1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : UserID(++g_value_obj_uid), // Unique identifier for every value object 80 m_parent(&parent), m_root(nullptr), 81 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 82 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 83 m_summary_str(), m_object_desc_str(), m_manager(parent.GetManager()), 84 m_children(), m_synthetic_children(), m_dynamic_value(nullptr), 85 m_synthetic_value(nullptr), m_deref_valobj(nullptr), 86 m_format(eFormatDefault), m_last_format(eFormatDefault), 87 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 88 m_synthetic_children_sp(), m_user_id_of_forced_summary(), 89 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 90 m_value_checksum(), 91 m_preferred_display_language(lldb::eLanguageTypeUnknown), 92 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 93 m_children_count_valid(false), m_old_value_valid(false), 94 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 95 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 96 m_is_getting_summary(false), 97 m_did_calculate_complete_objc_class_type(false), 98 m_is_synthetic_children_generated( 99 parent.m_is_synthetic_children_generated) { 100 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 101 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 102 m_manager->ManageObject(this); 103 } 104 105 // ValueObject constructor 106 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 107 ValueObjectManager &manager, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_manager(&manager), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 if (exe_scope) { 130 TargetSP target_sp(exe_scope->CalculateTarget()); 131 if (target_sp) { 132 const ArchSpec &arch = target_sp->GetArchitecture(); 133 m_data.SetByteOrder(arch.GetByteOrder()); 134 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 135 } 136 } 137 m_manager->ManageObject(this); 138 } 139 140 // Destructor 141 ValueObject::~ValueObject() {} 142 143 void ValueObject::UpdateChildrenAddressType() { 144 Value::ValueType value_type = m_value.GetValueType(); 145 ExecutionContext exe_ctx(GetExecutionContextRef()); 146 Process *process = exe_ctx.GetProcessPtr(); 147 const bool process_is_alive = process && process->IsAlive(); 148 const uint32_t type_info = GetCompilerType().GetTypeInfo(); 149 const bool is_pointer_or_ref = 150 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 151 152 switch (value_type) { 153 case Value::eValueTypeFileAddress: 154 // If this type is a pointer, then its children will be considered load 155 // addresses if the pointer or reference is dereferenced, but only if 156 // the process is alive. 157 // 158 // There could be global variables like in the following code: 159 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 160 // Foo g_foo1; 161 // Foo g_foo2; 162 // LinkedListNode g_second_node = { &g_foo2, NULL }; 163 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 164 // 165 // When we aren't running, we should be able to look at these variables 166 // using the "target variable" command. Children of the "g_first_node" 167 // always will be of the same address type as the parent. But children 168 // of the "next" member of LinkedListNode will become load addresses if 169 // we have a live process, or remain a file address if it was a file 170 // address. 171 if (process_is_alive && is_pointer_or_ref) 172 SetAddressTypeOfChildren(eAddressTypeLoad); 173 else 174 SetAddressTypeOfChildren(eAddressTypeFile); 175 break; 176 case Value::eValueTypeHostAddress: 177 // Same as above for load addresses, except children of pointer or refs 178 // are always load addresses. Host addresses are used to store freeze 179 // dried variables. If this type is a struct, the entire struct 180 // contents will be copied into the heap of the 181 // LLDB process, but we do not currently follow any pointers. 182 if (is_pointer_or_ref) 183 SetAddressTypeOfChildren(eAddressTypeLoad); 184 else 185 SetAddressTypeOfChildren(eAddressTypeHost); 186 break; 187 case Value::eValueTypeLoadAddress: 188 case Value::eValueTypeScalar: 189 case Value::eValueTypeVector: 190 SetAddressTypeOfChildren(eAddressTypeLoad); 191 break; 192 } 193 } 194 195 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 196 197 bool did_change_formats = false; 198 199 if (update_format) 200 did_change_formats = UpdateFormatsIfNeeded(); 201 202 // If this is a constant value, then our success is predicated on whether we 203 // have an error or not 204 if (GetIsConstant()) { 205 // if you are constant, things might still have changed behind your back 206 // (e.g. you are a frozen object and things have changed deeper than you 207 // cared to freeze-dry yourself) in this case, your value has not changed, 208 // but "computed" entries might have, so you might now have a different 209 // summary, or a different object description. clear these so we will 210 // recompute them 211 if (update_format && !did_change_formats) 212 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 213 eClearUserVisibleDataItemsDescription); 214 return m_error.Success(); 215 } 216 217 bool first_update = IsChecksumEmpty(); 218 219 if (NeedsUpdating()) { 220 m_update_point.SetUpdated(); 221 222 // Save the old value using swap to avoid a string copy which also will 223 // clear our m_value_str 224 if (m_value_str.empty()) { 225 m_old_value_valid = false; 226 } else { 227 m_old_value_valid = true; 228 m_old_value_str.swap(m_value_str); 229 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 230 } 231 232 ClearUserVisibleData(); 233 234 if (IsInScope()) { 235 const bool value_was_valid = GetValueIsValid(); 236 SetValueDidChange(false); 237 238 m_error.Clear(); 239 240 // Call the pure virtual function to update the value 241 242 bool need_compare_checksums = false; 243 llvm::SmallVector<uint8_t, 16> old_checksum; 244 245 if (!first_update && CanProvideValue()) { 246 need_compare_checksums = true; 247 old_checksum.resize(m_value_checksum.size()); 248 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 249 old_checksum.begin()); 250 } 251 252 bool success = UpdateValue(); 253 254 SetValueIsValid(success); 255 256 if (success) { 257 UpdateChildrenAddressType(); 258 const uint64_t max_checksum_size = 128; 259 m_data.Checksum(m_value_checksum, max_checksum_size); 260 } else { 261 need_compare_checksums = false; 262 m_value_checksum.clear(); 263 } 264 265 assert(!need_compare_checksums || 266 (!old_checksum.empty() && !m_value_checksum.empty())); 267 268 if (first_update) 269 SetValueDidChange(false); 270 else if (!m_value_did_change && !success) { 271 // The value wasn't gotten successfully, so we mark this as changed if 272 // the value used to be valid and now isn't 273 SetValueDidChange(value_was_valid); 274 } else if (need_compare_checksums) { 275 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 276 m_value_checksum.size())); 277 } 278 279 } else { 280 m_error.SetErrorString("out of scope"); 281 } 282 } 283 return m_error.Success(); 284 } 285 286 bool ValueObject::UpdateFormatsIfNeeded() { 287 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 288 LLDB_LOGF(log, 289 "[%s %p] checking for FormatManager revisions. ValueObject " 290 "rev: %d - Global rev: %d", 291 GetName().GetCString(), static_cast<void *>(this), 292 m_last_format_mgr_revision, 293 DataVisualization::GetCurrentRevision()); 294 295 bool any_change = false; 296 297 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 298 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 299 any_change = true; 300 301 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 302 SetSummaryFormat( 303 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 304 #if LLDB_ENABLE_PYTHON 305 SetSyntheticChildren( 306 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 307 #endif 308 } 309 310 return any_change; 311 } 312 313 void ValueObject::SetNeedsUpdate() { 314 m_update_point.SetNeedsUpdate(); 315 // We have to clear the value string here so ConstResult children will notice 316 // if their values are changed by hand (i.e. with SetValueAsCString). 317 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 318 } 319 320 void ValueObject::ClearDynamicTypeInformation() { 321 m_children_count_valid = false; 322 m_did_calculate_complete_objc_class_type = false; 323 m_last_format_mgr_revision = 0; 324 m_override_type = CompilerType(); 325 SetValueFormat(lldb::TypeFormatImplSP()); 326 SetSummaryFormat(lldb::TypeSummaryImplSP()); 327 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 328 } 329 330 CompilerType ValueObject::MaybeCalculateCompleteType() { 331 CompilerType compiler_type(GetCompilerTypeImpl()); 332 333 if (m_did_calculate_complete_objc_class_type) { 334 if (m_override_type.IsValid()) 335 return m_override_type; 336 else 337 return compiler_type; 338 } 339 340 m_did_calculate_complete_objc_class_type = true; 341 342 ProcessSP process_sp( 343 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 344 345 if (!process_sp) 346 return compiler_type; 347 348 if (auto *runtime = 349 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 350 if (llvm::Optional<CompilerType> complete_type = 351 runtime->GetRuntimeType(compiler_type)) { 352 m_override_type = complete_type.getValue(); 353 if (m_override_type.IsValid()) 354 return m_override_type; 355 } 356 } 357 return compiler_type; 358 } 359 360 CompilerType ValueObject::GetCompilerType() { 361 return MaybeCalculateCompleteType(); 362 } 363 364 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 365 366 DataExtractor &ValueObject::GetDataExtractor() { 367 UpdateValueIfNeeded(false); 368 return m_data; 369 } 370 371 const Status &ValueObject::GetError() { 372 UpdateValueIfNeeded(false); 373 return m_error; 374 } 375 376 ConstString ValueObject::GetName() const { return m_name; } 377 378 const char *ValueObject::GetLocationAsCString() { 379 return GetLocationAsCStringImpl(m_value, m_data); 380 } 381 382 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 383 const DataExtractor &data) { 384 if (UpdateValueIfNeeded(false)) { 385 if (m_location_str.empty()) { 386 StreamString sstr; 387 388 Value::ValueType value_type = value.GetValueType(); 389 390 switch (value_type) { 391 case Value::eValueTypeScalar: 392 case Value::eValueTypeVector: 393 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 394 RegisterInfo *reg_info = value.GetRegisterInfo(); 395 if (reg_info) { 396 if (reg_info->name) 397 m_location_str = reg_info->name; 398 else if (reg_info->alt_name) 399 m_location_str = reg_info->alt_name; 400 if (m_location_str.empty()) 401 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 402 ? "vector" 403 : "scalar"; 404 } 405 } 406 if (m_location_str.empty()) 407 m_location_str = 408 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 409 break; 410 411 case Value::eValueTypeLoadAddress: 412 case Value::eValueTypeFileAddress: 413 case Value::eValueTypeHostAddress: { 414 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 415 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 416 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 417 m_location_str = std::string(sstr.GetString()); 418 } break; 419 } 420 } 421 } 422 return m_location_str.c_str(); 423 } 424 425 Value &ValueObject::GetValue() { return m_value; } 426 427 const Value &ValueObject::GetValue() const { return m_value; } 428 429 bool ValueObject::ResolveValue(Scalar &scalar) { 430 if (UpdateValueIfNeeded( 431 false)) // make sure that you are up to date before returning anything 432 { 433 ExecutionContext exe_ctx(GetExecutionContextRef()); 434 Value tmp_value(m_value); 435 scalar = tmp_value.ResolveValue(&exe_ctx); 436 if (scalar.IsValid()) { 437 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 438 if (bitfield_bit_size) 439 return scalar.ExtractBitfield(bitfield_bit_size, 440 GetBitfieldBitOffset()); 441 return true; 442 } 443 } 444 return false; 445 } 446 447 bool ValueObject::IsLogicalTrue(Status &error) { 448 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 449 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 450 switch (is_logical_true) { 451 case eLazyBoolYes: 452 case eLazyBoolNo: 453 return (is_logical_true == true); 454 case eLazyBoolCalculate: 455 break; 456 } 457 } 458 459 Scalar scalar_value; 460 461 if (!ResolveValue(scalar_value)) { 462 error.SetErrorString("failed to get a scalar result"); 463 return false; 464 } 465 466 bool ret; 467 ret = scalar_value.ULongLong(1) != 0; 468 error.Clear(); 469 return ret; 470 } 471 472 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 473 474 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 475 476 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 477 478 void ValueObject::SetValueDidChange(bool value_changed) { 479 m_value_did_change = value_changed; 480 } 481 482 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 483 ValueObjectSP child_sp; 484 // We may need to update our value if we are dynamic 485 if (IsPossibleDynamicType()) 486 UpdateValueIfNeeded(false); 487 if (idx < GetNumChildren()) { 488 // Check if we have already made the child value object? 489 if (can_create && !m_children.HasChildAtIndex(idx)) { 490 // No we haven't created the child at this index, so lets have our 491 // subclass do it and cache the result for quick future access. 