412 break; 2413 } 2414 } 2415 2416 // if we are here and options.m_no_synthetic_children is true, 2417 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2418 // branch, and return an error 2419 if (child_valobj_sp.get()) // if it worked, move on 2420 { 2421 root = child_valobj_sp; 2422 remainder = next_separator; 2423 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2424 continue; 2425 } else { 2426 *reason_to_stop = 2427 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2428 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2429 return nullptr; 2430 } 2431 } 2432 break; 2433 } 2434 case '[': { 2435 if (!root_compiler_type_info.Test(eTypeIsArray) && 2436 !root_compiler_type_info.Test(eTypeIsPointer) && 2437 !root_compiler_type_info.Test( 2438 eTypeIsVector)) // if this is not a T[] nor a T* 2439 { 2440 if (!root_compiler_type_info.Test( 2441 eTypeIsScalar)) // if this is not even a scalar... 2442 { 2443 if (options.m_synthetic_children_traversal == 2444 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2445 None) // ...only chance left is synthetic 2446 { 2447 *reason_to_stop = 2448 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2449 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2450 return ValueObjectSP(); 2451 } 2452 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2453 // check that we can 2454 // expand bitfields 2455 { 2456 *reason_to_stop = 2457 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2458 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2459 return ValueObjectSP(); 2460 } 2461 } 2462 if (temp_expression[1] == 2463 ']') // if this is an unbounded range it only works for arrays 2464 { 2465 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2466 *reason_to_stop = 2467 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2468 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2469 return nullptr; 2470 } else // even if something follows, we cannot expand unbounded ranges, 2471 // just let the caller do it 2472 { 2473 *reason_to_stop = 2474 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2475 *final_result = 2476 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2477 return root; 2478 } 2479 } 2480 2481 size_t close_bracket_position = temp_expression.find(']', 1); 2482 if (close_bracket_position == 2483 llvm::StringRef::npos) // if there is no ], this is a syntax error 2484 { 2485 *reason_to_stop = 2486 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2487 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2488 return nullptr; 2489 } 2490 2491 llvm::StringRef bracket_expr = 2492 temp_expression.slice(1, close_bracket_position); 2493 2494 // If this was an empty expression it would have been caught by the if 2495 // above. 2496 assert(!bracket_expr.empty()); 2497 2498 if (!bracket_expr.contains('-')) { 2499 // if no separator, this is of the form [N]. Note that this cannot be 2500 // an unbounded range of the form [], because that case was handled 2501 // above with an unconditional return. 2502 unsigned long index = 0; 2503 if (bracket_expr.getAsInteger(0, index)) { 2504 *reason_to_stop = 2505 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2506 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2507 return nullptr; 2508 } 2509 2510 // from here on we do have a valid index 2511 if (root_compiler_type_info.Test(eTypeIsArray)) { 2512 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2513 if (!child_valobj_sp) 2514 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2515 if (!child_valobj_sp) 2516 if (root->HasSyntheticValue() && 2517 root->GetSyntheticValue()->GetNumChildren() > index) 2518 child_valobj_sp = 2519 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2520 if (child_valobj_sp) { 2521 root = child_valobj_sp; 2522 remainder = 2523 temp_expression.substr(close_bracket_position + 1); // skip ] 2524 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2525 continue; 2526 } else { 2527 *reason_to_stop = 2528 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2529 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2530 return nullptr; 2531 } 2532 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2533 if (*what_next == 2534 ValueObject:: 2535 eExpressionPathAftermathDereference && // if this is a 2536 // ptr-to-scalar, I 2537 // am accessing it 2538 // by index and I 2539 // would have 2540 // deref'ed anyway, 2541 // then do it now 2542 // and use this as 2543 // a bitfield 2544 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2545 Status error; 2546 root = root->Dereference(error); 2547 if (error.Fail() || !root) { 2548 *reason_to_stop = 2549 