492 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 493 } 494 495 ValueObject *child = m_children.GetChildAtIndex(idx); 496 if (child != nullptr) 497 return child->GetSP(); 498 } 499 return child_sp; 500 } 501 502 lldb::ValueObjectSP 503 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 504 size_t *index_of_error) { 505 if (idxs.size() == 0) 506 return GetSP(); 507 ValueObjectSP root(GetSP()); 508 for (size_t idx : idxs) { 509 root = root->GetChildAtIndex(idx, true); 510 if (!root) { 511 if (index_of_error) 512 *index_of_error = idx; 513 return root; 514 } 515 } 516 return root; 517 } 518 519 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 520 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 521 if (idxs.size() == 0) 522 return GetSP(); 523 ValueObjectSP root(GetSP()); 524 for (std::pair<size_t, bool> idx : idxs) { 525 root = root->GetChildAtIndex(idx.first, idx.second); 526 if (!root) { 527 if (index_of_error) 528 *index_of_error = idx.first; 529 return root; 530 } 531 } 532 return root; 533 } 534 535 lldb::ValueObjectSP 536 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 537 ConstString *name_of_error) { 538 if (names.size() == 0) 539 return GetSP(); 540 ValueObjectSP root(GetSP()); 541 for (ConstString name : names) { 542 root = root->GetChildMemberWithName(name, true); 543 if (!root) { 544 if (name_of_error) 545 *name_of_error = name; 546 return root; 547 } 548 } 549 return root; 550 } 551 552 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 553 llvm::ArrayRef<std::pair<ConstString, bool>> names, 554 ConstString *name_of_error) { 555 if (names.size() == 0) 556 return GetSP(); 557 ValueObjectSP root(GetSP()); 558 for (std::pair<ConstString, bool> name : names) { 559 root = root->GetChildMemberWithName(name.first, name.second); 560 if (!root) { 561 if (name_of_error) 562 *name_of_error = name.first; 563 return root; 564 } 565 } 566 return root; 567 } 568 569 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 570 bool omit_empty_base_classes = true; 571 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 572 omit_empty_base_classes); 573 } 574 575 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 576 bool can_create) { 577 // when getting a child by name, it could be buried inside some base classes 578 // (which really aren't part of the expression path), so we need a vector of 579 // indexes that can get us down to the correct child 580 ValueObjectSP child_sp; 581 582 // We may need to update our value if we are dynamic 583 if (IsPossibleDynamicType()) 584 UpdateValueIfNeeded(false); 585 586 std::vector<uint32_t> child_indexes; 587 bool omit_empty_base_classes = true; 588 589 if (!GetCompilerType().IsValid()) 590 return ValueObjectSP(); 591 592 const size_t num_child_indexes = 593 GetCompilerType().GetIndexOfChildMemberWithName( 594 name.GetCString(), omit_empty_base_classes, child_indexes); 595 if (num_child_indexes > 0) { 596 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 597 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 598 599 child_sp = GetChildAtIndex(*pos, can_create); 600 for (++pos; pos != end; ++pos) { 601 if (child_sp) { 602 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 603 child_sp = new_child_sp; 604 } else { 605 child_sp.reset(); 606 } 607 } 608 } 609 return child_sp; 610 } 611 612 size_t ValueObject::GetNumChildren(uint32_t max) { 613 UpdateValueIfNeeded(); 614 615 if (max < UINT32_MAX) { 616 if (m_children_count_valid) { 617 size_t children_count = m_children.GetChildrenCount(); 618 return children_count <= max ? children_count : max; 619 } else 620 return CalculateNumChildren(max); 621 } 622 623 if (!m_children_count_valid) { 624 SetNumChildren(CalculateNumChildren()); 625 } 626 return m_children.GetChildrenCount(); 627 } 628 629 bool ValueObject::MightHaveChildren() { 630 bool has_children = false; 631 const uint32_t type_info = GetTypeInfo(); 632 if (type_info) { 633 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 634 has_children = true; 635 } else { 636 has_children = GetNumChildren() > 0; 637 } 638 return has_children; 639 } 640 641 // Should only be called by ValueObject::GetNumChildren() 642 void ValueObject::SetNumChildren(size_t num_children) { 643 m_children_count_valid = true; 644 m_children.SetChildrenCount(num_children); 645 } 646 647 void ValueObject::SetName(ConstString name) { m_name = name; } 648 649 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 650 bool synthetic_array_member, 651 int32_t synthetic_index) { 652 ValueObject *valobj = nullptr; 653 654 bool omit_empty_base_classes = true; 655 bool ignore_array_bounds = synthetic_array_member; 656 std::string child_name_str; 657 uint32_t child_byte_size = 0; 658 int32_t child_byte_offset = 0; 659 uint32_t child_bitfield_bit_size = 0; 660 uint32_t child_bitfield_bit_offset = 0; 661 bool child_is_base_class = false; 662 bool child_is_deref_of_parent = false; 663 uint64_t language_flags = 0; 664 665 const bool transparent_pointers = !synthetic_array_member; 666 CompilerType child_compiler_type; 667 668 ExecutionContext exe_ctx(GetExecutionContextRef()); 669 670 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 671 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 672 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 673 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 674 child_is_deref_of_parent, this, language_flags); 675 if (child_compiler_type) { 676 if (synthetic_index) 677 child_byte_offset += child_byte_size * synthetic_index; 678 679 ConstString child_name; 680 if (!child_name_str.empty()) 681 child_name.SetCString(child_name_str.c_str()); 682 683 valobj = new ValueObjectChild( 684 *this, child_compiler_type, child_name, child_byte_size, 685 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 686 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 687 language_flags); 688 } 689 690 if (!valobj && synthetic_array_member) 691 valobj = GetSyntheticValue() 692 ->GetChildAtIndex(synthetic_index, synthetic_array_member) 693 .get(); 694 695 return valobj; 696 } 697 698 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 699 std::string &destination, 700 lldb::LanguageType lang) { 701 return GetSummaryAsCString(summary_ptr, destination, 702 TypeSummaryOptions().SetLanguage(lang)); 703 } 704 705 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 706 std::string &destination, 707 const TypeSummaryOptions &options) { 708 destination.clear(); 709 710 // ideally we would like to bail out if passing NULL, but if we do so we end 711 // up not providing the summary for function pointers anymore 712 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 713 return false; 714 715 m_is_getting_summary = true; 716 717 TypeSummaryOptions actual_options(options); 718 719 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 720 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 721 722 // this is a hot path in code and we prefer to avoid setting this string all 723 // too often also clearing out other information that we might care to see in 724 // a crash log. might be useful in very specific situations though. 725 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 726 Summary provider's description is %s", 727 GetTypeName().GetCString(), 728 GetName().GetCString(), 729 summary_ptr->GetDescription().c_str());*/ 730 731 if (UpdateValueIfNeeded(false) && summary_ptr) { 732 if (HasSyntheticValue()) 733 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 734 // the synthetic children being 735 // up-to-date (e.g. ${svar%#}) 736 summary_ptr->FormatObject(this, destination, actual_options); 737 } 738 m_is_getting_summary = false; 739 return !destination.empty(); 740 } 741 742 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 743 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 744 TypeSummaryOptions summary_options; 745 summary_options.SetLanguage(lang); 746 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 747 summary_options); 748 } 749 if (m_summary_str.empty()) 750 return nullptr; 751 return m_summary_str.c_str(); 752 } 753 754 bool ValueObject::GetSummaryAsCString(std::string &destination, 755 const TypeSummaryOptions &options) { 756 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 757 } 758 759 bool ValueObject::IsCStringContainer(bool check_pointer) { 760 CompilerType pointee_or_element_compiler_type; 761 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 762 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 763 pointee_or_element_compiler_type.IsCharType()); 764 if (!is_char_arr_ptr) 765 return false; 766 if (!check_pointer) 767 return true; 768 if (type_flags.Test(eTypeIsArray)) 769 return true; 770 addr_t cstr_address = LLDB_INVALID_ADDRESS; 771 AddressType cstr_address_type = eAddressTypeInvalid; 772 cstr_address = GetPointerValue(&cstr_address_type); 773 return (cstr_address != LLDB_INVALID_ADDRESS); 774 } 775 776 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 777 uint32_t item_count) { 778 CompilerType pointee_or_element_compiler_type; 779 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 780 const bool is_pointer_type = type_info & eTypeIsPointer; 781 const bool is_array_type = type_info & eTypeIsArray; 782 if (!(is_pointer_type || is_array_type)) 783 return 0; 784 785 if (item_count == 0) 786 return 0; 787 788 ExecutionContext exe_ctx(GetExecutionContextRef()); 789 790 llvm::Optional<uint64_t> item_type_size = 791 pointee_or_element_compiler_type.GetByteSize( 792 exe_ctx.GetBestExecutionContextScope()); 793 if (!item_type_size) 794 return 0; 795 const uint64_t bytes = item_count * *item_type_size; 796 const uint64_t offset = item_idx * *item_type_size; 797 798 if (item_idx == 0 && item_count == 1) // simply a deref 799 { 800 if (is_pointer_type) { 801 Status error; 802 ValueObjectSP pointee_sp = Dereference(error); 803 if (error.Fail() || pointee_sp.get() == nullptr) 804 return 0; 805 return pointee_sp->GetData(data, error); 806 } else { 807 ValueObjectSP child_sp = GetChildAtIndex(0, true); 808 if (child_sp.get() == nullptr) 809 return 0; 810 Status error; 811 return child_sp->GetData(data, error); 812 } 813 return true; 814 } else /* (items > 1) */ 815 { 816 Status error; 817 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 818 lldb::DataBufferSP data_sp(heap_buf_ptr = 819 new lldb_private::DataBufferHeap()); 820 821 AddressType addr_type; 822 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 823 : GetAddressOf(true, &addr_type); 824 825 switch (addr_type) { 826 case eAddressTypeFile: { 827 ModuleSP module_sp(GetModule()); 828 if (module_sp) { 829 addr = addr + offset; 830 Address so_addr; 831 module_sp->ResolveFileAddress(addr, so_addr); 832 ExecutionContext exe_ctx(GetExecutionContextRef()); 833 Target *target = exe_ctx.GetTargetPtr(); 834 if (target) { 835 heap_buf_ptr->SetByteSize(bytes); 836 size_t bytes_read = target->ReadMemory( 837 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 838 if (error.Success()) { 839 data.SetData(data_sp); 840 return bytes_read; 841 } 842 } 843 } 844 } break; 845 case eAddressTypeLoad: { 846 ExecutionContext exe_ctx(GetExecutionContextRef()); 847 Process *process = exe_ctx.GetProcessPtr(); 848 if (process) { 849 heap_buf_ptr->SetByteSize(bytes); 850 size_t bytes_read = process->ReadMemory( 851 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 852 if (error.Success() || bytes_read > 0) { 853 data.SetData(data_sp); 854 return bytes_read; 855 } 856 } 857 } break; 858 case eAddressTypeHost: { 859 auto max_bytes = 860 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 861 if (max_bytes && *max_bytes > offset) { 862 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 863 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 864 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 865 break; 866 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 867 data.SetData(data_sp); 868 return bytes_read; 869 } 870 } break; 871 case eAddressTypeInvalid: 872 break; 873 } 874 } 875 return 0; 876 } 877 878 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 879 UpdateValueIfNeeded(false); 880 ExecutionContext exe_ctx(GetExecutionContextRef()); 881 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 882 if (error.Fail()) { 883 if (m_data.GetByteSize()) { 884 data = m_data; 885 error.Clear(); 886 return data.GetByteSize(); 887 } else { 888 return 0; 889 } 890 } 891 data.SetAddressByteSize(m_data.GetAddressByteSize()); 892 data.SetByteOrder(m_data.GetByteOrder()); 893 return data.GetByteSize(); 894 } 895 896 bool ValueObject::SetData(DataExtractor &data, Status &error) { 897 error.Clear(); 898 // Make sure our value is up to date first so that our location and location 899 // type is valid. 900 if (!UpdateValueIfNeeded(false)) { 901 error.SetErrorString("unable to read value"); 902 return false; 903 } 904 905 uint64_t count = 0; 906 const Encoding encoding = GetCompilerType().GetEncoding(count); 907 908 const size_t byte_size = GetByteSize(); 909 910 Value::ValueType value_type = m_value.GetValueType(); 911 912 switch (value_type) { 913 case Value::eValueTypeScalar: { 914 Status set_error = 915 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 916 917 if (!set_error.Success()) { 918 error.SetErrorStringWithFormat("unable to set scalar value: %s", 919 set_error.AsCString()); 920 return false; 921 } 922 } break; 923 case Value::eValueTypeLoadAddress: { 924 // If it is a load address, then the scalar value is the storage location 925 // of the data, and we have to shove this value down to that load location. 926 ExecutionContext exe_ctx(GetExecutionContextRef()); 927 Process *process = exe_ctx.GetProcessPtr(); 928 if (process) { 929 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 930 size_t bytes_written = process->WriteMemory( 931 target_addr, data.GetDataStart(), byte_size, error); 932 if (!error.Success()) 933 return false; 934 if (bytes_written != byte_size) { 935 error.SetErrorString("unable to write value to memory"); 936 return false; 937 } 938 } 939 } break; 940 case Value::eValueTypeHostAddress: { 941 // If it is a host address, then we stuff the scalar as a DataBuffer into 942 // the Value's data. 943 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 944 m_data.SetData(buffer_sp, 0); 945 data.CopyByteOrderedData(0, byte_size, 946 const_cast<uint8_t *>(m_data.GetDataStart()), 947 byte_size, m_data.GetByteOrder()); 948 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 949 } break; 950 case Value::eValueTypeFileAddress: 951 case Value::eValueTypeVector: 952 break; 953 } 954 955 // If we have reached this point, then we have successfully changed the 956 // value. 957 SetNeedsUpdate(); 958 return true; 959 } 960 961 static bool CopyStringDataToBufferSP(const StreamString &source, 962 lldb::DataBufferSP &destination) { 963 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 964 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 965 return true; 966 } 967 968 std::pair<size_t, bool> 969 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 970 uint32_t max_length, bool honor_array, 971 Format item_format) { 972 bool was_capped = false; 973 StreamString s; 974 ExecutionContext exe_ctx(GetExecutionContextRef()); 975 Target *target = exe_ctx.GetTargetPtr(); 976 977 if (!target) { 978 s << "<no target to read from>"; 979 error.SetErrorString("no target to read from"); 980 CopyStringDataToBufferSP(s, buffer_sp); 981 return {0, was_capped}; 982 } 983 984 if (max_length == 0) 985 max_length = target->GetMaximumSizeOfStringSummary(); 986 987 size_t bytes_read = 0; 988 size_t total_bytes_read = 0; 989 990 CompilerType compiler_type = GetCompilerType(); 991 CompilerType elem_or_pointee_compiler_type; 992 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 993 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 994 elem_or_pointee_compiler_type.IsCharType()) { 995 addr_t cstr_address = LLDB_INVALID_ADDRESS; 996 AddressType cstr_address_type = eAddressTypeInvalid; 997 998 size_t cstr_len = 0; 999 bool capped_data = false; 1000 const bool is_array = type_flags.Test(eTypeIsArray); 1001 if (is_array) { 1002 // We have an array 1003 uint64_t array_size = 0; 1004 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 1005 cstr_len = array_size; 1006 if (cstr_len > max_length) { 1007 capped_data = true; 1008 cstr_len = max_length; 1009 } 1010 } 1011 cstr_address = GetAddressOf(true, &cstr_address_type); 1012 } else { 1013 // We have a pointer 1014 cstr_address = GetPointerValue(&cstr_address_type); 1015 } 1016 1017 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 1018 if (cstr_address_type == eAddressTypeHost && is_array) { 1019 const char *cstr = GetDataExtractor().PeekCStr(0); 1020 if (cstr == nullptr) { 1021 s << "<invalid address>"; 1022 error.SetErrorString("invalid address"); 1023 CopyStringDataToBufferSP(s, buffer_sp); 1024 return {0, was_capped}; 1025 } 1026 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 1027 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 1028 return {cstr_len, was_capped}; 1029 } else { 1030 s << "<invalid address>"; 1031 error.SetErrorString("invalid address"); 1032 CopyStringDataToBufferSP(s, buffer_sp); 1033 return {0, was_capped}; 1034 } 1035 } 1036 1037 Address cstr_so_addr(cstr_address); 1038 DataExtractor data; 1039 if (cstr_len > 0 && honor_array) { 1040 // I am using GetPointeeData() here to abstract the fact that some 1041 // ValueObjects are actually frozen pointers in the host but the pointed- 1042 // to data lives in the debuggee, and GetPointeeData() automatically 1043 // takes care of this 1044 GetPointeeData(data, 0, cstr_len); 1045 1046 if ((bytes_read = data.GetByteSize()) > 0) { 1047 total_bytes_read = bytes_read; 1048 for (size_t offset = 0; offset < bytes_read; offset++) 1049 s.Printf("%c", *data.PeekData(offset, 1)); 1050 if (capped_data) 1051 was_capped = true; 1052 } 1053 } else { 1054 cstr_len = max_length; 1055 const size_t k_max_buf_size = 64; 1056 1057 size_t offset = 0; 1058 1059 int cstr_len_displayed = -1; 1060 bool capped_cstr = false; 1061 // I am using GetPointeeData() here to abstract the fact that some 1062 // ValueObjects are actually frozen pointers in the host but the pointed- 1063 // to data lives in the debuggee, and GetPointeeData() automatically 1064 // takes care of this 1065 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1066 total_bytes_read += bytes_read; 1067 const char *cstr = data.PeekCStr(0); 1068 size_t len = strnlen(cstr, k_max_buf_size); 1069 if (cstr_len_displayed < 0) 1070 cstr_len_displayed = len; 1071 1072 if (len == 0) 1073 break; 1074 cstr_len_displayed += len; 1075 if (len > bytes_read) 1076 len = bytes_read; 1077 if (len > cstr_len) 1078 len = cstr_len; 1079 1080 for (size_t offset = 0; offset < bytes_read; offset++) 1081 s.Printf("%c", *data.PeekData(offset, 1)); 1082 1083 if (len < k_max_buf_size) 1084 break; 1085 1086 if (len >= cstr_len) { 1087 capped_cstr = true; 1088 break; 1089 } 1090 1091 cstr_len -= len; 1092 offset += len; 1093 } 1094 1095 if (cstr_len_displayed >= 0) { 1096 if (capped_cstr) 1097 was_capped = true; 1098 } 1099 } 1100 } else { 1101 error.SetErrorString("not a string object"); 1102 s << "<not a string object>"; 1103 } 1104 CopyStringDataToBufferSP(s, buffer_sp); 1105 return {total_bytes_read, was_capped}; 1106 } 1107 1108 const char *ValueObject::GetObjectDescription() { 1109 if (!UpdateValueIfNeeded(true)) 1110 return nullptr; 1111 1112 // Return cached value. 1113 if (!m_object_desc_str.empty()) 1114 return m_object_desc_str.c_str(); 1115 1116 ExecutionContext exe_ctx(GetExecutionContextRef()); 1117 Process *process = exe_ctx.GetProcessPtr(); 1118 if (!process) 1119 return nullptr; 1120 1121 // Returns the object description produced by one language runtime. 1122 auto get_object_description = [&](LanguageType language) -> const char * { 1123 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1124 StreamString s; 1125 if (runtime->GetObjectDescription(s, *this)) { 1126 m_object_desc_str.append(std::string(s.GetString())); 1127 return m_object_desc_str.c_str(); 1128 } 1129 } 1130 return nullptr; 1131 }; 1132 1133 // Try the native language runtime first. 1134 LanguageType native_language = GetObjectRuntimeLanguage(); 1135 if (const char *desc = get_object_description(native_language)) 1136 return desc; 1137 1138 // Try the Objective-C language runtime. This fallback is necessary 1139 // for Objective-C++ and mixed Objective-C / C++ programs. 1140 if (Language::LanguageIsCFamily(native_language)) 1141 return get_object_description(eLanguageTypeObjC); 1142 return nullptr; 1143 } 1144 1145 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1146 std::string &destination) { 1147 if (UpdateValueIfNeeded(false)) 1148 return format.FormatObject(this, destination); 1149 else 1150 return false; 1151 } 1152 1153 bool ValueObject::GetValueAsCString(lldb::Format format, 1154 std::string &destination) { 1155 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1156 } 1157 1158 const char *ValueObject::GetValueAsCString() { 1159 if (UpdateValueIfNeeded(true)) { 1160 lldb::TypeFormatImplSP format_sp; 1161 lldb::Format my_format = GetFormat(); 1162 if (my_format == lldb::eFormatDefault) { 1163 if (m_type_format_sp) 1164 format_sp = m_type_format_sp; 1165 else { 1166 if (m_is_bitfield_for_scalar) 1167 my_format = eFormatUnsigned; 1168 else { 1169 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1170 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1171 if (reg_info) 1172 my_format = reg_info->format; 1173 } else { 1174 my_format = GetValue().GetCompilerType().GetFormat(); 1175 } 1176 } 1177 } 1178 } 1179 if (my_format != m_last_format || m_value_str.empty()) { 1180 m_last_format = my_format; 1181 if (!format_sp) 1182 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1183 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1184 if (!m_value_did_change && m_old_value_valid) { 1185 // The value was gotten successfully, so we consider the value as 1186 // changed if the value string differs 1187 SetValueDidChange(m_old_value_str != m_value_str); 1188 } 1189 } 1190 } 1191 } 1192 if (m_value_str.empty()) 1193 return nullptr; 1194 return m_value_str.c_str(); 1195 } 1196 1197 // if > 8bytes, 0 is returned. this method should mostly be used to read 1198 // address values out of pointers 1199 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1200 // If our byte size is zero this is an aggregate type that has children 1201 if (CanProvideValue()) { 1202 Scalar scalar; 1203 if (ResolveValue(scalar)) { 1204 if (success) 1205 *success = true; 1206 scalar.MakeUnsigned(); 1207 return scalar.ULongLong(fail_value); 1208 } 1209 // fallthrough, otherwise... 1210 } 1211 1212 if (success) 1213 *success = false; 1214 return fail_value; 1215 } 1216 1217 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1218 // If our byte size is zero this is an aggregate type that has children 1219 if (CanProvideValue()) { 1220 Scalar scalar; 1221 if (ResolveValue(scalar)) { 1222 if (success) 1223 *success = true; 1224 scalar.MakeSigned(); 1225 return scalar.SLongLong(fail_value); 1226 } 1227 // fallthrough, otherwise... 1228 } 1229 1230 if (success) 1231 *success = false; 1232 return fail_value; 1233 } 1234 1235 // if any more "special cases" are added to 1236 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1237 // by returning true for your new special cases. We will eventually move to 1238 // checking this call result before trying to display special cases 1239 bool ValueObject::HasSpecialPrintableRepresentation( 1240 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1241 Flags flags(GetTypeInfo()); 1242 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1243 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1244 if (IsCStringContainer(true) && 1245 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1246 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1247 return true; 1248 1249 if (flags.Test(eTypeIsArray)) { 1250 if ((custom_format == eFormatBytes) || 1251 (custom_format == eFormatBytesWithASCII)) 1252 return true; 1253 1254 if ((custom_format == eFormatVectorOfChar) || 1255 (custom_format == eFormatVectorOfFloat32) || 1256 (custom_format == eFormatVectorOfFloat64) || 1257 (custom_format == eFormatVectorOfSInt16) || 1258 (custom_format == eFormatVectorOfSInt32) || 1259 (custom_format == eFormatVectorOfSInt64) || 1260 (custom_format == eFormatVectorOfSInt8) || 1261 (custom_format == eFormatVectorOfUInt128) || 1262 (custom_format == eFormatVectorOfUInt16) || 1263 (custom_format == eFormatVectorOfUInt32) || 1264 (custom_format == eFormatVectorOfUInt64) || 1265 (custom_format == eFormatVectorOfUInt8)) 1266 return true; 1267 } 1268 } 1269 return false; 1270 } 1271 1272 bool ValueObject::DumpPrintableRepresentation( 1273 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1274 Format custom_format, PrintableRepresentationSpecialCases special, 1275 bool do_dump_error) { 1276 1277 Flags flags(GetTypeInfo()); 1278 1279 bool allow_special = 1280 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1281 const bool only_special = false; 1282 1283 if (allow_special) { 1284 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1285 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1286 // when being asked to get a printable display an array or pointer type 1287 // directly, try to "do the right thing" 1288 1289 if (IsCStringContainer(true) && 1290 (custom_format == eFormatCString || 1291 custom_format == eFormatCharArray || custom_format == eFormatChar || 1292 custom_format == 1293 eFormatVectorOfChar)) // print char[] & char* directly 1294 { 1295 Status error; 1296 lldb::DataBufferSP buffer_sp; 1297 std::pair<size_t, bool> read_string = ReadPointedString( 1298 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1299 (custom_format == eFormatCharArray)); 1300 lldb_private::formatters::StringPrinter:: 1301 ReadBufferAndDumpToStreamOptions options(*this); 1302 options.SetData(DataExtractor( 1303 buffer_sp, lldb::eByteOrderInvalid, 1304 8)); // none of this matters for a string - pass some defaults 1305 options.SetStream(&s); 1306 options.SetPrefixToken(nullptr); 1307 options.SetQuote('"'); 1308 options.SetSourceSize(buffer_sp->GetByteSize()); 1309 options.SetIsTruncated(read_string.second); 1310 formatters::StringPrinter::ReadBufferAndDumpToStream< 1311 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1312 options); 1313 return !error.Fail(); 1314 } 1315 1316 if (custom_format == eFormatEnum) 1317 return false; 1318 1319 // this only works for arrays, because I have no way to know when the 1320 // pointed memory ends, and no special \0 end of data marker 1321 if (flags.Test(eTypeIsArray)) { 1322 if ((custom_format == eFormatBytes) || 1323 (custom_format == eFormatBytesWithASCII)) { 1324 const size_t count = GetNumChildren(); 1325 1326 s << '['; 1327 for (size_t low = 0; low < count; low++) { 1328 1329 if (low) 1330 s << ','; 1331 1332 ValueObjectSP child = GetChildAtIndex(low, true); 1333 if (!child.get()) { 1334 s << "<invalid child>"; 1335 continue; 1336 } 1337 child->DumpPrintableRepresentation( 1338 s, ValueObject::eValueObjectRepresentationStyleValue, 1339 custom_format); 1340 } 1341 1342 s << ']'; 1343 1344 return true; 1345 } 1346 1347 if ((custom_format == eFormatVectorOfChar) || 1348 (custom_format == eFormatVectorOfFloat32) || 1349 (custom_format == eFormatVectorOfFloat64) || 1350 (custom_format == eFormatVectorOfSInt16) || 1351 (custom_format == eFormatVectorOfSInt32) || 1352 (custom_format == eFormatVectorOfSInt64) || 1353 (custom_format == eFormatVectorOfSInt8) || 1354 (custom_format == eFormatVectorOfUInt128) || 1355 (custom_format == eFormatVectorOfUInt16) || 1356 (custom_format == eFormatVectorOfUInt32) || 1357 (custom_format == eFormatVectorOfUInt64) || 1358 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1359 // with ASCII or any vector 1360 // format should be printed 1361 // directly 1362 { 1363 const size_t count = GetNumChildren(); 1364 1365 Format format = FormatManager::GetSingleItemFormat(custom_format); 1366 1367 s << '['; 1368 for (size_t low = 0; low < count; low++) { 1369 1370 if (low) 1371 s << ','; 1372 1373 ValueObjectSP child = GetChildAtIndex(low, true); 1374 if (!child.get()) { 1375 s << "<invalid child>"; 1376 continue; 1377 } 1378 child->DumpPrintableRepresentation( 1379 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1380 } 1381 1382 s << ']'; 1383 1384 return true; 1385 } 1386 } 1387 1388 if ((custom_format == eFormatBoolean) || 1389 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1390 (custom_format == eFormatCharPrintable) || 1391 (custom_format == eFormatComplexFloat) || 1392 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1393 (custom_format == eFormatHexUppercase) || 1394 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1395 (custom_format == eFormatOSType) || 1396 (custom_format == eFormatUnicode16) || 1397 (custom_format == eFormatUnicode32) || 1398 (custom_format == eFormatUnsigned) || 1399 (custom_format == eFormatPointer) || 1400 (custom_format == eFormatComplexInteger) || 1401 (custom_format == eFormatComplex) || 1402 (custom_format == eFormatDefault)) // use the [] operator 1403 return false; 1404 } 1405 } 1406 1407 if (only_special) 1408 return false; 1409 1410 bool var_success = false; 1411 1412 { 1413 llvm::StringRef str; 1414 1415 // this is a local stream that we are using to ensure that the data pointed 1416 // to by cstr survives long enough for us to copy it to its destination - 1417 // it is necessary to have this temporary storage area for cases where our 1418 // desired output is not backed by some other longer-term storage 1419 StreamString strm; 1420 1421 if (custom_format != eFormatInvalid) 1422 SetFormat(custom_format); 1423 1424 switch (val_obj_display) { 1425 case eValueObjectRepresentationStyleValue: 1426 str = GetValueAsCString(); 1427 break; 1428 1429 case eValueObjectRepresentationStyleSummary: 1430 str = GetSummaryAsCString(); 1431 break; 1432 1433 case eValueObjectRepresentationStyleLanguageSpecific: 1434 str = GetObjectDescription(); 1435 break; 1436 1437 case eValueObjectRepresentationStyleLocation: 1438 str = GetLocationAsCString(); 1439 break; 1440 1441 case eValueObjectRepresentationStyleChildrenCount: 1442 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1443 str = strm.GetString(); 1444 break; 1445 1446 case eValueObjectRepresentationStyleType: 1447 str = GetTypeName().GetStringRef(); 1448 break; 1449 1450 case eValueObjectRepresentationStyleName: 1451 str = GetName().GetStringRef(); 1452 break; 1453 1454 case eValueObjectRepresentationStyleExpressionPath: 1455 GetExpressionPath(strm); 1456 str = strm.GetString(); 1457 break; 1458 } 1459 1460 if (str.empty()) { 1461 if (val_obj_display == eValueObjectRepresentationStyleValue) 1462 str = GetSummaryAsCString(); 1463 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1464 if (!CanProvideValue()) { 1465 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1466 GetLocationAsCString()); 1467 str = strm.GetString(); 1468 } else 1469 str = GetValueAsCString(); 1470 } 1471 } 1472 1473 if (!str.empty()) 1474 s << str; 1475 else { 1476 if (m_error.Fail()) { 1477 if (do_dump_error) 1478 s.Printf("<%s>", m_error.AsCString()); 1479 else 1480 return false; 1481 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1482 s.PutCString("<no summary available>"); 1483 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1484 s.PutCString("<no value available>"); 1485 else if (val_obj_display == 1486 eValueObjectRepresentationStyleLanguageSpecific) 1487 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1488 // have other runtimes 1489 // that support a 1490 // description 1491 else 1492 s.PutCString("<no printable representation>"); 1493 } 1494 1495 // we should only return false here if we could not do *anything* even if 1496 // we have an error message as output, that's a success from our callers' 1497 // perspective, so return true 1498 var_success = true; 1499 1500 if (custom_format != eFormatInvalid) 1501 SetFormat(eFormatDefault); 1502 } 1503 1504 return var_success; 1505 } 1506 1507 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1508 AddressType *address_type) { 1509 // Can't take address of a bitfield 1510 if (IsBitfield()) 1511 return LLDB_INVALID_ADDRESS; 1512 1513 if (!UpdateValueIfNeeded(false)) 1514 return LLDB_INVALID_ADDRESS; 1515 1516 switch (m_value.GetValueType()) { 1517 case Value::eValueTypeScalar: 1518 case Value::eValueTypeVector: 1519 if (scalar_is_load_address) { 1520 if (address_type) 1521 *address_type = eAddressTypeLoad; 1522 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1523 } 1524 break; 1525 1526 case Value::eValueTypeLoadAddress: 1527 case Value::eValueTypeFileAddress: { 1528 if (address_type) 1529 *address_type = m_value.GetValueAddressType(); 1530 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1531 } break; 1532 case Value::eValueTypeHostAddress: { 1533 if (address_type) 1534 *address_type = m_value.GetValueAddressType(); 1535 return LLDB_INVALID_ADDRESS; 1536 } break; 1537 } 1538 if (address_type) 1539 *address_type = eAddressTypeInvalid; 1540 return LLDB_INVALID_ADDRESS; 1541 } 1542 1543 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1544 addr_t address = LLDB_INVALID_ADDRESS; 1545 if (address_type) 1546 *address_type = eAddressTypeInvalid; 1547 1548 if (!UpdateValueIfNeeded(false)) 1549 return address; 1550 1551 switch (m_value.GetValueType()) { 1552 case Value::eValueTypeScalar: 1553 case Value::eValueTypeVector: 1554 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1555 break; 1556 1557 case Value::eValueTypeHostAddress: 1558 case Value::eValueTypeLoadAddress: 1559 case Value::eValueTypeFileAddress: { 1560 lldb::offset_t data_offset = 0; 1561 address = m_data.GetAddress(&data_offset); 1562 } break; 1563 } 1564 1565 if (address_type) 1566 *address_type = GetAddressTypeOfChildren(); 1567 1568 return address; 1569 } 1570 1571 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1572 error.Clear(); 1573 // Make sure our value is up to date first so that our location and location 1574 // type is valid. 1575 if (!UpdateValueIfNeeded(false)) { 1576 error.SetErrorString("unable to read value"); 1577 return false; 1578 } 1579 1580 uint64_t count = 0; 1581 const Encoding encoding = GetCompilerType().GetEncoding(count); 1582 1583 const size_t byte_size = GetByteSize(); 1584 1585 Value::ValueType value_type = m_value.GetValueType(); 1586 1587 if (value_type == Value::eValueTypeScalar) { 1588 // If the value is already a scalar, then let the scalar change itself: 1589 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1590 } else if (byte_size <= 16) { 1591 // If the value fits in a scalar, then make a new scalar and again let the 1592 // scalar code do the conversion, then figure out where to put the new 1593 // value. 1594 Scalar new_scalar; 1595 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1596 if (error.Success()) { 1597 switch (value_type) { 1598 case Value::eValueTypeLoadAddress: { 1599 // If it is a load address, then the scalar value is the storage 1600 // location of the data, and we have to shove this value down to that 1601 // load location. 1602 ExecutionContext exe_ctx(GetExecutionContextRef()); 1603 Process *process = exe_ctx.GetProcessPtr(); 1604 if (process) { 1605 addr_t target_addr = 1606 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1607 size_t bytes_written = process->WriteScalarToMemory( 1608 target_addr, new_scalar, byte_size, error); 1609 if (!error.Success()) 1610 return false; 1611 if (bytes_written != byte_size) { 1612 error.SetErrorString("unable to write value to memory"); 1613 return false; 1614 } 1615 } 1616 } break; 1617 case Value::eValueTypeHostAddress: { 1618 // If it is a host address, then we stuff the scalar as a DataBuffer 1619 // into the Value's data. 1620 DataExtractor new_data; 1621 new_data.SetByteOrder(m_data.GetByteOrder()); 1622 1623 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1624 m_data.SetData(buffer_sp, 0); 1625 bool success = new_scalar.GetData(new_data); 1626 if (success) { 1627 new_data.CopyByteOrderedData( 1628 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1629 byte_size, m_data.GetByteOrder()); 1630 } 1631 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1632 1633 } break; 1634 case Value::eValueTypeFileAddress: 1635 case Value::eValueTypeScalar: 1636 case Value::eValueTypeVector: 1637 break; 1638 } 1639 } else { 1640 return false; 1641 } 1642 } else { 1643 // We don't support setting things bigger than a scalar at present. 1644 error.SetErrorString("unable to write aggregate data type"); 1645 return false; 1646 } 1647 1648 // If we have reached this point, then we have successfully changed the 1649 // value. 1650 SetNeedsUpdate(); 1651 return true; 1652 } 1653 1654 bool ValueObject::GetDeclaration(Declaration &decl) { 1655 decl.Clear(); 1656 return false; 1657 } 1658 1659 ConstString ValueObject::GetTypeName() { 1660 return GetCompilerType().GetTypeName(); 1661 } 1662 1663 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1664 1665 ConstString ValueObject::GetQualifiedTypeName() { 1666 return GetCompilerType().GetTypeName(); 1667 } 1668 1669 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1670 return GetCompilerType().GetMinimumLanguage(); 1671 } 1672 1673 void ValueObject::AddSyntheticChild(ConstString key, 1674 ValueObject *valobj) { 1675 m_synthetic_children[key] = valobj; 1676 } 1677 1678 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1679 ValueObjectSP synthetic_child_sp; 1680 std::map<ConstString, ValueObject *>::const_iterator pos = 1681 m_synthetic_children.find(key); 1682 if (pos != m_synthetic_children.end()) 1683 synthetic_child_sp = pos->second->GetSP(); 1684 return synthetic_child_sp; 1685 } 1686 1687 uint32_t 1688 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1689 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1690 } 1691 1692 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1693 1694 bool ValueObject::IsArrayType() { 1695 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1696 } 1697 1698 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1699 1700 bool ValueObject::IsIntegerType(bool &is_signed) { 1701 return GetCompilerType().IsIntegerType(is_signed); 1702 } 1703 1704 bool ValueObject::IsPointerOrReferenceType() { 1705 return GetCompilerType().IsPointerOrReferenceType(); 1706 } 1707 1708 bool ValueObject::IsPossibleDynamicType() { 1709 ExecutionContext exe_ctx(GetExecutionContextRef()); 1710 Process *process = exe_ctx.GetProcessPtr(); 1711 if (process) 1712 return process->IsPossibleDynamicValue(*this); 1713 else 1714 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1715 } 1716 1717 bool ValueObject::IsRuntimeSupportValue() { 1718 Process *process(GetProcessSP().get()); 1719 if (!process) 1720 return false; 1721 1722 // We trust the the compiler did the right thing and marked runtime support 1723 // values as artificial. 1724 if (!GetVariable() || !GetVariable()->IsArtificial()) 1725 return false; 1726 1727 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1728 if (runtime->IsAllowedRuntimeValue(GetName())) 1729 return false; 1730 1731 return true; 1732 } 1733 1734 bool ValueObject::IsNilReference() { 1735 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1736 return language->IsNilReference(*this); 1737 } 1738 return false; 1739 } 1740 1741 bool ValueObject::IsUninitializedReference() { 1742 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1743 return language->IsUninitializedReference(*this); 1744 } 1745 return false; 1746 } 1747 1748 // This allows you to create an array member using and index that doesn't not 1749 // fall in the normal bounds of the array. Many times structure can be defined 1750 // as: struct Collection { 1751 // uint32_t item_count; 1752 // Item item_array[0]; 1753 // }; 1754 // The size of the "item_array" is 1, but many times in practice there are more 1755 // items in "item_array". 1756 1757 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1758 bool can_create) { 1759 ValueObjectSP synthetic_child_sp; 1760 if (IsPointerType() || IsArrayType()) { 1761 char index_str[64]; 1762 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1763 ConstString index_const_str(index_str); 1764 // Check if we have already created a synthetic array member in this valid 1765 // object. If we have we will re-use it. 1766 synthetic_child_sp = GetSyntheticChild(index_const_str); 1767 if (!synthetic_child_sp) { 1768 ValueObject *synthetic_child; 1769 // We haven't made a synthetic array member for INDEX yet, so lets make 1770 // one and cache it for any future reference. 