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2550 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2551 return nullptr; 2552 } else { 2553 *what_next = eExpressionPathAftermathNothing; 2554 continue; 2555 } 2556 } else { 2557 if (root->GetCompilerType().GetMinimumLanguage() == 2558 eLanguageTypeObjC && 2559 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2560 root->HasSyntheticValue() && 2561 (options.m_synthetic_children_traversal == 2562 GetValueForExpressionPathOptions:: 2563 SyntheticChildrenTraversal::ToSynthetic || 2564 options.m_synthetic_children_traversal == 2565 GetValueForExpressionPathOptions:: 2566 SyntheticChildrenTraversal::Both)) { 2567 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2568 } else 2569 root = root->GetSyntheticArrayMember(index, true); 2570 if (!root) { 2571 *reason_to_stop = 2572 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2573 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2574 return nullptr; 2575 } else { 2576 remainder = 2577 temp_expression.substr(close_bracket_position + 1); // skip ] 2578 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2579 continue; 2580 } 2581 } 2582 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2583 root = root->GetSyntheticBitFieldChild(index, index, true); 2584 if (!root) { 2585 *reason_to_stop = 2586 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2587 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2588 return nullptr; 2589 } else // we do not know how to expand members of bitfields, so we 2590 // just return and let the caller do any further processing 2591 { 2592 *reason_to_stop = ValueObject:: 2593 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2594 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2595 return root; 2596 } 2597 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2598 root = root->GetChildAtIndex(index, true); 2599 if (!root) { 2600 *reason_to_stop = 2601 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2602 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2603 return ValueObjectSP(); 2604 } else { 2605 remainder = 2606 temp_expression.substr(close_bracket_position + 1); // skip ] 2607 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2608 continue; 2609 } 2610 } else if (options.m_synthetic_children_traversal == 2611 GetValueForExpressionPathOptions:: 2612 SyntheticChildrenTraversal::ToSynthetic || 2613 options.m_synthetic_children_traversal == 2614 GetValueForExpressionPathOptions:: 2615 SyntheticChildrenTraversal::Both) { 2616 if (root->HasSyntheticValue()) 2617 root = root->GetSyntheticValue(); 2618 else if (!root->IsSynthetic()) { 2619 *reason_to_stop = 2620 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2621 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2622 return nullptr; 2623 } 2624 // if we are here, then root itself is a synthetic VO.. should be 2625 // good to go 2626 2627 if (!root) { 2628 *reason_to_stop = 2629 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2630 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2631 return nullptr; 2632 } 2633 root = root->GetChildAtIndex(index, true); 2634 if (!root) { 2635 *reason_to_stop = 2636 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2637 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2638 return nullptr; 2639 } else { 2640 remainder = 2641 temp_expression.substr(close_bracket_position + 1); // skip ] 2642 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2643 continue; 2644 } 2645 } else { 2646 *reason_to_stop = 2647 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2648 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2649 return nullptr; 2650 } 2651 } else { 2652 // we have a low and a high index 2653 llvm::StringRef sleft, sright; 2654 unsigned long low_index, high_index; 2655 std::tie(sleft, sright) = bracket_expr.split('-'); 2656 if (sleft.getAsInteger(0, low_index) || 2657 sright.getAsInteger(0, high_index)) { 2658 *reason_to_stop = 2659 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2660 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2661 return nullptr; 2662 } 2663 2664 if (low_index > high_index) // swap indices if required 2665 std::swap(low_index, high_index); 2666 2667 if (root_compiler_type_info.Test( 2668 eTypeIsScalar)) // expansion only works for scalars 2669 { 2670 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2671 if (!root) { 2672 *reason_to_stop = 2673 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2674 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2675 return nullptr; 2676 } else { 2677 *reason_to_stop = ValueObject:: 2678 