1771 synthetic_child = CreateChildAtIndex(0, true, index); 1772 1773 // Cache the value if we got one back... 1774 if (synthetic_child) { 1775 AddSyntheticChild(index_const_str, synthetic_child); 1776 synthetic_child_sp = synthetic_child->GetSP(); 1777 synthetic_child_sp->SetName(ConstString(index_str)); 1778 synthetic_child_sp->m_is_array_item_for_pointer = true; 1779 } 1780 } 1781 } 1782 return synthetic_child_sp; 1783 } 1784 1785 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1786 bool can_create) { 1787 ValueObjectSP synthetic_child_sp; 1788 if (IsScalarType()) { 1789 char index_str[64]; 1790 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1791 ConstString index_const_str(index_str); 1792 // Check if we have already created a synthetic array member in this valid 1793 // object. If we have we will re-use it. 1794 synthetic_child_sp = GetSyntheticChild(index_const_str); 1795 if (!synthetic_child_sp) { 1796 uint32_t bit_field_size = to - from + 1; 1797 uint32_t bit_field_offset = from; 1798 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1799 bit_field_offset = 1800 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1801 // We haven't made a synthetic array member for INDEX yet, so lets make 1802 // one and cache it for any future reference. 1803 ValueObjectChild *synthetic_child = new ValueObjectChild( 1804 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1805 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1806 0); 1807 1808 // Cache the value if we got one back... 1809 if (synthetic_child) { 1810 AddSyntheticChild(index_const_str, synthetic_child); 1811 synthetic_child_sp = synthetic_child->GetSP(); 1812 synthetic_child_sp->SetName(ConstString(index_str)); 1813 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1814 } 1815 } 1816 } 1817 return synthetic_child_sp; 1818 } 1819 1820 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1821 uint32_t offset, const CompilerType &type, bool can_create, 1822 ConstString name_const_str) { 1823 1824 ValueObjectSP synthetic_child_sp; 1825 1826 if (name_const_str.IsEmpty()) { 1827 char name_str[64]; 1828 snprintf(name_str, sizeof(name_str), "@%i", offset); 1829 name_const_str.SetCString(name_str); 1830 } 1831 1832 // Check if we have already created a synthetic array member in this valid 1833 // object. If we have we will re-use it. 1834 synthetic_child_sp = GetSyntheticChild(name_const_str); 1835 1836 if (synthetic_child_sp.get()) 1837 return synthetic_child_sp; 1838 1839 if (!can_create) 1840 return {}; 1841 1842 ExecutionContext exe_ctx(GetExecutionContextRef()); 1843 llvm::Optional<uint64_t> size = 1844 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1845 if (!size) 1846 return {}; 1847 ValueObjectChild *synthetic_child = 1848 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1849 false, false, eAddressTypeInvalid, 0); 1850 if (synthetic_child) { 1851 AddSyntheticChild(name_const_str, synthetic_child); 1852 synthetic_child_sp = synthetic_child->GetSP(); 1853 synthetic_child_sp->SetName(name_const_str); 1854 synthetic_child_sp->m_is_child_at_offset = true; 1855 } 1856 return synthetic_child_sp; 1857 } 1858 1859 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1860 const CompilerType &type, 1861 bool can_create, 1862 ConstString name_const_str) { 1863 ValueObjectSP synthetic_child_sp; 1864 1865 if (name_const_str.IsEmpty()) { 1866 char name_str[128]; 1867 snprintf(name_str, sizeof(name_str), "base%s@%i", 1868 type.GetTypeName().AsCString("<unknown>"), offset); 1869 name_const_str.SetCString(name_str); 1870 } 1871 1872 // Check if we have already created a synthetic array member in this valid 1873 // object. If we have we will re-use it. 1874 synthetic_child_sp = GetSyntheticChild(name_const_str); 1875 1876 if (synthetic_child_sp.get()) 1877 return synthetic_child_sp; 1878 1879 if (!can_create) 1880 return {}; 1881 1882 const bool is_base_class = true; 1883 1884 ExecutionContext exe_ctx(GetExecutionContextRef()); 1885 llvm::Optional<uint64_t> size = 1886 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1887 if (!size) 1888 return {}; 1889 ValueObjectChild *synthetic_child = 1890 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1891 is_base_class, false, eAddressTypeInvalid, 0); 1892 if (synthetic_child) { 1893 AddSyntheticChild(name_const_str, synthetic_child); 1894 synthetic_child_sp = synthetic_child->GetSP(); 1895 synthetic_child_sp->SetName(name_const_str); 1896 } 1897 return synthetic_child_sp; 1898 } 1899 1900 // your expression path needs to have a leading . or -> (unless it somehow 1901 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1902 // is meaningful and should be shown to the user, . and -> are just parser 1903 // design, but by no means added information for the user.. strip them off 1904 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1905 if (!expression || !expression[0]) 1906 return expression; 1907 if (expression[0] == '.') 1908 return expression + 1; 1909 if (expression[0] == '-' && expression[1] == '>') 1910 return expression + 2; 1911 return expression; 1912 } 1913 1914 ValueObjectSP 1915 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1916 bool can_create) { 1917 ValueObjectSP synthetic_child_sp; 1918 ConstString name_const_string(expression); 1919 // Check if we have already created a synthetic array member in this valid 1920 // object. If we have we will re-use it. 1921 synthetic_child_sp = GetSyntheticChild(name_const_string); 1922 if (!synthetic_child_sp) { 1923 // We haven't made a synthetic array member for expression yet, so lets 1924 // make one and cache it for any future reference. 1925 synthetic_child_sp = GetValueForExpressionPath( 1926 expression, nullptr, nullptr, 1927 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1928 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1929 None)); 1930 1931 // Cache the value if we got one back... 1932 if (synthetic_child_sp.get()) { 1933 // FIXME: this causes a "real" child to end up with its name changed to 1934 // the contents of expression 1935 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1936 synthetic_child_sp->SetName( 1937 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1938 } 1939 } 1940 return synthetic_child_sp; 1941 } 1942 1943 void ValueObject::CalculateSyntheticValue() { 1944 TargetSP target_sp(GetTargetSP()); 1945 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1946 m_synthetic_value = nullptr; 1947 return; 1948 } 1949 1950 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1951 1952 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1953 return; 1954 1955 if (m_synthetic_children_sp.get() == nullptr) 1956 return; 1957 1958 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1959 return; 1960 1961 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1962 } 1963 1964 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1965 if (use_dynamic == eNoDynamicValues) 1966 return; 1967 1968 if (!m_dynamic_value && !IsDynamic()) { 1969 ExecutionContext exe_ctx(GetExecutionContextRef()); 1970 Process *process = exe_ctx.GetProcessPtr(); 1971 if (process && process->IsPossibleDynamicValue(*this)) { 1972 ClearDynamicTypeInformation(); 1973 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1974 } 1975 } 1976 } 1977 1978 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1979 if (use_dynamic == eNoDynamicValues) 1980 return ValueObjectSP(); 1981 1982 if (!IsDynamic() && m_dynamic_value == nullptr) { 1983 CalculateDynamicValue(use_dynamic); 1984 } 1985 if (m_dynamic_value) 1986 return m_dynamic_value->GetSP(); 1987 else 1988 return ValueObjectSP(); 1989 } 1990 1991 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1992 1993 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1994 1995 ValueObjectSP ValueObject::GetSyntheticValue() { 1996 CalculateSyntheticValue(); 1997 1998 if (m_synthetic_value) 1999 return m_synthetic_value->GetSP(); 2000 else 2001 return ValueObjectSP(); 2002 } 2003 2004 bool ValueObject::HasSyntheticValue() { 2005 UpdateFormatsIfNeeded(); 2006 2007 if (m_synthetic_children_sp.get() == nullptr) 2008 return false; 2009 2010 CalculateSyntheticValue(); 2011 2012 return m_synthetic_value != nullptr; 2013 } 2014 2015 ValueObject *ValueObject::GetNonBaseClassParent() { 2016 if (GetParent()) { 2017 if (GetParent()->IsBaseClass()) 2018 return GetParent()->GetNonBaseClassParent(); 2019 else 2020 return GetParent(); 2021 } 2022 return nullptr; 2023 } 2024 2025 bool ValueObject::IsBaseClass(uint32_t &depth) { 2026 if (!IsBaseClass()) { 2027 depth = 0; 2028 return false; 2029 } 2030 if (GetParent()) { 2031 GetParent()->IsBaseClass(depth); 2032 depth = depth + 1; 2033 return true; 2034 } 2035 // TODO: a base of no parent? weird.. 2036 depth = 1; 2037 return true; 2038 } 2039 2040 void ValueObject::GetExpressionPath(Stream &s, 2041 GetExpressionPathFormat epformat) { 2042 // synthetic children do not actually "exist" as part of the hierarchy, and 2043 // sometimes they are consed up in ways that don't make sense from an 2044 // underlying language/API standpoint. So, use a special code path here to 2045 // return something that can hopefully be used in expression 2046 if (m_is_synthetic_children_generated) { 2047 UpdateValueIfNeeded(); 2048 2049 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2050 if (IsPointerOrReferenceType()) { 2051 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2052 GetValueAsUnsigned(0)); 2053 return; 2054 } else { 2055 uint64_t load_addr = 2056 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2057 if (load_addr != LLDB_INVALID_ADDRESS) { 2058 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2059 load_addr); 2060 return; 2061 } 2062 } 2063 } 2064 2065 if (CanProvideValue()) { 2066 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2067 GetValueAsCString()); 2068 return; 2069 } 2070 2071 return; 2072 } 2073 2074 const bool is_deref_of_parent = IsDereferenceOfParent(); 2075 2076 if (is_deref_of_parent && 2077 epformat == eGetExpressionPathFormatDereferencePointers) { 2078 // this is the original format of GetExpressionPath() producing code like 2079 // *(a_ptr).memberName, which is entirely fine, until you put this into 2080 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2081 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2082 // in this latter format 2083 s.PutCString("*("); 2084 } 2085 2086 ValueObject *parent = GetParent(); 2087 2088 if (parent) 2089 parent->GetExpressionPath(s, epformat); 2090 2091 // if we are a deref_of_parent just because we are synthetic array members 2092 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2093 // name ([%d]) to the expression path 2094 if (m_is_array_item_for_pointer && 2095 epformat == eGetExpressionPathFormatHonorPointers) 2096 s.PutCString(m_name.GetStringRef()); 2097 2098 if (!IsBaseClass()) { 2099 if (!is_deref_of_parent) { 2100 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2101 if (non_base_class_parent && 2102 !non_base_class_parent->GetName().IsEmpty()) { 2103 CompilerType non_base_class_parent_compiler_type = 2104 non_base_class_parent->GetCompilerType(); 2105 if (non_base_class_parent_compiler_type) { 2106 if (parent && parent->IsDereferenceOfParent() && 2107 epformat == eGetExpressionPathFormatHonorPointers) { 2108 s.PutCString("->"); 2109 } else { 2110 const uint32_t non_base_class_parent_type_info = 2111 non_base_class_parent_compiler_type.GetTypeInfo(); 2112 2113 if (non_base_class_parent_type_info & eTypeIsPointer) { 2114 s.PutCString("->"); 2115 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2116 !