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2679 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2680 return root; 2681 } 2682 } else if (root_compiler_type_info.Test( 2683 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2684 // accessing it by index and I would 2685 // have deref'ed anyway, then do it 2686 // now and use this as a bitfield 2687 *what_next == 2688 ValueObject::eExpressionPathAftermathDereference && 2689 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2690 Status error; 2691 root = root->Dereference(error); 2692 if (error.Fail() || !root) { 2693 *reason_to_stop = 2694 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2695 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2696 return nullptr; 2697 } else { 2698 *what_next = ValueObject::eExpressionPathAftermathNothing; 2699 continue; 2700 } 2701 } else { 2702 *reason_to_stop = 2703 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2704 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2705 return root; 2706 } 2707 } 2708 break; 2709 } 2710 default: // some non-separator is in the way 2711 { 2712 *reason_to_stop = 2713 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2714 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2715 return nullptr; 2716 } 2717 } 2718 } 2719 } 2720 2721 void ValueObject::LogValueObject(Log *log) { 2722 if (log) 2723 return LogValueObject(log, DumpValueObjectOptions(*this)); 2724 } 2725 2726 void ValueObject::LogValueObject(Log *log, 2727 const DumpValueObjectOptions &options) { 2728 if (log) { 2729 StreamString s; 2730 Dump(s, options); 2731 if (s.GetSize()) 2732 log->PutCString(s.GetData()); 2733 } 2734 } 2735 2736 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2737 2738 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2739 ValueObjectPrinter printer(this, &s, options); 2740 printer.PrintValueObject(); 2741 } 2742 2743 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2744 ValueObjectSP valobj_sp; 2745 2746 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2747 ExecutionContext exe_ctx(GetExecutionContextRef()); 2748 2749 DataExtractor data; 2750 data.SetByteOrder(m_data.GetByteOrder()); 2751 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2752 2753 if (IsBitfield()) { 2754 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2755 m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2756 } else 2757 m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2758 2759 valobj_sp = ValueObjectConstResult::Create( 2760 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2761 GetAddressOf()); 2762 } 2763 2764 if (!valobj_sp) { 2765 ExecutionContext exe_ctx(GetExecutionContextRef()); 2766 valobj_sp = ValueObjectConstResult::Create( 2767 exe_ctx.GetBestExecutionContextScope(), m_error); 2768 } 2769 return valobj_sp; 2770 } 2771 2772 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2773 lldb::DynamicValueType dynValue, bool synthValue) { 2774 ValueObjectSP result_sp(GetSP()); 2775 2776 switch (dynValue) { 2777 case lldb::eDynamicCanRunTarget: 2778 case lldb::eDynamicDontRunTarget: { 2779 if (!result_sp->IsDynamic()) { 2780 if (result_sp->GetDynamicValue(dynValue)) 2781 result_sp = result_sp->GetDynamicValue(dynValue); 2782 } 2783 } break; 2784 case lldb::eNoDynamicValues: { 2785 if (result_sp->IsDynamic()) { 2786 if (result_sp->GetStaticValue()) 2787 result_sp = result_sp->GetStaticValue(); 2788 } 2789 } break; 2790 } 2791 2792 if (synthValue) { 2793 if (!result_sp->IsSynthetic()) { 2794 if (result_sp->GetSyntheticValue()) 2795 result_sp = result_sp->GetSyntheticValue(); 2796 } 2797 } else { 2798 if (result_sp->IsSynthetic()) { 2799 if (result_sp->GetNonSyntheticValue()) 2800 result_sp = result_sp->GetNonSyntheticValue(); 2801 } 2802 } 2803 2804 return result_sp; 2805 } 2806 2807 ValueObjectSP ValueObject::Dereference(Status &error) { 2808 if (m_deref_valobj) 2809 return m_deref_valobj->GetSP(); 2810 2811 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2812 if (is_pointer_or_reference_type) { 2813 bool omit_empty_base_classes = true; 2814 bool ignore_array_bounds = false; 2815 2816 std::string child_name_str; 2817 uint32_t child_byte_size = 0; 2818 int32_t child_byte_offset = 0; 2819 uint32_t child_bitfield_bit_size = 0; 2820 uint32_t child_bitfield_bit_offset = 0; 2821 bool child_is_base_class = false; 2822 bool child_is_deref_of_parent = false; 2823 const bool transparent_pointers = false; 2824 CompilerType compiler_type = GetCompilerType(); 2825 CompilerType child_compiler_type; 2826 uint64_t language_flags; 2827 2828 ExecutionContext exe_ctx(GetExecutionContextRef()); 2829 2830 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2831 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2832 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2833 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2834 child_is_deref_of_parent, this, language_flags); 2835 if (child_compiler_type && child_byte_size) { 2836 ConstString child_name; 2837 if (!child_name_str.empty()) 2838 child_name.SetCString(child_name_str.c_str()); 2839 2840 m_deref_valobj = new ValueObjectChild( 2841 *this, child_compiler_type, child_name, child_byte_size, 2842 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2843 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2844 language_flags); 2845 } 2846 } else if (HasSyntheticValue()) { 2847 m_deref_valobj = 2848 GetSyntheticValue() 2849 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2850 .get(); 2851 } 2852 2853 if (m_deref_valobj) { 2854 error.Clear(); 2855 return m_deref_valobj->GetSP(); 2856 } else { 2857 StreamString strm; 2858 GetExpressionPath(strm, true); 2859 2860 if (is_pointer_or_reference_type) 2861 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2862 GetTypeName().AsCString("<invalid type>"), 2863 strm.GetData()); 2864 else 2865 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2866 GetTypeName().AsCString("<invalid type>"), 2867 strm.GetData()); 2868 return ValueObjectSP(); 2869 } 2870 } 2871 2872 ValueObjectSP ValueObject::AddressOf(Status &error) { 2873 if (m_addr_of_valobj_sp) 2874 return m_addr_of_valobj_sp; 2875 2876 AddressType address_type = eAddressTypeInvalid; 2877 const bool scalar_is_load_address = false; 2878 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2879 error.Clear(); 2880 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2881 switch (address_type) { 2882 case eAddressTypeInvalid: { 2883 StreamString expr_path_strm; 2884 GetExpressionPath(expr_path_strm, true); 2885 error.SetErrorStringWithFormat("'%s' is not in memory", 2886 expr_path_strm.GetData()); 2887 } break; 2888 2889 case eAddressTypeFile: 2890 case eAddressTypeLoad: { 2891 CompilerType compiler_type = GetCompilerType(); 2892 if (compiler_type) { 2893 std::string name(1, '&'); 2894 name.append(m_name.AsCString("")); 2895 ExecutionContext exe_ctx(GetExecutionContextRef()); 2896 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2897 exe_ctx.GetBestExecutionContextScope(), 2898 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2899 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2900 } 2901 } break; 2902 default: 2903 break; 2904 } 2905 } else { 2906 StreamString expr_path_strm; 2907 GetExpressionPath(expr_path_strm, true); 2908 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2909 expr_path_strm.GetData()); 2910 } 2911 2912 return m_addr_of_valobj_sp; 2913 } 2914 2915 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2916 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2917 } 2918 2919 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2920 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2921 } 2922 2923 ValueObjectSP ValueObject::CastPointerType(const char *name, 2924 CompilerType &compiler_type) { 2925 ValueObjectSP valobj_sp; 2926 AddressType address_type; 2927 addr_t ptr_value = GetPointerValue(&address_type); 2928 2929 if (ptr_value != LLDB_INVALID_ADDRESS) { 2930 Address ptr_addr(ptr_value); 2931 ExecutionContext exe_ctx(GetExecutionContextRef()); 2932 valobj_sp = ValueObjectMemory::Create( 2933 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2934 } 2935 return valobj_sp; 2936 } 2937 2938 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2939 ValueObjectSP valobj_sp; 2940 AddressType address_type; 2941 addr_t ptr_value = GetPointerValue(&address_type); 2942 2943 if (ptr_value != LLDB_INVALID_ADDRESS) { 2944 Address ptr_addr(ptr_value); 2945 ExecutionContext exe_ctx(GetExecutionContextRef()); 2946 valobj_sp = ValueObjectMemory::Create( 2947 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2948 } 2949 return valobj_sp; 2950 } 2951 2952 ValueObject::EvaluationPoint::EvaluationPoint() 2953 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2954 2955 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2956 bool use_selected) 2957 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2958 ExecutionContext exe_ctx(exe_scope); 2959 TargetSP target_sp(exe_ctx.GetTargetSP()); 2960 if (target_sp) { 2961 m_exe_ctx_ref.SetTargetSP(target_sp); 2962 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2963 if (!process_sp) 2964 process_sp = target_sp->GetProcessSP(); 2965 2966 if (process_sp) { 2967 m_mod_id = process_sp->GetModID(); 2968 m_exe_ctx_ref.SetProcessSP(process_sp); 2969 2970 