(non_base_class_parent_type_info & eTypeIsArray)) { 2117 s.PutChar('.'); 2118 } 2119 } 2120 } 2121 } 2122 2123 const char *name = GetName().GetCString(); 2124 if (name) 2125 s.PutCString(name); 2126 } 2127 } 2128 2129 if (is_deref_of_parent && 2130 epformat == eGetExpressionPathFormatDereferencePointers) { 2131 s.PutChar(')'); 2132 } 2133 } 2134 2135 ValueObjectSP ValueObject::GetValueForExpressionPath( 2136 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2137 ExpressionPathEndResultType *final_value_type, 2138 const GetValueForExpressionPathOptions &options, 2139 ExpressionPathAftermath *final_task_on_target) { 2140 2141 ExpressionPathScanEndReason dummy_reason_to_stop = 2142 ValueObject::eExpressionPathScanEndReasonUnknown; 2143 ExpressionPathEndResultType dummy_final_value_type = 2144 ValueObject::eExpressionPathEndResultTypeInvalid; 2145 ExpressionPathAftermath dummy_final_task_on_target = 2146 ValueObject::eExpressionPathAftermathNothing; 2147 2148 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2149 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2150 final_value_type ? final_value_type : &dummy_final_value_type, options, 2151 final_task_on_target ? final_task_on_target 2152 : &dummy_final_task_on_target); 2153 2154 if (!final_task_on_target || 2155 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2156 return ret_val; 2157 2158 if (ret_val.get() && 2159 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2160 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2161 // of plain objects 2162 { 2163 if ((final_task_on_target ? *final_task_on_target 2164 : dummy_final_task_on_target) == 2165 ValueObject::eExpressionPathAftermathDereference) { 2166 Status error; 2167 ValueObjectSP final_value = ret_val->Dereference(error); 2168 if (error.Fail() || !final_value.get()) { 2169 if (reason_to_stop) 2170 *reason_to_stop = 2171 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2172 if (final_value_type) 2173 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2174 return ValueObjectSP(); 2175 } else { 2176 if (final_task_on_target) 2177 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2178 return final_value; 2179 } 2180 } 2181 if (*final_task_on_target == 2182 ValueObject::eExpressionPathAftermathTakeAddress) { 2183 Status error; 2184 ValueObjectSP final_value = ret_val->AddressOf(error); 2185 if (error.Fail() || !final_value.get()) { 2186 if (reason_to_stop) 2187 *reason_to_stop = 2188 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2189 if (final_value_type) 2190 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2191 return ValueObjectSP(); 2192 } else { 2193 if (final_task_on_target) 2194 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2195 return final_value; 2196 } 2197 } 2198 } 2199 return ret_val; // final_task_on_target will still have its original value, so 2200 // you know I did not do it 2201 } 2202 2203 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2204 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2205 ExpressionPathEndResultType *final_result, 2206 const GetValueForExpressionPathOptions &options, 2207 ExpressionPathAftermath *what_next) { 2208 ValueObjectSP root = GetSP(); 2209 2210 if (!root) 2211 return nullptr; 2212 2213 llvm::StringRef remainder = expression; 2214 2215 while (true) { 2216 llvm::StringRef temp_expression = remainder; 2217 2218 CompilerType root_compiler_type = root->GetCompilerType(); 2219 CompilerType pointee_compiler_type; 2220 Flags pointee_compiler_type_info; 2221 2222 Flags root_compiler_type_info( 2223 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2224 if (pointee_compiler_type) 2225 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2226 2227 if (temp_expression.empty()) { 2228 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2229 return root; 2230 } 2231 2232 switch (temp_expression.front()) { 2233 case '-': { 2234 temp_expression = temp_expression.drop_front(); 2235 if (options.m_check_dot_vs_arrow_syntax && 2236 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2237 // use -> on a 2238 // non-pointer and I 2239 // must catch the error 2240 { 2241 *reason_to_stop = 2242 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2243 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2244 return ValueObjectSP(); 2245 } 2246 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2247 // extract an ObjC IVar 2248 // when this is forbidden 2249 root_compiler_type_info.Test(eTypeIsPointer) && 2250 options.m_no_fragile_ivar) { 2251 *reason_to_stop = 2252 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2253 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2254 return ValueObjectSP(); 2255 } 2256 if (!temp_expression.startswith(">")) { 2257 *reason_to_stop = 2258 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2259 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2260 return ValueObjectSP(); 2261 } 2262 } 2263 LLVM_FALLTHROUGH; 2264 case '.': // or fallthrough from -> 2265 { 2266 if (options.m_check_dot_vs_arrow_syntax && 2267 temp_expression.front() == '.' && 2268 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2269 // use . on a pointer 2270 // and I must catch the 2271 // error 2272 { 2273 *reason_to_stop = 2274 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2275 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2276 return nullptr; 2277 } 2278 temp_expression = temp_expression.drop_front(); // skip . or > 2279 2280 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2281 ConstString child_name; 2282 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2283 // expand this last layer 2284 { 2285 child_name.SetString(temp_expression); 2286 ValueObjectSP child_valobj_sp = 2287 root->GetChildMemberWithName(child_name, true); 2288 2289 if (child_valobj_sp.get()) // we know we are done, so just return 2290 { 2291 *reason_to_stop = 2292 ValueObject::eExpressionPathScanEndReasonEndOfString; 2293 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2294 return child_valobj_sp; 2295 } else { 2296 switch (options.m_synthetic_children_traversal) { 2297 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2298 None: 2299 break; 2300 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2301 FromSynthetic: 2302 if (root->IsSynthetic()) { 2303 child_valobj_sp = root->GetNonSyntheticValue(); 2304 if (child_valobj_sp.get()) 2305 child_valobj_sp = 2306 child_valobj_sp->GetChildMemberWithName(child_name, true); 2307 } 2308 break; 2309 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2310 ToSynthetic: 2311 if (!root->IsSynthetic()) { 2312 child_valobj_sp = root->GetSyntheticValue(); 2313 if (child_valobj_sp.get()) 2314 child_valobj_sp = 2315 child_valobj_sp->GetChildMemberWithName(child_name, true); 2316 } 2317 break; 2318 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2319 Both: 2320 if (root->IsSynthetic()) { 2321 child_valobj_sp = root->GetNonSyntheticValue(); 2322 if (child_valobj_sp.get()) 2323 child_valobj_sp = 2324 child_valobj_sp->GetChildMemberWithName(child_name, true); 2325 } else { 2326 child_valobj_sp = root->GetSyntheticValue(); 2327 if (child_valobj_sp.get()) 2328 child_valobj_sp = 2329 child_valobj_sp->GetChildMemberWithName(child_name, true); 2330 } 2331 break; 2332 } 2333 } 2334 2335 // if we are here and options.m_no_synthetic_children is true, 2336 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2337 // branch, and return an error 2338 if (child_valobj_sp.get()) // if it worked, just return 2339 { 2340 *reason_to_stop = 2341 ValueObject::eExpressionPathScanEndReasonEndOfString; 2342 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2343 return child_valobj_sp; 2344 } else { 2345 *reason_to_stop = 2346 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2347 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2348 return nullptr; 2349 } 2350 } else // other layers do expand 2351 { 2352 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2353 2354 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2355 2356 ValueObjectSP child_valobj_sp = 2357 root->GetChildMemberWithName(child_name, true); 2358 if (child_valobj_sp.get()) // store the new root and move on 2359 { 2360 root = child_valobj_sp; 2361 remainder = next_separator; 2362 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2363 continue; 2364 } else { 2365 switch (options.m_synthetic_children_traversal) { 2366 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2367 None: 2368 break; 2369 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2370 FromSynthetic: 2371 if (root->IsSynthetic()) { 2372 child_valobj_sp = root->GetNonSyntheticValue(); 2373 if (child_valobj_sp.get()) 2374 child_valobj_sp = 2375 child_valobj_sp->GetChildMemberWithName(child_name, true); 2376 } 2377 break; 2378 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2379 ToSynthetic: 2380 if (!root->IsSynthetic()) { 2381 child_valobj_sp = root->GetSyntheticValue(); 2382 if (child_valobj_sp.get()) 2383 child_valobj_sp = 2384 child_valobj_sp->GetChildMemberWithName(child_name, true); 2385 } 2386 break; 2387 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2388 Both: 2389 if (root->IsSynthetic()) { 2390 child_valobj_sp = root->GetNonSyntheticValue(); 2391 if (child_valobj_sp.get()) 2392 child_valobj_sp = 2393 child_valobj_sp->GetChildMemberWithName(child_name, true); 2394 } else { 2395 child_valobj_sp = root->GetSyntheticValue(); 2396 if (child_valobj_sp.get()) 2397 child_valobj_sp = 2398 child_valobj_sp->GetChildMemberWithName(child_name, true); 2399 } 2400 break; 2401 } 2402 } 2403 2404 // if we are here and options.m_no_synthetic_children is true, 2405 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2406 // branch, and return an error 2407 if (child_valobj_sp.get()) // if it worked, move on 2408 { 2409 root = child_valobj_sp; 2410 remainder = next_separator; 2411 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2412 continue; 2413 } else { 2414 *reason_to_stop = 2415 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2416 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2417 return nullptr; 2418 } 2419 } 2420 break; 2421 } 2422 case '[': { 2423 if (!root_compiler_type_info.Test(eTypeIsArray) && 2424 !root_compiler_type_info.Test(eTypeIsPointer) && 2425 !root_compiler_type_info.Test( 2426 eTypeIsVector)) // if this is not a T[] nor a T* 2427 { 2428 if (!root_compiler_type_info.Test( 2429 eTypeIsScalar)) // if this is not even a scalar... 2430 { 2431 if (options.m_synthetic_children_traversal == 2432 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2433 None) // ...only chance left is synthetic 2434 { 2435 *reason_to_stop = 2436 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2437 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2438 return ValueObjectSP(); 2439 } 2440 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2441 // check that we can 2442 // expand bitfields 2443 { 2444 *reason_to_stop = 2445 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2446 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2447 return ValueObjectSP(); 2448 } 2449 } 2450 if (temp_expression[1] == 2451 ']') // if this is an unbounded range it only works for arrays 2452 { 2453 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2454 *reason_to_stop = 2455 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2456 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2457 return nullptr; 2458 } else // even if something follows, we cannot expand unbounded ranges, 2459 // just let the caller do it 2460 { 2461 *reason_to_stop = 2462 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2463 *final_result = 2464 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2465 return root; 2466 } 2467 } 2468 2469 size_t close_bracket_position = temp_expression.find(']', 1); 2470 if (close_bracket_position == 2471 llvm::StringRef::npos) // if there is no ], this is a syntax error 2472 { 2473 *reason_to_stop = 2474 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2475 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2476 return nullptr; 2477 } 2478 2479 llvm::StringRef bracket_expr = 2480 temp_expression.slice(1, close_bracket_position); 2481 2482 // If this was an empty expression it would have been caught by the if 2483 // above. 2484 assert(!bracket_expr.empty()); 2485 2486 if (!bracket_expr.contains('-')) { 2487 // if no separator, this is of the form [N]. Note that this cannot be 2488 // an unbounded range of the form [], because that case was handled 2489 // above with an unconditional return. 2490 unsigned long index = 0; 2491 if (bracket_expr.getAsInteger(0, index)) { 2492 *reason_to_stop = 2493 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2494 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2495 return nullptr; 2496 } 2497 2498 // from here on we do have a valid index 2499 if (root_compiler_type_info.Test(eTypeIsArray)) { 2500 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2501 if (!child_valobj_sp) 2502 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2503 if (!child_valobj_sp) 2504 if (root->HasSyntheticValue() && 2505 root->GetSyntheticValue()->GetNumChildren() > index) 2506 child_valobj_sp = 2507 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2508 if (child_valobj_sp) { 2509 root = child_valobj_sp; 2510 remainder = 2511 temp_expression.substr(close_bracket_position + 1); // skip ] 2512 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2513 continue; 2514 } else { 2515 *reason_to_stop = 2516 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2517 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2518 return nullptr; 2519 } 2520 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2521 if (*what_next == 2522 ValueObject:: 2523 eExpressionPathAftermathDereference && // if this is a 2524 // ptr-to-scalar, I 2525 // am accessing it 2526 // by index and I 2527 // would have 2528 // deref'ed anyway, 2529 // then do it now 2530 // and use this as 2531 // a bitfield 2532 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2533 Status error; 2534 root = root->Dereference(error); 2535 if (error.Fail() || !root) { 2536 *reason_to_stop = 2537 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2538 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2539 return nullptr; 2540 } else { 2541 *what_next = eExpressionPathAftermathNothing; 2542 continue; 2543 } 2544 } else { 2545 if (root->GetCompilerType().GetMinimumLanguage() == 2546 eLanguageTypeObjC && 2547 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2548 root->HasSyntheticValue() && 2549 (options.m_synthetic_children_traversal == 2550 GetValueForExpressionPathOptions:: 2551 SyntheticChildrenTraversal::ToSynthetic || 2552 options.m_synthetic_children_traversal == 2553 GetValueForExpressionPathOptions:: 2554 SyntheticChildrenTraversal::Both)) { 2555 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2556 } else 2557 root = root->GetSyntheticArrayMember(index, true); 2558 if (!root) { 2559 *reason_to_stop = 2560 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2561 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2562 return nullptr; 2563 } else { 2564 remainder = 2565 temp_expression.substr(close_bracket_position + 1); // skip ] 2566 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2567 continue; 2568 } 2569 } 2570 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2571 root = root->GetSyntheticBitFieldChild(index, index, true); 2572 if (!root) { 2573 *reason_to_stop = 2574 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2575 