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2971 2972 if (!thread_sp) { 2973 if (use_selected) 2974 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2975 } 2976 2977 if (thread_sp) { 2978 m_exe_ctx_ref.SetThreadSP(thread_sp); 2979 2980 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2981 if (!frame_sp) { 2982 if (use_selected) 2983 frame_sp = thread_sp->GetSelectedFrame(); 2984 } 2985 if (frame_sp) 2986 m_exe_ctx_ref.SetFrameSP(frame_sp); 2987 } 2988 } 2989 } 2990 } 2991 2992 ValueObject::EvaluationPoint::EvaluationPoint( 2993 const ValueObject::EvaluationPoint &rhs) 2994 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2995 2996 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2997 2998 // This function checks the EvaluationPoint against the current process state. 2999 // If the current state matches the evaluation point, or the evaluation point 3000 // is already invalid, then we return false, meaning "no change". If the 3001 // current state is different, we update our state, and return true meaning 3002 // "yes, change". If we did see a change, we also set m_needs_update to true, 3003 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3004 // the current execution context scope. 3005 3006 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3007 bool accept_invalid_exe_ctx) { 3008 // Start with the target, if it is NULL, then we're obviously not going to 3009 // get any further: 3010 const bool thread_and_frame_only_if_stopped = true; 3011 ExecutionContext exe_ctx( 3012 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3013 3014 if (exe_ctx.GetTargetPtr() == NULL) 3015 return false; 3016 3017 // If we don't have a process nothing can change. 3018 Process *process = exe_ctx.GetProcessPtr(); 3019 if (process == NULL) 3020 return false; 3021 3022 // If our stop id is the current stop ID, nothing has changed: 3023 ProcessModID current_mod_id = process->GetModID(); 3024 3025 // If the current stop id is 0, either we haven't run yet, or the process 3026 // state has been cleared. In either case, we aren't going to be able to sync 3027 // with the process state. 3028 if (current_mod_id.GetStopID() == 0) 3029 return false; 3030 3031 bool changed = false; 3032 const bool was_valid = m_mod_id.IsValid(); 3033 if (was_valid) { 3034 if (m_mod_id == current_mod_id) { 3035 // Everything is already up to date in this object, no need to update the 3036 // execution context scope. 3037 changed = false; 3038 } else { 3039 m_mod_id = current_mod_id; 3040 m_needs_update = true; 3041 changed = true; 3042 } 3043 } 3044 3045 // Now re-look up the thread and frame in case the underlying objects have 3046 // gone away & been recreated. That way we'll be sure to return a valid 3047 // exe_scope. If we used to have a thread or a frame but can't find it 3048 // anymore, then mark ourselves as invalid. 3049 3050 if (!accept_invalid_exe_ctx) { 3051 if (m_exe_ctx_ref.HasThreadRef()) { 3052 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3053 if (thread_sp) { 3054 if (m_exe_ctx_ref.HasFrameRef()) { 3055 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3056 if (!frame_sp) { 3057 // We used to have a frame, but now it is gone 3058 SetInvalid(); 3059 changed = was_valid; 3060 } 3061 } 3062 } else { 3063 // We used to have a thread, but now it is gone 3064 SetInvalid(); 3065 changed = was_valid; 3066 } 3067 } 3068 } 3069 3070 return changed; 3071 } 3072 3073 void ValueObject::EvaluationPoint::SetUpdated() { 3074 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3075 if (process_sp) 3076 m_mod_id = process_sp->GetModID(); 3077 m_needs_update = false; 3078 } 3079 3080 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3081 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3082 eClearUserVisibleDataItemsValue) 3083 m_value_str.clear(); 3084 3085 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3086 eClearUserVisibleDataItemsLocation) 3087 m_location_str.clear(); 3088 3089 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3090 eClearUserVisibleDataItemsSummary) 3091 m_summary_str.clear(); 3092 3093 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3094 eClearUserVisibleDataItemsDescription) 3095 m_object_desc_str.clear(); 3096 3097 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3098 eClearUserVisibleDataItemsSyntheticChildren) { 3099 if (m_synthetic_value) 3100 m_synthetic_value = NULL; 3101 } 3102 3103 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3104 eClearUserVisibleDataItemsValidator) 3105 m_validation_result.reset(); 3106 } 3107 3108 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3109 if (m_parent) { 3110 if (!m_parent->IsPointerOrReferenceType()) 3111 return m_parent->GetSymbolContextScope(); 3112 } 3113 return NULL; 3114 } 3115 3116 lldb::ValueObjectSP 3117 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3118 llvm::StringRef expression, 3119 const ExecutionContext &exe_ctx) { 3120 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3121 EvaluateExpressionOptions()); 3122 } 3123 3124 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3125 llvm::StringRef name, llvm::StringRef expression, 3126 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3127 lldb::ValueObjectSP retval_sp; 3128 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3129 if (!target_sp) 3130 return retval_sp; 3131 if (expression.empty()) 3132 return retval_sp; 3133 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3134 retval_sp, options); 3135 if (retval_sp && !name.empty()) 3136 retval_sp->SetName(ConstString(name)); 3137 return retval_sp; 3138 } 3139 3140 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3141 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3142 CompilerType type) { 3143 if (type) { 3144 CompilerType pointer_type(type.GetPointerType()); 3145 if (pointer_type) { 3146 lldb::DataBufferSP buffer( 3147 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3148 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3149 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3150 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3151 exe_ctx.GetAddressByteSize())); 3152 if (ptr_result_valobj_sp) { 3153 ptr_result_valobj_sp->GetValue().SetValueType( 3154 Value::eValueTypeLoadAddress); 3155 Status err; 3156 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3157 if (ptr_result_valobj_sp && !name.empty()) 3158 ptr_result_valobj_sp->SetName(ConstString(name)); 3159 } 3160 return ptr_result_valobj_sp; 3161 } 3162 } 3163 return lldb::ValueObjectSP(); 3164 } 3165 3166 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3167 llvm::StringRef name, const DataExtractor &data, 3168 const ExecutionContext &exe_ctx, CompilerType type) { 3169 lldb::ValueObjectSP new_value_sp; 3170 new_value_sp = ValueObjectConstResult::Create( 3171 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3172 LLDB_INVALID_ADDRESS); 3173 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3174 if (new_value_sp && !name.empty()) 3175 new_value_sp->SetName(ConstString(name)); 3176 return new_value_sp; 3177 } 3178 3179 ModuleSP ValueObject::GetModule() { 3180 ValueObject *root(GetRoot()); 3181 if (root != this) 3182 return root->GetModule(); 3183 return lldb::ModuleSP(); 3184 } 3185 3186 ValueObject *ValueObject::GetRoot() { 3187 if (m_root) 3188 return m_root; 3189 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3190 return (vo->m_parent != nullptr); 3191 })); 3192 } 3193 3194 ValueObject * 3195 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3196 ValueObject *vo = this; 3197 while (vo) { 3198 if (!f(vo)) 3199 break; 3200 vo = vo->m_parent; 3201 } 3202 return vo; 3203 } 3204 3205 AddressType ValueObject::GetAddressTypeOfChildren() { 3206 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3207 ValueObject *root(GetRoot()); 3208 if (root != this) 3209 return root->GetAddressTypeOfChildren(); 3210 } 3211 return m_address_type_of_ptr_or_ref_children; 3212 } 3213 3214 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3215 ValueObject *with_dv_info = this; 3216 while (with_dv_info) { 3217 if (with_dv_info->HasDynamicValueTypeInfo()) 3218 return with_dv_info->GetDynamicValueTypeImpl(); 3219 with_dv_info = with_dv_info->m_parent; 3220 } 3221 return lldb::eNoDynamicValues; 3222 } 3223 3224 lldb::Format ValueObject::GetFormat() const { 3225 const ValueObject *with_fmt_info = this; 3226 while (with_fmt_info) { 3227 if (with_fmt_info->m_format != lldb::eFormatDefault) 3228 return with_fmt_info->m_format; 3229 with_fmt_info = with_fmt_info->m_parent; 3230 } 3231 return m_format; 3232 } 3233 3234 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3235 lldb::LanguageType type = m_preferred_display_language; 3236 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3237 if (GetRoot()) { 3238 if (GetRoot() == this) { 3239 if (StackFrameSP frame_sp = GetFrameSP()) { 3240 const SymbolContext &sc( 3241 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3242 if (CompileUnit *cu = sc.comp_unit) 3243 type = cu->GetLanguage(); 3244 } 3245 } else { 3246 type = GetRoot()->GetPreferredDisplayLanguage(); 3247 } 3248 } 3249 } 3250 return (m_preferred_display_language = type); // only compute it once 3251 } 3252 3253 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3254 