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2576 return nullptr; 2577 } else // we do not know how to expand members of bitfields, so we 2578 // just return and let the caller do any further processing 2579 { 2580 *reason_to_stop = ValueObject:: 2581 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2582 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2583 return root; 2584 } 2585 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2586 root = root->GetChildAtIndex(index, true); 2587 if (!root) { 2588 *reason_to_stop = 2589 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2590 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2591 return ValueObjectSP(); 2592 } else { 2593 remainder = 2594 temp_expression.substr(close_bracket_position + 1); // skip ] 2595 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2596 continue; 2597 } 2598 } else if (options.m_synthetic_children_traversal == 2599 GetValueForExpressionPathOptions:: 2600 SyntheticChildrenTraversal::ToSynthetic || 2601 options.m_synthetic_children_traversal == 2602 GetValueForExpressionPathOptions:: 2603 SyntheticChildrenTraversal::Both) { 2604 if (root->HasSyntheticValue()) 2605 root = root->GetSyntheticValue(); 2606 else if (!root->IsSynthetic()) { 2607 *reason_to_stop = 2608 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2609 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2610 return nullptr; 2611 } 2612 // if we are here, then root itself is a synthetic VO.. should be 2613 // good to go 2614 2615 if (!root) { 2616 *reason_to_stop = 2617 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2618 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2619 return nullptr; 2620 } 2621 root = root->GetChildAtIndex(index, true); 2622 if (!root) { 2623 *reason_to_stop = 2624 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2625 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2626 return nullptr; 2627 } else { 2628 remainder = 2629 temp_expression.substr(close_bracket_position + 1); // skip ] 2630 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2631 continue; 2632 } 2633 } else { 2634 *reason_to_stop = 2635 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2636 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2637 return nullptr; 2638 } 2639 } else { 2640 // we have a low and a high index 2641 llvm::StringRef sleft, sright; 2642 unsigned long low_index, high_index; 2643 std::tie(sleft, sright) = bracket_expr.split('-'); 2644 if (sleft.getAsInteger(0, low_index) || 2645 sright.getAsInteger(0, high_index)) { 2646 *reason_to_stop = 2647 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2648 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2649 return nullptr; 2650 } 2651 2652 if (low_index > high_index) // swap indices if required 2653 std::swap(low_index, high_index); 2654 2655 if (root_compiler_type_info.Test( 2656 eTypeIsScalar)) // expansion only works for scalars 2657 { 2658 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2659 if (!root) { 2660 *reason_to_stop = 2661 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2662 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2663 return nullptr; 2664 } else { 2665 *reason_to_stop = ValueObject:: 2666 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2667 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2668 return root; 2669 } 2670 } else if (root_compiler_type_info.Test( 2671 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2672 // accessing it by index and I would 2673 // have deref'ed anyway, then do it 2674 // now and use this as a bitfield 2675 *what_next == 2676 ValueObject::eExpressionPathAftermathDereference && 2677 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2678 Status error; 2679 root = root->Dereference(error); 2680 if (error.Fail() || !root) { 2681 *reason_to_stop = 2682 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2683 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2684 return nullptr; 2685 } else { 2686 *what_next = ValueObject::eExpressionPathAftermathNothing; 2687 continue; 2688 } 2689 } else { 2690 *reason_to_stop = 2691 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2692 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2693 return root; 2694 } 2695 } 2696 break; 2697 } 2698 default: // some non-separator is in the way 2699 { 2700 *reason_to_stop = 2701 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2702 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2703 return nullptr; 2704 } 2705 } 2706 } 2707 } 2708 2709 void ValueObject::LogValueObject(Log *log) { 2710 if (log) 2711 return LogValueObject(log, DumpValueObjectOptions(*this)); 2712 } 2713 2714 void ValueObject::LogValueObject(Log *log, 2715 const DumpValueObjectOptions &options) { 2716 if (log) { 2717 StreamString s; 2718 Dump(s, options); 2719 if (s.GetSize()) 2720 log->PutCString(s.GetData()); 2721 } 2722 } 2723 2724 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2725 2726 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2727 ValueObjectPrinter printer(this, &s, options); 2728 printer.PrintValueObject(); 2729 } 2730 2731 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2732 ValueObjectSP valobj_sp; 2733 2734 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2735 ExecutionContext exe_ctx(GetExecutionContextRef()); 2736 2737 DataExtractor data; 2738 data.SetByteOrder(m_data.GetByteOrder()); 2739 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2740 2741 if (IsBitfield()) { 2742 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2743 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2744 } else 2745 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2746 2747 valobj_sp = ValueObjectConstResult::Create( 2748 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2749 GetAddressOf()); 2750 } 2751 2752 if (!valobj_sp) { 2753 ExecutionContext exe_ctx(GetExecutionContextRef()); 2754 valobj_sp = ValueObjectConstResult::Create( 2755 exe_ctx.GetBestExecutionContextScope(), m_error); 2756 } 2757 return valobj_sp; 2758 } 2759 2760 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2761 lldb::DynamicValueType dynValue, bool synthValue) { 2762 ValueObjectSP result_sp(GetSP()); 2763 2764 switch (dynValue) { 2765 case lldb::eDynamicCanRunTarget: 2766 case lldb::eDynamicDontRunTarget: { 2767 if (!result_sp->IsDynamic()) { 2768 if (result_sp->GetDynamicValue(dynValue)) 2769 result_sp = result_sp->GetDynamicValue(dynValue); 2770 } 2771 } break; 2772 case lldb::eNoDynamicValues: { 2773 if (result_sp->IsDynamic()) { 2774 if (result_sp->GetStaticValue()) 2775 result_sp = result_sp->GetStaticValue(); 2776 } 2777 } break; 2778 } 2779 2780 if (synthValue) { 2781 if (!result_sp->IsSynthetic()) { 2782 if (result_sp->GetSyntheticValue()) 2783 result_sp = result_sp->GetSyntheticValue(); 2784 } 2785 } else { 2786 if (result_sp->IsSynthetic()) { 2787 if (result_sp->GetNonSyntheticValue()) 2788 result_sp = result_sp->GetNonSyntheticValue(); 2789 } 2790 } 2791 2792 return result_sp; 2793 } 2794 2795 ValueObjectSP ValueObject::Dereference(Status &error) { 2796 if (m_deref_valobj) 2797 return m_deref_valobj->GetSP(); 2798 2799 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2800 if (is_pointer_or_reference_type) { 2801 bool omit_empty_base_classes = true; 2802 bool ignore_array_bounds = false; 2803 2804 std::string child_name_str; 2805 uint32_t child_byte_size = 0; 2806 int32_t child_byte_offset = 0; 2807 uint32_t child_bitfield_bit_size = 0; 2808 uint32_t child_bitfield_bit_offset = 0; 2809 bool child_is_base_class = false; 2810 bool child_is_deref_of_parent = false; 2811 const bool transparent_pointers = false; 2812 CompilerType compiler_type = GetCompilerType(); 2813 CompilerType child_compiler_type; 2814 uint64_t language_flags = 0; 2815 2816 ExecutionContext exe_ctx(GetExecutionContextRef()); 2817 2818 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2819 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2820 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2821 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2822 child_is_deref_of_parent, this, language_flags); 2823 if (child_compiler_type && child_byte_size) { 2824 ConstString child_name; 2825 if (!child_name_str.empty()) 2826 child_name.SetCString(child_name_str.c_str()); 2827 2828 m_deref_valobj = new ValueObjectChild( 2829 *this, child_compiler_type, child_name, child_byte_size, 2830 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2831 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2832 language_flags); 2833 } 2834 2835 // In case of incomplete child compiler type, use the pointee type and try 2836 // to recreate a new ValueObjectChild using it. 2837 if (!m_deref_valobj) { 2838 if (HasSyntheticValue()) { 2839 child_compiler_type = compiler_type.GetPointeeType(); 2840 2841 if (child_compiler_type) { 2842 ConstString child_name; 2843 if (!child_name_str.empty()) 2844 child_name.SetCString(child_name_str.c_str()); 2845 2846 m_deref_valobj = new ValueObjectChild( 2847 *this, child_compiler_type, child_name, child_byte_size, 2848 child_byte_offset, child_bitfield_bit_size, 2849 child_bitfield_bit_offset, child_is_base_class, 2850 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2851 } 2852 } 2853 } 2854 2855 } else if (HasSyntheticValue()) { 2856 m_deref_valobj = 2857 GetSyntheticValue() 2858 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2859 .get(); 2860 } else if (IsSynthetic()) { 2861 m_deref_valobj = 2862 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2863 } 2864 2865 if (m_deref_valobj) { 2866 error.Clear(); 2867 return m_deref_valobj->GetSP(); 2868 } else { 2869 StreamString strm; 2870 GetExpressionPath(strm); 2871 2872 if (is_pointer_or_reference_type) 2873 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2874 GetTypeName().AsCString("<invalid type>"), 2875 strm.GetData()); 2876 else 2877 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2878 GetTypeName().AsCString("<invalid type>"), 2879 strm.GetData()); 2880 return ValueObjectSP(); 2881 } 2882 } 2883 2884 ValueObjectSP ValueObject::AddressOf(Status &error) { 2885 if (m_addr_of_valobj_sp) 2886 return m_addr_of_valobj_sp; 2887 2888 AddressType address_type = eAddressTypeInvalid; 2889 const bool scalar_is_load_address = false; 2890 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2891 error.Clear(); 2892 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2893 switch (address_type) { 2894 case eAddressTypeInvalid: { 2895 StreamString expr_path_strm; 2896 GetExpressionPath(expr_path_strm); 2897 error.SetErrorStringWithFormat("'%s' is not in memory", 2898 expr_path_strm.GetData()); 2899 } break; 2900 2901 case eAddressTypeFile: 2902 case eAddressTypeLoad: { 2903 CompilerType compiler_type = GetCompilerType(); 2904 if (compiler_type) { 2905 std::string name(1, '&'); 2906 name.append(m_name.AsCString("")); 2907 ExecutionContext exe_ctx(GetExecutionContextRef()); 2908 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2909 exe_ctx.GetBestExecutionContextScope(), 2910 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2911 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2912 } 2913 } break; 2914 default: 2915 break; 2916 } 2917 } else { 2918 StreamString expr_path_strm; 2919 GetExpressionPath(expr_path_strm); 2920 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2921 expr_path_strm.GetData()); 2922 } 2923 2924 return m_addr_of_valobj_sp; 2925 } 2926 2927 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2928 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2929 } 2930 2931 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2932 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2933 } 2934 2935 ValueObjectSP ValueObject::CastPointerType(const char *name, 2936 CompilerType &compiler_type) { 2937 ValueObjectSP valobj_sp; 2938 AddressType address_type; 2939 addr_t ptr_value = GetPointerValue(&address_type); 2940 2941 if (ptr_value != LLDB_INVALID_ADDRESS) { 2942 Address ptr_addr(ptr_value); 2943 ExecutionContext exe_ctx(GetExecutionContextRef()); 2944 valobj_sp = ValueObjectMemory::Create( 2945 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2946 } 2947 return valobj_sp; 2948 } 2949 2950 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2951 ValueObjectSP valobj_sp; 2952 AddressType address_type; 2953 addr_t ptr_value = GetPointerValue(&address_type); 2954 2955 if (ptr_value != LLDB_INVALID_ADDRESS) { 2956 Address ptr_addr(ptr_value); 2957 ExecutionContext exe_ctx(GetExecutionContextRef()); 2958 valobj_sp = ValueObjectMemory::Create( 2959 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2960 } 2961 return valobj_sp; 2962 } 2963 2964 ValueObject::EvaluationPoint::EvaluationPoint() 2965 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2966 2967 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2968 bool use_selected) 2969 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2970 ExecutionContext exe_ctx(exe_scope); 2971 TargetSP target_sp(exe_ctx.GetTargetSP()); 2972 if (target_sp) { 2973 m_exe_ctx_ref.SetTargetSP(target_sp); 2974 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2975 if (!process_sp) 2976 process_sp = target_sp->GetProcessSP(); 2977 2978 if (process_sp) { 2979 m_mod_id = process_sp->GetModID(); 2980 m_exe_ctx_ref.SetProcessSP(process_sp); 2981 2982 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2983 2984 if (!thread_sp) { 2985 if (use_selected) 2986 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2987 } 2988 2989 if (thread_sp) { 2990 m_exe_ctx_ref.SetThreadSP(thread_sp); 2991 2992 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2993 if (!frame_sp) { 2994 if (use_selected) 2995 frame_sp = thread_sp->GetSelectedFrame(); 2996 } 2997 if (frame_sp) 2998 m_exe_ctx_ref.SetFrameSP(frame_sp); 2999 } 3000 } 3001 } 3002 } 3003 3004 ValueObject::EvaluationPoint::EvaluationPoint( 3005 const ValueObject::EvaluationPoint &rhs) 3006 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 3007 3008 ValueObject::EvaluationPoint::~EvaluationPoint() {} 3009 3010 // This function checks the EvaluationPoint against the current process state. 