m_preferred_display_language = lt; 3255 } 3256 3257 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3258 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3259 SetPreferredDisplayLanguage(lt); 3260 } 3261 3262 bool ValueObject::CanProvideValue() { 3263 // we need to support invalid types as providers of values because some bare- 3264 // board debugging scenarios have no notion of types, but still manage to 3265 // have raw numeric values for things like registers. sigh. 3266 const CompilerType &type(GetCompilerType()); 3267 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3268 } 3269 3270 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3271 3272 ValueObjectSP ValueObject::Persist() { 3273 if (!UpdateValueIfNeeded()) 3274 return nullptr; 3275 3276 TargetSP target_sp(GetTargetSP()); 3277 if (!target_sp) 3278 return nullptr; 3279 3280 PersistentExpressionState *persistent_state = 3281 target_sp->GetPersistentExpressionStateForLanguage( 3282 GetPreferredDisplayLanguage()); 3283 3284 if (!persistent_state) 3285 return nullptr; 3286 3287 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3288 ConstString name = 3289 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3290 3291 ValueObjectSP const_result_sp = 3292 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3293 3294 ExpressionVariableSP clang_var_sp = 3295 persistent_state->CreatePersistentVariable(const_result_sp); 3296 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3297 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3298 3299 return clang_var_sp->GetValueObject(); 3300 } 3301 3302 bool ValueObject::IsSyntheticChildrenGenerated() { 3303 return m_is_synthetic_children_generated; 3304 } 3305 3306 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3307 m_is_synthetic_children_generated = b; 3308 } 3309 3310 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3311 3312 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3313 3314 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3315 lldb::DynamicValueType use_dynamic, 3316 bool use_synthetic) : m_root_valobj_sp(), 3317 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3318 m_use_synthetic(use_synthetic) { 3319 if (!in_valobj_sp) 3320 return; 3321 // If the user passes in a value object that is dynamic or synthetic, then 3322 // water it down to the static type. 3323 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3324 } 3325 3326 bool ValueObjectManager::IsValid() const { 3327 if (!m_root_valobj_sp) 3328 return false; 3329 lldb::TargetSP target_sp = GetTargetSP(); 3330 if (target_sp) 3331 return target_sp->IsValid(); 3332 return false; 3333 } 3334 3335 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3336 lldb::ProcessSP process_sp = GetProcessSP(); 3337 if (!process_sp) 3338 return lldb::ValueObjectSP(); 3339 3340 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3341 if (current_stop_id == m_stop_id) 3342 return m_user_valobj_sp; 3343 3344 m_stop_id = current_stop_id; 3345 3346 if (!m_root_valobj_sp) { 3347 m_user_valobj_sp.reset(); 3348 return m_root_valobj_sp; 3349 } 3350 3351 m_user_valobj_sp = m_root_valobj_sp; 3352 3353 if (m_use_dynamic != lldb::eNoDynamicValues) { 3354 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3355 if (dynamic_sp) 3356 m_user_valobj_sp = dynamic_sp; 3357 } 3358 3359 if (m_use_synthetic) { 3360 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3361 if (synthetic_sp) 3362 m_user_valobj_sp = synthetic_sp; 3363 } 3364 3365 return m_user_valobj_sp; 3366 } 3367 3368 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3369 if (use_dynamic != m_use_dynamic) { 3370 m_use_dynamic = use_dynamic; 3371 m_user_valobj_sp.reset(); 3372 m_stop_id = UINT32_MAX; 3373 } 3374 } 3375 3376 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3377 if (m_use_synthetic != use_synthetic) { 3378 m_use_synthetic = use_synthetic; 3379 m_user_valobj_sp.reset(); 3380 m_stop_id = UINT32_MAX; 3381 } 3382 } 3383 3384 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3385 if (!m_root_valobj_sp) 3386 return m_root_valobj_sp->GetTargetSP(); 3387 return lldb::TargetSP(); 3388 } 3389 3390 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3391 if (m_root_valobj_sp) 3392 return m_root_valobj_sp->GetProcessSP(); 3393 return lldb::ProcessSP(); 3394 } 3395 3396 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3397 if (m_root_valobj_sp) 3398 return m_root_valobj_sp->GetThreadSP(); 3399 return lldb::ThreadSP(); 3400 } 3401 3402 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3403 if (m_root_valobj_sp) 3404 return m_root_valobj_sp->GetFrameSP(); 3405 return lldb::StackFrameSP(); 3406 } 3407 3408