3011 // If the current state matches the evaluation point, or the evaluation point 3012 // is already invalid, then we return false, meaning "no change". If the 3013 // current state is different, we update our state, and return true meaning 3014 // "yes, change". If we did see a change, we also set m_needs_update to true, 3015 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3016 // the current execution context scope. 3017 3018 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3019 bool accept_invalid_exe_ctx) { 3020 // Start with the target, if it is NULL, then we're obviously not going to 3021 // get any further: 3022 const bool thread_and_frame_only_if_stopped = true; 3023 ExecutionContext exe_ctx( 3024 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3025 3026 if (exe_ctx.GetTargetPtr() == nullptr) 3027 return false; 3028 3029 // If we don't have a process nothing can change. 3030 Process *process = exe_ctx.GetProcessPtr(); 3031 if (process == nullptr) 3032 return false; 3033 3034 // If our stop id is the current stop ID, nothing has changed: 3035 ProcessModID current_mod_id = process->GetModID(); 3036 3037 // If the current stop id is 0, either we haven't run yet, or the process 3038 // state has been cleared. In either case, we aren't going to be able to sync 3039 // with the process state. 3040 if (current_mod_id.GetStopID() == 0) 3041 return false; 3042 3043 bool changed = false; 3044 const bool was_valid = m_mod_id.IsValid(); 3045 if (was_valid) { 3046 if (m_mod_id == current_mod_id) { 3047 // Everything is already up to date in this object, no need to update the 3048 // execution context scope. 3049 changed = false; 3050 } else { 3051 m_mod_id = current_mod_id; 3052 m_needs_update = true; 3053 changed = true; 3054 } 3055 } 3056 3057 // Now re-look up the thread and frame in case the underlying objects have 3058 // gone away & been recreated. That way we'll be sure to return a valid 3059 // exe_scope. If we used to have a thread or a frame but can't find it 3060 // anymore, then mark ourselves as invalid. 3061 3062 if (!accept_invalid_exe_ctx) { 3063 if (m_exe_ctx_ref.HasThreadRef()) { 3064 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3065 if (thread_sp) { 3066 if (m_exe_ctx_ref.HasFrameRef()) { 3067 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3068 if (!frame_sp) { 3069 // We used to have a frame, but now it is gone 3070 SetInvalid(); 3071 changed = was_valid; 3072 } 3073 } 3074 } else { 3075 // We used to have a thread, but now it is gone 3076 SetInvalid(); 3077 changed = was_valid; 3078 } 3079 } 3080 } 3081 3082 return changed; 3083 } 3084 3085 void ValueObject::EvaluationPoint::SetUpdated() { 3086 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3087 if (process_sp) 3088 m_mod_id = process_sp->GetModID(); 3089 m_needs_update = false; 3090 } 3091 3092 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3093 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3094 eClearUserVisibleDataItemsValue) 3095 m_value_str.clear(); 3096 3097 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3098 eClearUserVisibleDataItemsLocation) 3099 m_location_str.clear(); 3100 3101 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3102 eClearUserVisibleDataItemsSummary) 3103 m_summary_str.clear(); 3104 3105 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3106 eClearUserVisibleDataItemsDescription) 3107 m_object_desc_str.clear(); 3108 3109 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3110 eClearUserVisibleDataItemsSyntheticChildren) { 3111 if (m_synthetic_value) 3112 m_synthetic_value = nullptr; 3113 } 3114 } 3115 3116 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3117 if (m_parent) { 3118 if (!m_parent->IsPointerOrReferenceType()) 3119 return m_parent->GetSymbolContextScope(); 3120 } 3121 return nullptr; 3122 } 3123 3124 lldb::ValueObjectSP 3125 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3126 llvm::StringRef expression, 3127 const ExecutionContext &exe_ctx) { 3128 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3129 EvaluateExpressionOptions()); 3130 } 3131 3132 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3133 llvm::StringRef name, llvm::StringRef expression, 3134 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3135 lldb::ValueObjectSP retval_sp; 3136 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3137 if (!target_sp) 3138 return retval_sp; 3139 if (expression.empty()) 3140 return retval_sp; 3141 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3142 retval_sp, options); 3143 if (retval_sp && !name.empty()) 3144 retval_sp->SetName(ConstString(name)); 3145 return retval_sp; 3146 } 3147 3148 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3149 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3150 CompilerType type) { 3151 if (type) { 3152 CompilerType pointer_type(type.GetPointerType()); 3153 if (pointer_type) { 3154 lldb::DataBufferSP buffer( 3155 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3156 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3157 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3158 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3159 exe_ctx.GetAddressByteSize())); 3160 if (ptr_result_valobj_sp) { 3161 ptr_result_valobj_sp->GetValue().SetValueType( 3162 Value::eValueTypeLoadAddress); 3163 Status err; 3164 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3165 if (ptr_result_valobj_sp && !name.empty()) 3166 ptr_result_valobj_sp->SetName(ConstString(name)); 3167 } 3168 return ptr_result_valobj_sp; 3169 } 3170 } 3171 return lldb::ValueObjectSP(); 3172 } 3173 3174 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3175 llvm::StringRef name, const DataExtractor &data, 3176 const ExecutionContext &exe_ctx, CompilerType type) { 3177 lldb::ValueObjectSP new_value_sp; 3178 new_value_sp = ValueObjectConstResult::Create( 3179 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3180 LLDB_INVALID_ADDRESS); 3181 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3182 if (new_value_sp && !name.empty()) 3183 new_value_sp->SetName(ConstString(name)); 3184 return new_value_sp; 3185 } 3186 3187 ModuleSP ValueObject::GetModule() { 3188 ValueObject *root(GetRoot()); 3189 if (root != this) 3190 return root->GetModule(); 3191 return lldb::ModuleSP(); 3192 } 3193 3194 ValueObject *ValueObject::GetRoot() { 3195 if (m_root) 3196 return m_root; 3197 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3198 return (vo->m_parent != nullptr); 3199 })); 3200 } 3201 3202 ValueObject * 3203 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3204 ValueObject *vo = this; 3205 while (vo) { 3206 if (!f(vo)) 3207 break; 3208 vo = vo->m_parent; 3209 } 3210 return vo; 3211 } 3212 3213 AddressType ValueObject::GetAddressTypeOfChildren() { 3214 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3215 ValueObject *root(GetRoot()); 3216 if (root != this) 3217 return root->GetAddressTypeOfChildren(); 3218 } 3219 return m_address_type_of_ptr_or_ref_children; 3220 } 3221 3222 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3223 ValueObject *with_dv_info = this; 3224 while (with_dv_info) { 3225 if (with_dv_info->HasDynamicValueTypeInfo()) 3226 return with_dv_info->GetDynamicValueTypeImpl(); 3227 with_dv_info = with_dv_info->m_parent; 3228 } 3229 return lldb::eNoDynamicValues; 3230 } 3231 3232 lldb::Format ValueObject::GetFormat() const { 3233 const ValueObject *with_fmt_info = this; 3234 while (with_fmt_info) { 3235 if (with_fmt_info->m_format != lldb::eFormatDefault) 3236 return with_fmt_info->m_format; 3237 with_fmt_info = with_fmt_info->m_parent; 3238 } 3239 return m_format; 3240 } 3241 3242 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3243 lldb::LanguageType type = m_preferred_display_language; 3244 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3245 if (GetRoot()) { 3246 if (GetRoot() == this) { 3247 if (StackFrameSP frame_sp = GetFrameSP()) { 3248 const SymbolContext &sc( 3249 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3250 if (CompileUnit *cu = sc.comp_unit) 3251 type = cu->GetLanguage(); 3252 } 3253 } else { 3254 type = GetRoot()->GetPreferredDisplayLanguage(); 3255 } 3256 } 3257 } 3258 return (m_preferred_display_language = type); // only compute it once 3259 } 3260 3261 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3262 m_preferred_display_language = lt; 3263 } 3264 3265 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3266 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3267 SetPreferredDisplayLanguage(lt); 3268 } 3269 3270 bool ValueObject::CanProvideValue() { 3271 // we need to support invalid types as providers of values because some bare- 3272 // board debugging scenarios have no notion of types, but still manage to 3273 // have raw numeric values for things like registers. sigh. 3274 const CompilerType &type(GetCompilerType()); 3275 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3276 } 3277 3278 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3279 3280 ValueObjectSP ValueObject::Persist() { 3281 if (!UpdateValueIfNeeded()) 3282 return nullptr; 3283 3284 TargetSP target_sp(GetTargetSP()); 3285 if (!target_sp) 3286 return nullptr; 3287 3288 PersistentExpressionState *persistent_state = 3289 target_sp->GetPersistentExpressionStateForLanguage( 3290 GetPreferredDisplayLanguage()); 3291 3292 if (!persistent_state) 3293 return nullptr; 3294 3295 ConstString name = persistent_state->GetNextPersistentVariableName(); 3296 3297 ValueObjectSP const_result_sp = 3298 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3299 3300 ExpressionVariableSP persistent_var_sp = 3301 persistent_state->CreatePersistentVariable(const_result_sp); 3302 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3303 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3304 3305 return persistent_var_sp->GetValueObject(); 3306 } 3307 3308 bool ValueObject::IsSyntheticChildrenGenerated() { 3309 return m_is_synthetic_children_generated; 3310 } 3311 3312 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3313 m_is_synthetic_children_generated = b; 3314 } 3315 3316 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3317 3318 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3319 3320 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3321 lldb::DynamicValueType use_dynamic, 3322 bool use_synthetic) : m_root_valobj_sp(), 3323 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3324 m_use_synthetic(use_synthetic) { 3325 if (!in_valobj_sp) 3326 return; 3327 // If the user passes in a value object that is dynamic or synthetic, then 3328 // water it down to the static type. 3329 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3330 } 3331 3332 bool ValueObjectManager::IsValid() const { 3333 if (!m_root_valobj_sp) 3334 return false; 3335 lldb::TargetSP target_sp = GetTargetSP(); 3336 if (target_sp) 3337 return target_sp->IsValid(); 3338 return false; 3339 } 3340 3341 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3342 lldb::ProcessSP process_sp = GetProcessSP(); 3343 if (!process_sp) 3344 return lldb::ValueObjectSP(); 3345 3346 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3347 if (current_stop_id == m_stop_id) 3348 return m_user_valobj_sp; 3349 3350 m_stop_id = current_stop_id; 3351 3352 if (!m_root_valobj_sp) { 3353 m_user_valobj_sp.reset(); 3354 return m_root_valobj_sp; 3355 } 3356 3357 m_user_valobj_sp = m_root_valobj_sp; 3358 3359 if (m_use_dynamic != lldb::eNoDynamicValues) { 3360 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3361 if (dynamic_sp) 3362 m_user_valobj_sp = dynamic_sp; 3363 } 3364 3365 if (m_use_synthetic) { 3366 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(); 3367 if (synthetic_sp) 3368 m_user_valobj_sp = synthetic_sp; 3369 } 3370 3371 return m_user_valobj_sp; 3372 } 3373 3374 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3375 if (use_dynamic != m_use_dynamic) { 3376 m_use_dynamic = use_dynamic; 3377 m_user_valobj_sp.reset(); 3378 m_stop_id = UINT32_MAX; 3379 } 3380 } 3381 3382 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3383 if (m_use_synthetic != use_synthetic) { 3384 m_use_synthetic = use_synthetic; 3385 m_user_valobj_sp.reset(); 3386 m_stop_id = UINT32_MAX; 3387 } 3388 } 3389 3390 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3391 if (!m_root_valobj_sp) 3392 return m_root_valobj_sp->GetTargetSP(); 3393 return lldb::TargetSP(); 3394 } 3395 3396 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3397 if (m_root_valobj_sp) 3398 return m_root_valobj_sp->GetProcessSP(); 3399 return lldb::ProcessSP(); 3400 } 3401 3402 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3403 if (m_root_valobj_sp) 3404 return m_root_valobj_sp->GetThreadSP(); 3405 return lldb::ThreadSP(); 3406 } 3407 3408 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3409 if (m_root_valobj_sp) 3410 return m_root_valobj_sp->GetFrameSP(); 3411 return lldb::StackFrameSP(); 3412 } 3413